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Abstract – English

Single-pass free-electron lasers (FELs) are currently the most promising facilities

for providing light pulses with high energies (µJ to mJ) at femtosecond time scales

(1 f s = 10−15 s) and with ultrashort wavelengths (nanometer resolution i.e., down to

extreme-ultraviolet and X-ray spectral regions). Extreme-ultraviolet FELs are still quite

young so that many questions remain open. Those addressed within this manuscript

concern the so-called seeded configuration, where an external coherent source (the

“seed") initiates the process. In particular, we focus in this thesis on the transverse and

longitudinal characteristics of the light, its coherence, the properties of the temporal

phase and the direct correlations between the seed and the FEL emission.

With regard to FELs, high-order harmonics of femtosecond laser pulses generated

in noble gases (HHG technique) exhibit both competitive and complementary features.

Competitive, because the produced pulses have similar assets as the ones provided

by an FEL. Complementary, because the generated harmonics can be used as a seed

or, in combination with FEL light, to perform multi-beam experiments. Even though

less powerful pulses are produced by a HHG source, its implementation requires a

significantly smaller effort. The efficiency of harmonic conversion, the tunability and

spatial quality of the generated beam, and how these parameters depend on the driving

laser are the issues discussed within this manuscript.

The general will of the scientific community to perform novel experiments requires

deep studies and optimization of FEL and HHG sources. In particular, on the seeded

FEL facility FERMI@Elettra of Trieste, the induction of chirp in the radiation has led to

remarkable results. Among others, a method of generation of split pulses with different

wavelengths has been construed and developed. Such a possibility paves the way for

the use of seeded FEL facilities as stand-alone sources for two-colour pump-probe se-

tups. More generally, the study of phenomena involved in the FEL and HHG processes,

together with the characterization of the light properties, are intrinsically exciting mat-

ters that have direct connections with fundamental aspects of physics.

Keywords free-electron laser, high-order harmonic generation, femtosecond laser, co-

herence, extreme-ultraviolet, tunability, chirp, modal filtering





Abstract – Slovenian

Laser na proste elektrone (LPE, ang. free-electron laser – FEL) z enojnim pre-

hodom je trenutno najbolj obetaven vir femtosekundnih (1 f s = 10−15 s) svetlobnih

pulzov z visoko energijo (µJ do mJ) in ultra kratko valovno dolžino (nanometrska

ločljivost, t.j., vse do spektralnega območja ekstremne ultravijolične in rentgenske svet-

lobe). LPE-ji, ki delujejo na področju ekstremne ultravijolične svetlobe, so razmeroma

novi svetlobni viri, kar pomeni, da so glede njihovega delovanja odprta še mnoga

vprašanja. V pričujočem doktorskem delu smo se ukvarjali predvsem z dvostopen-

jsko konfiguracijo, pri kateri LPE ojači zunanje (koherentno) elektromagnetno valovanje

(seed). Osredotočili smo se na transverzalne in longitudinalne lastnosti proizvedene

svetlobe, koherenco, lastnosti časovne faze ter na direktne korelacije med zunanjim

virom (seed) in sevanjem LPE-ja.

Poleg LPE-jev so v vzponu tudi svetlobni viri, ki temeljijo na generaciji visokih

harmonikov (GVH, ang. high-order harmonic generation – HHG) v žlahtnih plinih.

Ti svetlobni viri so zaradi podobnih lastnosti pulzov konkurenčni LPE-jem, po drugi

strani pa predstavljajo komplementarne izvore svetlobe, ker jih je mogoče uporabiti v

dvostopenjski LPE konfiguraciji kot vir zunanjega elektromagnetnega valovanja (seed)

ali v kombinaciji z LPE-jem v eksperimentih z dvema ali več žarki. Kljub temu, da

so ti svetlobni viri šibkejši v primerjavi z LPE-ji, je njihova izvedba bistveno lažja. V

dizertaciji obravnavamo izkoristek harmonične pretvorbe virov, ki temeljijo na principu

GVH, nastavljivost in prostorsko kakovost žarkov, ter odvisnost omenjenih parametrov

od gonilnega laserja.

Zaradi vse večje težnje po novih eksperimentih na vseh znanstvenih področjih

sta ključna zelo natančno poznavanje delovanja in optimizacija LPE-jev in virov, ki

temeljijo na GVH. Med bolj pomembne dosežke na LPE-ju FERMI@Elettra v Trstu

spadajo možnost spreminjanja trenutne frekvence proizvedene svetlobe (ang. chirp)

na podlagi katere je bila razvita metoda za generacijo razdeljenih pulzov z različnimi

valovnimi dolžinami. S pomočjo te metode bo možno dvostopenjske LPE-je uporabljati

kot samostojne vire svetlobe za poskuse v t.i. načinu “pump-probe”. V dizertaciji so

predstavljene študije pojavov, ki so prisotni pri generaciji svetlobe v LPE-jih ter virih,

ki temeljijo na GVH. Ti pojavi so, skupaj z metodami karakterizacije proizvedene svet-

lobe, tesno povezani s temeljnimi principi v fiziki.

Ključne besede laser na proste elektrone, generacija visokih harmonikov, koherenca,

femtosekundni laser, ekstremna ultravijolična svetloba, nastavljivost, chirp, modal fil-

tering





Abstract – French

Les lasers à électrons libres (LELs) à simple passage représentent actuellement

la possibilité la plus prometteuse pour fournir des impulsions lumineuses de haute

énergie (µJ to mJ) à des échelles de durée femtoseconde (1 f s = 10−15 s) et des

longueurs d’ondes ultra-courtes (résolution nanométrique i.e., jusqu’aux domaines de

l’extrême-ultraviolet et des rayons X). Les LELs émettant dans l’extrême-ultraviolet sont

une technologie encore jeune, si bien que de nombreuses questions restent ouvertes.

Celles posées au sein de ce manuscrit concernent la configuration dite injectée, dans

laquelle le processus est initié par une source externe cohérente (le “seed"). Nous

nous concentrons particulièrement dans cette thèse sur les caractéristiques trans-

verses et longitudinales de la lumière, sa cohérence, les propriétés de la phase tem-

porelle et les liens directs entre le seed et l’émission LEL.

La technique de génération dans un gaz noble d’harmoniques d’ordres élevés d’un

laser femtoseconde (GHE) se montre à la fois complémentaire et en compétition avec

les LELs. En compétition car les impulsions produites ont des qualités similaires à

celles obtenues avec un LEL ; complémentaire car le rayonnement GHE peut être

utilisé comme seed ou en combinaison avec la lumière LEL, par exemple pour effectuer

des expériences mettant en jeu de multiples faisceaux. Bien que la GHE fournisse

des impulsions moins puissantes, l’implémentation d’une telle source requiert un effort

significativement moins important. Le taux de conversion harmonique, l’accordabilité

et la qualité spatiale du faisceau généré, et la manière dont ces paramètres dépendent

du laser générateur sont les problématiques traitées au sein de ce manuscrit.

La volonté de la communauté scientifique d’effectuer des expériences novatrices

demande des études profondes et l’optimisation des sources de GHE et des LELs.

En particulier, sur la source LEL injectée FERMI@Elettra de Trieste, l’induction d’une

dérive de fréquence dans le rayonnement a conduit à des résultats marquants. Entre

autres, une méthode de génération d’impulsions scindées avec différentes longueurs

d’ondes a été analysée et développée. Une telle possibilité ouvre la voie à l’utilisation

des LELs injectés en tant que source autonome pour des installations de type pompe-

sonde à deux couleurs. Plus généralement, l’étude des phénomènes mis en jeu dans

les processus de GHE et du LEL ainsi que la caractérisation des propriétés de leur

lumière sont des sujets intrinsèquement excitants, ayant des connexions directes avec

de nombreux aspects fondamentaux de la physique.

Mots-clefs laser à électrons libres, génération d’harmoniques d’ordres élevés, laser

femtoseconde, cohérence, extrême-ultraviolet, accordabilité, chirp, filtrage modal
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Introduction

For the last two decades, marked by the Nobel Prize obtained in 1999 by Ahmed H.

Zewail for his work on femtochemistry [1], the study of ultrafast processes has been in

continuous development. The quest for short durations proceeded together with inves-

tigations on nanoscale samples. To probe ultrafast phenomena and/or fine structures,

the best tool is a coherent and powerful photon beam, in other words, a laser.

For analysing the dynamics of a sample at an ultrafast time scale, pump-probe

experiments have demonstrated to be of great interest: time-resolved absorption [2,

3, 4, 5], coherent anti-Stokes Raman scattering [6], probe-induced Raman scattering

[7] and femtosecond transition-state spectroscopy [8] are examples of applications of

such a setup. Beside this, the generation of multiple synchronized frequencies from

femtosecond laser sources is a very important benefit, as in the case of degenerate

four-wave mixing [9, 10]. Such asset can be combined to the pump-probe technique

for the use in a two-colour pump-probe setup [11].

In order to reach sufficient resolution, needed for instance for coherent diffraction

imaging [12], laser light pulses must be ultra-fast (picosecond to attosecond pulse du-

ration) and must also have short wavelength (down to the nanometer scale). A large

photon flux is also required, especially for the study of nonlinear processes, requiring

high peak intensities. Tuning the photon beam wavelength and polarization, mastering

its spectral and temporal structure, improving its stability and shaping it spatially are

also important assets.

However, generating light with all these characteristics is not trivial, and all the pre-

cited applications are therefore limited to photon energies of the order of some eV . The

main reason stems from the lack of conventional lasers below ≈ 150 nm. Free-Electron

Lasers (FEL’s) [13, 14] and the technique of High-order Harmonic Generation (HHG)

[15] in noble gases are the two main present-day solutions for overcoming this limit.

Nevertheless, they still do not meet the expectations of the scientific community and

many interesting issues concerning their underlying physics remain open. The work

that I have carried out in the framework of my PhD has aimed at contributing to the

investigation of such problems.

This manuscript hinges on five main chapters:

In Chapter I, I will present the main notions that will be essential all along the study.

In particular, the two kind of sources of interest here, namely FEL’s (especially the

FERMI@Elettra facility) and HHG, will be described. The purpose will not be to deeply

explain their mechanisms, rather their main characteristics and the physical processes



2 Introduction

of interest in the frame of my thesis. It will be forwarded by the definition of some

“fundamental" concepts of femtosecond laser pulses.

Chapter II will focus on experiments characterizing the spatial quality of femtosec-

ond light sources. As a first step, it will describe the transverse characterizations car-

ried out on the FERMI@Elettra source: spatial coherence, intensity spot and wavefront

measurements. After this, a section will be dedicated to a series of experiments held a

CEA Saclay on the LUCA source. The spatial quality of the latter, of the EUV photons

and the optimization of the global HHG process will be studied.

Next two chapters will then be dedicated to the chirp in seeded FEL’s. At the input of

such a machine, they correspond to two different things: the frequency-vs-time depen-

dence of the seed and the energy-vs-time dependence along the electron bunch. At

the output, it corresponds to the frequency-vs-time dependence of the emitted pulse.

These different chirps, their respective effects and their interplay will be studied in

Chapter III.

As a consequence of these chirps, I will present in Chapter IV the effect of formation

of two-colour pulses that we emphasized on FERMI@Elettra. After preliminary descrip-

tion and characterizations, a more comprehensive work will be presented. Thanks to

this unique feature, chirped seeded FEL’s can be utilized as stand-alone light sources

for pump-probe experiments. Numerous studies are conceivable on seeded FEL’s by

playing with the different chirps. In particular, I will demonstrate that the temporal shape

of the output pulses can be directly retrieved, without any additional setup or algorithm.

Finally, before concluding, Chapter V will continue on the topic of tunability intro-

duced by spectral studies carried out on seeded FEL’s. Different setups have been

imagined for optimizing this asset on HHG sources. Here I will present a simple solu-

tion relying on the tunability of the driving field.

Before starting, I wish to stress that the activity on FERMI@Elettra has been quite

intense within the last half of my PhD. It would have been possible to present a lot of

results in this thesis, but I preferred to focus on the studies that I led, in order to provide

an (hopefully) easy-to-read and personal manuscript.



CHAPTER I

General background
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I.1 Some notions of (femtosecond) laser physics

I.1.a Ultrashort pulse and bandwidth

Temporally, a continuous wave can be described by a sinusoidal function. In an ul-

trashort wave (in this thesis, we will deal we durations of the order of the femtosecond,
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1 f s= 10−15 s), there will be only a few cycles of this sinusoid. For instance, at a wave-

length of 800 nm corresponding to the limit visible/infrared, the duration of an optical cy-

cle is 2.7 f s. If the duration of the light pulse is 27 f s, there will be only 10 cycles within

this burst. But in fact, intrinsically to this ultrashort duration, the pulse will not have only

one single wavelength, but an addition of wavelengths forming the bandwidth. Indeed,

let us look at the Fourier decomposition of our wave: f (t) = ∑an cos(nω −ϕn), where

n is an integer, ω is the angular frequency, an and φn are the amplitudes and phase

at the frequency components nω . In Fig. I.1, we considered a wave whose central

frequency is an arbitrary value 8ω . In the case shown on the left panel, there is a sin-

gle frequency and the sum of this single component is thus a continuous wave. In the

middle panel, we considered that f (t) is made of fifteen frequencies in phase, ranging

from ω to 15ω (for simplicity, in the top graphs only three frequency components are

represented): the wave, corresponding to the sum of these different frequency com-

ponents, is not continuous any more but has a finite duration. We will thus call it a

pulse. In the case where we take the same spectral components with same weights

but dephased (right panel), f (t) is lengthened. Moreover, if we have an accurate look

to the shape of f (t), we see that at the beginning the period of the oscillations is longer

than at the end. In other words, the instantaneous frequency is not constant along the

pulse: this phenomenon is called the chirp, and is a fundamental point in this thesis. It

is due to the fact that the different spectral components are not in phase.

I.1.b Electric field

Like any wave, an ultrashort laser pulse can be described by its electric field de-

pending on the spatio-temporal coordinates. As a first approach we will reduce to the

temporal variations only. The temporal electric field corresponds to the function f (t)

that we considered above. One generally writes it as follows:

E(t) = A(t)ei[ω0t+ϕ(t)], (I.1)

where A(t) is the envelope of the pulse and ϕ(t) is called the temporal phase of the

pulse. In fact, the entity ω0t +ϕ(t) represents the whole phase of the oscillations of

the field. To E(t), which is an imaginary entity, we should actually sum its complex

conjugate in order to obtain a real electric field, as f (t). But this is usually not done for

facilitating the calculations. The measured value is not the electric field but its intensity,

which is given by I(t) = E(t) ·E(t)∗ = |A(t)|2. The Fourier transform of the electric

field in the temporal domain leads to its expression in the spectral domain, that can be
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Figure I.1: Wave f(t) (bottom pictures) resulting from the addition of different spectral components (top

pictures). Left panel: one single spectral component; middle panel: sum of 15 spectral components, in

phase; right panel: sum of the same 15 spectral components, but dephased.

written:

Ẽ(ω) = Ã(ω)eiφ(ω). (I.2)

Similarly, we have the spectral envelope Ã(ω) and the spectral phase φ(ω). The

spectral intensity, called the spectrum, is given by Ĩ(ω) = Ẽ(ω) · Ẽ(ω)∗ = |Ã(ω)|2.

One has to note that generally we will use the wavelength λ = 2πc
ω (c being the speed

of light) instead of the angular frequency ω . Since dω
dλ = −2πc

λ 2 , there will not be a

linear transformation between both scales. The consequence is that, for instance, a

spectrum Gaussian as a function of the frequency is not Gaussian as a function of

the wavelength (see Fig. I.2). However, the approximation can be done, especially for

sufficiently narrow spectra.

It is important to understand the meaning of the phases. The temporal phase is

an information of the frequency at a given time. The instantaneous central angular

frequency of the pulse at a time t, noted ωinst(t), is defined as the derivative of the

whole temporal phase of the oscillations, i.e.:

ωinst(t) = ω0 +
dϕ(t)

dt
. (I.3)
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Figure I.2: Spectral intensity (full lines) and phase (dashed lines) as a function of the angular frequency

(left) and the wavelength (right). (taken from [16])

Instead, the spectral phase is an information of the time corresponding to each spectral

component, which leads to the definition of the group delay i.e., the arrival time of a

frequency:

tgroup(ω) =
dφ(ω)

dω
. (I.4)

I.1.c Phase effects

The spectral and temporal phases are generally expanded in Taylor series, so that

we write them as:

ϕ(t) = ϕ0 +ϕ1t +
1

2
ϕ2t2+

1

6
ϕ3t3+ ..., (I.5)

and:

φ(ω) = φ0 +φ1(ω −ω0)+
1

2
φ2(ω −ω0)

2 +
1

6
φ3(ω −ω0)

3 + ..., (I.6)

ω0 being the central angular frequency of the pulse.

The 0th order phases ϕ0 and φ0 are absolute phase terms that determine the posi-

tion of the electric field within the envelope. This is of interest when the pulse contains

only few optical cycles, as shown in Fig. I.3.

Figure I.3: Temporal electric field for different values of ϕ0. (taken from [16])
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A shift τ in time, giving E(t − τ), is transposed in the spectrum to an additional

linear phase term e−i(ω−ω0)τ , via the Fourier transform. Similarly, a shift in frequency

gives, via an inverse Fourier transform, a linear phase term in the time domain. Hence,

the consequences of the linear phases ϕ1 and φ1 are a shift, respectively in frequency

and in time (Fig. I.4).

Figure I.4: Left: temporal intensity (full line), temporal phase (dotted line) and instantaneous frequency

νinst =
ωinst
2π (dotted line); right: Corresponding spectrum (full line), spectral phase (dotted line) and group

delay (dotted line). Top pictures: flat phases; middle pictures: ϕ1 = 0 and φ1 6= 0; bottom pictures: ϕ1 6= 0

and φ1 = 0. (taken from [16])

A quadratic temporal phase ϕ2 corresponds to a linear variation of ωinst(t) i.e., a

linear chirp. It corresponds also to a quadratic spectral phase φ2, but with opposite

sign. When smaller frequencies i.e., longer wavelengths arrive first, the pulse has

a positive chirp or is said up-chirped. Instead, when larger frequencies i.e., smaller

wavelengths arrive first, the pulse has a negative chirp or is said down-chirped. The

situation of an up-chirped pulse is shown in Fig. I.5.

Finally, for higher-order phase terms, the situation is more complicated, as shown

in Fig. I.6 with a cubic spectral phase: the temporal profile exhibits distortions and

the chirp becomes quadratic. Generally, we try to boil down to a situation where phase
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Figure I.5: Top left: temporal electric field. Top right: intensity, temporal phase, and instantaneous

frequency vs. time. Bottom left: spectrum, spectral phase and group delay vs. frequency. Bottom right:

spectrum, spectral phase and group delay vs. wave- length. (taken from [16])

Figure I.6: Top left: temporal electric field. Top right: intensity, temporal phase, and instantaneous

frequency vs. time. Bottom left: spec- trum, spectral phase and group delay vs. frequency. Bottom right:

spec- trum, spectral phase and group delay vs. wave- length. (taken from [16])

terms are limited to the second-order i.e., to a linear chirp. The φ2 value, corresponding

to
dφ(ω)

dω =
dtgroup

dω , will be called the group delay dispersion, which is an indication of

the amount of linear chirp.
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I.1.d Fourier-transform and diffraction limits

We previously underlined a fundamental characteristic of ultrashort pulses: they

must have a broadband spectrum. It is not possible to narrow indefinitely the spectrum

and the temporal profile together. This property is due to the fact that the spectral

and time components are linked by Fourier transform. We will thus define the time-

bandwidth product, which can be retrieved mathematically (see, for instance, [17] for a

general demonstration), as:

∆ω ·∆t > lim, (I.7)

where ∆ω and ∆t are the widths of the spectral and temporal distributions of the pulse

and lim is called the Fourier-transform limit whose value depends on how ∆ω and ∆t

are defined. In a general case, if ∆ω and ∆t are the standard deviations of the spectral

and temporal electric field envelopes, lim = 1 and thus the minimum duration of the

electric field envelope of the pulse is directly the inverse of the width of the electric field

in the frequency domain. However, usually we deal with Gaussian pulses so that it is

common to work with the full-width at half maximum values (FWHM) of the intensity

distributions, that we will note Ht and Hω . If we consider the frequency ν = ω
2π , the

time-bandwidth product becomes, for Gaussian temporal and spectral profiles:

Hν ·Ht > 0.441, (I.8)

which is the commonly used form.

Up to now we concentrated ourselves only on the basic time properties of laser

pulses. However, similar properties are present in the spatial domain: like for the fact

that the pulse duration is limited for a given bandwidth, the minimum transverse spot

size of the beam is limited also. Let us write Heisenberg’s uncertainty principle as :

∆~x ·∆~p >
h̄

2
, (I.9)

where ∆~x is the uncertainty on the position of a particle and ∆~p is the uncertainty on

its momentum. For the photons that compose our laser light, the momentum is h̄~k,~k

being the wave vector with |~k| = 2π
λ

. For small angles θ , we can write ∆~k ≃~k∆θ so

that |∆~p| ≃ h̄k∆θ . The uncertainty principle therefore reads:

∆x∆θ >
λ

4π
. (I.10)

Now, if we identify our laser beam source diameter as d = 2∆x and the divergence
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half angle of the light as the uncertainty on the emission angle ∆θ , we obtain the

size-divergence product bounded by the so-called diffraction limit:

d ·θ >
λ

2π
. (I.11)

This relation is the spatial analogy of the time-bandwidth product. It tells us that it is

not possible to focus the laser beam without involving an increase of the divergence

and, at a given spot size and wavelength, the transverse quality of a laser beam will be

characterized by its divergence (lower divergence meaning better spatial quality).

I.1.e Coherence

The temporal and spatial quality of the light is often characterized by its coherence.

Figure I.7 represents the propagation of the wavefront of a beam, in the transverse x di-

mension. The wavefronts are defined as the surfaces over which the temporal electric

field of the wave reaches its maximum; hence, successive wavefronts are theoretically

separated by the wavelength λ . Over the width ∆x, the wavefront keeps the same

characteristics along a distance of propagation delimited by the dashed lines. We say

that the wave is spatially (or transversally) coherent over ∆x (or for two positions taken

within ∆x). Similarly, along ∆t the wavefront is unchanged within the transverse bound-

aries of the dotted lines. Hence we say that the wave is temporally (or longitudinally)

coherent during ∆t.

Figure I.7: Wavefront propagations with areas of spatial coherence (∆x) and temporal coherence (∆t).
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If an ultrashort pulse is chirped, the distance between each wavefront will vary

along the pulse, since the instantaneous frequency is not constant. A pulse that is far

from the Fourier-transform limit will thus present a lack of temporal coherence. Sim-

ilarly, the spatial qualities of the beam and its propensity to reach the diffraction limit

are linked to the transverse quality of its wavefront.

The overall coherence of between two points in the space, located at the transverse

positions x1 and x2 is measured at times separated by τ , is characterized by the mutual

coherence function:

Γ(x1,x2,τ) =< E(x1, t)E
∗(x2, t + τ)> . (I.12)

The “<>" means the averaging over a given time, for instance the duration of the

pulse whose coherence is characterized. The Fourier transform of this function gives

the so-called cross-spectral density:

W (x1,x2,ω) =

∫ +∞

−∞
Γ(x1,x2,τ)e

−iωτ dτ, (I.13)

which characterizes the coherence of the light at a given frequency ω . The normaliza-

tion of these two functions leads, respectively, to the complex degree of coherence:

γ(x1,x2,τ) =
Γ(x1,x2,τ)

√

Γ(x1,x1,τ)Γ(x2,x2,τ)
, (I.14)

and the complex coherence factor:

µ(x1,x2,ω) =
W (x1,x2,ω)

√

W (x1,x1,ω)W (x1,x2,ω)
. (I.15)

γ represents (as Γ) the overall coherence and when |γ| = 1, there is full coherence

between the points x1 and x2 and no coherence when |γ| = 0, only partial coherence

for intermediate values. When τ = 0 (i.e., when the two points are taken at the same

time), the complex degree of coherence is equal to the complex coherence factor and

the modulus of the latter characterizes the spatial coherence.

For a further description of the coherence, see [18].

Now, the very basic notions that will be useful in this thesis have been presented. In

the next two sections, I will present the kind of facilities on which I relied for carrying out

my work, namely Free-Electron Lasers (FEL’s) and High-order Harmonic Generation

(HHG) sources providing both femtosecond pulses in the ultraviolet to X-ray spectral
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range i.e., from less than 400 nm down to wavelengths of few nanometers.

I.2 Single-pass Free-Electron Lasers

In its most straightforward configuration, an FEL relies on the following scheme:

a relativistic electron beam wiggles through the periodic and static magnetic field pro-

vided by a magnetic device called undulator (Fig. I.8). Due to this motion, the electrons

lose kinetic energy. The latter is transferred to emitted photons, whose wavelength de-

pends on electrons and undulator characteristics. Since this wavelength corresponds

also to the resonant condition of an energy transfer between electrons and photons,

the emission becomes stimulated and is thus amplified along the undulator. If no ex-

ternal wave originates the photons emission, this configuration is thus called the self-

amplification of spontaneous emission, or SASE. When the bunch enters the undulator,

each electron emits independently, so that the overall emission is incoherent. The en-

ergy transfer between the photons and the wiggling electrons leads to a spatial density

modulation of the latter, called bunching. The micro-bunches thus emit in phase, pro-

viding a coherent radiation.

Figure I.8: Basic layout of a SASE FEL.

However, due to the initial random distribution of the electrons, the first photons

correspond to a noisy signal, whose amplification thus results in spikes in time and

spectrum. Figure I.9 illustrates this situation in the spectral domain: when they enter

the undulator, the electrons start emitting around the wavelength λ of emission of the

undulator. However, this signal is very noisy and the SASE process corresponds to the

amplification of this noise. Since, initially, electrons emit photons at random positions

along the bunch, such a spiky structure is also found in the time domain. From one
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shot to the other, this random start intrinsically differs so that the properties of the

final radiation will not be identical, and strong fluctuations of the spectral and temporal

shapes are present. A correlated issue is the presence of shot-to-shot variations of

intensity if the signal is monochromatized.

Figure I.9: Typical SASE spectrum.

To overcome these drawbacks, it has been proposed [19] to initiate the FEL process

by an external coherent source (called the seed ), instead of the shot-noise emission

of the electrons. Consequently, the temporal (longitudinal) phase relation is preserved

along the electron beam, the temporal and spectral shapes being dictated by the seed.

Moreover, the bunching of the electrons presents significant components at the har-

monics of the seed’s fundamental wavelength. This is why a second undulator can be

set so as to put the electrons in resonance at a harmonic wavelength of the seed, and

thus amplify this harmonic. This is the principle of the coherent-harmonic generation

scheme (CHG), whose typical layout is shown in Fig. I.10. In a first undulator, called

modulator, the seed and the electrons overlap and electron energy modulation is cre-

ated. In a second undulator, called radiator, an harmonic wavelength of the seed is

amplified. Between the modulator and the radiator, a strong magnetic chicane called

dispersive section allows transferring this energy modulation into spatial bunching at

the desired harmonic (as we will see below, the harmonic number is however limited).

Practically, the peak power of the seed should be higher than electrons shot noise at

modulator’s entrance so as to drive an efficient energy modulation.

As it can be seen in Fig. I.11, in ideal conditions (peculiar conditions will be studied

in Chapter IV) the spectrum of the CHG emission is a copy of the one of the seed. This

is also true in the temporal domain. Normally, a Gaussian pulse is injected so that the

FEL emission is Gaussian. In this configuration, seeded FEL’s are thus very attractive

facilities for generating EUV radiation with nice spectro-temporal properties.

After this short overview, we will know have a more detailed look to the FEL pro-

cess.
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Figure I.10: Basic layout of a CHG FEL.

Figure I.11: Typical CHG spectrum.

I.2.a Electron motion into an undulator

The first step to understand how is emitted the FEL radiation is to study the motion

of the electrons into an undulator. Here we will only consider the case of a planar

undulator i.e., with magnet blocks in phase. In this configuration, the magnetic field ~B

provided by the undulator is characterized by only a vertical component:

|~B|= By =−B0 sin(kU z). (I.16)

The magnetic field is static (no time dependence), periodic (length of one magnetic

period LU , kU = 2π
LU

) and of magnitude B0 expressed in Tesla (T ). The Lorentz force

undergone by the electrons travelling at a velocity~v into the undulator is:

mγ
d~v

dt
=−e~v×~B, (I.17)

where e and m are respectively the elementary charge and the mass of the electrons;

γ = 1√
1−β 2

with β = v
c

is the relativistic Lorentz factor, c being the speed of light. Here



I.2. Single-pass Free-Electron Lasers 15

we do not take into accounts terms such as the magnetic field of the earth (small with

respect to undulator’s one) and the radiated electric field of the electrons which, at the

beginning of the undulator, has a negligible effect on electrons’ motion. We wish to

calculate the components of the velocity along each coordinate. The expression of the

Lorentz force leads to vy(t) = 0 if vy(0) = 0 (i.e., if the electrons are injected into the

undulator along the forward direction). For the horizontal component, we have:

dvx(t)

dt
=

e

mγ
Byvz(t) (I.18)

As a first step, we assume that the longitudinal component of the velocity is much larger

than the transverse i.e., vx ≪ vz, which is reasonable (the electrons go ahead faster

than they wiggle). Therefore, vz ≃ v = βc = constant . We can thus integrate easily

the previous equation (replacing z by βct), which gives :

vx(t) =
Kc

γ
cos(kU βct), (I.19)

where K is the so-called undulator parameter defined by:

K =
eB0

mckU
≈ 0.934 ·B0[T ] ·LU [cm]. (I.20)

We can rewrite the expression of the Lorentz factor as 1
γ2 = 1−

(

v
c

)2
= 1− 1

c2 (v
2
x +

v2
z ), which leads to a more accurate expression for the longitudinal velocity:

vz(t) =

√

c2
(

1− 1
γ2

)

+ vx(t)2

=

√

c2
(

1− 1
γ2

)

+ K2c2

γ2 cos2(kU βct)

= c
√

1− 1
γ2 (1+K2 cos2(kU βct)).

(I.21)

According to this, for a relativistic electron beam, we must have 1
γ2

(

1+K2 cos2(kU βct)
)

≪
1 if we want vz to be close to c. In this case, we can develop Eq. I.21 as a Taylor series

at the first order, which gives:

vz(t)≃ c

[

1− 1

2γ2

(

1+K2 cos2(kU βct)
)

]

. (I.22)
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Over one undulator period, the average longitudinal speed is thus:

v̄z = c

[

1− 1

2γ2

(

1+
K2

2

)]

. (I.23)

As it can be seen, the electrons motion is quite easy to describe into the undula-

tors, and one will retrieve the coordinates x(t) and z(t) by simple integration of vx(t)

and vz(t). Similar simple calculations can be done for elliptical or helical undulators

(i.e., where the magnet blocks are dephased so that the horizontal component of the

magnetic field is not null any more).

I.2.b Energy exchange

Now we inject into the undulator an external wave polarized horizontally:

|~E(z, t)|= Ex(z, t) = E0cos(kz−ωt) (I.24)

This wave represents the seed in the CHG configuration. For simplicity, we consider a

continuous wave and do not take into account the absolute phase term. Its wavelength

will be noted λ and k = 2π
λ
= ω

c
. The infinitesimal energy exchange between the wave

and an electron of velocity~v during a time dt will be:

d(γmc2) =~v ·~F ·dt, (I.25)

where ~F is the Coulomb force. From this equation, we see that other polarization

components of the seed do not exchange any energy with the electrons. We thus

obtain, using Eqs. I.25, I.24 and I.19:

dγ
dt

= − e
mc2 vx(t)E(t)

= − eK
mγc

cos(kU z)E0 cos(kz−ωt)

= −eKE0

2mγc
[cos(kz+ kU z−ωt)+ cos(kz− kU z−ωt)]

= −eKE0

2mγc
[cos(θ)+ cos(θ −2kU z)],

(I.26)

with θ = (k + kU )z−ωt ≃ (k + kU)v̄zt −ωt. The energy conservation tells us that

the light wave gains energy if
dγ
dt

< 0. Ideally, a continuous energy transfer should

be maintained. Concerning the first cosine term in the last term of Eq. I.26, such a
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condition is fulfilled when:

dθ
dt

= 0

⇒ (k+ kU)v̄z − kc = 0

⇒ k− kU = kU 2γ2

1+K2

2

.

(I.27)

Since the undulator period is much larger than the radiation wavelength i.e., 1
λ
≪ 1

LU
,

we get:

λ =
LU

2γ2

(

1+
K2

2

)

. (I.28)

This is the resonance equation for a sustained energy transfer allowing amplification of

the light of wavelength λ . Remarkably, this wavelength corresponds to the wavelength

of spontaneous emission of the electrons in the undulator in the z direction (this result

can be easily derived, see for instance [20]). Concerning the second cosine term in

Eq. I.26, we remark that if Eq. I.28 is fulfilled, this term will do two oscillations per

undulator period, and thus cancels out in the energy transfer.

Numerous codes [22, 23, 24, 25] simulate the behaviour of the FEL process start-

ing from the coupled equations of motion and energy exchange of electrons along the

undulators. A numerical result of the evolution of electron-beam distribution along an

undulator, obtained with [23], is shown in Fig. I.12. The electrons energy is charac-

terized by its Lorentz γ factor and shown as a function of its position characterized by

its phase θ , within one “slice" of length λ (equivalent to 2π) of the electron bunch.

After entering the undulator (Fig. I.12a), there will be a modulation of energy of the

electrons (Fig. I.12b): this is the direct effect of Eq. I.26. The new γ values of the

electrons lead to new velocities (see Eq. I.23) and thus new phases θ : the electrons

that have gained energy go faster and the electrons that have lost energy are slowered.

The process goes on so that the electrons “meet" at θ = 0: the energy modulation is

transformed into bunching (Fig. I.12c). The electron beam is thus formed of micro-

structures spaced by a wavelength λ (in Fig. I.12 only one slice of length λ is shown,

but the density modulation is repeated all along the bunch) that emit in phase. Along

the undulator, the electrons will provide energy to the wave until the moment when they

will have lost so much energy that they will come out the resonance condition (see Eq.

I.28). At this point, the amplification stops and the saturation is reached. The energy

exchange is then reversed:
dγ
dt

changes sign so that the wave transfers energy to the

electrons, which start to get overbunched (Fig. I.12d). Electrons will then continue

to rotate into the phase space until they go into a strong overbunching (Fig. I.12e-f).

The latter state is not a stationary one and the particles motion is pursued, so that the
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Figure I.12: Evolution of the electron-beam distribution in the phase space γ as a function of θ , along

the amplification process. Initial distribution (a); energy modulation (b); spatial modulation (bunching (c);

slight overbunching (d); overbunching (e)(f). (taken from [21])

energy exchange becomes again reversed after a while. However, ideally the undula-

tor ends at the saturation point. In the CHG configuration, the passage from energy

modulation to spatial separation (i.e., from situation reported in Fig. I.12b to Fig. I.12c)

is enhanced by the effect of the dispersive section, which is discussed hereafter.

I.2.c Harmonic generation

The modulation process described above occurs in fact not only at the fundamental

wavelength λ , but also at its harmonics, as shown in [26]. This can be easily under-

stood. Indeed, the resonance condition corresponds to the fact that, all along the

undulator, the electrons and the wave remain in phase so that, after each undulator
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period, the wave must be shifted by a length equal to the wavelength λ with respect

to the electron bunch: this effect is called the slippage of the electromagnetic wave

with respect to the electron bunch. However, slippages of nλ are also possible values

leading to a resonance condition:

λn =
LU

2nγ2

(

1+
K2

2

)

. (I.29)

We now study the evolution of the electrons position in the CHG configuration (see

Fig. I.10), following the reasoning described in [27]. At the end of the modulator

(z = zM), the phase of an electron is described by:

θM = (k+ kM)zM −ωtM, (I.30)

where kM has the same meaning as kU , but specific to the modulator, and tM is the

arrival time at the end of the modulator. After the dispersive section i.e., at the entrance

of the radiator (z = zR), the phase of the same electron is given by:

θR = (kn + kR)zR −ωntR, (I.31)

where kR has the same meaning as kU , but specific to the radiator, tR is the arrival time

at the entrance of the radiator and kn = nk. The energy modulation in the modulator

led to an overall variaton of ∆γ for the considered electron. The dispersive section

transforms this energy separation into time separation:

∆t = tR − tM =
dt

dγ
∆γ. (I.32)

From the previous relations, we can rewrite the phase of the electrons at the entrance

of the radiator:

θR = n

(

θM +
dθ

dγ
∆γ +θ0

)

, (I.33)

where θ0 is an absolute phase term that it is not useful to develop. The term dθ
dγ

represents the strength of the dispersive section. It can be written as:

dθ

dγ
=

kR56

γ0
, (I.34)

with γ0 corresponding to the mean energy of the electron beam. The parameter R56

(usually given in µm) is the one that we will used for characterizing the strength of the

dispersive section.
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Knowing the initial energy distribution of the electron beam, it is thus possible to

retrieve the phase distribution at the entrance of the radiator. A Fourier analysis of

this phase distribution, considering an initial Gaussian distribution of the energy with

standard deviation σγ at the entrance of the modulator, leads to the following entity

[27]:

bn(θ ,γ,n) = |〈e−inθ 〉|= 2

∣

∣

∣

∣

Jn

(

n∆γ
dθ

dγ

)
∣

∣

∣

∣

· e−
1
2

(

nσγ
dθ
dγ

)2

. (I.35)

This is called the bunching function and characterizes the quality of the bunching of

an electron according to its position along the bunch. One can thus expect the longi-

tudinal profile of the FEL emission to have a similar shape as the bunching function.

The dependence on the Jn Bessel functions tells us that the bunching can theoreti-

cally be maximized at a given harmonic number n with an appropriate strength of the

dispersive section R56 (see Eq. I.34). The exponential dependence tells us that the

harmonic number is limited for an efficient CHG FEL emission: indeed, according to

Eq. I.35, the higher the harmonic number, the lower the bunching quality. Qualitatively,

the harmonic limitation in standard CHG configuration and the bunching maximization

via optimization of R56 are true; quantitatively, what we get from Eq. I.35 is valid for

a an initial Gaussian energy distribution of the energy and under the assumption that,

in the modulator, there is only energy modulation but no bunching, the latter occurring

only during its passage through the dispersive section. In the real world, the bunch-

ing formation is not as well separated as this, and can start being formed prior to the

dispersive section, or still not well done when the bunch enters the radiator.

I.2.d FERMI@Elettra

The FEL facility on which the experiments reported in this manuscript have been

carried out is the FERMI@Elettra source [124]. The configuration that we used re-

lies on the CHG principle (see Fig. I.10). A sketch of the machine is represented in

Fig. I.13. A linear accelerator (LINAC) accelerates the electron beam up to an en-

ergy of 1−1.5 GeV (see [111] for more details about the LINAC). The seed, of central

wavelength ≈ 261 nm and Gaussian spectrum with an energy of some tens of µJ

per pulse in standard conditions, is produced by third harmonic generation (THG) of

a classical chirped-pulse amplified Ti:Sapphire femtosecond laser source. More ac-

curate descriptions of the seed and electron beam properties will be done in Chapter

III. The seed pulse and the electron bunch overlap in time and space in the modulator

(32 periods LM = 10 cm) tuned at the central wavelength λ of the seed. The elec-

tron bunch then passes through a dispersive section before entering the radiator area.
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Figure I.13: Basic layout of FERMI@Elettra.

The radiator is divided into six successive sections (each of them being made of 44

periods LR = 5.5 cm), between which the transverse properties of the electron beam

are adjusted (no description of the transverse electron beam dynamics is done here;

the reader can refer, for instance, to [28]). The radiators are tuned at a harmonic n,

typically of the order of 10, so that EUV wavelengths are generated. The phase of

the magnet blocks of the radiators can be changed so as to modify the polarization of

the output light (from linear to circular). After the radiators, the electrons are dumped

and not used again, so that FERMI@Elettra is a single-pass FEL. The seed pulse is

shorter than the bunch (respective full-width at half maximum durations are ≈ 200 f s

vs. ≈ 2 ps). The amplified emission is thus shorter than the bunch. Therefore, on ar-

eas where the seed does not overlap with the bunch, there is no amplification and only

spontaneous emission is generated, which remains at the level of noise and is negli-

gible. The femtosecond duration of the seed ensures a femtosecond duration of the

FEL emission. The latter is analysed, after the undulator area, by an on-line spectrom-

eter relying on a grating placed at grazing incidence. The zero-th order of diffraction

(that we will call also the direct beam) is almost not deviated and is directly sent to the

experimental beamlines, while the first order of diffraction is used for measuring the

spectrum on a CCD [29, 30]. Several other optics or diagnostics are present and can

be inserted, such as CCD’s or photodiodes, on which we usually measure energies

per pulse of some tens of µJ for the FEL emission. The seed signal can eventually be

filtered, but its intensity (power per unit surface) is quite low at the end of the chain of

radiators since its focus is located far upstream (in the modulator) and the FEL beam,

due to its lower wavelength, diverges less than the seed. Currently, the machine works

at a repetition rate of 10 Hz, which, in the future, will be raised to 50 Hz. The total
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length of the facility is of the order of 250 m: half of this distance represents the LINAC,

the other half is shared between the undulator area and the experimental hall (including

diagnostics of the FEL emission).

As shown in Fig. I.14, the transverse shape of the FEL light in far-field is very

satisfactory. Furthermore, Fig. I.15 gives the evidence of very nice spectral stability

Figure I.14: FEL spot measured 52.4 m (a) and 72.5 m (b) downstream from the last radiator exit.

and shape of the FEL spectra. In Fig. I.15a, we see that the Gaussian shape of the

seed spectrum is well reproduced by the FEL emission, as expected, and Fig. I.15b

shows that the variations of the FEL in terms of intensity and spectral shape are quite

low (500 successive single-shot measurements are shown).

Figure I.15: (a) Measured FEL (dashed line) and seed laser (full line) spectrum. (b) Acquisition of 500

consecutive FEL spectra.

In this thesis, I will remain in the framework of the so-called “low-gain" regime of

the FEL. The gain regime is characterized by the following factor [31, 32]:

g0 =
µ0e

mc2
· I

σxσyσz
·L2

U N3
U · K2F2

JJ

γ3
. (I.36)
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µ0 = 4π · 10−7 V ·s
A·m is the permeability of the vacuum; I is the electron beam current;

σx, σy and σz the standard deviations of its distribution respectively in the horizontal,

vertical and longitudinal directions; NU is the number of undulator periods. FJJ stands

for the weighting of K due to the oscillating term in vz(t) (see Eq. I.21). For a planar

undulator, FJJ = J0

(

K2

4+2K2

)

−J1

(

K2

4+2K2

)

, where J0 and J1 are respectively the Bessel

functions of 0th and 1st order. For an helical undulator, there is no oscillating term in the

longitudinal motion of the electrons i.e., vz(t) = v̄z so FJJ = 1. Roughly, the conditions

of the experiments that are reported in this thesis are: I < 300 A, σx ≈ σy > 150 µm,

σz > 300 µm, LU = LR = 5.5 cm, K < 10, NU = NR < 6×44 = 264 and γ > 2000. It

gives g0 < 1, which characterizes a low-gain regime, in which the FEL power is almost

not amplified. For g0 ≫ 1, the FEL operates in high-gain regime (and CHG is better

called HGHG, for high-gain harmonic generation): the amplification of the signal is

exponential until saturation is reached.

Moreover, even if this will not be treated here partly because results are still quite

recent and not optimized, FERMI@Elettra is also able to work in SASE mode when

sufficient peak currents are reached in the electron beam. This would make possible,

in the future, to confront phenomena related to SASE and seeding schemes on the

single FERMI@Elettra facility.

Finally, one has to note that the configuration of FERMI@Elettra described here

is only the first step of the facility. Indeed, in order to overcome the aforementioned

limitations of harmonic number amplification due to energy spread growth, a second

FEL line has been built: it relies on a first CHG stage, whose emission at harmonic n1

of the seed is injected into a second stage, tuned at the harmonic n2 of the emission

of the first stage, so that the final emission is done at the harmonic number n1 × n2.

This is made possible by the fact that the amplification in the second stage occurs on

a new portion of the bunch i.e., where electrons have not been modulated in energy

(neither in space) within the first stage. This is called the “fresh-bunch" technique [33].

We already obtained first successful results that allow providing powerful femtosecond

pulses in the soft X-ray spectral region [34].

I.3 High-order Harmonic Generation in rare gases

FEL’s are probably the kind of facilities that allow providing most powerful femtosec-

ond EUV/X-ray pulses, at the price of a huge installation requiring lots of controls and

diagnostics. Sources of high-order harmonic generation (HHG) in rare gases are the

most common and “affordable" alternatives. This section describes the main properties
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of HHG. The purpose is not to provide here a comprehensive description; for that, the

reader can for instance refer to [35, 36] as a good overview giving also further literature.

I.3.a Description

Thanks to the technique of chirped-pulse amplification, laser sources (especially

Ti:Sapphire ones) have been able to reach very high peak intensities (energy of more

than some mJ into femtosecond pulse durations, focused on spot diameters smaller

than 100 µm). In 1988, teams at Saclay and Chicago discovered in parallel the HHG

effect. When focusing a laser at an intensity of the order of 1014 W/cm2 into a rare

gas medium, ultraviolet light is emitted by interaction of the laser with the rare gas and

a spectrum such as the one represented in Fig. I.16 can be collected. It is made of

Figure I.16: Typical spectrum obtained when focusing an intense laser beam in a rare gase medium.

a comb of odd harmonics of the input laser beam. The spectrum can be divided in

three parts: for harmonic orders ranging from 3 to 9, the harmonic signal constantly

decreases. Then, from the 9th order, there is a plateau of harmonics whose signal is

of the same order of magnitude, until a cut-off (located at the order 31 in our case,

but that can be different) after which the harmonic signal dramatically falls. Generally,

the laser has a central wavelength of the order of about 800 nm, so that its high-order

harmonics are within the EUV spectral region.

I.3.b Low-order harmonics

For the first orders, the explanation stems from the multi-photon absorption of the

gas atoms: n photons of energy hν (h being the Planck constant) of the laser (of fre-

quency ν) kick an electron of a gas atom to an upper energy level; when getting back

to its stable state, the electron loses energy emitting one single harmonic photon of
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energy nhν . The probability for the photons of the input laser to combine and then for

the kicked electron to get down to its former energy level decreases as n increases,

which explains why the signal drops down for first harmonic numbers. More accurately,

the polarization in the gas medium can be expanded as P = ε0 ∑ χ(n)En
laser, where ε0

is the permittivity of the vacuum, χ(n) are the susceptibilities of nth order of the gas

medium and Elaser is the input laser field. The central symmetry of the gas medium

makes that the even components of the polarization vanish, and only odd components

i.e., odd harmonics, can be present. Generation of low-order harmonics has been ini-

tiated by Franken et al. in 1961 in a crystal [37], and in gas by New and Ward in 1967

[38], making possible the generation of a coherent light down to VUV wavelengths,

where no conventional lasers exist. For these first orders, laser intensities of the order

of 1012 W/cm2 are already sufficient, which explains that low-order harmonic genera-

tion in gases could already be observed before more powerful femtosecond laser were

available. The expression of the polarization P tells us that the overall properties of

the low-order harmonic emission are strongly linked to the ones of the driving laser. In

particular, the temporal shape and spectrum of the harmonics are very similar to those

of the laser. The condition of phase-matching between the generating and emitted

waves, of respective wave vectors~k and~kn, is simply~kn = n~k.

For higher orders however (from the 9th harmonic), this explanation of classical

non-linear optics is not valid any more. How to explain the presence of the plateau,

which would mean that the probability of multi-photon absorption is the same whatever

n? And how to explain the sudden cut-off of the harmonic signal?

I.3.c Three-step model, cut-off law and electrons trajectory

A semi-classic model has been developed [39] giving a practical explanation of the

HHG process. It is represented in Fig. I.17. At its fundamental state, the electron

is in a well of potential. Under the action of the laser field |~Elaser| = E cos(ωt), the

potential barrier is distorted so that the electron can pass through this barrier by tunnel

ionization. Whereas the energy levels of the electron were quantized before this first

step, the electron is now melt into a continuum of energy. Under the action of the

Coulomb force due to the laser field, the electron gains kinetic energy: this is the

second step. Then, as a final step, it can recombine radiatively to the fundamental

state: for that, it has to free, in the form of a photon, an energy equal to the kinetic

energy it gained plus the ionization potential of the atom. The polarization of the input

laser must be linear, otherwise there is no recombination of the electron and thus no

harmonic emission. The process is repeated every half-period of the laser field (for
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ωt ≃ 0 and ωt ≃ π). This gives rise to spectral interference which leads to an emission

of harmonic lines separated by 2ω . Moreover, the sign change in the emission from

one half period to the other involves that the generated harmonics are the odd ones.

Since the recombination of the electron has very low probability, the process has poor

efficiency.

Figure I.17: Steps of the semi-classical model for the HHG.

This description was in fact preceded by a study of the motion of the ejected elec-

tron that allows finding the wavelength at cut-off [40]. According to the second Newton’s

law, we get the acceleration of the electron due to the Coulomb force F =−eElaser:

a(t) =−eE

m
cos(ωt), (I.37)

e being the elementary charge and m the mass of an electron. By integration, its

velocity is found to be:

v(t) =− eE

ωm
[sin(ωt)− sin(ωti)], (I.38)

where ti is the ionization time. The kinetic energy of the electron is thus:

Ek(t) =
e2E2

2ω2m2
[sin(ωt)− sin(ωti)]

2. (I.39)

At the recombination time tr, the energy of the emitted photon will therefore be h̄ωn =

Ek(tr) + Ip. This value finds a maximum, corresponding to the harmonic frequency

at cut-off, for ωtr = 17◦ and ωti = 255◦. This maximum harmonic frequency is also

proportional to the intensity of the laser field and the square of the wavelength of the

driving field. It is thus possible to extend the harmonic plateau by increasing the driving

wavelength; however, since the electrons thus spend more time in the continuum, it is

more probable that they will be “lost" and will not recombine, leading to a decrease
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of the harmonic conversion efficiency, as will be confirmed in Chapter V. The effect of

increasing too much the intensity of the laser beam would be to suppress completely

the potential barrier and the electrons would gain too much energy to recollide, which

would also lead to a degradation of the HHG process.

By integration of Eq. I.38, one obtains the trajectory of an ejected electron as a

function of time. We will not detail it here, but it shows that each harmonic can be

generated through either a long or a short trajectory of the electron [41]. An electron

follows a long trajectory when it undergoes a value of the laser field value close to the

maximum and is thus kicked out very far from the atom; with long trajectories, harmonic

conversion efficiency is thus lower than with short trajectories. At the cut-off, short and

long trajectories merge.

This semi-classical view of the microscopic response was then corroborated by

quantum calculations [46, 47, 48, 49]. In these models, the atomic dipole ion-electron

is viewed as a sum of amplitudes of probability corresponding to different quantum

paths of the electron wave packet, which are identified to trajectories described in the

semi-classical model including the ionization, the acceleration in the laser field and

the recombination. Due to this proximity with quantum calculations, the semi-classical

view is a good model for understanding and giving most qualitative properties of the

harmonic emission.

Beyond the microscopic response of a single atom, the macroscopic construction

of the harmonics in the whole volume of interaction between the laser and the gas

has to be studied. Numerically, it is done by three-dimensional propagation codes;

analytically, optimum phase-matching conditions can be found: this is detailed in the

next section.

I.3.d Phase-matching and characteristic lengths

The total EUV field is the result of the coherent superposition of the fields emitted

at the frequency ωn = nω by the atomic dipoles contained in the whole volume of

interaction. In order to obtain an optimum harmonic generation, these fields have to

interfere constructively. This is the matter of phase-matching between the laser and

harmonic fields, which have to propagate at the same velocity in the gas. The simplified

phase-matching condition for the wave vectors~k and~kn of respectively the laser and

harmonic field can be written as:

~kn = n~k+ ~K, (I.40)
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where ~K is proportional to the gradient of laser intensity and represents the phase of

the atomic dipole formed by the electron and its parent ion. Since the refractive index

of the gas medium is different for the fundamental laser wavelength and its harmonics,

~kn and~k have a component emanating from the dispersion, depending on the kind of

gas that is used, its pressure, how much it is ionized, etc. Moreover, both wave vectors

depend also on their focusing or guiding in the medium. To this extent, the more con-

cerned by geometrical dependence is~k, since it is more diverging. The distributions of

the two vectors~k and ~K will determine the regions of space where the phase-matching

is made possible. They are represented in Fig. I.18 around the focal point in the gas

medium.

Figure I.18: Distribution of the vectors~k (a) and ~K (b) around focus. (taken from [42])

We can concentrate on four different cases, sketched in Fig. I.19:

• in (a), ~K is zero so that phase-matching is not achieved.

• in (b), ~K is present but points in the wrong direction so that there is again no

phase-matching.

• in (c), ~K compensates, thanks to the variation of laser intensity, for the geo-

metrical dephasing induced by the focusing of the laser beam. It thus allow a

macroscopic construction of the harmonic field on-axis.

• in (d), phase-matching is achieved in some off-axis regions so that an annular

harmonic field is emitted.

The conditions in Fig. I.19c and Fig. I.19d have been illustrated in [43], confirm-

ing that an efficient, on-axis, EUV emission is usually obtained for a laser beam fo-

cused before the gas medium. However, usually a perfect phase-matching cannot be

achieved so that one will define a coherence length corresponding to the distance be-

fore which the interference between the microscopic emissions becomes destructive.
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Figure I.19: Geometrical representation of the phase-matching on-axis at focus (a), on-axis after focus

(b), on-axis before focus (c), off-axis after focus (d).

This corresponds to the length on which the harmonic field and the non-linear polariza-

tion of the laser field are dephased by π . This length, defined by Lcoh =
π

∆kn
, limits the

efficient macroscopic construction of the harmonic emission. The interaction length

i.e., the length of the gas medium noted Lmed , should therefore be smaller than the

coherence length. Moreover, another limiting factor of the harmonic generation is the

absorption of the harmonic emission by the gas itself. It is defined as the distance over

which the harmonic field is attenuated by a factor 1
e

i.e., Labs =
1

σndat
, where σn is the

cross-section of photo-absorption of the gas at the frequency nω and dat the atomic

density. These lengths allow giving an approximation of the number of generated pho-

tons Nn at the harmonic number n [44]

Nn ∝
4L2

abs

1+
(

2πLabs

Lcoh

)2

[

1+ e
− Lmed

Labs −2cos

(

π
Lmed

Lcoh

)

e
− Lmed

2Labs

]

. (I.41)

Figure I.20 plots the relative number of generated photons as a function of the length

of the gas medium, for different coherence lengths. We see that the number of emitted

photons grows until the radiation becomes absorbed by the gas, and that the harmonic

efficiency is optimized for a coherence length much larger than the absorption length.

The optimization of harmonic generation will therefore rely on the fine tuning of the

length of the medium, the coherence length (which depends mainly on the geometry

chosen for phase-matching) and the absorption length (which can be changed mainly

via the gas pressure). From Fig. I.20, we conclude that, for obtaining a number of

photons at least equal to half the maximum accessible one, we must have Lmed >

3Labs and Lcoh > 5Labs. When increasing the medium length does not provide more
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harmonic photons, the generation becomes limited by absorption.

Figure I.20: Relative number of generated harmonic photons as a function of the length of the gas

medium, for different coherence lengths. (taken from [44])

Different configurations can be used for the harmonic generation. We can separate

them into three: short medium (< 1 cm), via a gas jet (eventually pulsed at the repetition

rate of the driving laser) or short cell; loose-focusing into a long gas cell; in a capillary

(few centimeters) filled with the rare gas. In the latter configuration, the waveguiding

facilitates the phase-matching [45]. The loose-focusing configuration is achieved via

a focusing lens of some meters of focal length that provides a laser beam (almost)

collimated over some centimeters. An important volume can then be used for harmonic

generation since the intensity and the phase of the laser beam are only slowly varying

transversally and longitudinally. The advantage is that it allows producing µJ-level

EUV photons, using an important energy of the driving laser (tens of mJ). We remind

that the laser beam intensity should not be too high, in particular in order to avoid a

consequent ionization of the gas atoms that would change the recombination process

and induce a stronger dispersion due to the free electrons. The drawback of such a

configuration is that a lot of space, to be put under vacuum, is required: some meters

for focusing into the gas cell, but also some meters after the gas cell for getting rid of

the infrared beam. Indeed, the latter has to be filtered for diagnostics and experiments.

In tight-focusing, it rapidly diverges, making things easier, whereas in loose-focusing,

its intensity remains high over a long distance.
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I.4 Summary

We introduced the fundamental concepts that are needed for the work I report

within this manuscript. We saw the fundamental notion of Fourier-transform limit, which

limits the duration of a pulse for a given bandwidth. Similarly, the diffraction limit has

been presented, such as the notions of spatial and temporal coherence.

The experiments on which my study has relied have been performed on two kind

of sources: the FEL FERMI@Elettra and HHG sources. The CHG FEL process can be

separated in three steps: modulation of the energy of the electron bunch in a first undu-

lator, bunching in the dispersive section and coherent emission at a chosen harmonic

in the radiators. The energy modulation is induced by the seed laser, the bunching

controlled by the value of R56 and the efficiency of the emission depends, among other

parameters, on the peak current of the bunch (see Eq. I.36).

HHG is, in fact, comparable to seeded FEL’s: it is driven by an external laser and

relies on electrons motion and manipulation. The HHG is well-described by a semi-

classical model which gives a very good insight of the main properties of the EUV

radiation and of the underlying mechanisms of its emission. We also saw the impor-

tance of the macroscopic construction of the harmonics.

In the next chapter, we will start with a study of the spatial properties of the light

generated by the FERMI@Elettra source in CHG configuration and of a drive source

used for HHG. Spectro-temporal studies, which have many analogies with spatial ones,

will follow.
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II.1 Spatial properties of FERMI@Elettra

In a seeded FEL, the main mission of the seed is to imprint its spectro-temporal

properties on the electron bunch and thus, on the FEL emission. However, the impact

of the seed is still unclear on the spatial properties of the EUV light. Studying them

therefore represents a novel work, and observed effects can be traced back to the

causes, which thus potentially allows to better understand the FEL process in seeded

mode. In the recent years, the spatial coherence of FEL facilities has been exten-

sively characterized. In most of the cases, the FEL was operated in the so-called

SASE mode [51, 52]. Spatial coherence measurements have thus been performed

at FERMI@Elettra for three purposes: characterizing the coherence properties as a

function of the different FEL regimes, confronting the results with SASE-based facili-

ties and providing information for experiments requiring a high degree of coherence,

like diffraction imaging [53]. The experimental characterizations have also been com-

pared to theoretical predictions that can be done. In addition to the spatial coherence,

the overall FEL spot quality and stability has been measured, and preliminary wave-

front measurements will also be presented in this section.

II.1.a Spatial coherence setup and principle

As a first step, it has been decided to carry out a campaign of measurements with

the setup of a Young’s experiment [77]. The experiment was performed on the direct

beam i.e., without optical component on the beam path, so that the “real" coherence of

the source is characterized. A basic drawing of the setup is shown on Fig. II.1.

Figure II.1: Simplified layout of the Young slits experiment. The position of the source (FEL light),

considered as a point, is estimated to be at the center of the last radiator. The mask of the slits, where

the FEL light is assumed to be a plane wave, is thus at L′ = 65.2 m far from the source. The detector (a

CCD made of 1004x1004 pixels of 18.8 µm side, looking at a fluorescent screen) is placed at L = 8.5 m

downstream the slits. For a given couple of slits, the slits have equal widths w and are separated by d.
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slits separation d[mm] slits width w[µm]
0.8 20

1 40

1.5 40

2 40

4 40

Table II.1: Characteristics of the different couples of slits.

Table II.1.a gives the characteristics of the different couples of slits that were used:

for each couple, the two slits have the same width w and are separated by a distance

d in the x direction (see Fig. II.1). The height (y directon) of each slit is approximatively

1 cm, which is almost the full beam transverse size. All the slits are disposed on the

same copper plate. The latter was moved via a mechanical actuator, so as to change

the couple of slits through which the light goes.

The FEL light follows two different paths passing through each slit. For the path

through slit 1 (see Fig. II.1), without considering the contribution of the other path,

a single diffraction pattern is produced with intensity I1(M) at a point M(x,y) on the

detector. Similarly, the beam on the second path produces another single diffraction

pattern of intensity I2(M). The joint contribution of the two paths provides the inter-

ference between the two waves, at positions where the diffraction patterns overlap.

The vertical slits allow performing a one-dimension analysis in the x (transverse hor-

izontal) direction. Fig II.2 is a basic drawing of the obtained profile on the detector,

at a given coordinate y: a typical interference profile (fringes) modulated by the in-

tensity of the diffraction patterns. For a slit, the profile of the diffraction pattern is a

Figure II.2: Example of a profile obtained on the detection system. The waves coming from each slit

interfere “under" the envelope of the diffraction patterns of each slit.

function sinc(x) = sin(x)
x

, under the hypothesis of Fraunhofer (far-field) diffraction i.e.,

w2

Lλ ≪ 1, λ being the wavelength of the FEL emission. λ = 32.5 nm in our experiment

(8th harmonic of the seed). Therefore w2

Lλ
= 1.4 · 10−3 for the first couple of slits and

w2

Lλ
= 5.8 · 10−3 for the other ones. The width of a diffraction pattern (defined as the

distance between the zeros from each side of the peak) is 2Lλ
w

. The distance between
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the peaks of the two diffraction patterns is equal to L+L′
L

d. The width of the fringes of

the interference profile is Lλ
d

.

Figure II.3 shows what is observed on the detection system without (a) and with (b)

slits. A profile I(x) is done (c) on a narrow slice. In the case shown here, the diffrac-

Figure II.3: Typical pattern observed on the CCD without slits inserted (a); pattern with slits separated

by d = 1 mm, with a region of interest (b); integrated profile of the region of interest (c).

tion patterns overlap very well, so that we can distinguish only one single envelope

surrounding the interference profile. Along the latter, we can define the visibility of the

fringes:

V (x) =
Imax(x)− Imin(x)

Imax(x)+ Imin(x)
, (II.1)

where Imin and Imax are respectively the local minimum and maximum around a position

x. For instance, in Fig. II.3c, we find an almost constant visibility V (x)≈ 0.84.

If the spectrum is narrow enough (Hν ≪ ν , where ν is the central frequency of

FEL emission and Hν the FWHM bandwidth) and the delay τ between the two beams

is much shorter than the coherence time τc, then V is constant over the interference

profile and the coherence factor µ (see Chapter 1) is equal to [18]:

|µ(M)|= I1(M)+ I2(M)

2
√

I1(M)I2(M)
V. (II.2)

In our case, ν = 9.2 · 1015 Hz, Hν = 2.9 · 1012 Hz, τc =
0.664

Hν
(for a Gaussian spec-

trum) i.e., τc = 230 f s and τ =
|(r1+r′1)−(r2+r′2)|

c
. In the conditions of the experiment,

Fig. II.4 shows that, whatever the point M considered on the CCD (left panel) or the

misalignment of the setup, τ remains below 20 f s i.e., significantly smaller than τc.

Therefore, the conditions stated above are fulfilled. In these conditions, we can thus

also conclude that we won’t be able to see any effect of temporal coherence over the

interference pattern: this is the reason why V is (almost) constant over the interference

profile in our case. By changing the couple of slits, we will probe different areas of the

wavefront that arrives on the slits. The spatial coherence between two vertical slices of
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Figure II.4: Delay τ between the two paths of the beam for the four couples of slits used in the

experiment. In the ideal case, the source, the slits and the center pixel of the CCD are centered and

τ = 0 s. Left panel: τ as a function of the pixel that is read on the CCD if the source, the slits and the

central pixel of the CCD are centered; right panel: τ measured on the central pixel of the CCD as a

function of the misalignment of the slits. In both cases, it remains significantly smaller than τc.

the spot separated by a distance d is thus characterized, and the degree of coherence

is then analysed as a function of this separation.

A typical interference profile and its spatial Fourier transform are displayed in Fig.

II.5. Graphically, the Fourier transform gives one central peak plus two identical side

Figure II.5: Typical interference profile I(x) (left panel) and its normalized Fourier transform

T F[I0(x)] = F( fx) (right part), giving one central peak and two identical side ones. The visibility is

given by twice the height of a side peak, normalized by the height of the central one.

ones and can be written as a convolution of the Fourier transform of the diffraction

envelope with following expression:

2δ ( fx)+S( fx)V ( fx)∗ [δ ( fx− f0)δ ( fx + f0)]. (II.3)

Here δ is the Dirac delta function and S is the spectral intensity at the spatial frequency

fx of the Fourier transform, corresponding to a wavelength λ = d
fxL

( f0 = d
λL

). V is

then given by the sum of integrals of the side peaks over the integral of the central one.
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The fact that the spectral intensity appears in Eq. II.3 theoretically allows measuring

the spectrum with a Young’s experiment [54]. This is however true for an enough wide

spectrum (Hν ∼ ν), whereas in our case the narrowness of the spectrum does not

provide enough resolution for such a retrieval. Besides, V is thus simply given by twice

the relative height of a side peak since the spectrum is almost a delta function as well.

This method has been chosen for performing the data analysis for two main rea-

sons: it allows exploiting easily a large sample of data and it directly averages the value

of V over the whole interference profile. However the direct measurement of visibility

on the interference profile has also often been used as a cross-check. For obtaining µ ,

one also needs to know I1(M) and I2(M), the intensities of each single diffraction pat-

tern on a given position of the detector. The latter measurement has not been done in

our experiment. Thus, since
I1(M)+I2(M)

2
√

I1(M)I2(M)
< 1, we assume that I1 = I2 and thereby we

slightly underestimate the coherence factor. However, we estimate the error to be of the

order of 1−2 % only (t is worth noting that the factor is also usually neglected in most

of coherence measurements). So we consider that µ = V . Moreover, for improving

the signal-to-noise ratio, we usually integrated the results over some successive shots.

This averaging is an additional reason of undervaluation of the degree of coherence.

II.1.b Spot characterization

The degree of coherence is usually given as a function of the slits’ separation. We

wish to normalize the slits separation to the transverse size of the beam, in order to

be able to compare results obtained for different spot sizes. That is why, for the ex-

periments reported here, a series of FEL spots have been measured on the detection

system without the slits inserted. A typical result is shown in Fig. II.6. As it can be

Figure II.6: Series of 13 successive FEL spots observed on the CCD.

seen, the pointing is very stable, such as the shape, which presents a small astigma-

tism. Only the intensity is slightly varying shot-to-shot, but there are no “dead-shots".

An analysis of these images has been done in order to characterize the transverse

size of the beam before carrying out the Young’s experiment. In the horizontal direc-

tion, we found, over 13 successive shots, a radius σx(after slits) ≈ 2.50± 0.06 mm.

In the vertical one, on which we do not focus our attention in this work, we found

σy(after slits)≈ 3.01±0.06 mm. In both directions, the profiles are Gaussian-like.
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Figure II.7: Evolution, in the vertical (dashed line) and horizontal (full line) directions, of the radius of

the FEL spot (standard deviations of the transverse intensity profiles).

In order to emphasize the stability of the transverse shape, I traced on Fig. II.8 the

horizontal profiles corresponding to the same series of measurements (see Fig. II.6).

Each profile has been normalized to its maximum value, in order to get rid of shot-to-

shot intensity fluctuations on the graphical display. From this figure, we can say that the

horizontal profile of the beam seems sufficiently stable for the slits to probe the same

portions of the FEL spot at every coherence measurement.

Figure II.8: Horizontal profiles of the series of FEL spots measured on the detection system without

the slits. Each profile has been normalized to its maximum value.

In order to calculate the divergence of the beam, a similar characterization has

been carried out on a detection system placed 11.6 m before the slits. The transverse
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sizes of the beam measured in the horizontal and vertical directions were, respectively,

σx(before slits) ≈ 1.8± 0.04 mm and σy(before slits) ≈ 1.9± 0.04 mm. The shapes

are still Gaussian-like and the spot still very stable, in terms of pointing and size. The

divergence is given by:

θx,y = 2arctan

(

σx,y(after slits)−σx,y(before slits)

2l

)

∼ σx,y(after slits)−σx,y(before slits)

l
,

(II.4)

where l is the distance between the two detection systems (before and after the slits)

i.e., l = 11.6+L= 11.6+8.5= 20.1 m. We thus obtain θx = 35 µrad in the horizontal

direction and θy = 55 µrad in the horizontal one (the beam is thus astigmatic). This

enables estimating the size of the spot at slits’ positions: from the previous formula,

we get σx,y(slits) = σx,y(after slits)− Lθx,y, that will be simply noted σx,y. I chose

σx,y(after slits) as the “reference" spot size for calculating σx,y because it is larger than

σx,y(before slits) and the uncertainty on the measurement is therefore lower. We thus

obtain: σx = 2.2 mm and σy = 2.5 mm.

II.1.c Spatial coherence results

In our measurements, we centered “by eye" the slits on the FEL spot, considering

also that a maximum value of V is obtained if the slits are centered and the FEL spot

is symmetric with respect to the vertical axis. Typical results are summarized by Fig.

II.9, which gives the visibility of the fringes (equivalent to the degree of coherence)

as a function of the relative slits’ separation. We find that the degree of coherence is

above 0.8 for d
σx

< 0.5. It is important to note that, for the couple of slits separated

by d = 0.8 mm (corresponding to d
σx

= 0.36), the visibility of the fringes is probably

undervalued due to a low signal-to-noise ratio, which is caused by a smaller slits’ width

of 20 µm (whereas w = 40 µm for other couples of slits, through which more signal

is thus transmitted and collected on the CCD). Hence the spatial coherence at the

center of the FEL spot is possibly even higher. In the limit of d
σx

= 0, the same parts

of the wavefront interfere so that the coherence factor should tend to 1 towards the

central position of the FEL spot. As a comparison, the results of V as a function of d
σx

found here for FERMI@Elettra are approximately twice better than the ones obtained

on the SASE-based facility FLASH and reported in [51] (dashed line in Fig. II.10). It is

worth noting that in the latter experiment, the wavelength is not the same (13.7 nm for

experiments held at FLASH and 32.5 nm at FERMI@Elettra), even if still in the EUV

spectral region. Also, the beam was smaller (σx ≈ 750 µm), but what is important

is that there were also no optical components on the beam path, and in any case
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Figure II.9: Results (visibility as a function of relative slits’ separation) obtained in standard conditions.

Each point corresponds to the average of 10 successive measurements with their standard deviation,

one single measurement being integrated over 10 shots. For the first point, V may be underestimated

due to a low signal-to-noise ratio.

the relative separation d
σx

is taken into account. The comparison seems therefore

justified, and is at the advantadge of the seeded facility FERMI@Elettra. On the other

hand, other femtosecond extreme-ultraviolet sources such as high-order harmonics

generated in a hollow fiber filled with gas can exhibit much higher transverse coherence

degrees, close to 1 over the whole spot (dotted line in Fig. II.10) due to a nearly

single-mode structure [55] (a modal filtering – see Section II.2 – is done on the EUV

signal propagating through the fiber). It is worth noting that a multi-mode field does not

Figure II.10: Results (visibility as a function of relative slits’ separation) obtained on FERMI@Elettra

(losange markers, full line), at FLASH [51] (square markers, dashed line) and on a HHG source [55]

(triangle markers, dotted line).
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inevitably involve a lower coherence than the single-mode one: both can theoretically

exhibit stable intensity shape and wavefront, and in this case they are both coherent.

Nevertheless, this situation, which is already difficult to imagine for a single mode,

seems even more challenging for an electric field made of an addition of modes.

We then performed new series of coherence measurements for which we obtained

slightly lower visibility. We do not have definitive reason for that, even if a degraded

quality of the transverse electron beam properties is suspected. In any case, here the

aim was not to obtain the best spatial coherence as possible here, but to study the

effect of saturation and over-bunching on the spatial coherence. Figure II.11 shows

that, when going into over-bunching, the spatial coherence is degraded. As a first

example, when the seed power is higher (dashed line), the coherence at the center of

the FEL spot gets lower. Indeed, in this situation, the saturation is reached earlier in

the radiators chain leading to over-bunching at the end of the radiators chain, at least

in the central portion of the spot – where the seed intensity is the highest. A second

example is, when keeping the seed at the same usual value but removing (detuning,

in fact) two radiators (the first two, in order not to change the source point of the FEL

light) of the chain, the spatial coherence at the center of the spot does not decrease

very much with respect to the “normal case" (full line), but it does on the outer parts

of the spot. As a matter of fact, the outer parts of the bunch (the ones that received

less seed intensity) are, in the presence of only four radiators, far from saturation. This

explains why the light they emit is relatively less spatially coherent. Indeed, obtaining

saturation corresponds longitudinally to the emission of wavefronts in phase and thus

to a good temporal coherence. Transversally, there is thus the same effect.

Figure II.11: Results obtained for three different configurations: 4 radiators only (losange markers,

dotted line), 6 radiators (square markers, full line), 6 radiators with strong seed (triangle markers, dashed

line).
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It has not been possible to analyse the measurements of visibility for slits separated

by d = 4 mm. Indeed, as shown in Fig. II.12, two problems occur:

1. The diffraction patterns (for d = 4 mm) did not overlap well. This makes the

analysis more difficult and the assumption I1 = I2 (probably) not valid anymore.

2. Moreover, the resolution of the CCD is too small in the current layout of our

setup. To probe a larger part of the FEL spot, L should be increased and/or w

lowered, which would have the drawback to decrease the signal collected on the

detection system. This can be solved by using a CCD placed directly on the

beam path instead of using the current detect system, where the CCD looks at a

fluorescent crystal, which is significantly less efficient in terms of signal collected

by the CCD. Such a solution would also enable a single-shot characterization.

Figure II.12: Typical profile obtained for a slits separation d = 4 mm.

II.1.d Comparison with a Gauss-Schell Model beam

The aim of this section is to predict the spatial coherence of the FEL light at any

longitudinal position, on the basis of similar works that have been already carried out

e.g., at FLASH [56]. Let us recall the mutual coherence function, from which one can

derive other coherence functions (see Chapter I):

Γ(x1,x2,z0,τ) =< E(x1,z0, t)E
∗(x2,z0, t + τ)>, (II.5)

where z0 is the position at which the electric field is measured. The knowledge of the

electric field at one position gives the coherence not only at this position, but at any

position along the propagation axis. Indeed, by means of the paraxial propagation of

the electric field, one can obtain E(x,z, t) from E(x,z0, t), which leads to:

Γ(x1,x2,z,τ) =< E(x1,z, t)E
∗(x2,z, t + τ)> . (II.6)
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The similar reasoning can be transposed to the Fourier transform of this function, that

is the cross-spectral density W (x1,x2,ω,z), whose normalized version is the degree of

coherence µ(x1,x2,ω,z) = W (x1,x2,ω,z)√
W (x1,x1,ω,z)W (x2,x2,ω,z)

(see Chapter I). It is thus theoreti-

cally possible to know the degree of coherence of beam at every position z.

For this purpose, let us first assume that our FEL source is a Gauss-Schell Model

(GSM) one [57]. A GSM beam is characterized by a Gaussian transverse profile all

along the propagation. At the source position, the intensity can be written as:

I(x,z = 0) = I0e
− 2x2

w2
0 , (II.7)

where w0 = 2σx(z = 0) is the waist size. A GSM beam is also characterized all along

the propagation by a Gaussian profile of the degree of coherence, that depends only

on the distance between the considered points x1 and x2. At source, it can thus be

written as follows:

µ(x1,x2,ω,z = 0) = e
− (x1−x2)

2

2σ2
µo , (II.8)

σµo being the standard deviation of the distribution of the degree of coherence of the

beam at z = 0.

In the beginning of the 1980s, many studies have been done concerning the prop-

agation of the cross-spectral density [58]. For a GSM beam, it has been shown [59]

that it can be written as a sum of independent Hermite-Gauss modes Ψ j, weighted by

a factor β j:

W (x1,x2,ω,z) = ∑
j>0

β jΨ j(x1,ω,z)Ψ∗
j(x2,ω,z). (II.9)

Ψ j are the same functions describing the TEM modes, and their expression is given,

in one dimension, by:

Ψ j(x,λ ,z) =

(

2

π

)1/4(
q0

2 jw0q(z) j!

)1/2(
q0q∗(z)
q∗0q(z)

) j/2

H j

(

x
√

2

w(z)

)

e
−i πx2

2λq(z) , (II.10)

where H j(x) are the Hermite polynomials of order j, w(z) = w0

√

1+
(

z
Zr

)2

is the

beam size with Zr =
πw0

λ

(

1

w2
0

+ 1

σ2
µo

)−1/2

the effective Rayleigh length [60] and q(z) =

z+ iZr (q0 = q(0)). It is interesting to note that in the case of a fully spatially coherent

source (σµo → ∞), Zr becomes
πw2

0

λ
as in the case of a classical, diffraction-limited,

Gaussian beam, whereas it tends to 0 for an incoherent source (σµo → 0), which cor-

responds to a completely diverging beam. The Rayleigh range (i.e., half the distance
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over which the beam size w(z) remains smaller than
√

2w0 and considered as colli-

mated) of a GSM beam is thus bounded by:

0 6 Zr 6
πw2

0

λ
. (II.11)

The ratio
β j

β0
giving the proportion of the function Ψ j with respect to the function Ψ0

is given by [61]:

β j

β0
=

(

1+
K2

2
+K

√

1+
K2

4

)− j

, (II.12)

where K =
σµo

σx
. The absolute proportion of each function is thus 1

∑ j β j

(

β j

β0

)

.

Now we have almost everything for retrieving the cross-spectral density W (see Eq.

II.9) at any position z. According to the previous equations, we need the waist size w0.

Since, the transverse size of the source point should approximately correspond to the

transverse size of the electron bunch, we can assume w0 ≈ 600 µm (in the machine

configuration of the day of the experiment).

First of all, knowing w0 we get w(z) (see previously) and thus can calculate the

intensity profile at any position, that is given by I(x,z) = I0e
− 2x2

w(z)2 . The dashed curve

in Fig. II.13 shows this theoretical profile after L′+L = 73.7 m of propagation i.e., on

the detection system used for the Young’s experiment. In full line a typical measured

profile without the slits inserted is drawn. The agreement is very satisfactory.

Figure II.13: Comparison of the measured intensity profile on the detection system without slits (full

line) and of the one of a GSM beam at the same position (dashed line).

Then, for retrieving the theoretical degree of coherence, we need the standard

deviation of the distribution of the degree of coherence at source i.e., σµo. According



46 Chapter II. Coherence and spatial quality

to [56], the latter parameter is given by:

σµo =
w0

√

(

2πw0θx

λ

)2

−1

, (II.13)

where θx is the divergence of the FEL light, measured in the previous section. In our

case, we get σµo = 152 µm.

It is now possible to compare the GSM model with the real FEL emission. At slits’

position, the theoretical values of the degree of coherence of a GSM beam fit very well

with the results we obtained experimentally (Fig. II.14). The agreement remains quite

good when considering a source size w0 down to 400 µm. The GSM model does not fit

Figure II.14: Comparison between the degree of coherence characterized experimentally (losange

markers, see Fig. II.9) and theoretical prediction assuming that the FEL emission is a GSM beam.

with the results obtained in Fig. II.10, but in the latter the electron beam and FEL light

properties (size, divergence) were also probably different. It would be interesting to do

a systematic study of the agreement between experimental results and predictions for

a GSM beam for different machine configurations.

Table II.2 gives the proportion of each Ψ j function participating to the cross-spectral

density function. We considered a total number of 10 functions: on this basis the 5 first

Hermite-Gauss functions ( j from 0 to 4) include 93% of the total contribution.

Since the Ψ j functions contribute independently to the cross-spectral density (see

Eq. II.9), a high number of functions leads to a decrease of the spatial coherence,

whereas the presence of a single function corresponds to a fully spatially coherent

emission. This is shown in Fig. II.15, where the degree of coherence decreases to-

wards the edges of the spot while increasing the number of Ψ j functions in the decom-

position of W .
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function number j contribution 1
∑ j β j

(

β j

β0

)

0 40%

1 24%

2 15%

3 9%

4 5%

Table II.2: Contribution of the first five Hermite-Gauss functions to the cross-spectral density of the

FEL light considered as a GSM beam.

Figure II.15: Degree of coherence as a function of the relative slits’ separation for a GSM beam whose

cross-spectral density is described with only Ψ0 (dashed line), with 80% of Ψ0 and 20% of Ψ1 (full line)

and the sum of one third of Ψ0, one third of Ψ1 and one third of Ψ2 .

As a final remark, we can notice that the transverse intensity profile can also be

retrieved (instead of directly calculated by I(x,z) = I0e
− 2x2

w(z)2 ) through the properties of

the coherence functions: since W (x1,x2,ω,z) = FT−1[Γ(x1,x2,τ,z)] and the average

intensity is < I(x,z)>= Γ(x,x,0,z), we get that:

< I(x,z)>= ∑
j

β jFT−1
[

|Ψ j(x,λ ,z)|2
]

. (II.14)

In the case where W is described by a single function Ψ0, the intensity is thus a T EM0

mode i.e., a Gaussian beam, that is fully coherent: we retrieve what we said previously.

The conclusion of this section is very simple: in the conditions of the measurements

that we carried out for the Young’s experiment, we find that the GSM is a very good

model of the FEL emission in terms of the degree of spatial coherence µ (see Fig.

II.14) and of the transverse intensity profile (see Fig. II.13) in the horizontal direction.
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The knowledge of the FEL spot size at the source point is the only parameter to know

in order to retrieve the transverse properties of the FEL along the propagation axis.

II.1.e Wavefront measurements

II.1.e.1 Description of the sensor

In order to complete the study of spatial characterization of our FEL light, we have

performed measurements using a Shack-Hartmann wavefront sensor placed approxi-

mately 80 m after the last radiator exit. Such a device provides information about the

spatial phase of the FEL emission, allowing to better evaluate its aberrations than with

only the intensity profiles, as we already measured in Section II.1.b. We used a Haso

4386 from Imagine OpticTMcomposed of a grid and an EUV camera located 21.1 cm

behind the grid (Fig. II.16a). The harmonic beam goes through the Hartmann grid,

which is an array of holes of width 130 µm and step 381 µm, producing an array of

diffraction patterns on the EUV camera whose pixel size is 13 µm. The positions of

the individual spot centroids are measured (Fig. II.16c) and compared with reference

positions (calibrated with perfect wavefront, Fig. II.16b). The local shifts allows recon-

structing the whole wavefront. The measured diffraction peaks lead also to the intensity

spot at a sampling rate of the grid.

One has to take care that very strong aberrations cannot be detected if they induce

more than 2π-jumps in the wavefront profile, and to the fact that completely incoher-

ent light cannot be analysed since it corresponds to fluctuations of the wavefront and

also because the retrieval algorithm of the Haso is based on the theory of coherent

light. However, we just evidenced that, at last spatially, the light from FERMI@Elettra

exhibits good coherence properties and the intrinsic effect of seeding should provide

good temporal coherence to the FEL emission.

II.1.e.2 Experimental results

Here we present results that have been taken for an FEL emission centered at

20 nm i.e., the 13th harmonic of the seed. In Fig. II.17, we can see the image of

the array of diffracted patterns collected on the CCD. The positions of the diffraction

peaks will be compared with the one of a plane wave in order to evaluate the local

wavefront tilts at the different positions on the grid. In the right image of Fig. II.17, we

simulated the expected diffraction pattern of a plane wave at 20 nm, which seems in

good agreement with the measured ones.

Figure II.18 shows the retrieval of the Haso software for the intensity spot (left
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Figure II.16: Description of the Hartmann type wave front sensor. (a) The target beam goes through

the Hartmann pattern grid, which is an array of holes, and projects onto the XUV camera behind. The

XUV camera detects the sampled intensity of the beam. (b) The wavefront sensor should be calibrated

with a perfect beam before first use. The positions of the beamlets on the camera will be registered as

reference positions (blue points). (c) The wave front is reconstructed from the measured local shift (red

points) of each beamlet compared to the reference positions. (courtesy of X. Ge)

Figure II.17: Image collected on the camera of the wavefront sensor (left), zoom on a selection of

pixels (center) and simulation of the expected pattern (right).

image) and the wavefront (right image). On the intensity spot, we can see a ring

surrounding the central lobe. At first sight, we could say that the FEL emission is

composed of mainly two modes, a nearly-Gaussian one and an annular one. In the
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wavefront (right image), we see that there are very small distortions. They in fact

appear, mainly as a phase jump, in the area corresponding to the ring of intensity.

The standard deviation of the overall wavefront surface is approximately equal to λ
6

.

When optimizing the FEL emission in order to get rid of the ring, we were able to reach

wavefront amplitudes of less than λ
7

. These are very good results, of the order of

magnitude of what was found in [62] on a HHG beamline at CEA Saclay (see Section

II.2). Our measurements, which are only preliminary, characterize a beam only twice

far from the diffraction limit (see Chapter I) according to the Marechal’s criterion [63]

stating that a beam is diffraction limited if its wavefront amplitude presents a standard

deviation of λ
14

.

Figure II.18: Output of the Haso software: FEL spot normalized to the maximum intensity (left) and

wavefront given in units of the wavelength of FEL emission (right) i.e., λ = 20 nm.

The presence of the surrounding ring in the FEL emission is well understood. It is

related to a mismatch of the undulator tuning. Indeed, the full resonant condition of the

undulator is in fact [20]:

λ =
LU

2γ2

(

1+
K2

2
+ γ2θ 2

)

, (II.15)

where θ is the emission angle. According to that, if K is not well tuned, the emission

will be done off-axis to respect the resonance condition. Hence, we have been able to

generate completely annular FEL radiation only by changing the undulator’s tuning.

After this study of the transverse properties of the FEL emission at FERMI@Elettra,

I will now present a work carried out at CEA Saclay where the effect of spatial quality

of the driving laser on the HHG properties is analysed.
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II.2 HHG optimization through spatial improvement of

driving laser

II.2.a Motivation and state of the art

The motivation of the present work was the general optimization of the generation

of high-order harmonics in loose-focusing geometry [65, 66] on the beamline of the

chirped-pulse amplified (CPA, [64]) LUCA facility dedicated to experiments of coher-

ent diffraction imaging [67, 68]. In HHG, homogeneous intensity distribution and low

wavefront distortion of the driving laser are crucial for the efficient and coherent macro-

scopic construction of the harmonic beam. This is especially true in the loose-focusing

geometry where the interaction occurs on a long distance (some centimeters) com-

pared to the wavelength of the fundamental beam (795 nm). This is why, for optimizing

the HHG, it has been decided to perform an optimization of the spatial quality of the

driving laser provided by the LUCA source. Indeed, the importance and the effects of

the spatial quality of the driving beem, managed by different techniques, have already

been stressed in [69, 70, 71].

As it is often the case for a high-energy Ti:Sapphire laser facilities, the IR beam

suffers from bad spatial quality. Aberrations resulting from anisotropic thermal dissipa-

tion in the amplification media [72], self-phase modulation during propagation of such

intense pulses in the air or in materials [73], intracavity beam distortions [74] and imper-

fections in optical components involve a deterioration of both wavefront and transverse

intensity profile. Hence, the laser beam is not usually very close to a T EM00 mode. A

common technique to recover a good spatial beam quality is to focus the laser through

a pinhole. This operates a spatial Fourier transform [76] of the field in the plane of the

pinhole where there is a one-to-one mapping between transverse position and spatial

frequencies, and allows for filtering the high spatial frequencies, blocked by the pinhole

[77]. However, the beam keeps its low spatial frequencies distortions and a significant

amount of energy may be lost. Moreover, unless a specific conic pinhole is used [78],

any misalignment of the high-power laser beam can permanently damage the pinhole.

Other or complementary techniques include the use of a saturable absorber [79] or a

deformable mirror [80] and diffraction from Bragg gratings [81]. Moreover, active filter-

ing can be achieved through nonlinear processes like second harmonic generation via

a nonlinear crystal [82] or a plasma mirror [83] and cross-polarized wave generation

(XPW) [84]. It should be noticed, however, that these active filters are not useable with

chirped pulses in CPA laser systems.
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A scheme based on the propagation of an electromagnetic wave in a cylindrical di-

electric waveguide has been considered. In the community of ultrafast lasers, studies of

propagation into such kind of waveguides have been initiated by the post compression

technique used to generate sub-10 f s laser pulses, where a mJ-level femtosecond

laser beam propagates over a short distance in a capillary filled with gas [85]. The

electromagnetic field of the laser beam can be expressed as a linear superposition of

the modes specific to this waveguide. By choosing appropriate parameters, the beam

couples preferentially into the LP01 (EH11) mode, whose specifications will be detailed

later on. The properties of this mode are very similar to the T EM00 ones in free space.

Other guided modes suffer from higher attenuation. Therefore, if the capillary is suffi-

ciently long and has a sufficiently small core diameter, a modal filtering is made on the

laser beam. Thus, a setup aimed at spatial quality improvement of a laser beam can be

designed by propagation in a carefully chosen waveguide. Modal filtering techniques

have already been used in domains other than ultrafast lasers such as, for instance,

stellar interferometry [86].

The efficiency of such a setup for HHG optimization has already been demon-

strated in [87]. Here we test this technique in a slightly different configuration; in partic-

ular, the filtering stage will be placed before compression of the IR pulse and harmonics

will be generated in a long interaction medium, instead of a short gas jet. Moreover,

the originality of our work relies on comprehensive theoretical, experimental and nu-

merical studies of the quality of the IR beam over its propagation along the system,

which allows a better understanding of the HHG enhancement.

II.2.a.1 Description of the LUCA facility

Figure II.19 summarizes the principle of the LUCA laser chain on which has been

carried out the experiment. The Ti-Sapphire oscillator delivers nJ-level pulses with

temporal Gaussian profile of duration 30 f s FWHM, at a repetition rate of 76 MHz.

Pulses are selected at a repetion rate of 20 Hz and sent to an Offner stretcher [88], so

that the pulses are lengthened to a duration of about 200 ps. A regenerative amplifier

allows the pulses to reach a mJ level. To provide higher energies, two successive

multipass amplifiers [89] are used and the pulse are finally compressed, so that their

final characteristics are a repetition rate of 20 Hz, an FWHM duration of 50 f s, a

maximum energy of 50 mJ at a central wavelength of 795 nm. A sketch of the beamline

is showed in Fig. II.20. The IR beam is focused by means of a lens of focal length

5.65 m into a gas cell of length variable from 0 to 15 cm, usually set at a value of 8 cm

corresponding to the optimum condition of generation. In the optics chamber, a mirror
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Figure II.19: Description of the LUCA source. Only a fraction of the energy (8 mJ over 20 mJ ef-

fectively available) is used after the first multipass amplifier, the other fraction being sent to another

beamline. The stretcher and the compressor have transmissions of the order of 30− 50 %.

Figure II.20: Drawing of the harmonic beamline. The arrow at the left bottom indicates the beam

propagation direction.

reflects the EUV light and send it either to the users chamber, called the diffraction

chamber, or to a spectrometer (or other diagnostics) while most of the IR beam is

transmitted and can be used for control (principally, IR beam alignment in the gas cell).

The entire setup is about 5 meters long.
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II.2.a.2 Description of the setup

The chosen cylindrical waveguide for the modal filtering setup built on the LUCA

facility is a straight hollow-core fiber in silica with a core radius a = 125 µm and a

length L = 30 cm. The overall setup implemented on the LUCA source is shown in Fig.

Figure II.21: Beamline layout and modal filtering setup. The picosecond laser beam, of radius 3.5 mm,

is focused into the fiber, of core radius a = 125 µm and length L = 30 cm, by means of lens 1 ( f1 =
750 mm, for which a maximum fiber transmission has been found). In order to adjust the coupling

conditions, the fiber is mounted on x− y translation stages and the lens on a z translation stage. A

control loop has been implemented for correcting the beam pointing at the fiber entrance. By means

of a set of two lenses forming lens 2, the output beam is collimated to a radius of 16 mm and sent to

the compression stage, where pulses reach the femtosecond level. The beam is then used for a HHG

experiment, being loosely focused by lens 3 ( f3 = 5650 mm) into a gas cell filled with argon. Mirrors

and lens 4 ( f4 = 1250 mm, positioned at 1150 mm of the fiber output) enable to send the beam to the

wavefront sensor with a size adapted to its entrance pupil. Three irises are placed at the front focal

plane of lens 1, lens 2 and the back focal plane of lens 3.

II.21. The fiber has been put under vacuum (at a pressure of the order of 10−3 mbar)

and the whole modal filtering setup placed before the compressor (see Fig. II.19) in

order to reduce nonlinear effects due to the propagation of such an intense beam in

the air (indeed, even before compression, intensities of the order of 1016 W/cm2 are

reached when the beam is focused at the entrance of the fiber). The latter choice is

also motivated by the easier degradation of optical elements when the laser is operated

in a femtosecond (high-power) regime. Similarly, this will to avoid non-linear effects into

the core of the waveguide and its degradation leads us to choose a hollow-core fiber.

The central point of the study relies on the measurement of the spatial phase and

transverse intensity distribution of the laser by means of a Shack-Hartmann wavefront

sensor (see principle in Section II.1.e.1 – the main difference with the EUV sensor is

that the grid of holes is replaced by a grid of microlenses, that could not be used with

EUV wavelengths). We used a Haso 64 from Imagine OpticTMwith a pupil of 1.5 cm

and a discretization step of 186 µm. The complete determination of the electric field

in one plane provided by such an analyser allows calculating the electric field in any

other plane by means of the theory of wave propagation in free space in the paraxial

approximation [90]. The propagation has been done by two (cross-checked) methods:

with “home-made" calculations and with the professional software FRESNEL R©. We
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measured the wavefront and intensity distributions with the sensor at three different

positions: at the front focal planes of lenses 1, 3 and at the back focal plane of lens

4 (see Fig. II.21). In every case, the tilt and curvature (quadratic phase term due to

beam focusing) of the wavefront were taken into account during data analysis. One

has to note that the sensor has a threshold at 1
e2 of the maximum fluence: below this

value, no information is collected. This has an impact on the accuracy of the simulation

of the experimental results since information of the input beam is lacking.

In addition, direct measurements of intensity patterns have been performed around

the waist of the focused beam, before and after the fiber. The collected data enabled

the calculation of the M2 factor [91]. The measurements were done using a beam

analyser and the M2 calculated following the standard technique that considers the

measurements of the second moment widths of the beam [92, 93]. The second mo-

ment width, corresponding to four times the standard deviation σr of the transverse

intensity distribution at a given position z along the propagation axis, is the beam diam-

eter definition used in the following. For a Gaussian beam, it matches the parameter w

(2w = 4σr, including 86.5% of the beam energy).

II.2.b Theory

II.2.b.1 Mode structure in the fiber

A clear description of the modes of a cylindrical dielectric waveguide is difficult to

find in the literature. This is why it is useful to present it before coming to experimental

results. This theoretical part will also allow to model the coupling and the propagation

of the laser field into the fiber and to give a first insight of the expected improvements

of modal filtering on the laser beam.

The general theory of the propagation of electromagnetic waves in a cylindrical

waveguide was developed a long time ago and general solutions can be found in Strat-

ton [94]. In 1961, Snitzer [95] studied the characteristics of cylindrical metallic waveg-

uides and cylindrical dielectric waveguides. In 1964, Marcatili [96] was the first to give

the expressions of the modes of a hollow dielectric cylinder when the core radius is

much larger than the wavelength. In [97], Degnan gave a more accurate definition of

the hybrid modes and proposed to call LPnm modes the set of linearly polarized eigen-

modes. These modes are of interest for us since the LUCA source is also linearly

polarized.

Within the fiber core (r 6 a), the transverse characteristics of the LP modes can be
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written as:

LPnm(r,θ) = AnmJn

(unmr

a

)

{

cos(nθ)
sin(nθ)

}

, (II.16)

with n > 0 and m > 1. Jn is the Bessel function of the first kind and unm is the mth

solution of the equation Jn(r) = 0. For n > 1, the modes can be separated in two

groups, according to the dependence either on the sine or on the cosine, giving the

direction of the nodal planes. They will be respectively noted LPsin
nm and LPcos

nm . Anm are

the energy normalization constants so that
∫ a

0

∫ 2π
0 |LPnm|2r dr dθ = 1 (the integration

is done over the transverse fiber core area i.e., πa2). It gives:

Anm =
1

aJn+1(unm)

√

κn

π
, (II.17)

with κn =

{

1 (n = 0)
2 (n 6= 0) .

The family of LP modes is very similar to the Laguerre-Gauss modes in free space,

as shown on Fig. II.22. The LP01 mode is quite close to that of a Gaussian beam; this

Figure II.22: Patterns of the first LPnm modes. The upperscript cos (respectively sin) stands for the

cosine (respectively sine) dependence in Eq. II.16.

is the reason one normally tries to couple a maximum of the energy in this mode. Its

behaviour in the near field and the far field (free space) will be more accurately detailed

later. The fraction of the electric field injected at the fiber entrance, described by the
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transverse function Elaser(r,θ), that will couple into a given mode is given by [98]

Pnm =
|ηnm|2

∫+∞
−∞

∫ 2π
0 ElaserE

∗
laserr dr dθ

. (II.18)

The ηnm coefficients are equal to:

ηnm =
∫ a

0

∫ 2π

0
ElaserLPnmr dr dθ . (II.19)

Inside the fiber, every linearly polarized electromagnetic wave propagates as a

linear combination of the LPnm modes [99]. That is to say, for 0 6 r 6 a and 0 6 z 6 L,

the total electric field can thus be written as:

E f iber(r,θ ,z, t) = ∑
n

∑
m

ηnmLPnm(r,θ) · e−αnmz · ei(βnmz−ωt), (II.20)

where αnm are the attenuation coefficients of each mode and βnmz the phase that they

acquire along the propagation. These parameters are defined by:

αnm =

(

2πunm

λ

)2
1

a3

ε +1

2
√

ε −1
, (II.21)

and:

βnm =
2π

λ
− λ

4π

(unm

a

)2

. (II.22)

λ is the wavelength of the field propagating through the fiber and ε the dielectric permit-

tivity (we consider here real valued ε and ε+1

2
√

ε−1
, conditions which are always fulfilled

for dielectric waveguides). The mode with smaller attenuation (smaller αnm) is called

the fundamental mode of the waveguide.

In this section, we omitted the vector sign for a matter of simplicity: the LUCA

source is vertically polarized and we consider the LP modes matching this polarization.

Moreover, outside the fiber core, we assume that the energy of the modes is zero due

to the absorption of the cladding.

II.2.b.2 Mode coupling and propagation

We wish to favour the LP01 mode into our modal filtering setup. The first step is to

couple as much energy as possible into it at the fiber entrance. The fraction of energy

of the input laser field Elaser that is coupled into LP01 is given by P01 (see Eq. II.18). As

a first approximation, we will consider a Gaussian shape Elaser = e

r2

w2
0 of the input laser
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n

m
1 2 3

0 2.1 10.9 26.8

1 5.2 17.6 37.0

2 9.4 25.3 48.3

3 14.5 34.1 60.5

4 20.6 43.8 73.8

5 27.5 54.4 88.1

Table II.3: Attenuation in % of the LPnm modes after the 30 cm of propagation into the fiber.

field in order to have a first insight of the beam size that is required for maximizing P01.

Figure II.23 gives P01 as a function of the w0 parameter of the input Gaussian profile.

This curve tells us that a maximum coupling into LP01 is found for a Gaussian beam

size of w0 = 0.645a ≈ 81 µm, for which 98 % of the input energy is coupled into LP01.
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Figure II.23: Proportion of the energy of a Gaussian beam, focused at the fiber entrance, coupled into

the LP01 mode as a function of its size w0, relative to the core radius a.

Table II.2.b.2 gives the attenuations of each mode calculated with Eq. II.21. It tells

us that LP01 is the fundamental mode of the chosen waveguide i.e., it is the less atten-

uated into the fiber so that the proportion of LP01 is increased at the fiber output. From

this data it is clear that the good coupling into the mode of interest is very important:

the proportion of LP01 that is attenuated is very low (2.1 %); nevertheless, some other

modes like LP02 or LP11 have also a quite low attenuation. A possibility to favour even

more LP01 would be to lengthen the fiber or reduce its core radius (see Eq. II.21).

At the output of the fiber, the electric field propagates in free space and lens 2

(see Fig. II.21) is used to collimate the beam. It is then important to know the be-
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haviour of the beam, and especially of LP01, both in the near and the far field. As was

already discussed by Degnan [97], a small modulation appears in the central part of

the LP01 mode in the near field for planes where r2

λ
is close to an integer value. This

phenomenon is also encountered with a Gaussian beam truncated by a circular aper-

ture. The expression of the field in the back focal plane of a lens 2 can be obtained

analytically [100]:

LP
f ar f ield

01 (r) = 2u01a
√

π
J0

(

2πa
λ f2

r
)

u2
01 −

(

2πa
λ f2

r
)2

, (II.23)

f2 being the focal length of lens 2 and the mode shape being still circularly symmetric

(so that there is no azimuthal dependence in the equation). Figure II.24 underlines

the similarity between the T EM00 and LP01 modes both in near (Fig. II.24a) and far

field (Fig. II.24b). Calculations have been done using Eq. II.16 and Eq. II.23. The
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Figure II.24: Comparison of amplitude profiles of a Gaussian beam of parameter w0 = 0.645a (dashed

curves) and the LP01 mode (full line) in the fiber (a) and after 1 m of propagation in free space (b).

truncature of the LP01 mode in the fiber (Fig. II.24a (full line)) is, in far field, responsible

for rings surrounding the main lobe of the energy distribution. These rings can be seen

on the profile of LP01 in Fig. II.24b (full line). To suppress this energy in the pedestal,

an iris (iris 2 in Fig. II.21) of aperture diameter
u01λ f2

πa
, corresponding to the first zero

of the energy distribution of the LP01 mode in the back focal plane of lens 2 (see Eq.

II.23), is used. A very important point here is related to the fact that higher order

modes exhibit a higher divergence in the far field. This can be seen from the calculated

values of the M2 factor for the LP0m given in Table II.2.b.2. To calculate the M2 of each

mode, we propagated it numerically and measured its divergence, whose ratio with the

divergence of a Gaussian beam with same size at focus gives the M2. In the last line

of the table, we show that the use of iris 2 modifies the transmissions of the different

modes. These results demonstrate that part of the efficiency of the modal filtering is
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modes LP01 LP02 LP03 LP04 LP05 LP06 LP07

M2 1.12 3.08 4.93 6.76 8.58 9.08 38.6

Transmission through iris 2 99.2 % 59.1 % 6.49 % 2.96 % 1.73 % 1.15 % 0.82 %

Table II.4: First line: modes; second line: corresponding M2 factor; third line: according to the M2,

proportion of energy transmitted through iris 2 closed at a diameter
u01λ f2

πa
.

linked to the spatial filtering in the far field. It can be noted also that, apart from the

filtering of the other modes, the aperture size of the iris also improves the quality of the

beam in the back focal plane of lens 3 (see Fig. II.21).

II.2.c Experimental results

II.2.c.1 Laser beam analyser measurements

Figure II.25 shows the beam analyser measurements at the waist of the beam.

Before the fiber, the beam is elliptic and “twisted” along the longitudinal axis (typical of a

general astigmatic beam), while after the fiber astigmatism and high spatial frequencies

are mainly suppressed (see the profiles in Fig. II.25b), so that the transverse beam

profile is quasi-Gaussian. As pointed out in the theoretical part, an optimization of the

beam quality is obtained, additionally to the propagation through the fiber, by using

iris 2 with a diameter corresponding to the first zero of the LP01 mode. These direct

characterizations evidence an improvement of the spatial quality of the beam in near-

field (which is, in this case, the focus of a lens of short focal length). At the entrance

of the fiber, the beam is estimated to be 1.5 times larger than the one measured in

Fig. II.25a i.e., having a radius of 142.5 µm. This value, corresponding to a maximum

transmission into the fiber, and thus probably to a maximum coupling into LP01, is

larger than the core radius. On the other hand, we calculated (see Fig. II.23) for a

Gaussian beam that the optimum radius for a maximum coupling into LP01 is much

smaller i.e., 81 µm. This shows that the beam cannot be considered as Gaussian at

the entrance of the fiber: even if in Fig. II.25a the intensity distribution does not exhibit

strong modulations, the phase is probably distorted, which has a direct impact on the

coupling.

Figure II.26 shows the evolution of the diameter of the measured beam spots

around the waist and the one of a Gaussian beam with same width at focus. The
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Figure II.25: Spot of the IR beam at focus, measured by the beam analyser before (a) and after (b)

modal filtering. For (a), the measurement has been done at the focus of a lens of focal length 500 mm

placed before lens 1. For (b), the measurement has been done by imaging the output of the fiber by

means of a 4f-system. The images have been cropped at a background level for the M2 calculation,

which can be seen on (a) with the non-negligible amount of high spatial frequencies.

ratio of their divergences corresponds to the M2 of the beam. It is equal to 2.1 before

the fiber and 1.4 after it. As a comparison, the M2 of LP01 that has been previously cal-

culated is 1.12. This difference underlines the presence of residual high-order modes

in the output beam. The calculated radius of the laser beam at the output of the fiber,

by means of the propagation laws of Gaussian beams corrected by the M2 factor [90],

is estimated to be 105 µm.

Figure II.26: Evolution of the beam diameter (geometrical mean of diameters measured in x and y

directions) along the propagation axis, in front of (left) and behind (right) the fiber. Crosses are experi-

mental values and full-line curves their interpolations. The dashed curve represents the diameters of a

Gaussian beam of same size at focus.

II.2.c.2 Laser characterization at fiber stage

I now present characterizations of both intensity and wavefront (equivalent to ampli-

tude of the electric field and spatial phase) of the beam, first through Shack-Hartmann
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wavefront amplitude before the fiber after the fiber

peak-to-valley [nm] 414.75±17.94 82.84±13.33

RMS [nm] 66.13±2.30 13.80±1.87

Table II.5: Measurements of the wavefront amplitude of the laser beam before and after modal filtering.

Peak-to-valley and RMS amplitudes of the wavefront are indicated with the standard deviation of the

series of measurements.

sensor’s measurements. In the front focal plane of lens 1, the beam intensity distribu-

tion has no cylindrical symmetry and the wavefront is distorted (left side of Fig. II.27).

The transverse intensity is roughly super-Gaussian with three hot regions, correspond-

ing also to peaks in the wavefront profile. After filtering (right side of Fig. II.27), the

wavefront exhibits a nearly flat profile. The intensity distribution has a quasi-perfect

cylindrical symmetry and a nearly Gaussian profile.

Figure II.27: Shack-Hartmann measurements: intensity and wavefront at the front focal plane of lens

1 (left) and the back focal plane of lens 2 (right).

From Table II.5, it can be seen that the peak-to-valley and RMS (root-mean square)

values are divided by a factor of ≈ 5 after the propagation in the fiber, giving values of

nearly λ
10

peak-to-valley and λ
58

RMS.

From these measurements, we made a simulation of the modal filtering using the

theory discussed previously: the wavefront and intensity measurements are used to

calculate the electric field at the input of the fiber (Fig. II.28, left panel), by operating a
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spatial Fourier transform of the measured field; the propagated field at the output of the

fiber is then decomposed on the fiber modes by means of Eq. II.18; each mode is then

propagated through the fiber taking into account its attenuation coefficient (see Eq.

II.21) so that the field at its output (see Eq. II.20, z = L) can be computed (Fig. II.28,

center panel); finally, by operating a spatial Fourier transform, we calculate the intensity

and wavefront of the beam at the back focal plane of lens 2 (Fig. II.28, right panel).

The result is in quite good agreement with the measurements (Fig. II.27, right panel).

The cut of the Shack-Hartmann measurements taken as input for the simulations (Fig.

Figure II.28: Simulations of beam propagation. Left: fiber input (back focal plane of lens 1); center:

fiber output; right: back focal plane of lens 2. The wavefront is displayed only where the intensity is

higher than 1
e2 of the maximum intensity.

II.27, left panel) has non-negligible effects. In these high-spatial frequencies that are

not taken into account, information about the aberrations (e.g., astigmatism) and high-

order modes (which are more divergent, and thus more present in the high-spatial

frequencies) is lost. Moreover, according to the diffraction theory, this sharp cut is the

source of rings in the intensity pattern of the field propagated at the fiber entrance –

which is not in agreement with what is experimentally obtained. In order to avoid this

issue, we have to smooth the Shack-Hartmann measurements. The consequence is

thus that, in comparison with what was observed with the direct measurement of the

beam analyser (see Fig. II.25a), the intensity shape at the fiber entrance given by our

simulations is “cleaner", even if the astigmatism is evident in the wavefront shape (Fig.

II.28, left panel). This involves an error on the calculation of the Pnm coefficients. In the

propagation at the output of the fiber (Fig. II.28, center panel), the wavefront distortion

is reduced with respect to the one at the entrance (Fig. II.28, left panel) and, overall, is
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mode LP01 LP02 LPsin
31 LPcos

21 LPsin
11

Pnm [%] 88.64 3.96 2.03 1.46 0.97

output fraction [%] 91.40 3.72 1.83 1.39 0.95

Table II.6: Mode matching at the fiber input and fiber output. First line: five modes most efficiently

coupled; second line: coupling efficiency calculated from the electric field of the beam propagated at the

fiber entrance with simulations; third line: output proportion of each mode according to their coupling

efficiencies and attenuation in the fiber.

quasi-inexistant for the propagation far-field (Fig. II.28, right panel).

Through those simulations of beam propagation, a M2 of 2 is calculated before the

fiber, to be compared with the 2.1 value deduced from measurement with the beam

analyser. At the output, the M2 value obtained is 1.3 which is again in good agreement

with the 1.4 value found in Fig. II.26. The slight differences of M2 values deduced from

direct measurements and simulations of beam propagation can again be explained by

the cut of the outer part of the beam done by the Shack-Hartmann sensor that leads to

the undervaluation of the fraction of high-order, more diverging, modes.

Results of the fraction of energy coupled in each mode at the fiber input i.e., the

Pnm coefficients (Eq. II.18, Elaser being the field propagated at the fiber entrance and

LPnm given in Eq. II.16), and the fraction of each mode at the fiber output calculated

according to each mode attenuation along the fiber (Eq. II.21) are collected in Table

II.6. The good coupling proportion into LP01 and its low attenuation with respect to

higher-order modes (see Table II.2.b.2) result in an output beam mostly composed of

this mode: a proportion of more than 90 % is found. From these results, the theoretical

transmission through the fiber is≈ 83 %, while a maximum of 78 % has been measured

experimentally. The slight difference stems probably from the over-valuation of Pnm for

lowest-order modes due to the Shack-Hartmann cut, the uncertainty on the transverse

beam position, losses during beam propagation and thermal effects at the edges of the

core of the fiber. Indeed, as stated before, the injected beam is larger than the core

of the fiber. This leads to an observable deterioration of the edges at fiber entrance

without, however, any change in the efficiency of the process (which evidences the

robustness of the setup). Increasing the input power emphasizes these thermal effects

and the transverse beam instability, resulting in a decrease of the energy transmission

in the fiber. It is interesting to note that the five main modes (those reported in Table

II.2.b.2) on which the laser field is decomposed in the fiber have their electric field

symmetric with respect to the vertical axis, which is also the direction of polarization

of the laser and the – apparent – symmetry of the intensity and wavefront shapes of

the laser field before the fiber (Figs. II.27 and II.28, left panels). On the other hand,

antisymmetric modes couple very low (even negligible, according to the accuracy of
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wavefront amplitude without the fiber with the fiber

peak-to-valley [nm] 681.00±45.19 288.00±49.68

RMS [nm] 146.75±9.71 54.40±11.08

Table II.7: Measurements of the wavefront amplitude of the laser beam without and with the fiber, after

pulse compression. Peak-to-valley and RMS mean amplitudes of the wavefront are indicated with the

standard deviation of the series of measurements.

the calculation) fractions of energy. It could thus be interesting to study if the base of

modes could be reduced according to specific symmetry properties (this has not been

done).

As a cross-check, instead of propagating the field from the position before the

fiber, we performed a numerical back-propagation of the field measured by the Shack-

Hartmann sensor after the fiber directly towards the fiber output. The results should

be the same as the third line of Table II.6. In fact, through this method we found a

slightly higher proportion of LP01 (≈ 95 %) and thus a slightly lower proportions of

other modes, but the most present modes are still the same five ones, in the same

order.

Up to this point, the laser beam is still in the picosecond regime. After the fiber

stage, it is the injected into the compressor (see Fig. II.21) so as to reach femtosecond

durations and then be used for HHG. Let us study the properties of the IR beam after

pulse compression.

II.2.c.3 Laser characterization after pulse compression

First of all, one has to note that SPIDER [101] characterizations, not reported

here, have been performed after the stage of pulse compression and showed that the

spectro-temporal characteristics of the filtered beam are not altered: the spectral shape

is preserved and the FWHM pulse duration remains smaller than 50 f s at moderate

intensities. This is, of course, a very important point for users’ applications.

But let us continue with spatial characterizations: the results of measurements

carried out with the Shack-Hartmann sensor after the stage of pulse compression are

presented in Fig. II.29. Imperfections of the optics (lenses, gratings of the compressor,

mirrors which send the beam to the sensor) cause intensity and phase modulation on

the beam. Nevertheless, the beam quality is far better with the modal filtering setup

inserted before the pulse compression stage than without it. Wavefront amplitudes are

given in Table II.7: the RMS value is improved from λ
5.5 to λ

14.5 with modal filtering.

The beam is then focused by lens 3. A spatial Fourier transform of the measure-
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Figure II.29: Shack-Hartmann measurements: intensity and wavefront without (left) and with (right)

the fiber. In both cases, the beam mean intensity is similar (≈ 15 TW/cm2).

ments of the laser field reported in II.7 provides the field at the back focal plane, where

a clear improvement is found for the filtered beam (Fig. II.30). In the standard setup,

the wavefront exhibits an important deformation and the intensity profiles include a non-

negligible amount of high spatial frequencies. On the other hand, the filtered beam is

Gaussian-like at its focus. Considering only the part of the beam above 1
e2 of the max-

imum intensity, the RMS amplitude of the wavefront is decreased by a factor ≈ 5 (from

λ
9

to λ
48

). The significant improvement at this point of the beamline is very important:

indeed, the beam focused by lens 3 will be the one used for experiments – HHG, in our

case.

II.2.c.4 Effect of modal filtering on harmonic generation

The HHG, as an highly-nonlinear phenomenon, is a very interesting application for

illustrating the efficiency of the filtering setup. Homogeneous intensity distribution and

low wavefront distortions of the driving laser are crucial for the efficient and coherent

macroscopic construction of the harmonic beam. This is especially true in the so-

called loose-focusing geometry, where the interaction occurs on a long distance (some

centimeters), compared to the wavelength of the fundamental beam (795 nm).

This is why it is interesting to look at the simulation results of IR beam propagation
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Figure II.30: Propagated electric field: intensity and wavefront at the back focal plane of lens 3, without

(left) and with (right) modal filtering. The wavefront is displayed only where the intensity is higher than
1
e2 of the maximum intensity.

also before and after the focus. Transverse IR spots are shown in Fig. II.31 before, at

and after the focus of lens 3, the coordinate z = 0 mm referring to the position of the

focus. As a reminder, iris 3 is placed just before lens 3 that focuses the beam into the

gas cell for harmonic generation. It is clear that, especially before the focal point, the

transverse intensity shape of the IR beam without modal filtering is quite dirty. However,

in both cases (filtered and non-filtered beam), closing iris 3 allows improving the beam

spatial quality. In our setup, the beginning of the gas cell is located approximately at

z =−100mm. Figure II.32 shows the intensity and wavefront shapes at z =−100 mm

and z = 0 mm when iris 3 is closed at a diameter of 22 mm. One should note that

the quadratic term of the phase (generated by focusing) has not been removed for z =

−100 mm, so that the wavefronts have a parabolic shape. The intensity distributions of

the beam are improved in both cases (filtered and unfiltered beam) with respect to Fig.

II.31, even if a higher proportion of high spatial frequencies is still present when there

is no modal filtering (Fig. II.32a). In this case also, the situation is greatly improved at

focus but the intensity distributions and the wavefront shapes evidence an astigmatism

less present in Fig. II.32b.

Similarly to what was observed in [87], we noted a significant improvement of the
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.

Figure II.31: Intensity of the IR beam before (z =−100 mm), at (z = 0 mm) and after (z = 90 mm) the

focus of lens 3, for the non-filtered (a) and filtered (b) beam, according to numerical propagation of the

laser field in free space in the paraxial approximation. [Courtesy of D. Gauthier]

.

Figure II.32: Simulations of intensity and wavefront of the IR beam at z = −100 mm and z = 0 mm

for the non-filtered (a) and filtered (b) beam with iris 3 closed at a diameter of 22 mm. In each quadrant,

the left picture corresponds to the intensity pattern and the right one to the wavefront. The wavefront is

displayed only where the intensity is higher than 1
e2 of the maximum intensity. [Courtesy of D. Gauthier]

spatial quality of the generated EUV radiation (Fig. II.33). Indeed, even reducing the

aperture size of iris 3 on the unfiltered beam for improving the generation [102] is

clearly not sufficient. In addition, the stability and furthermore the harmonic conversion

efficiency are enhanced: without modal filtering, the use of 30 mJ of IR (measured

after iris 3) allows obtaining 3.3 · 107 harmonic photons per shot (measured on the

CCD at 32 nm i.e., the 25th harmonic of the driving laser) while 5.7 · 107 photons per
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Figure II.33: Far-field footprints of the twenty-fifth harmonic (32 nm) of the fundamental wavelength of

LUCA, measured without (left) and with modal filtering (right). In both cases, iris 3 is closed (respectively

to a diameter of 25 mm and 19.5 mm) so as to filter the outer part of the IR beam. Harmonics were

generated in a gas cell filled with argon at a backing pressure of ≈ 10 mbars. Patterns are measured

on a CCD camera placed after a monochromator.

shot are collected with only 8.5 mJ of the driving laser when using the modal filtering

stage. In other words, the harmonic conversion efficiency is ≈ 6 times better with

the filtered beam, making negligible the drawback of the loss of ≈ 30 % of IR energy

within the fiber stage. This is partly explained, in the non-filtered infrared beam (Fig.

II.32a), by the presence of a larger number of high spatial frequencies that do not

have sufficient energy for driving HHG, and thus that are not involved in the HHG

process and represent a waste of IR energy. Moreover, the stability of the intensity and

overall of the wavefront of the filtered beam is a great advantage for the macroscopic

effects occurring all along the generating medium. The results presented correspond

to optimal conditions of generation (aperture size of iris 3, gas pressure, focus position

with respect to the cell, IR energy) where a trade-off was found between spatial quality

and intensity of the harmonic signal.

Finally, qualitative HHG simulations have been confronted to experimental results.

The code developed by Thierry Auguste models the three-dimensional propagation in

combination with the strong field approximation [48, 49] of the microscopic response.

In both filtered and non-filtered IR beam cases, similar parameters as the ones of

the experiments whose results are presented in Fig. II.33 have been taken as input

(gas pressure, IR energy, iris aperture size through which we numerically propagated

the laser field towards the gas cell, etc.). The simulations have not been performed

over the all length of gas medium for a lack of computing time, but far-field harmonic

patterns shown in Fig. II.34 are in good agreement with those measured (Fig. II.33)

and the spatial quality of the harmonic beam seems correlated to the one of the driving

IR (whose patterns, taken as simulation inputs, are shown at the top of the figure): the

direction of “deformation" of the latter is the same for the harmonic beam. This HHG
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enhancement therefore corroborates the efficiency of modal filtering.

Figure II.34: HHG simulations: far-field footprints of the twenty-fifth harmonic (32 nm) without (left)

and with modal filtering (right). The simulations have been done for a propagation length of 500 µm,

starting 750 µm in front of the IR focus. The footprints of the IR beam that have been used at the input

of each simulation are shown on the top-right of the EUV footprints, and correspond to the conditions

described in the caption of Fig. II.33.

II.2.c.5 Spatial coherence of the EUV light

Finally, spatial coherence measurements of the harmonic signal have been carried

out. Pinholes (instead of slits, but the principle remains the same as the one described

in Section II.1) were placed at the focal plane in the diffraction chamber (were the

diffracting objects are placed for the users experiments, see Fig. II.20) i.e., the coher-

ence is measured on the image of the EUV source. The focusing optics is a multilayer

parabolic mirror that has a maximum reflection around 32 nm in order to select the

25th harmonic of the IR source. The detection system is the same used for the diffrac-

tion experiments i.e., a CCD of pixel size 13.5 µm. The pinholes have a diameter of

610 nm and are separated by a distance of 5 µm, which is approximately the whole

transverse size of the EUV beam at this position. The pinholes thus probe two outer

positions of the EUV spot. I present here measurements performed with the modal fil-

tering stage installed on the IR source. A typical profile obtained on the CCD is shown

in Fig. II.35a. Unlike on the FERMI@Elettra source, the harmonic bandwidth is quite

large so that the visibility is not constant over the interference profile. Another corre-

lated consequence is that, in the Fourier transform of the profile (Fig. II.35b), the side

peaks do not have a negligible width. This allows obtaining information on the spectral

shape of the harmonic signal (see II.1): the width of a side peak is equal to the sum of
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Figure II.35: Interference profile obtained by the Young’s experiment carried out on the EUV beam

generated with filtered IR source (a) and Fourier transform of the profile. [Courtesy of D. Gauthier]

pinholes’ diameter and of the spectral width of the 25th harmonic, which is thus found to

be 0.64 nm FWHM i.e., similar to what is obtained when measured with the spectrom-

eter. The peaks have a pedestal which correspond to the presence in the spectrum of

a remaining part of lower-order harmonics (not well filtered by the multilayer parabolic

mirror), especially the 23rd one since it is spectrally very close to the 25th one. The

obtained degree of coherence (measured via the visibility of the interference profile or

the ratio between the side peaks’ area and the central peak’s area) is ≈ 0.8−0.85, for

measurements taken with one to ten shot accumulations on the CCD.

Previous spatial coherence measurements performed without modal filtering on the

IR beam gave quite similar results, of the order of ≈ 0.75− 0.8. This very small dif-

ference is probably explained by the fact that the modal filtering stage improves the

stability of the IR beam (pointing stability due to the fixed point that represents the out-

put of the fiber, and general stability of the transverse intensity and wavefront shapes),

and such a stability is transmitted to the generated harmonics. Since the transverse

instability degrades the spatial coherence measurements due to the averaging on dif-

ferent transverse positions, that can be the reason for slight better spatial coherence

results with the filtered IR beam. Hence, with such a small difference, we cannot con-

clude on any advantage of the modal filtering from the point of view of harmonics’

spatial coherence.
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II.3 Summary

In this chapter, I studied the spatial properties of the two femtosecond sources that

are the seeded FEL FERMI@Elettra and the LUCA facility.

In the latter case, an optimization of the EUV radiation (conversion efficiency, sta-

bility, transverse shape) has been obtained by means of an improvement of the spatial

quality and the stability of the IR driving beam via the technique of modal filtering

that we developed. Since the HHG acts as a highly nonlinear filter, its enhancement

evidences the qualities of modal filtering. The astigmatism of the input beam is still

partially present at the output of the fiber. In order to cancel it more efficiently, the use

of a longer fiber and/or with smaller core radius is envisaged, which would make even

more clear the superiority of modal filtering with respect to classical spatial filtering

[103]. However, an important proportion of the remaining high-order modes is already

filtered in far-field by means of an iris closed around the first lobe of the LP01 mode.

On FERMI@Elettra, the transverse properties of the EUV radiation have been di-

rectly characterized. Mainly, the spatial coherence has been measured, providing sat-

isfying results, and the GSM beam has been found to be a good model for describing

the transverse properties of FERMI@Elettra’s light. Nevertheless, the work has to be

continued, for instance with novel complementary and/or more comprehensive meth-

ods [104, 105], or parallel ones, like wavefront measurements. As a prospect, the

consequences of the spatial quality of the seed laser and of the electron beam on the

FEL radiation have to be studied.
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With this chapter, I start presenting the spectro-temporal studies that I carried out

on seeded FEL’s, correlated to the presence of chirps (see Chapter I) at different levels

of such a facility. Hereafter, I will provide the description, origins and interplay of these

chirps, with the particular case of FERMI@Elettra on which I worked. The next chapter

will focus on peculiar effects of the presence of chirps in a seeded FEL, and analogies

will be drawn with the spatial studies previously discussed.
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III.1 Chirp on the seed pulse

III.1.a Seed laser setup at FERMI@Elettra

The layout of the current laser setup for seeding the FERMI@Elettra FEL [106] is

shown in Fig. III.1.

Figure III.1: Layout of the seed laser setup. The Micra R© Ti:Sapphire oscillator (top-left box) delivers

pulses centered at ∼ 780 nm of Fourier-transform limited duration 70 f s. It is sent to a Legend Elite R©

regenerative amplifier (bottom-left box), pumped by an Evolution 30 R© frequency-doubled Nd:YLF laser

(middle-left box) centered at 527 nm. The beam can then follow two paths: either the optical parametric

amplifier (center-down part) way, providing a wide tunability in the deep-ultraviolet (DUV, 200−300 nm),

or the frequency tripling scheme (middle of the breadboard). The chosen path is sent down to the

undulator hall, by means of a periscope (top-right of the drawing) before which the pulses can travel

through a UV compressor, relying on two transmission compressor, or be sent to the UV-IR cross-

correlator. The focusing optics that adapt the beam size in the modulator is placed just prior to the

periscope.

The setup relies on a commercial Ti:Sapphire chirped-pulse amplified system by

Coherent R©, delivering pulses at a repetition rate of 10 Hz of maximum energy 6.5 mJ.

We used the third harmonic of the fundamental laser emission (≈ 780
3

). For the exper-

iments reported here, the latter is generated in two steps. First, a non-linear crystal

performs a frequency doubling so that, after the crystal, the fundamental wavelength

and its second harmonic are present. Both components are mixed in a second crystal

in order to create the third harmonic of the fundamental wavelength. This beam is sent

by means of a periscope down to the undulators hall, where steering optics is present

on an “insertion breadboard" (Fig. III.2), for aligning the beam in the modulator. The

center of the modulator is located quite far from the last mirror (∼ 11 m), which makes
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Figure III.2: Insertion breadboard. On the left part, the beam arrives from the upper room through

the periscope (see Fig. III.1). The beam is then aligned by means of mirrors and sent directly to the

undulators. The small fraction of energy of the beam that is transmitted through mirrors STM2, M2 and

M3 is collected by CCDs for getting the beam footprints at different positions. In particular, CCD3 is

placed after a long path (bottom part of the drawing) that equates the distance to the beam waist in

the modulator. The collected image thus mimics the laser beam cross-section at the entrance of the

undulator chain.

the alignment difficult. The focal point of the seed is approximately located at the en-

trance of the modulator so that the overlap with the electron bunch is optimized at the

beginning of the interaction. The standard deviation of the transverse intensity profile

at focus is σr ≈ 300 µm, the standard deviation of the transverse charge distribution

of the electron bunch in the undulator area being usually in the range 150− 300 µm

(depending on the conditions of the machine). On each side of the focal point, the seed

can be considered as collimated (i.e., having a constant transverse size with parallel

beams) on the Rayleigh range that is:

Zr =
4πσ 2

r

M2λ
≈ 3 m, (III.1)

M2 ≈ 1.5 being a factor characterizing the beam quality with respect to the one of a

Gaussian beam (for which M2 = 1); λ = 261 nm is the usual seeding wavelength. Zr

is very close to the modulator length that is 3.2 m, which should ensure a good overlap

of the seed and the electrons all along the modulator.

Both temporal and spectral intensity profiles of the seed can be considered as
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Parameter Value

center wavelength λ 261 nm

bandwidth FWHM Hλ 0.8−0.9 nm

duration FWHM Ht > 140 f s

energy per pulse 10−50 µJ

Table III.1: Main seed parameters for a standard FEL operation.

Gaussian. The main seed characteristics in the standard regime of operation are sum-

marized in Table III.1.a. The energy per pulse of the seed does not usually exceed

50 µJ. It is however possible to go beyond this limit, but usually not above ≈ 150 µJ

in order not to degrade the UV optics that are on the beam path. Also, as we will see

later on, increasing the energy per pulse affects the spectro-temporal properties of the

pulse. The attenuation is achieved by means of a system composed of a half-wave

plate followed by a polarizer, placed just after the generation of the third harmonic.

Finally, the whole laser setup (seed laser, photo-injector laser) is synchronized by

an all-optical locking at a repetition rate of 10 Hz [107], for ensuring smallest jitter as

possible between the seed pulses and the electron bunch. This signal is linked to the

more global clock system of the machine, described in [108, 109, 110].

III.1.b Sources of chirp on the seed laser

Three main sources of chirp are present in the seed laser: one due the natural

dispersion, one to self-phase modulation and one generated in the compressor stage.

Natural dispersion The first unavoidable effect is the dispersion (see Introduction)

that becomes non-negligible for a sufficiently broad spectrum, such as for the seed

pulse used at FERMI@Elettra. The beam travels in vacuum only after the insertion

breadboard (Fig. III.2). Before that, it travels through normally-dispersive media that

are the air and transmission optics (such as windows). A slight positive dispersion

is thus induced leading to an up-chirping of the pulse. We call it “natural dispersion"

because it is not created intentionally: this is the state of the seed pulse that we get

“out of the box", after the generation of the third harmonic (≈ 261 nm). As we will see,

in some case it may be desirable to increase this dispersion before the seed reaches

the modulator. For this purpose, one can place additional materials on the beam path.

However, This generally induces an effect of self-phase modulation.
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Self-phase modulation The optical Kerr effect [90] relies on the fact that the overall

refractive index of a medium is proportional to the intensity I of the laser beam:

n(I) = n+n2I, (III.2)

where n2 = 3
ε0n3 χ(3), with ε0 the permittivity of the vacuum and χ(3) the third-order

susceptibility of the material, is the non-linear refractive index (said non-linear because

it represents a third-order non-linearity, even if it is a linear coefficient of n(I)). For

moderate laser intensities, n2 has a negligible effect and only the usual refractive index

n is considered. However, if the order of magnitude of I is sufficient to counterbalance

the small value of n2, the overall refractive index has to be taken into account and

involves non-linear effects such as self-focusing [17] and self-phase modulation. In the

latter, the temporal phase of the pulse is shifted. Indeed, in the temporal domain, the

electric field can be written as:

E(t) = A(t)eiΦ(t) = A(t)e−i(ω0t−k0z) = A(t)e
−i[ω0t− 2π

λ0
n(I)L]

, (III.3)

where A(t) is the electric field envelope and L is the distance of propagation in the

considered medium. The instantaneous frequency is:

ω(t) =
dΦ(t)

dt
= ω0 −

2π

λ0
n2L

dI

dt
. (III.4)

A frequency shift is thus induced along the pulse i.e., a chirp is created. For a gaussian

pulse of intensity profile I(t) = I0e
− t2

2σ2
t and standard deviation σt , the frequency shift

becomes:

δω(t) =
2πLn2I0t

λ0σ 2
t

e
− t2

2σ2
t . (III.5)

For convenience, we shall express it in terms of wavelength. Since ω = 2πc
λ

, we have

dω
dλ

=−2πc
λ 2 and therefore:

δλ (t) =−λ0Ln2I0t

cσ 2
t

e
− t2

2σ2
t . (III.6)

Around its center, the Gaussian profile can be considered as a parabola (see Fig.

III.3 top): e
− t2

2σ2
t ≈ 1− t2

2σ2
t

. Hence the shift of the central wavelength along the pulse

becomes simply:

δλ (t) =−λ0Ln2I0

cσ 2
t

t, (III.7)
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which is a linear function of t (providin the position along the pulse). As shown in Fig.

III.3, this is a good approximation only at the center of the pulse, for a duration of the

order of σt . At the edges of the pulse, the chirp cannot be considered any more as

linear. In the calculations presented in Fig. III.3, we used a set of parameters matching

a typical configuration of FERMI@Elettra i.e., a seed with intensity of I ≈ 1 · 1014 W
cm2

propagating in 10 cm of fused silica, for which n2 ∼ 10−16 cm2

W
and n ≈ 1.5. As shown

in Fig. III.3 (bottom graph), an overall variation of the central wavelength of more than

1 nm can be expected. For stressing the effect, I took a strong seed energy of 100 µJ.

The chirp created by the self-phase modulation leads to a spectral broadening since
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Figure III.3: Chirp along a seed pulse subject to self-phase modulation. Top figure: Gaussian tem-

poral intensity profile (full line) and parabolic approximation (dashed line). Bottom: calculated central

wavelength shift for the Gaussian intensity profile (full line) and for the parabolic intensity profile (dashed

line). The parameters are: L = 10 cm; n2 = 1 ·10−16 cm2

W
; λ0 = 261 nm; σt = 80 f s; I0 =

E0

σt(4πσ 2
r )

with

E0 = 100 µJ and σr = 1 mm.

the pulse duration is not changed. If we do the mistake to consider that the chirp is

linear (taking, all along the pulse, the linear approximation described here above), we

obtain a gaussian spectrum (dotted curve in the right panel of Fig. III.4), but whose

shape is far from the truth. Indeed, since the phase shift is not quadratic (i.e., the chirp

is not linear), the spectral shape will theoretically be distorted, not gaussian (full line in

the right panel of Fig. III.4).

Compressor stage The compressor stage is similar to what can be found on a clas-

sical chirped-pulse amplified laser chain [64]. A basic drawing is provided in Fig. III.5.

The system relies on two transmission gratings dispersing the light. The different wave-

lengths arrive at normal incidence on a mirror which sends back the light through the
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Figure III.4: Comparison of the spectral shape of the seed at FERMI@Elettra in its standard condition

(left) and with the effect of self-phase modulation (right), with the set of parameters considered in Fig.

III.3. In dotted line: calculated spectrum considering a linear chirp on the whole temporal distribution;

the full line in right panel takes into account the chirp as described by Eq. III.6.

system so that the wavelengths are spatially recombined. The angles and distances of

the three optical components are set so that a negative dispersion is induced: longer

wavelengths do a longer path than shorter ones. As a result, the initial positive disper-

sion is eventually compensated and the beam is compressed to its minimal duration.

Alternatively (in case of over-compensating negative dispersion), a down-chirped pulse

may be generated.

Figure III.5: Scheme of the compressor stage of the seed pulses. When it enters, the pulse is up-

chirped: longer wavelengths (to the red) arrive first. Two transmission gratings are responsible for the

dispersion of the light. Due to their distance and angle, longer wavelengths (dotted line) travel a longer

path than shorter ones (full line). A UV-reflective mirror sends back the light and the output pulse is

either compressed with respect to the incoming one, or down-chirped if enough negative dispersion has

been brought by the system.

Given the bandwidth value specified in Table III.1.a, the Fourier-transform limited

duration of the FERMI@Elettra seed laser is Ht =
4λ 2

0 ln2

2πcHλ
≈ 120 f s. However, in its

standard operation it is lengthened to ∼ 200 f s due to the aforementioned first two
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effects. The compressor stage enables shortening the pulse down to ∼ 140 f s i.e.,

∼ 1.2 times the Fourier-transform limit. The fact that the compressor cannot totally

counterbalance the pulse lengthening emphasizes the presence of higher-order chirps,

that partly come from self-phase modulation. Therefore, in order to boil down to a

situation where linear chirp is dominant, we will most of the time not compensate the

natural dispersion of the seed, or we will eventually induce a strong negative dispersion

via the compressor to get a dominant negative linear chirp. Moreover, in order to avoid

a too strong self-phase modulation, we will take care to maintain the seed energies

below the value at which a spectral distortion may take place i.e., as said previously,

below ≈ 150 µJ.

In the approximation of a linear chirp and Gaussian spectral and temporal profiles,

a simple description of the electric field of the seed laser can thus be done, and is

developed in the following lines.

III.1.c Analytical description of linearly-chirped Gaussian laser pulse

In the temporal domain, the electric field of a linearly chirped laser pulse can be

written as:

E(t) ∝ e−Γrt
2

e−i[ω0t+Γit
2]. (III.8)

The first exponential stands for the temporal envelope (Gaussian, here) and the second

one for the phase of the oscillations, including the rapidly-oscillating term at the center

pulse frequency ω0 and a quadratic term ϕ(t) = Γit
2. The instantaneous frequency of

the pulse is:

ω(t) =
d[ω0t +Γit

2]

dt
= ω0 +2Γit. (III.9)

We get indeed a linear dependence of the frequency on time of – constant – slope 2Γi:

the quadratic phase ϕ(t) induces a temporal linear dispersion of the pulse spectral

component. A positive Γi corresponds to an up-chirped pulse: shorter frequencies

i.e., longer wavelengths, arrive first while negative values of Γi stand for down-chirped

pulses.

The Fourier transform of the temporal electric field gives its expression in the spec-

tral domain:

Ẽ(ω) ∝ e
− Γr

4(Γ2
r+Γ2

i
)
(ω−ω0)

2

e
i

Γi

4(Γ2
r+Γ2

i
)
(ω−ω0)

2

. (III.10)

As for the case of the temporal electric field, we get a Gaussian envelope with a

quadratic phase, but with opposite sign, φ(ω) = − Γi

4(Γ2
r+Γ2

i )
(ω −ω0)

2. Here we de-

fine the parameter β that characterizes the curvature of the spectral phase, and thus
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the amount of chirp:

β =
Γi

Γ2
r +Γ2

i

. (III.11)

β is equal to four times
d2φ(ω)

dω2 , which is the group delay dispersion (GDD, see Chapter

I).

From Eqs. III.8 and III.10, we get that the temporal and spectral intensities are,

respectively:

I(t) ∝ e−2Γrt
2

and Ĩ(ω) ∝ e
− Γr

2(Γ2
r+Γ2

i
)
(ω−ω0)

2

. (III.12)

These intensity profiles have Gaussian shapes, of standard deviations σt and σω re-

spectively. Hence, by identification into I(t) and I(ω), we get:

Γr =
1

4σ 2
t

and Γi =± 1

4σ 2
t

√

4σ 2
t σ 2

ω −1. (III.13)

From the latter relation, we find back the Fourier-transform limit: σtσω =
√

1
4
+4Γ2

i σ 4
t >

1
2
. For a non-chirped pulse (Γi = 0), σt =

1
2σω

: the duration is inversely proportional to

the bandwidth. For Gaussian pulses, we will often speak in terms of the FWHM values

(noted Ht and Hω ) instead of the standard deviations ones. Γr, Γi and the relation of

Fourier-transform limit can then be easily rewritten in terms of the FWHM values.

According to Eq. III.9, the difference between two frequencies, ω ′ and ω ′′, located

(respectively) at the times t ′ and t ′′ within the pulse, will be:

ω ′′−ω ′ = ∆ω = 2Γi(t
′′− t ′) = 2Γi∆t. (III.14)

In terms of wavelength, it gives:

∆λ =
λ 2

0 Γi∆t

πc
, (III.15)

where λ0 is the mean frequency of the spectrum and c the speed of light. It is in-

teresting to calculate this value for ∆t = 6σt ; indeed, within 6σt , almost 100% of the

pulse energy is present. Therefore, |∆λ (6σt)| gives the overall difference of central

wavelength within the linearly-chirped seed pulse.

Figure III.6 shows, in the case of an up-chirped pulse, the behavior of three impor-

tant quantities as a function of β . As the pulse length grows, the slope of the chirp

Γi rapidly grows but then decreases while the increase of the pulse duration becomes

linear. Hence, the increase of ∆λ (6σt) is more and more slow so that the overall differ-
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Figure III.6: Parameters of the FERMI@Elettra seed laser as a function of β , for two different band-

widths, with an up-chirped pulse. Top panel: Γi; middle panel: FWHM duration; bottom panel: overall

difference of central wavelength within the seed pulse. The latter entity has an opposite sign for a

down-chirped pulse, Γi also.

ence of central wavelength within the seed pulse is practically limited. In these graphs,

we considered two different values of the bandwidth of the seed that are the fact our

two limiting cases: in its standard configuration, the seed has an FWHM bandwidth of

0.8−0.9 nm (see Table III.1.a). But as said previously, this number can grow, due to

self-phase modulation, if the energy of the seed is sufficiently high. Until an FWHM

bandwidth of 1.1 nm, the shape of the spectrum remains clean and Gaussian so that

we have always kept it under this limit. It becomes distorted above 1.2− 1.3 nm (for

seed energies > 150 µJ). Therefore, in our conditions, ∆λ (6σt)< 4 nm.

III.1.d Characterizaton of seed laser pulses

The fundamental quantities characterizing the FERMI@Elettra seed laser pulse are

its spectral width and duration. While measuring the spectrum is generally not an issue,

the determination of pulse duration is not a trivial task. At FERMI@Elettra, such a

measurement is carried out by performing a cross-correlation between the fundamental

IR pulse, of Gaussian temporal shape and intensity IIR(t), extracted from the oscillator
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of the Ti:Sapphire laser chain, and the seed pulse i.e., the third harmonic of the IR

signal, of intensity Iseed(t). The two pulses overlap in a non-linear crystal where occurs

a sum frequency generation: the fourth harmonic is thus created. The delay τ between

the two pulses is controlled by a delay-line and the intensity of the generated signal is:

IXCorr(τ) =

∫ +∞

−∞
IIR(t)Iseed(t − τ)dτ (III.16)

A typical cross-correlation trace that we collected is shown in Fig. III.7. The location of

Figure III.7: Typical cross-correlation trace allowing to measure the seed pulse duration. Squares are

experimental data and the line is a Gaussian fit. The FWHM duration is 170 f s, corresponding to a pulse

FWHM duration of about 150 f s. On the vertical axis is reported the intensity of the correlation signal,

IXCorr(τ), while the horizontal one shows the delay τ .

the cross-correlation setup is shown in the right part of Fig. III.1. One has to note that

a thickness of 15 mm of fused silica has been inserted to take into account the material

through which the seed pulse propagates on the path to reach the undulator. From this

measurement, we obtain the FWHM duration of the seed pulse:

Htseed =
√

H2
tXCorr −H2

tIR (III.17)

In Table III.1.d are reported different characterizations of the seed pulse, obtained

for different induced temporal chirps. In the standard configuration, the FWHM dura-

tion is about 200 f s for energies per pulse larger than 50 µJ. Below this energy, the

pulse duration may be undervalued due to a lower signal. The bandwidth grows as a

function of the energy per pulse, due to self-phase modulation; as a consequence, the

time-bandwidth product increases as well. In this standard configuration, the pulses

are up-chirped i.e., Γi > 0. This holds also for the two configurations where addi-

tional pieces of a normally-dispersive material, calcium fluoride CaF2, are placed on
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the beam path. In these two configurations, one observes an augmentation of both the

bandwidth and the duration: the first effect is again due to self-phase modulation, the

second one to the dispersion. Here the measurements corresponding to to a distorted

spectrum are not reported. We also tested four different configurations of the compres-

sor, corresponding to a different spacing between the gratings. We limited the energy

per pulse in order not do degrade the gratings. The measurements clearly show the

grating efficiency: for every configuration, the time-bandwidth product is maintained at

an almost constant value, whatever the energy per pulse. For the first position, we

achieved pulses with a minimum duration of 140− 150 f s i.e., ∼ 1.2 times far from

the Fourier-transform limit. This does not mean that the compressor sets the quadratic

phase to zero, but that the quadratic phase is set to a value that compensates the

higher-order phase terms. Here, the pulses are so close to the Fourier-transform limit

that they are at the borderline of the model of a linearly-chirped Gaussian pulse (high-

order phase terms can not be neglected any more in Eqs. III.8 and III.10). Hence, it is

difficult to define e.g., Γi, and furthermore to say what is the sign of the slight residual

chirp. For the three other gratings configurations, the sufficient anomalous dispersion

that is provided by the compressor allows defining again a dominant linear chirp, with

Γi < 0.

One has to note that we measured the FWHM bandwidth implying a Gaussian

spectrum in terms of wavelength, which strictly speaking means that it is not Gaussian

in terms of frequency (whereas our analysis relies on a Gaussian spectrum in terms

of frequency). However, the spectrum is not enough wide to see a difference: dω
dλ

is

almost constant on the whole spectrum, hence the error is very small.

The measurements are done before the seed is focused and sent to the undulators

hall i.e., at a position where its transverse size, and thus its power density, is lower

than what is really experienced by the electrons. It means that the pulses may suffer

from a self-phase modulation that is not taken into account in our characterizations.

Therefore, as a safety margin, in the simulations presented later on, we considered a

bandwidth ≈ 10% higher than measured.

The frequency chirp on the seed pulse is the one usually defined in the femtosec-

ond laser community. However, a second chirp is present in a seeded FEL: the energy

chirp of the electrons, which is defined as the dependence of their energy as a function

of the longitudinal position. Its description is provided in the next section.
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Energy [µJ] Hλ [nm] Ht [fs] TBP vs. FT limit

standard configuration 8 0.75 162 1.2

36 0.83 177 1.5

slight up-chirp 72 0.9 200 1.8

205 1.07 217 2.3

269 1.21 211 2.6

dispersive material 7 0.76 265 2.0

5 cm of CaF2 17 0.8 288 2.3

33 0.83 302 2.5

moderate up-chirp 66 0.99 345 3.4

92 0.99 380 3.8

132 1.14 409 4.7

159 1.21 451 5.4

dispersive material 7 0.8 396 3.2

10 cm of CaF2 16 0.83 423 3.5

30 0.96 453 4.3

strong up-chirp 62 0.99 525 5.2

87 1.14 602 6.8

127 1.21 646 7.8

compressor 5 0.76 141 1.1

position 1 12 0.8 148 1.2

23 0.83 149 1.2

set for 46 0.83 150 1.2

minimum duration 63 0.83 153 1.3

89 0.91 149 1.4

compressor 5 0.71 241 1.7

position 2 12 0.71 235 1.7

23 0.74 233 1.7

slight down-chirp 45 0.76 228 1.7

63 0.76 224 1.7

89 0.83 222 1.8

compressor 5 0.8 341 2.7

position 3 12 0.8 333 2.7

24 0.81 328 2.7

moderate down-chirp 48 0.84 320 2.7

67 0.85 327 2.8

96 0.86 326 2.8

compressor 5 0.8 436 3.5

position 4 12 0.83 438 3.6

24 0.88 437 3.8

strong down-chirp 48 0.88 427 3.7

67 0.87 429 3.7

96 0.88 436 3.8

Table III.2: Results of seed pulses characterizations. First column: different configurations; second

column: energy per pulse; third column: FWHM bandwidth; fourth column: FWHM duration; fifth column:

ratio between time-bandwidth product (TBP) and Fourier-transform (FT) limit. The central wavelength

was always around 261.2 nm.
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III.2 Energy chirp of the electron beam

III.2.a Electron acceleration

Before describing the energy chirp that may affect the longitudinal electron beam

distribution, and discussing its provenance, it is necessary to give a simple remind of

the process of electron acceleration. The electron source [111] generates a bunch of

charge ∼ 500 pC and duration ∼ 8 ps. In order to reach a sufficient energy that is

required for the FEL to reach low wavelengths (see Chapter 1, resonance equation

of the FEL), the electron bunch is accelerated through a linear accelerator (linac). It

passes through successive sections within which is present a sinusoidal electric field.

Such sections are called radio-frequency (RF) cavities, characterized by VRF , λRF and

ϕRF that are respectively the amplitude of the field, its wavelength and its phase with

respect to the center of the bunch. The gain of energy of an electron located at the

position z (z = 0 being the center of the bunch) is thus given by [112]:

δE(z) = eVRF cos(ϕRF +
2π

λRF
z) (III.18)

where e ≈ 1.6 ·10−19 is the elementary charge. The total gain of energy of an electron

along the linac is thus equal to the sum of the δE acquired within each RF cavity.

The particular value ϕRF = 0◦ corresponds to the crest of the field. In a RF cavity,

the electrons gain / lose different energies according to their position with respect to

the field i.e., they are dispersed in energy. Thus, similarly to the notion of chirp in the

community of ultrafast lasers, we define the chirp of the electrons as the dependence of

the mean energy of the particles from their position z along the bunch (or, equivalently,

the time t).

III.2.b Description of the electron-beam energy chirp

At FERMI@Elettra, the energy profile of the electron bunch is well described by a

parabolic function:

E(t) = E0 +χ1t +χ2t2. (III.19)

Here, E0 is the energy at the center of the parabola, χ1 the coefficient of the linear

component and χ2 the coefficient of the quadratic one.

The parabolic nature of the energy chirp at FERMI@Elettra is due to the sources

which it stems from (see [113]):
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• The first is the direct consequence of the process of RF acceleration. When the

electron bunch is “on-crest" (centered on the peak of the sinusoid i.e., ϕRF =

0◦), the electrons acquire a negative quadratic chirp due to the curvature of the

accelerating field.

• In order to reach higher peak currents (i.e., to increase the density of particles

that emit FEL radiation and thus enhance the power of the latter), the electron

bunch is longitudinally compressed. For this purpose, the electrons are set “off-

crest" in some RF sections i.e., de-phased with respect to the peak of the si-

nusoid by −45◦ < ϕRF < 0◦, so that they acquire a linear chirp component ∆E
E0

.

Chirped electrons are then sent through a magnetic chicane where they follow

energy-dependent trajectories so as to shorten the bunch. The particles, of ini-

tial position z, are thus moved to the position z+R56
∆E
E0

+T566

(

∆E
E0

)2

, where R56

and T566 are the dispersion coefficients. The presence of T566 is responsible for

an additional negative curvature of the electrons energy profile.

• A specific RF section, called X-band cavity, has been installed at FERMI@Elettra

before the dispersive section of the bunch compression stage. Its sinusoidal field,

of higher frequency and thus higher on-crest curvature than other classical RF

sections, is de-phased by ϕRF = 180◦ with respect to the other sections, so that

the electron energy acquires a strong positive quadratic component aiming at

compensating the negative energy curvature (see first two points).

For a simple view of the mind accounting for our study of the energy chirp, the FERMI@Elettra

linac can thus be reduced to a simplified structure (Fig. III.8): a first linac segment L0,

a second L1 in which is created the linear chirp component ∆E
E0

prior to bunch compres-

sion, the magnetic chicane BC (for “bunch compression") of parameters R56 and T566

and the X-band cavity. The final electron beam mean energy is given by:

E0 = Ei + e[V0 cos(ϕ0 +
2π

λs
z)+V1 cos(ϕ1 +

2π

λs
z)+Vx cos(ϕx +

2π

λx
z)], (III.20)

where the different variables are defined in the caption of Fig. III.8. The accurate

structure of the linac can be found in [111].

Finally, one has to note that the accelerated particles also generate fields, called

wakefields. The effect of the latter becomes important when the bunch is shortened.

Longitudinal wakefields [114] cause a negative linear energy chirp (possibly compen-

sated by a slight dephasing of last RF cavities) and a positive quadratic one (that

competes with the other sources of quadratic chirp described previously).
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Figure III.8: Simple view of the linac structure at FERMI@Elettra, picture taken from [113]. The

electron beam, of initial energy Ei and duration σz0, is accelerated in a first RF cavity (L0) with field

amplitude V0, phase ϕ0 and wavelength λs. A second cavity (L1), with field amplitude V1, phase ϕ1 and

wavelength λs is used to induce a linear energy dispersion needed for bunch compression. The X-band

cavity (X ), with field amplitude Vx, phase ϕx and wavelength λx is used to pre-compensate the quadratic

chirp component that will be induced by in the bunch compression (BC) stage, after which the electron

beam reaches its final characteristics, with mean energy E0 and compressed duration σz.

In the following lines, I describe the method and the results of measurements of the

energy chirp of the electrons.

III.2.c Characterization of the energy chirp

At FERMI@Elettra, the energy profile at the end of the linac is characterized by

a so-called high-energy radio-frequency deflector (HERFD) [115]. An RF section tilts

the bunch in the vertical direction, making the information about the beam time struc-

ture available along that axis. Then, a bending magnet disperses the electrons in

the horizontal plane, making the information about the beam energy profile available

along that direction. The beam longitudinal phase space can thus be visualized on a

fluorescent YAG crystal placed downstream the magnet. Typical results are reported

respectively in the top and bottom pictures of Fig. III.9. For the first configuration

(top pictures), the interpolation with previous Eq. III.19 results in following parameters:

E0 ≈ 1275 MeV , χ1 ≈ 8 MeV/ps and χ2 ≈ 0.3 MeV/ps2. Hence, the chirp is almost

linear only. For the second configuration (bottom pictures), following parameters are

obtained: E0 ≈ 1006 MeV , χ1 ≈ 1 MeV/ps and χ2 ≈ 7 MeV/ps2. This time, the

chirp can be considered as almost quadratic only. In this second configuration, we see
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Figure III.9: Longitudinal phase space measured at the end of the FERMI@Elettra linac for two differ-

ent configurations of the machine. Left: image observed by a CCD on the YAG crystal; center: analysis

of the left picture, showing the energy profile; right: analysis of the left picture, showing the current

profile. Larger values of time correspond to a displacement from the tail to the head of the bunch.

clearly, due to a stronger compression than in the first configuration, the more impor-

tant effect of longitudinal wakefields, that generate a positive value of χ2. The right

panels of Fig. III.9 display the current profiles, whose shapes (roughly a ramp with

negative slope) are explained by the longitudinal compression process of the bunch

[116]. The current affects the homogeneity of the FEL process along the bunch.

We have now characterized the frequency chirp of the seed and the energy chirp

of the electrons. Both have consequences on the properties of the FEL emission [117].

Before showing in the next chapter an experimental application, it is interesting to start

with simulation results to give a first insight of the chirp interplay in a seeded FEL.
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III.3 Numerical study on the effects of seed and elec-

tron chirps on the FEL emission

III.3.a Simulation parameters

In order to understand and characterize the effect of the different chirps on the FEL

emission, we have carried out an extensive campaign of simulations using the code

Perseo [22]. Such a code simulates the FEL process in the temporal (longitudinal)

domain. The spectral properties of the FEL emission are instead retrieved by a Fourier

transform of the temporal electric field. Transverse effects that might affect the FEL

evolution are taken into account via correction factors [118]. The obtained results have

been validated by the three-dimensional code GENESIS [23], which is the “standard"

of the FEL community.

The effect of chirps has been studied independently: linear frequency chirp on the

seed (by introducing a quadratic phase term in the temporal electric field of the pulse),

linear and quadratic energy chirps of the electron. In [117], Lutman et al. provide

an expression of the temporal electric field of the FEL emission in the presence of

these three chirps. Unfortunately, this analytic work concern only the amplification

of the fundamental of the seed pulse, whereas here we focus on the usual state of

FERMI@Elettra, that is devoted to amplify harmonics of the seed pulse in order to

generate short-wavelength radiation.

We will therefore rely only on simulations for giving a first idea of the effect of each

chirp on the output radiation. The simulation parameters that have been used are

reported in Table III.3. Note that the used seed intensity (25 GW/cm2) is the value

above which the spectro-temporal properties of the FEL emission become distorted.

Electron beam Energy 1.3 GeV

Relative energy spread 0.01%

Peak current 200 A

Emittance 2 mm.mrad

Seed Central wavelength 260.8 nm

FWHM bandwidth 0.81 nm

Peak intensity 25 GW/cm2

Undulators Harmonic number n 8

Dispersive section R56 20 µm

Table III.3: Parameters of simulations presented in this section.

In the simulation results presented hereafter, the spectral phase is quite difficult to

unwrap (suppress 2π phase jumps), partly due to the narrow spectrum and a too small
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resolution in the frequency domain. Hence, the spectral phase won’t be displayed on

the graphs of the FEL emission. The spectral and temporal profiles have been fitted

to a Gaussian and the temporal phase to a parabola, separated into a quadratic and a

linear phase term.

III.3.b Individual effects

Intrinsic chirp Here we consider the simplest (ideal) case i.e., when neither the seed

pulse nor the electron beam are chirped. This enables emphasizing the presence of a

positive intrinsic chirp that grows during the FEL process. The presence of this chirp

has been pointed out by Wu et al. [119]. It comes from the fact that the wiggling

relativistic electron beam, representing the FEL gain medium, is a dispersive medium,

of group velocity [120]:

vg ≃
ωn

kn +
kw

2

=
c

1+ λn

2L

. (III.21)

λn is the center wavelength of the FEL emission (nth harmonic of the seed), kn = 2π
λn

and L is the undulator period, kw = 2π
L

. If we assume that there is no bunching and

thus no coherent emission in the modulator, vg accounts only for the emission in the

radiators and L is the radiators period i.e., 5.5 cm. From the group velocity, we get the

group velocity dispersion:

GVDn =
kw

2ω2
n

=
λ 2

n

4πLc2
, (III.22)

which is the group delay dispersion i.e., the second-order term of the spectral phase

of the FEL emission, per unit length of propagation. The non-zero value of the group-

velocity dispersion implies the presence of a frequency chirp in the FEL emission, even

without chirps on the seed and on the electrons.

Due to the intrinsic chirp, the FEL emission is not Fourier-transform limited. How-

ever, this chirp is typically very small: for instance, in the simulation presented in

Fig. III.10, the parabolic interpolation of the temporal phase of the FEL pulse gives

ϕFEL(t) ≈ 5.3 · 10−5t2 − 0.025t and the FEL pulse remains <1.2 times far from the

Fourier-transform limit.

Linear frequency chirp (quadratic phase on the seed pulse) For typical values of

the chirp on the seed pulse, the intrinsic chirp becomes negligible and is dominated by

the quadratic term imprinted by the seed: the phase of the FEL pulse is also parabolic.

For the situation reported in Fig. III.11 accounting for a seed chirp parameter β =

10000 f s2, the parabolic interpolation of the FEL phase gives ϕFEL(t)≈ 3.2 ·10−4t2−
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Figure III.10: Perseo output in the ideal case of no chirps, neither on seed nor on electron beam. Full

lines are simulation results and dotted lines their interpolations (Gaussian for the intensity profiles and

parabolic for the phase).

0.15t: the quadratic and linear phase terms are one order of magnitude larger than

those obtained in the presence of the intrinsic chirp only. The latter may therefore be

neglected. The Γi parameter of the seed is equal to 4.5 ·10−5 f s−2. If we multiply it by

the harmonic order (n= 8), we find a value of 3.6 ·10−4 f s−2, which is very close to the

quadratic component 3.2 · 10−4 of the FEL phase. We thus have that, neglecting the

linear phase term which only corresponds to a wavelength shift, ϕFEL(t)≈ nΓit
2 This

property, generally verified in every simulation, is very important and will be discussed

in the next Chapter. The presence of a stronger quadratic phase term affects the time-

bandwidth product of the FEL pulse: it is >2.2 times far from the Fourier-transform limit

(for the reported simulation). In other words, the fact that the seed pulse is usually

up-chirped at FERMI@Elettra directly affects the longitudinal quality of the FEL pulse.

Moreover, as reported in [128], this effect is directly proportional to the harmonic order

i.e., the lower the amplified wavelength, the poorer is the longitudinal quality of the FEL

emission.

As shown in Fig. III.12, the duration of the FEL pulse increases as a function of

the amount of chirp, and follows the duration of the seed (their ratio is always ap-

proximately 2.5 i.e., close to n1/3 ≈ 2.8 as predicted in [127]). At the same time, the

bandwidth grows due to the resonance along the electron bunch with the different cen-

tral wavelengths of the seed (whereas, without chirp on the seed, the resonance is

always centered on λn whatever the longitudinal position). But the latter effect is lim-

ited by the fact that, at some point, the seed becomes longer than the electron bunch.

Another limit, that is not reached in this case, is the one of the gain bandwidth that is,

in the low-gain regime in which we remain, ∆λ = λ
Nr

where Nr is the number of radiator

periods. Here ∆λ = 32.6·10−9

6×44
≈ 0.12 nm.

Figure III.13 shows the evolution of the quadratic and linear terms of the phase of
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Figure III.11: Perseo output with linear frequency chirp β = 10000 f s2. Full lines are simulation

results and dotted lines their interpolations (Gaussian for the intensity profiles and parabolic for the

phase).

0

200

400

600

800

1000

F
W

H
M

 d
u

ra
ti

o
n

 [
fs

]

 

 

seed pulse
FEL emission

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
4

0.025

0.03

0.035

0.04

0.045

0.05

β [fs2]

F
W

H
M

 b
an

d
w

id
th

 [
n

m
]

Figure III.12: In solid lines, FWHM duration (top panel) and bandwidth (bottom panel) of the FEL

emission as a function of the β parameter, without chirp on the electron beam. In the top panel, the

dashed line corresponds to the FWHM duration of the seed pulse.

the FEL emission, as a function of the quadratic component of the phase of the seed

pulse i.e., Γi. We see that phase curvature of the seed pulse is proportional to the

quadratic phase of the FEL pulse. The linear phase term of the FEL pulse is also

function of the quadratic seed phase.

Linear energy chirp on the electron beam In general, the phase of the FEL pulse

reproduces the energy chirp of the electron beam. A linear energy chirp generates a
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Figure III.13: Quadratic and linear terms of the parabolic interpolation of the temporal phase of the

FEL emission as a function of the Γi parameter of the linearly-chirped seed. No chirp on the the electron

beam.

linear component of the phase in the emission, see Fig. III.14. Spectrally, this linear

term in the temporal phase results in a shift of the central wavelength of the FEL radia-

tion. The temporal coherence is not affected: for instance, in the presented simulation,

the output pulse is only 1.14 times far from the Fourier-transform limit.
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Figure III.14: Perseo output with χ1 = 10 MeV/ps, χ2 = 0 MeV/ps2 and seed non-chirped. Full

lines are simulation results and dotted lines their interpolations (Gaussian for the intensity profiles and

parabolic for the phase).

This effect is well-known and has been reported e.g., in [121], where the theoretical

wavelength shift that is predicted is ∆λ
λ

= R56 · 1
E
· dE

dz
. Figure III.15 reports the evolution

of the slope of the FEL phase, as a function of the linear energy chirp. We see that,
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Figure III.15: Slope of the temporal phase of the FEL emission (top panel) and central wavelength of

the FEL emission (bottom panel; solid line: simulations, dashed line: theory), as a function of χ1, with

χ2 = 0 MeV/ps2 and seed non-chirped.

here again, it is directly proportional. On the bottom graph, we can see the central

wavelength that is observed in simulations and the one predicted through the previous

formula: the effective shift is higher than expected.

Quadratic energy chirp on the electron beam Figure III.16 shows the result of

a simulation where the seed is non-chirped but the electron beam presents a strong

quadratic energy chirp. In agreement with what what was observed previously, the FEL

phase mimics the electrons energy profile so that it is well fitted by a parabola. Since

the pulse is not affected temporally, it results in a spectral broadening (left panel).

Indeed, as shown in Fig. III.17, the duration is almost constant, whatever χ2 is. The

chirp brought by the electrons is added to the intrinsic chirp. The latter being positive,

this explains the asymmetry of the curve in the bottom panel.

If we look at the evolution of the temporal phase of the FEL pulse (Fig. III.18),

we observe the same behaviour as with the linear chirp on the seed. However, the

effect of the latter is much stronger, especially because experimentally it is difficult to

reach χ2 > 10 MeV/ps2. Here again, we see that the linear term of the FEL phase

is proportional to the amount of quadratic chirp on the electrons. This does not imply
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Figure III.16: Perseo output with χ2 = 50 MeV/ps2, χ1 = 0 MeV/ps and seed non-chirped. Full

lines are simulation results and dotted lines their interpolations (Gaussian for the intensity profiles and

parabolic for the phase).
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Figure III.17: FWHM duration (top panel) and bandwidth (bottom panel) of the FEL emission as a

function of the χ2 parameter of the electrons energy, with χ1 = 0 MeV/ps and seed non-chirped.

that the central wavelength of the emission will be shifted: the phase is parabolic,

not fully linear, as in the case where the energy chirp is linear. Hence, the slope

of the phase depends on the position along the FEL pulse: this is why there is a

spectral broadening instead of a wavelength shift (as it occurs for a linearly-chirped

seed). For χ2 = −5 MeV/ps2 and χ2 = −10 MeV/ps2, the quadratic energy chirp

compensates the presence of other phase terms in the FEL emission so that the latter

comes close to 1.1 times far from the Fourier-transform limit and it is not possible any

more to interpolate the phase by a parabola: higher-order terms become dominant at

this boundary.
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Figure III.18: Quadratic and linear terms of the parabolic interpolation of the temporal phase of the

FEL emission as a function of the χ2 parameter of the electrons energy, with χ1 = 0 MeV/ps and seed

non-chirped.

III.3.c Interplay

The quadratic energy chirp of the electrons, the linear frequency chirp of the seed,

and the intrinsic chirp of the FEL process have similar effects. The “advantadge" of the

first one is that it is not correlated to a pulse lengthening. Its drawback is that it is less

easy to control than the chirp of the seed. We will not focus on the linear chirp of the

electrons, since its main and well-known effect is a shift of the central wavelength of

the FEL emission.

Let us consider a situation where the seed is down-chirped (e.g., β =−20000 f s2)

and let us try to compensate this chirp plus the intrinsic chirp by a proper quadratic

energy chirp of the electrons in order to lower the time-bandwidth product of the FEL

emission. Figure III.19 shows that, as expected, the duration (top panel) is almost

constant but that a proper value of χ2 ≈ 50 MeV/ps2 is able to minimize the spectral

width (middle panel). Therefore, starting from a pulse that is 3.7 times far from the

Fourier-transform limit for χ2 = 0 MeV/ps2, one reaches a time-bandwidth product Ht ·
Hν = 0.54 for χ2 = 50 MeV/ps2 i.e., a pulse 1.2 times far from the Fourier-transform

limit (for which Ht ·Hν = 0.441, assuming Gaussian temporal and spectral pulses), see

bottom panel of Fig. III.19.

I have tried to evaluate how the different chirps compensate each other i.e., how
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Figure III.19: Evolution of the FWHM duration (top panel), the FWHM bandwidth (middle panel) and

the time-bandwidth product (bottom panel) of the FEL pulse, as a function of the quadratic energy chirp,

for a down-chirped seed pulse (β =−20000 f s2).

the quadratic temporal phases that each of them induces in the FEL emission could be

added. In fact, I found a very simple law. If we neglect the linear terms in the parabolic

interpolations of the phase so that the temporal phase is considered as quadratic only,

it can be written as:

ϕFEL(χ2,β ) = ϕFEL(χ2,β = 0)+ϕFEL(χ2 = 0,β )−ϕFEL(χ2 = 0,β = 0). (III.23)

In other words, the temporal phase of the FEL emission can be decomposed in a sum

of the phases that are induced separately by each of the chirps. The first term of the

sum is the phase of the FEL emission in the presence of a quadratic energy chirp only

and the second term stands for the phase in the presence of the linear frequency chirp

of the seed only. To them is substracted the intrinsic chirp of the FEL process, when

no other chirp is present.

Simulations have been carried out for retrieving each single term of the previous

equation. The values of the FEL phase obtained through the equation are compared

to the “real" values predicted by simulations in Fig. III.20, as a function of the electrons

chirp χ2 and for two values of the seed chirp β . The agreement is very satisfactory.
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Figure III.20: Evolution of the quadratic term of the temporal phase of the FEL emission (dashed line)

compared with the result of Eq. III.23 (solid line), as a function of χ2, for a down-chirped (left panel,

β =−20000 f s2) and an up-chirped (left panel, β = 20000 f s2) seed pulse. The results are taken from

the outputs of Perseo simulations.

III.4 Summary

The emission of a seeded FEL can be frequency chirped. The sources of this

chirp are the following: the frequency chirp of the seed pulse, the energy chirp of the

electrons and the intrinsic phase that is induced within the FEL process. The final

FEL phase can be equated to the sum of these three individual contributions. Simple

numerical results have been presented in order to understand the effects of the different

chirps on the FEL emission. The intrinsic FEL chirp can be usually neglected. The

quadratic electrons energy chirp and the linear frequency chirp of the seed compete,

and both induce a linear frequency chirp on the seed. However, whereas both induce a

spectral broadening, only the frequency chirp of the seed is responsible for a FEL pulse

lengthening. In the usual conditions encountered at FERMI@Elettra, the contribution

of the quadratic energy chirp of the electrons is relatively small with respect to the

consequences of the seed frequency chirp. In this case, the electrons energy chirp

can also be neglected, and the curvature of the FEL phase is thus directly proportional

to the one of the seed and to the harmonic order: ϕFEL(t) ≈ nϕseed(t) = nΓit
2. As

I presented in the first part of this chapter, the spectro-temporal characteristics of the

seed and the energy profile of the electron bunch are well known and can be easily

measured and managed, allowing to develop the spectro-temporal studies discussed

in the next chapter.
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IV.1 Spectral double peak

IV.1.a First observation and understanding

During the period of commissioning of summer 2011, E. Allaria and S. Spampinati

observed for the first time the intringuing phenomenon displayed in Fig. IV.1 [122]. As

the power of the seed gets higher, the total bandwidth increases and the spectrum

splits in two, leaving a hole in the middle.

Ideally, the CHG emission can be seen, in the longitudinal (spectro-temporal) di-

mension, as a copy of the seed [123, 124], see Fig. IV.2a. However, this statement
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Figure IV.1: First experimental evidence of the spectral separation between FEL peaks, as a function

of seed energy per pulse.

(which, in the temporal domain, is mainly an assumption or teh prediction of simula-

tions due to the lack of temporal diagnostics in the vacuum-ultraviolet spectral range),

is true only under certain limits. The explanation of the above phenomenon is the fol-

lowing: when increasing the seed power, the electron-beam modulation at the peak

of the seed (the central position for a Gaussian) becomes too strong. The bunching

is deteriorated and thus the FEL emission falls. On the contrary, the edge electrons

experience a lower power level that well matches the bunching condition and, accord-

ingly, the FEL signal starts growing in these regions. This scenario is represented in

Fig. IV.2b. For a sufficiently high seed intensity, the FEL power at the central posi-

tion almost vanishes and two consecutive pulses appear. This process is described in

[125]. This phenomenon becomes particularly interesting if the seed is chirped i.e., if

its frequency depends on the longitudinal position. As shown in Fig. IV.2c, in this situ-

ation the split pulses have also different frequencies. In other words, two independent

pulses with two different frequencies are created. That is what we observe in Fig. IV.1.

The basic explanation of spectral splitting is simple. Let us recall Eq. III.15.:

∆λ =
λ 2Γi∆t

πc
, (IV.1)

where λ is the central seed wavelength, Γi its chirp parameter (quadratic coefficient
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Figure IV.2: Sketch of the seed-electrons interaction and resulting FEL (temporal and spectral) outputs

for different seed configurations: no chirp and moderate seed intensity (a), no chirp and high seed

intensity (b), chirped seed with high intensity (c). In (a), the optimum seed-electrons interaction occurs

around the center of the seed pulse so that the FEL output mimics the shape of the seed. In (b), the FEL

pulse temporally splits in two because the seed power is too high in the middle of the pulse: a beating

between the two sub-pulses involves a frequency modulation but the spectrum remains centered on a

single peak at the harmonic n of the constant seed frequency ω0. In (c), the chirp of the seed combined

with the temporal pulse splitting leads to the creation of two separated spectral peaks corresponding to

the harmonics of the frequencies ω ′
0 and ω ′′

0 at the respective position of each sub-pulse.

of the temporal phase, see Chapter III), c the speed of light, ∆t the temporal distance

between the sub-pulses and ∆λ their spectral separation. According to this equation,

two portions of the electron bunch separated by a duration ∆t see two different seed

wavelengths separated by ∆λ , λ being the center seed wavelength. At each of these

two positions will grow a sub-pulse during the FEL process. If the radiators are tuned

at the nth harmonic of the seed, and if the effect of both intrinsic and electrons’ chirps

are neglected (see Section III.3), the wavelengths of the peaks are separated by:

∆λn =
∆λ

n
. (IV.2)

The knowledge of this separation and of the chirp parameters of the seed theo-

retically allows retrieving the temporal distance between the two corresponding sub-

pulses. Indeed, according to Eqs. III.15 and IV.2:

∆t =
nπc

Γiλ 2
∆λn. (IV.3)

For a given harmonic number n and seed wavelength λ , the temporal distance between
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the two sub-pulses is inversely proportional to the spectral separation ∆λn of their

associated spectral peaks. As discussed in [126], this formula is reliable if the seed

frequency chirp is dominant with respect to electrons energy chirp.

IV.1.b Experiment

The main parameters of FERMI@Elettra relevant in the present work are listed

in Table IV.1. The seed pulse and electron beam parameters are similar to the one

presented respectively in Table III.1.d (standard configuration) and in Fig. III.9 (bottom

panels).

Electron beam Mean energy 1005−1010 MeV

Peak current ≈ 300 A

Duration FWHM 1.5 ps

Linear chirp component χ1 1 MeV/ps

Quadratic chirp component χ2 7 MeV/ps2

Seed Central wavelength 261 nm

Temporal and spectral profiles Gaussian

Bandwidth FWHM 0.8−1.1 nm

Duration FWHM ≈ 200 f s

Energy 10−150 µJ

Modulator Period L 10 cm

Number of periods 32

Dispersive section R56 20−50 µm

Radiators Number 2

Harmonic order n 6

Period L 5.5 cm

Number of periods 44

Table IV.1: Parameters of FERMI@Elettra relevant for most of the experiments reported

in this paper. FWHM stands for the full-width at half maximum of the distribution. The

R56 parameter is the momentum compaction factor characterizing the strength of the

dispersive section [27]. The undulators were set so as to generate circularly polarized

radiation, whose energy reached about 20 µJ per shot.

Figure IV.3 shows a typical measurement of the FEL spectrum as a function of

the seed power. By increasing the seed power, the portion of electrons getting over-

modulated is lengthened and therefore the distance between the two sub-pulses grows,

which leads to a higher separation of the spectral peaks. As shown by the insets, the

spectra are very stable, allowing shot-to-shot repeatability of the two-colour emission.

Increasing the seed power or the strength of the dispersive section have similar

effects on bunching production. Hence, pictures of a “fork" have been also obtained

by increasing the value of R56 while keeping the seed intensity constant. Figure IV.4
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Figure IV.3: Experimental characterization of the spectral separation between FEL peaks, as a func-

tion of the seed energy per pulse. The insets show the spectrum of fifty consecutive shots, integrated at

positions selected by the arrows on the projected figure (higher part).

Figure IV.4: Experimental characterization of the spectral separation between FEL peaks, as a func-

tion of the R56 parameter of the dispersive section, for a seed pulse energy of 72 µJ. Left: projected

image of the spectra integrated over 50 successive shots; middle: integrated spectral profiles for se-

lected values of R56; right: corresponding series of 50 single spectra.

shows this phenomenon for a moderate value of the energy per pulse of the seed

i.e., 72 µJ. At R56 ≈ 18 µm, the single peak emission arrives a its maximum. The

spectrum then begins splitting in two and at R56 ≈ 27 µm, a clear separation can be

seen. When increasing even more the strength of the dispersive section, a modulation

appears between the two peaks (for R56 ≈ 32 µm). For a stronger dispersive section,

the intensity of this modulation becomes negligible with respect to the side peaks.
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This new peak then undergoes the same splitting process: two very small peaks can

be seen in the central hole of the spectrum for R56 ≈ 38 µm, between the two main

peaks.

If we compare the splitting as a function of R56 for a moderate seed intensity (Fig.

IV.5(a)) and for a stronger one (Fig. IV.5(b)), we see, without surprise, that similar

splitting requires a lower value of R56 in the case of the stronger seed. On Fig. IV.5(b),

one can distinguish the modulation that appears between the two peaks, at R56 ≈
30 µm, and then splits also in two, behaving like the two main peaks. At the maximum

strength of the dispersive section (R56 ≈ 45 µm), a new central modulation starts rising

again.

(a) (b)

Figure IV.5: Spectral splitting as a function of R56 for an energy per pulse of the seed of 36 µJ (a) and

72 µJ (b).

Similarly to Fig. IV.5, Fig. IV.6 shows the spectral splitting, but as a function of

the seed energy, and for different fixed values of the R56. For R56 = 17.9 µm (Fig.

IV.6(a)), no clear splitting occurs, the FEL radiation is simply amplified to its maximal

bandwidth, for seed energies > 100 µJ. For higher values of R56 (Figs. IV.6(b), IV.6(c)

and IV.6(d)), the splitting is made possible thanks to a sufficiently strong dispersive

section. Increasing the strength of the latter makes the double peak appear for lower

seed energies and widens the spectral separation between the two peaks. In Fig.

IV.6(c), the central modulation can be seen and in Fig. IV.6(d) the latter splits also in

two due to the high value of R56. In the latter case, the spectrum is thus composed

of two main peaks and, in between, two secondary peaks whose height is about 10%

of the height of the main peaks. Although these secondary peaks seem negligible,

one should take care of the following: if their intensity (which is the experimentally

measured parameter) is, for instance, Isecondary ≈ 0.1Imain (Imain being the intensity

of the main peaks), it means than the amplitude of their electric field is Esecondary =
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(a) (b)

(c) (d)

Figure IV.6: Spectral splitting as a function of seed energy for R56 = 17.9 µm (a), R56 = 23.4 µm (b),

R56 = 29.6 µm (c) and R56 = 36.6 µm (d).

√

Isecondary =
√

0.1Imain ≈ 0.32Emain i.e., about one third of the electric field amplitude

of the main peaks... which is much less negligible.

There are clearly two main differences between the patterns of Figs. IV.5 and IV.6:

1. In the second case, the spectral broadening is not symmetric so that the forks

are also asymmetric.

2. In the first case, just after the splitting begins, the signal of the two peaks de-

creases, which does not seem to be true in the second case.

Concerning 1), a possible explanation may be due to the position of the seed pulse

with respect to the electron bunch. For these measurements, the seed pulse may not

have been placed at the center of the parabola of the energy profile of the electrons

(see Fig. III.9, lower panels), but slightly towards the head. In this case, the first sub-

pulse (corresponding to longer wavelengths) undergoes a strong local linear energy

chirp of the electrons, which results in a shift towards longer wavelengths, while the
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second sub-pulse is closer to the center of the parabola and less affected by electrons’

chirp. This might be the reason why, in Fig. IV.6, the left part of the spectral patterns (or

left branch of the forks, shorter wavelengths) do not behave as the right parts (longer

wavelengths).

For studying 2), let us look at the overall variation of energy emitted by the FEL as

a function of the parameter that drives the temporal splitting i.e., the strength of the

dispersive section (Fig. IV.7, for two different values of the seed energy) or the energy

of the seed pulse (Fig. IV.8, for three different values of R56). In both cases, there is a

similar increase of the FEL power until a turning point is reached corresponding to the

value above which the FEL spectrum starts splitting in two. After that, the behaviour

is different: in the first case (Fig. IV.7 i.e., variation of R56), the overall intensity of

the FEL radiation slowly decreases, whereas it keeps on growing slowly in the second

case (Fig. IV.8 i.e., variation of seed energy). Thus, even if the dispersive section and

the intensity of the seed pulse have similar effects on the bunching, the strength of the

first one is more likely to degrade the output signal. It could be the sign that the spatial

modulation (provided by the dispersive section) is more “sensitive" than the energy

modulation (initiated by the seed): R56 requires a finer tuning than the seed intensity.
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Figure IV.7: Overall intensity of the FEL radiation as a function of R56 for an energy per pulse of the

seed of 72 µJ (left) and 36 µJ (right).

The relative height of the peaks can be adjusted by changing the resonance condi-

tion of the FEL (see Chapter I), which can be done easily by changing the undulators’

gaps. It is shown in Fig. IV.9. The spectrum represented by the dotted line in Fig. IV.9

corresponds to a central tuning of the undulators. Instead, the data represented by the

full line have been taken for a slight negative detuning and, even if both peaks can be

seen, the one at shorter wavelength is significantly stronger. The dashed curve shows

a situation where the detuning is positive, which implies a stronger amplification of the

peak at longer wavelengths, the other one being almost suppressed.

Now that the spectral properties of the splitting have been well characterized, it is
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Figure IV.8: Overall intensity of the FEL radiation as a function of the seed energy for different values

of R56: 23.4 µm (left), 29.6 µm (middle) and 36.6 µm (right).
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Figure IV.9: Double peak for different tuning conditions of the radiators. The radiators are tuned at the

8th harmonic of the seed (32.6 nm). Here the seed energy per pulse is about 70 µJ and R56 = 60 µm.

The configuration of the rest of the machine was different than the one described in Table IV.1: the

radiators were tuned at the 8th harmonic of the seed (32.6 nm), R56 = 60 µm and the electron beam had

following parameters: mean energy 1175 MeV , χ1 ≈ 0 MeV/ps, χ2 ≈ 10 MeV/ps2, FWHM duration

0.8 ps, peak current ≈ 600 A.

interesting to use Eq. IV.3 in order to retrieve the temporal distance between the two

temporal sub-pulses corresponding to each of the two peaks. For instance, Fig. IV.10

shows this estimation for the data reported in Fig. IV.5.

For the same value of R56 e.g., 40 µm, one obtains two different possible working

points: if the seed energy is 36 µJ (left panel of Fig. IV.10), we have ∆λ6 = 0.15 nm
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Figure IV.10: Spectral separation of the two peaks (dashed line) and retrieval of the temporal distance

between the sub-pulses (full line) as a function of R56 for an energy per pulse of the seed of 36 µJ (left)

for which Γi ≈ 5.5 ·10−5 f s−2 and 72 µJ (right) for which Γi ≈ 5.9 ·10−5 f s−2.

and ∆t = 225 f s while ∆λ6 = 0.25 nm and ∆t = 350 f s for a seed energy of 72 µJ

(right panel of Fig. IV.10). Changing Γi (while keeping the same all other parameters),

one can control the spectral separation between the peaks, maintaining ∆t invariant.

This is shown in Fig. IV.11. In the case in which a piece of CaF2 is added in the seed’s
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Figure IV.11: Double peak for two different chirp values of the seed (b), corresponding to the standard

positive chirp (“chirp +", σλ ≈ 0.45 nm and σt ≈ 90 f s, with a seed energy of ≈ 70 µJ) and a stronger

chirp (“chirp ++", σλ ≈ 0.5 nm and σt ≈ 160 f s, with a seed energy of ≈ 75 µJ) induced by adding a

piece of CaF2 of 5-cm thickness. The radiators were tuned at the 8th harmonic of the seed (32.6 nm),

R56 = 80 µm and the electron beam is similar the one shown in the top half of Fig. III.9.

path (spectrum in full line), the Γi is decreased by about 30% but, at the same time,

the peaks separation is increased by about 30% (from 0.9 nm to 1.2 nm), with respect

to the situation where the seed is in its “standard" configuration (spectrum in dashed

line) (see Table III.1.d). Hence, according to Eq. IV.3, the temporal distance between

the sub-pulses is the same is both cases (approximately 200 f s). It is worth noting
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that, for a given configuration of the seed (standard, addition of dispersive material,

compressor stage – see Table III.1.d), Γi varies a function of the power delivered by

the seed. However, unless the difference of seed intensity is large, the values of Γi

remain quite close and, experimentally, the difference is small and thus at the level of

the uncertainty. It it thus better to change configuration, as was done for obtaining the

results shown in Fig. IV.11, in order to get a significantly different Γi.

A last interesting result is shown in Fig. IV.12, in which the FEL spectrum is studied

as a function of the position of the seed pulse with respect to the electron bunch, whose

longitudinal properties are shown in Fig. IV.13. At delay ≈ −0.8 ps, the seed arrives

Figure IV.12: FEL spectrum at the 6th harmonic of the seed (43.5 nm), as a function of the relative

delay between the seed pulse and the electron beam. At the zero value of the delay, the seed pulse is

approximately centered on the bunch of electrons. The dispersive section and seed energy were set,

respectively, to 23 µm and 80 µJ.

on the tail of the bunch, so that the first peak appears (at larger wavelength, since

the frequency chirp of the seed, that is transmitted to the FEL emission, is positive).

Then, as the value of the delay grows, the whole seed is coupled to the bunch, and,

for a delay ≈ −0.6 ps, also the second peak (at shorter wavelength) appears. As

we remarked in Section III.3, a linear energy chirp of the electron energy induces a

spectral shift of the FEL emission. Hence, when they appear, both peaks are detuned

towards shorter wavelengths, because the seed experiences a strong local negative

slope of the electron beam chirp. By further increasing the delay (i.e., moving from the

tail to the head of the bunch), the peaks central wavelengths drift, due to the increase of

the local linear chirp of the electron energy distribution. However, the relative heights

and respective widths of the spectral peaks remain practically constant, so as their

separation ∆λ6 ≈ 0.17 nm. The wavelength drift goes on until the center of the parabola

of the electrons energy profile is reached, for a delay ≈ 0 ps. Soon after that, the lasing

becomes less efficient and each peak disappears one after the other, in the same order

as they appeared. The reason why the lasing does not remain efficient on the whole

bunch is still an open question: possible reasons are the lower charge on the second
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half of the electron bunch (see Fig. IV.13, right picture) and/or a degradation of the

transverse electron-beam properties. As will be detailed in the simulations presented

later on, in our conditions the curvature of the electrons energy profile is too small to

have a significant effect on the FEL bandwidth and thus, on the peaks’ separation.

But in any case, for a parabolic electrons’ energy profile, the quadratic component is

constant all along the bunch, which explains why ∆λ6 is also constant all along the

bunch.
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Figure IV.13: Longitudinal phase space measured at the end of the FERMI@Elettra linac for the

results shown in Fig. IV.12. Left: image observed by a CCD on the YAG crystal; center: analysis of

the left picture, showing the energy profile; right: analysis of the left picture, showing the current profile.

Larger values of time correspond to a displacement from the tail to the head of the bunch.

IV.1.c Simulations

Fig. IV.14 compares a typical measurement of spectral splitting with what has been

obtained with Perseo simulations, using similar experimental parameters. As it can

be seen, the experimental pattern of spectra (Fig. IV.14(a)) is well reproduced by the

simulations (Fig. IV.14(b)). In the latter, the arm of the fork at larger wavelengths is

favoured. Since the chirp of the seed, and thus of the FEL emission, is positive, this

corresponds to the first sub-pulse: the arm at lower time values (Fig. IV.14(c))) has a

higher signal. Obvisously, according to simulations, the spectral and temporal patterns

are very similar: this will be discussed in the Section IV.2.

As it has been shown experimentally (see Fig. IV.9), the relative height of the

peaks, that is different in the previous figure, can be easily controlled by changing

the resonance conditions of the undulators. This is demonstrated also by simulations

carried out with the 3D code Genesis (Fig. IV.15).

We now consider the conditions of the machine in which the results of double-peak

production have been obtained (see Section IV.1.b).
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(a) experiment (b) simulations (c) simulations

Figure IV.14: Comparison of the experimental observation of the spectral splitting (a) with the spectral

splitting retrieved by simulations (b). The corresponding (simulated) temporal pattern is shown in (c).

IV.1.c.1 Case 1: realistic electron beam

A typical series of simulations carried out with the Perseo code leads to the spectral

and temporal patterns shown in Fig. IV.16. The electron beam energy profile that has

been considered is similar to the one reported in the bottom panel of Fig. III.9. The

following parameters have been taken: χ1 = 1 Mev/ps, χ2 = 7 Mev/ps2, emittance

1 mm.mrad, relative energy spread 0.01%, peak current 300 A. The radius of the seed

has been considered as constant along the modulator (standard deviation of the trans-

verse intensity distribution: 300 µm). The bandwidth and the duration of the seed have

been experimentally characterized; they grow linearly as a function of the seed energy

in the following ranges: σλ = 0.35−0.45 nm and σt = 70−90 f s. If we consider the

spectrum (left picture), the pattern is very similar to what has been obtained experi-

mentally e.g., in Figs. IV.4 and IV.3. The splitting occurs for seed energies higher than

60 µJ, corresponding to an intensity of 40 GW/cm2. At seed energies higher than

100 µJ, corresponding to an intensity of 60 GW/cm2, the central modulation appears,

both spectrally (left picture) and temporally (right picture).

The evolution of the FEL power as a function of the input seed signal (Fig. IV.17)

is similar to what has been obtained experimentally. The FEL power first grows, reach-

ing a peak before the splitting and then the overall power of the split pulses remains

constant, even if lower than the overall power before splitting. In this respect, the result

given by the simulation is slightly different with respect to what was obtained experi-

mentally in Fig. IV.8, where the FEL signal was keeping on growing.

Let us look at the characteristics of the pulse before splitting (Fig. IV.18), which

is well fitted by a gaussian: without surprise, while the signal of the FEL grows, both
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Figure IV.15: Control of the relative height of the spectral peaks by changing the tuning condition

of the undulators. Left: slight detuning towards shorter wavelengths (−0.1%); center: slight detuning

towards longer wavelengths (+0.1%); right: strong detuning towards longer wavelengths (+0.2%).

the duration and the bandwidth of the FEL emission increase, the evolution being ex-

ponential. In the temporal domain, this is explained by the fact that, when increasing

the seed power, a larger part of the electron bunch receives the sufficient energy to

get well bunched. Appropriate bunching conditions occur for a longer portion of the

seed, which means also that a larger bandwidth is amplified since the seed is chirped:

the “new" portions of the seed generating a sufficient bunching correspond to “new"

wavelengths that are amplified. Consequently, as it is shown in the left panels of Fig.

IV.18, the ratio FEL vs. seed duration and the ratio FEL vs. seed relative bandwidth

are almost equal.

At saturation, Stupakov [127] predicts that the duration of the FEL pulse is equal
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Figure IV.16: Output of Perseo simulations in the spectral (left) and time (right) domains.
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Figure IV.17: Evolution of the overall intensity of the FEL radiation, as a function of the seed energy.

to the one of the seed divided by n1/3. According to it, we should obtain here that

HFEL
t ≈ 0.55Hseed

t . This is true for a seed energy ∼ 30 µJ, but at ∼ 50 µJ, the

FEL duration almost reaches the one of the seed, since only the edges of the latter

don’t have enough intensity to induce the bunching of the electrons. However, as it

is shown in Fig. IV.19, for a seed energy of ∼ 50 µJ, the temporal profile of the FEL

pulse becomes slightly distorted, which corresponds to saturation. Hence, sufficently

far from saturation, the Stupakov law is quite reliable, as it has been already checked

in the previous chapter, where the simulations were done in the limit of clean spectral

and temporal profiles, characterizing a situation of non-overbunching.

From all this information about the bandwidth and the duration, it is possible to cal-

culate the time-bandwidth product of the FEL pulse before splitting (Fig. IV.20). Since

both the duration and bandwidth follow an exponential growth, the time-bandwidth

product has the same behaviour as a function of the energy of the seed pulse. The

time-bandwidth product of the latter increases also as a function of its energy since the
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Figure IV.18: Temporal and spectral properties of the FEL emission before the regime of pulse splitting

as a function the seed energy. Top left: FWHM duration of the FEL pulse. Bottom left: FWHM bandwidth

of the FEL pulse. Top right: ratio of the FWHM duration of the FEL pulse vs. the one of the seed pulse.

Bottome right: ratio of the relative bandwidth of the FEL pulse vs. the one of the seed pulse.
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Figure IV.19: Spectral (left) and temporal (right) profiles of the FEL emission for an energy per pulse

of the seed of 30 µJ (full line), 40 µJ (dashed line) and 50 µJ (dotted line).

spectrum is broadened at high intensities due to self-phase modulation. But this is not

the major cause of the high time-bandwidth product of the FEL emission. Indeed, this

cause is a minor one with respect to the fact that, as described before, the higher the

seed energy, the longer the FEL duration and the broader the FEL spectrum: not only

the FEL duration or the FEL bandwidth increase, but both! Moreover, as discussed

in ??, the higher the harmonic number, the higher the impact on the FEL emission.

In other words, the time-bandwidth product is expected to be even more important at

lower wavelengths.

Let us now study the double peak emission, which is correlated to seed energies

higher than 80 µJ (for a clear separation). Both temporally and spectrally, the peaks
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Figure IV.20: Time-bandwidth product of the FEL pulse before splitting (full line) and of the seed pulse

(dashed line), as a function of the seed energy per pulse.

are well fitted by gaussians. Hence, the data analysis is made by taking advantage of

these gaussian interpolations of the peaks. This makes things easier, since one can

define the FWHM bandwidth/duration, the central wavelength of a peak, the temporal

separation of the peaks, etc. Figure IV.21 shows the temporal separation of the two

peaks as a function of the seed energy. The full line corresponds to the direct results

of the simulations, while the dashed one to the estimation that can be made by means

of Eq. IV.3 from the knowledge of the spectral separation between the peaks (i.e., the

simulation results in the spectral domain). The agreement is good but not perfect. As

it will be discussed later, this can be partly attributed to the presence of the electrons’

chirp.
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Figure IV.21: Evolution, as a function of the energy delivered by the seed, of the temporal distance

between the split pulses, retrieved in the simulations (full line) and estimated by Eq. IV.3 (dashed line).
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In Fig. IV.22, the spectral separation given by the simulations is associated to the

temporal distance between the sub-pulses. This curve of ∆λ vs. ∆t is a precious piece

of information if someone wishes, for instance, to perform pump-probe experiments

with the two split pulses and thus to know the time that separates them.
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Figure IV.22: Correlation between the peak distance in the spectral and temporal domains, being

function of the seed energy (see Fig. IV.21).

Fig. IV.23 shows the ratio between ∆t and the FWHM duration of the seed as a

function of the seed energy. This provides information on the positions at which occurs

the lasing of each peak. For a seed energy of 100 µJ, the lasing thus corresponds

to positions where the electron bunch experiences half of the maximum seed peak

power. At these positions, the bunching is optimum. The similar curve (right panel) is

drawn for the ratio between the peaks separation and the seed relative bandwidth, and

the evolution mimics the previous curve, which is normal since the chirp of the seed is

linear.

Now, if we look at the time-bandwidth product of the single peaks (Fig. IV.24), we

see a very interesting thing: the time-bandwidth product decreases as a function of

the strength of the splitting. For high seed energies, both peaks come very close to

the Fourier limit, characterized by a time-bandwidth product of 0.441. In other words,

starting from a relatively “poor" spectro-temporal quality of the FEL pulse in the “normal

regime" (before splitting, see Fig. IV.20), one produces two sub-pulses that are almost

Fourier-transform limited. This is due to the spectral and temporal narrowness of the

split pulses, which thus barely see the phase curvature.

Finally, let us look at how the phase “propagates" along the FEL process. First, the

FEL phase can be very well fitted by a parabola (ignoring values at low FEL signal,

where the phase is meaningless) i.e., no high-order phase distortions appear in the
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Figure IV.23: Left panel: evolution, as a function of the seed energy, of the ratio of the temporal dis-

tance between the sub-pulses vs. the FWHM duration of the seed. Right panel: evolution, as a function

of the seed energy, of the ratio of the peaks spectral separation (relatively to the central wavelength of

FEL emission) vs. the relative FWHM bandwidth of the seed.
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Figure IV.24: Time-bandwidth product of each of the two sub-pulses as a function of the energy

delivered by the seed. The “blue peak" (dashed line) refers to the one at shorter wavelengths whereas

the “red peak" refers to the one at longer wavelengths.

FEL phase. The map of the temporal phase as a function of the seed energy is shown

in the left panel of Fig. IV.25. In the right panel of the same Figure, we represented a

phase that has a curvature equal to the harmonic order (n = 6) times the Γi parameter

of the seed (Γi depends on the seed energy). The agreement between the left and

the right pictures is quite good, especially for values of the seed energy corresponding

to an unsplit FEL pulse (below ∼ 60 µJ). Therefore, nΓi is a good approximation of

the curvature of the temporal phase for relatively low values of the curvature of the

electrons energy profile. We usually found an error smaller to 10 % between the true
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Figure IV.25: Left panel: map of the temporal phase, represented in false colors, as a function of the

energy of the seed. Right panel: map of the quantity nΓit
2 (n = 6), represented in false colors, as a

function of the energy of the seed.

curvature of FEL phase and nΓi. Is this agreement improved when the electron bunch

does not present an initial chirp? Let us see the next case.

IV.1.c.2 Case 2: flat electrons’ energy profile

We saw in the previous chapter that the total phase of the FEL emission can be

decomposed according to different contributions of the seed and of the electron beam.

Hence, it is interesting to repeat the numerical study for a non-chirped electron beam.

In this case, the chirp of the FEL emission depends only on the one of the seed and

on the intrinsic chirp.

Here I will not show all the curves of the study as in the previous case, since it

would be quite heavy. Indeed, as shown in Fig. IV.26, the splitting patterns are very

similar to what is obtained in the case of a real electron beam (see Fig. IV.16): the

double-peak formation is not affected by a slight inhomogeneity of the electron beam.

Let us focus only on the most interesting parameters. The first of them is the time-

bandwidth product of the FEL emission before splitting. Figure IV.27 shows that, as

expected, it grows as a function of the seed energy, but is lower than that a realistic

electron beam (see Fig. IV.20), since in the latter case the chirp of the electrons bring

an additional curvature to the FEL phase.

Now, we consider the double-peak regime. The function ∆λ6 vs. ∆t (Fig. IV.28) is

slightly different from the one obtained in the realistic case (Fig. IV.22). Indeed, in the
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Figure IV.26: Output of Perseo simulations in the spectral (left) and time (right) domain for a flat

electrons’ energy profile.
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Figure IV.27: Time-bandwidth product of the FEL pulse before splitting (full line) and of the seed pulse

(dashed line) as a function of the seed energy per pulse for a flat electrons’ energy profile.

latter case, the electrons quadratic chirp broadens the bandwidth so that the separation

between the two peaks gets higher for a given temporal splitting (as will be discussed

in Section IV.1.c.3). Controlling the chirp of the electrons offers the possibility to obtain,

for instance, different longitudinal distances between the sub-pulses for a given spectral

separation. This is a precious thing for potential pump-probe applications.

Figure IV.29 shows that the theoretical estimation of ∆t is, in the case of an ideal

electron beam, very close to the one measured in the simulations. As a matter of

fact, in this case the relevance of Eq. IV.3 is not affected by the initial chirp of the

electrons. The agreement is good especially at the beginning of the splitting i.e., before

the central modulation appears. As in Fig. IV.21, there is still a discrepancy (even if less

important) and the latter grows as the seed energy gets higher. A possible explanation

is the following. The theoretical expression of ∆t given in Eq. IV.2 relies on the fact
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Figure IV.28: Correlation between the separation of the two peaks in the spectral domain and of the

temporal distance of the two associated sub-pulses for a flat electrons’ energy profile.

that the seed phase is directly transmitted to the FEL phase and the other sources of

chirp in the FEL emission are neglected. However, while increasing the seed energy,

there is a modification of the evolution of the modulation (in energy then spatial) of

the electrons. The dispersion properties (see Eq. III.22) of the latter, that are the

amplification medium, can thus be changed. In other words, for sufficiently high seed

energies, the intrinsic chirp may be significantly modified and become non-negligible:

this has a direct consequence on the relevance of the calculation of ∆t.
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Figure IV.29: Evolution, as a function of the energy delivered by the seed, of the temporal distance

between the split pulses retrieved in the simulations for a flat electrons’ energy profile (full line) and

estimated by Eq. IV.3 (dashed line).

The time-bandwidth product of the separate peaks is decreasing towards very low

values. Figure IV.30 shows that it even goes under the Fourier-transform limit for high-
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est seed energies...
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Figure IV.30: Time-bandwidth product of each of the two sub-pulses as a function of the energy

delivered by the seed, for a flat electrons’ energy profile. The “blue peak" (dashed line) refers to the one

at shorter wavelengths whereas the “red peak" refers to the one at longer wavelengths.

In fact, at this point the assumption of two separate peaks is not true any more.

For high seed energies, the central modulation of the FEL emission becomes non-

negligible and wide, so that the electric field of the sub-pulses cannot be dissociated

any more. This is shown in Fig. IV.31: for a clean double peak (left panel, seed

energy of 90 µJ), the peaks are clearly dissociated in time, whereas the central modu-

lation becomes non-negligible for a higher saturation level (right panel, seed energy of

130 µJ). This is the limit of the model which considers two independent peak/pulses.

In any case, before this limit, the sub-pulses reach a very high level of temporal co-

herence: their time-bandwidth product is around 0.5 i.e., only 1.1−1.15 times far from

the Fourier-transform limit (this value is slightly higher for the case of the realistic elec-

tron beam due to the higher curvature of the FEL phase induced by the non-zero χ2

coefficient).

Finally, let us look at the behaviour of the temporal phase. As it has been said,

since the electrons do not have any initial chirp, the FEL is not affected by this pa-

rameter. That is why, as shown in Fig. IV.32, the phase curvature can be very well

fitted by nΓi. For a seed energy above 100 µJ, the agreement is worsened, as in the

case of the realistic electron beam (see Fig. IV.25). This situation corresponds to the

presence of the central modulation in the spectral and temporal domains of the FEL

emission. Below 10 µJ of seed energy, there is no FEL signal, hence the comparison

is meaningless. We can thus say that, in the regimes of the FEL ranging from a slight

amplification to a clean double-peak formation, the temporal FEL phase is equal to
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Figure IV.31: Temporal profile of the FEL emission given by simulations with a flat electrons’ energy

profile, for an energy per pulse of the seed of 90 µJ and of 130 µJ.

nΓit
2.

Figure IV.32: Left panel: map of the temporal phase, represented in false colors, as a function of the

energy of the seed for a flat electrons energy profile. Right panel: map of the quantity nΓit
2 (n = 6),

represented in false colors, as a function of the energy of the seed.

IV.1.c.3 Note on the effect of electrons’ quadratic energy chirp

Up to now, we only considered situations where the quadratic energy chirp of the

electrons is small or absent, which corresponds to experimental situations at FERMI@Elettra.

Let us see quickly what happens if this not the case. I carried out simulations with same

parameters as before, without linear energy chirp and varying the quadratic one. In Fig.

IV.33, we see that the value of χ2 has almost no effect on the temporal shape of the
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FEL emission but that the overall bandwidth depends on it – without affecting the dou-

ble peak formation – leading to a variation of the peaks separation. As a matter of fact,

the quadratic energy chirp of the electrons acts on the spectrum in a similar way as the

linear chirp of the seed, so that the electrons energy profile may add to or compensate

the quadratic phase of the seed: if the effects of the electrons energy chirp and seed

frequency chirp on the FEL phase can be of the same order of magnitude, this is a

very important point. However, the peculiarity of the electrons chirp is that it does not

affect the temporal distance between the sub-pulses (the temporal shape of the FEL

pulse being mainly dictated by the seed pulse), which would make a good option for

varying the peaks spectral separation without affecting the temporal shape of the split

pulses. On the other hand, spectral broadening and temporal lengthening are always

associated in the FEL emission.
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Figure IV.33: Comparison of the outputs of simulations carried out with the numerical code Perseo

for different values of the quadratic chirp of the electrons (left: spectrum; right: temporal intensity), for

the following parameters: seed bandiwdth σλ = 0.47 nm, duration σt = 93 f s, energy 70 µJ (with a

standard deviation of the transverse intensity distribution of 500 µm) and central wavelength 261.1 nm;

R56 = 20 µm; undulators tuned at the 6th harmonic of the seed (43.5 nm); electrons peak current 300 A,

emittance 1 mm.mrad, relative energy spread 0.01% and linear chirp component χ1 = 0 Mev/ps2. Full

line: χ2 =−10 Mev/ps2; dashed line: χ2 = 10 Mev/ps2; dotted line: χ2 = 50 Mev/ps2 .

IV.2 Temporal shape determination

The work presented in this section is inspired by the need of retrieving experimen-

tally the temporal shape of the FEL emission. At femtosecond time scales, and more-

over in the sub-UV spectral region, obtaining the temporal information of light sources

is a challenging task.

In the double peak production that has just been discussed, two close frequencies

shifted in time are created: this is exactly what is needed for performing one of the most

famous temporal diagnostics of femtosecond pulses, that is the SPIDER [101]. In the
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latter, the spectral phase is retrieved through the interference pattern of the two pulses,

if the delay and the spectral separation between them are known. From the spectral

phase and the spectrum, the temporal shape can be retrieved by a simple Fourier

transform. We remind that an EUV SPIDER has already been successfully tested at

CEA Saclay on a HHG source [129]. In our case, there are two issues: the two pulses

that are involved must be identical and the wavelength shift between them must be very

close (∆λ ≪ Hλ ). Even if the first problem can probably be handled experimentally,

the second one would be more difficult to solve. Indeed, intrinsically, the two peaks

have a “large" spectral difference due to fact that they stem from a strong chirp of the

seed. Ideally, the two single spectra should be almost completely superimposed so

that a frequency modulation could occur inside this envelope: without this interference

pattern on which the SPIDER relies, the spectral phase, and thus the temporal shape,

cannot be retrieved. A solution would be to decrease the chirp of the FEL emission

by acting on the chirp of the seed and/or the one of the electrons so as to bring closer

the two peaks spectrally. However, the spectrum of each single peak could not be

measured individually: therefore, how to know experimentally that the two peaks are

identical, with similar width and height? Moreover, the number of periods of the beating

depends on the spectral width and on the temporal distance between the sub-pulses.

Experimentally, we tried to compensate the chirp of the seed by means of the compres-

sor stage, but no beating has been observed in the spectrum: we could only assume

that the pulse splitting was there, since the seed energy was strong enough to be in a

regime of deep saturation and that the spectrum was distorted. But a finer control on

the phase of each sub-pulse would be required, while here the phases of the two sub-

pulses are strongly linked since they emanate from the same sources, that are seed

and electrons chirps. For all these reasons, performing a SPIDER characterization of

the FEL emission in the regime of double peak generation seems very difficult... but

not impossible, and would merit to be studied theoretically and/or numerically.

SPIDER has already been performed on an FEL, for instance in [130] on a FEL

operating at a wavelength of 266 nm. But, to our knowledge, nothing has been done in

the EUV spectral range, as a direct on-line and non-invasive diagnostic. A possibility is

to seed the FEL with two successive pulses slightly shifted in wavelength, as discussed

in [131]. If the electron bunch is homogeneous, it theoretically allows producing two

EUV replicas, at wavelengths λn and λn + δλn, with a time separation that is easily

controllable through a delay line on the seed stage. The double seeding has been

successfully tested on FERMI@Elettra, as we discuss in [132]. The two seed pulses

were produced by two separate lines of generation of the 260−nm wavelength at the
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seed laser stage. An appropriate tilting of the nonlinear crystals in which occurs the

third harmonic generation of the Ti:Sapphire source (whose spectrum is centered at

780 nm) leads to a change of the phase-matching condition, thus enabling to slightly

shift the central wavelength of the third harmonic of the Ti:Sapphire laser source. The

aim of the experiment was to create two FEL frequencies that were significantly sep-

arated, hence it was not possible to study what happens when the two spectra are

superimposed – but this should be done in the future. This experiment is a good pos-

sibility to perform EUV SPIDER on an FEL, even if this diagnostic would be invasive,

but would also allow studying the far-field interference, and thus the preservation of

temporal coherence along the bunch, of the two successive pulses.

In the previous study of double peak emission, we have remarked that the temporal

and spectral patterns are very similar. This is not so surprising, since each sub-pulse

corresponds to a spectral peak and therefore that the integrated signal of a given sub-

pulse corresponds to the integrated signal of single peak in the frequency domain. But

how far are these shapes similar, and why? The answer to this question has been

found thanks to the contribution of David Gauthier, who joined the team at Sincrotrone

Trieste from CEA Saclay at the end of my thesis. His work allowed developing the study

that is presented hereafter.

IV.2.a Spectro-temporal equivalence

According to what has been seen up to know, the CHG FEL emission at FERMI@Elettra

can be written as:

E(t) = a(t)einΓit
2

, (IV.4)

where a(t) is the envelope representing the temporal shape (gaussian, slightly dis-

torted, split in two sub-pulses, etc.) of the FEL emission. The nΓi parameter of the

quadratic phase term which is inherited from the chirp of the seed, the contribution

of the electrons and the intrinsic FEL chirp being neglected. For simplicity, we do not

take into account the fast oscillations at the central frequency of emission. The pulse

spectrum is given by:

I(ω) = |FTω [a(t)e
inΓit

2)|2, (IV.5)

where FTω [ f (t)] =
∫+∞
−∞ f (t)e−iωt dt is the direct Fourier transform of the function

f (t), from the temporal variable t to the frequency variable ω . One can make use

of the same hypotheses employed by Fraunhofer for describing the far-field diffraction

in paraxial approximation. Using the formalism of Fourier [76], we can write the previ-
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ous relation as a convolution product:

I(ω) = |ã(ω)∗ e
−i ω2

4nΓi |2, (IV.6)

where ã represents the Fourier transform of the envelope i.e., FTω [a(t)] and e
−i ω2

4nΓi

is the Fourier transform of the quadratic phase term einΓit
2
. An analogy can be drawn

between the spectrum and the one-dimensional diffraction pattern originated from a

“transversal field distribution”, corresponding here to ãFEL(ω). In the previous relation,

the convolution with the exponential term plays a role similar to the longitudinal space

propagation of a diffracted wave. In paraxial approximation, the propagation generates

a linear dispersion of the spatial frequencies. In our case, this corresponds to the linear

frequency dispersion in the pulse, caused by the quadratic phase term nΓit
2 inherited

from the seed. After the development of the convolution product, the spectrum can be

written as an inverse Fourier transform FT−1 in the variable ω
2nΓi

:

I(ω) = |FT−1
ω

2nΓi

[ã(ω ′)e−i ω ′2
4nΓi ]|2, (IV.7)

Let us focus on the exponential term e
−i ω ′2

4nΓi . In far field diffraction, the Fraunhofer

approximation assumes that this phase term varies slowly in the Fourier integration

domain where the square integral function ã(ω) is different from zero. This condition

is equivalent to:

ST D[ã(ω)]2

4nΓi
∼ σ 2

ω

4nΓi
= N ≪ 1. (IV.8)

where ST D[ã(ω)] represents the standard deviation of the electric field envelope in

the frequency domain. It is worth noting that the parameter N is analogous to the

“Fresnel number” in diffraction. When the condition IV.8 is fulfilled, one can reasonably

approximate the exponential term with unity. As a result, Fraunhofer diffraction pattern

provides a direct representation of the Fourier transform of the initial field distribution.

In our case, since ã(ω) is the Fourier transform of the complex envelope a(t), we finally

get:

I(ω) = |a( ω

2nΓi
)|2. (IV.9)

We thus obtain the following noticeable result: under the condition IV.8, the spectrum of

the linearly chirped FEL pulse provides a direct representation of its temporal shape,

through the variable transformation t = ω
2nΓi

. It is also very important to stress that

this result is applicable to any linearly chirped optical pulse verifying condition IV.8

(replacing nΓi by the quadratic phase coefficient – e.g., Γi for the seed laser).
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A schematic representation of the proposed “far-field” approach is given in Fig.

IV.34. In the case of a non-chirped pulse (or with an arbitrary, non-quadratic, phase)

the electric field envelope in the frequency domain is different from the one in the

temporal domain. In the case of a linearly-chirped pulse, the electric field envelope

in the frequency domain, ã(ω), is the same as the one in the time domain (with the

homotethic relation t = ω
2nΓi

).

Figure IV.34: Principle of the spectrum-time equivalence. Top panel: case of a non-chirped pulse (or

not linearly chirped) with the temporal electric field envelope (left) and the spectral one (right). Bottom

panel: case of a linearly chirped pulse (quadratic phase in dashed line) with the temporal electric field

envelope (left) and spectral one (right), equivalent to the temporal one with the homothetic relation

t = ω
2nΓi

.

IV.2.b Comparison with simulations

It it important to note that the result obtained hereabove is a very general one, even

if here we will restrict to its application to the CHG FEL emission at FERMI@Elettra.

In Section IV.1, we have shown that the inhomogeneity of the electron beam energy

profile is sufficiently low, and for a linearly-chirped seed of temporal phase Γit
2, the

CHG emission is also linearly chirped and its temporal phase is well approximated by

nΓit
2, n being the harmonic order at which the radiators are tuned. We will thus here

consider Eq. IV.4 with nΓi = nΓi. Moreover, according to Stupakov’s law [127], the
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duration of a slightly saturated FEL emission is equal to the one of the seed times n
1
3 .

We checked the validity of this result for n = 6. Hence, the spectral width of the FEL

emission is σ FEL
ω ∼ 1

n
−1
3 σ seed

t

. We can thus rewrite Eq. IV.8 only in terms of the seed

laser properties and the harmonic order:

(σ FEL
ω )2

4nΓi
∼ 1

4n
1
3 (σ seed

t )2Γi

= N ≪ 1. (IV.10)

This relation offers a mean to determine the seed parameters to be used in order to

ensure the validity of the proposed approach. In Eq. IV.10, the presence of n
1
3 is very

important: it tells us that the condition of spectrum-time equivalence is more easily

accessible for higher values of n. Indeed, as discussed in [128], the phase is more

affected by the “incident" chirp of the seed at higher harmonic orders, thus condition

IV.8 is facilitated at lower wavelengths.

In order to check our results, PERSEO simulations have been carried out at the

harmonic order n = 8, with σ seed
t = 86.4 f s (i.e., an FWHM duration if about 200 f s)

and Γi = 5.1 · 10−5 f s−2 (obtained for an FWHM bandwidth of 0.9 nm). This gives,

according to Eq. IV.10, N = 0.16. We can thus say that, in these conditions, we fulfill

the condition of “far-field" approximation. As it can be seen in the top left panel of Fig.

IV.35, corresponding to a normal regime of operation of the FEL (single pulse, slight

saturation), our prediction is fully confirmed: the spectral (continuous) and temporal

(dashed) profiles are very similar. In this figure, we represented the phase decom-

posed in the part nΓit
2 inherited from the seed (dotted curve) and the remaining phase

distortions (dash-dot line): the former dominates the latter. While a flat electron energy

profile has been taken here, a curvature of 5 MeV/ps2 (which is an experimentally rea-

sonable value at FERMI@Elettra) has been considered for the result shown in the top

right panel: the agreement remains excellent. As it has already been mentioned, for

such small inhomogeneity of the electrons energy profile, the effect on the FEL phase

is negligible. In the bottom-left panel of the same figure, we considered the regime of

pulse splitting. Remarkably, the method we propose is able to reproduce the simulated

profile also in this case. Indeed, as shown e.g., in Fig. IV.32, the FEL phase can still be

approximated by nΓit
2 in this situation. Finally, the bottom-right panel shows the effect

of the phase (and envelope) distortion induced by running the FEL in over-saturation

(single but distorteb pulse). In this case, the quadratic phase term (dotted line) does

not sufficiently dominate the other phase terms (dash-dot curve): this the reason why

the theoretical approach partially fails in reproducing the simulated temporal profile.
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Figure IV.35: Comparison between the temporal (continuous line) and spectral (dashed line) profiles

obtained using the numerical code PERSEO: (top left) single pulse, slightly saturated regime with ideal

electron beam; (top right) single pulse, slightly saturated regime with quadratic electron-beam energy

profile (energy curvature: 5 MeV/ps2); (bottom left) double-pulse regime; (bottom right) single pulse,

over-saturated regime. In each panel, the temporal scale (bottom axis) is obtained from the spectral one

(top axis), using the homothetic transformation given in Eq. IV.9. The phase is separated into the dotted

curves representing the quadratic part nΓit
2 (with n = 8) and the dot-dashed curves correspond to the

other phase terms.

IV.2.c Predictions for experimental results

Finally, we tested our approach by comparing theoretical results with measure-

ments performed at FERMI@Elettra. The left panels of Fig. IV.36 display the temporal

shape retrieved from the measured FEL spectrum, using Eq. IV.9 (with nΓi = nΓi). For

the considered case, the FEL was operated at 32.5 nm (n = 8); the seed pulse had a

measured FWHM duration of 200 f s and a phase curvature Γi = 5.1 ·10−5 f s−2 (i.e.,

the same seed as we considered in the simulations hereabove, giving N = 0.16). The

measured value of the electron-beam energy curvature was 5 MeV/ps2. In the top

left panel, we retrieve a pulse with quasi-Gaussian shape of 102 f s duration (FWHM)

and in the bottom-left one we have the retrieval of the temporal profile in the case of a

double-peak spectrum. In order to corroborate our prediction, we do the reconstruction

of the spectrum from this temporal retrieval by means of the following relation:

Irec(ω) = |T Fω [
√

I(2nΓit)expinΓit
2

]|, (IV.11)
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where I(2nΓit) is the measured spectrum evaluated at the homothetic coordinate

ω = 2nΓit, and we compare it with the initial measured spectrum. The reconstruc-

tions are shown in the right panels of Fig. IV.36: the agreement is very satisfactory.

The reconstructed spectrum provides a quantitative information about the validity of

the proposed “far-field” approach, also in the situations in which a significant phase

distortion and possible perturbations generated by any other noise source are present

Figure IV.36: Top left panel: retrieved temporal shape (solid curve) from spectral measurement on

FERMI@Elettra in the single-pulse regime. Bottom left panel: retrieved temporal shape (solid curve)

from spectral measurement on FERMI@Elettra in the double-pulse regime. In both panels, the temporal

scale (bottom axis) is obtained from the spectral one (top axis), using the homothetic transformation

given in Eq. IV.9 and the dotted lines represent the quadratic phase term nΓit
2. Right panels show the

comparison between the measured spectra (solid line) and the reconstructed spectra (dotted line) from

the left panels, calculated using Eq. IV.11.

IV.3 Summary

In this chapter, I presented a way to generate two close but distinct spectral peaks,

to which are associated two femtosecond pulses separated by a few hundred of fem-

toseconds. The technique relies on the effect of the chirp carried by the seed laser on

an FEL operating in deep saturation, which leads to the pulse splitting of the main FEL

pulse into two sub-pulses. We realized the experiment on the FERMI@Elettra facility,

generating, in the extreme-ultraviolet spectral region, two colours whose relative sep-
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aration is ∆λ
λ ≈ 0.01%. The spectral separation between the peaks can be managed

by different parameters, that are the intensity of the seed, the strength of the disper-

sive section (as we demonstrated in [133]), the chirp of the seed and the chirp of the

electrons.

An interesting point of this effect is that, starting from a single FEL pulse that is

intrinsically relatively far from the Fourier-transform limit due to phase distortions of

the seed and, in a smaller extent, of the electron bunch, especially at low harmonic

orders, one may end up with two pulses very close to this limit i.e., exhibiting a spectro-

temporal quality potentially appreciable for users’ applications.

I provided a reliable estimation of the temporal distance between the two sub-

pulses as a function of the chirp parameter of the seed Γi and the spectral separation

between the peaks. From this we can draw the function in Fig. IV.37, which is a pre-

cious piece of information for the application to pump-probe experiments. It shows the

different working points that would be accessible by varying Γi at fixed seed intensity

and strength of the dispersive section.
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Figure IV.37: Estimation of the temporal distance between the two sub-pulses as a function of their

measured spectral separation for a CHG emission at the 6th harmonic of the seed for different values of

Γi.

Finally, I presented a study whose conclusion is that the temporal shape of any

optical pulse with dominant linear chirp is identical to its spectrum, under the condition

of Eq. IV.8. In our case, this noticeable result provides a direct non-invasive diagnostic

for the temporal reconstruction of seeded FEL, even in the regime of double pulse.
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In the previous chapter, a solution for the generation of two-colour femtosecond

pulses with controllable features has been presented. In some extent, one of its assets

is the tunability of the wavelength (i.e., by the fact that there is a splitting that creates

two new colours but also because these two wavelengths can be tuned, eventually in-

dependently). However, the two wavelengths remain very close from one another. In

[134], we demonstrated the easy tunability of the FERMI@Elettra source: both coarse

tunability, by changing the harmonic order on which the FEL is tuned, and fine tun-

ability, by slight modification of the undulators’ resonance for instance. Moreover, the

presence of an optical parametric amplifier [135] as a seed laser, which can be used in-

stead of the fixed-wavelength seed, is a huge advantadge. Hence, on FERMI@Elettra

a full tunability over the whole EUV range is reached, which is very important for users’

experiments. On HHG sources, the tunability is less evident but there are possibilities.

A straightforward solution, that we study here, is to generate to rely on a widely tunable

drive source.
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Figure V.1: Layout of the experiment.

V.1 Principle

The generation of fully tunable high-order harmonics has been demonstrated in

[136] for harmonics around 150 nm. In this section, we extend this study to the whole

ultraviolet spectral range, reported in our work published in [137]. The novelty of the

results we obtained stems from the unique qualities of the source that we used to drive

HHG. This driving source is characterized by a large wavelength tunability from 1100

to 1900 nm, a mJ-level pulse energy and short pulse duration of the order of 20 fs. In

these conditions the generation of few-femtosecond harmonic radiation is ensured.

V.2 Experimental setup

The layout of the experiment is shown in Fig. V.1. The parametric source (Fig.

V.2 [138]) is based on a Ti:Sapphire laser facility providing intense short pulses (tens

of mJ energy; 60 f s duration), centered at a wavelength of 790 nm, with a repetition

rate of 10 Hz. A fraction of the beam is sent to a filament filled with krypton where

self-phase modulation (see Section III.1.b) occurs, so as the spectrum is broadened.

A set of chirped mirrors then allows compressing the pulse down to few femtosecond

durations [85]. The output beam stems from difference frequency generation (DFG)

[90] of spectrally broadened pulses. The generated pulses are amplified in a two-stage

optical parametric amplifier (OPA1 and OPA2), each stage being pumped by a fraction

of the Ti:Sapphire laser source spatially filtered by a modal filtering setup similar to the

one described in Section II.2, leading to the production of ≈ 20− f s pulses with an

energy up to 1.2 mJ, tunable from 1100 to 1900 nm. Tunability is achieved by rotating

the crystals in the OPAs, thereby changing the phase-matching conditions.

The generation of the high-order harmonics of the near-IR driving pulses is achieved

by focusing the laser beam with a lens of 15 cm focal length on a jet of krypton gas

(see Fig. V.1), which ensures a better harmonic conversion efficiency than lighter gases

such as argon, at the price of a lower cutoff frequency. The gas is injected into the inter-

action chamber by an electromagnetic valve, mounted on a x−y− z translation stage,
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Figure V.2: Driving laser source used for out HHG experiment: Ti:Sa, CPA Ti:sapphire laser; DFG,

200− µm-thick BBO crystal; POL, thin-film polarizer; BS, beam splitter. (taken from [138])

operating at the same repetition rate as the laser. The jet has a diameter at nozzle of

about 0.8 mm. An iris placed on the path of the driving beam adjusts the intensity at the

focus, estimated to be at most 2 ·1014 W/cm2. By changing the gas backing pressure

(typically 2− 5 bars), the gas pressure in the interaction region has been estimated

to vary between 20 and 50 mbars. Such values, as well as the synchronization with

the laser pulse, have been chosen to maximize the harmonic yield. The valve is placed

downstream the laser beam waist until the position of maximum photon flux is reached.

After the generation point, the harmonics co-propagate with the residual driving laser

through the instrument in use for the spectral analysis. The spectrum of the harmonic

beam is acquired by two different detection systems: a scanning monochromator in

the DUV and a spectrometer in the EUV, with suitable detectors. Detection systems in

both DUV and EUV regions have been calibrated so as to allow measurement of the

harmonic absolute photon flux.

To cover the deep-ultraviolet (DUV) and EUV spectral regions two different spec-

trometers have been used. Harmonic emission in the DUV was analyzed through

a normal-incidence Czerny-Turner scanning monochromator (McPherson model 218)

equipped with a 2400−gr/mm AlMgF2-coated grating. The monochromator selects

a single harmonic or a spectral portion thereof. The photon flux at the exit slit of the

monochromator is detected by a photomultiplier tube (Hamamatsu model R1414) with

a tetraphenyl butadiene (TPB) phosphor photocathode to enhance the detection ef-

ficiency. Owing to the limited spectral range accessible to the grating, that has sig-

nificant transmission for wavelengths above ≈ 130 nm, only the harmonics ranging

from the third to the eleventh order of the fundamental wavelength could be detected.
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The harmonic spectra at high resolution were obtained by scanning the grating, with a

300−µm slit aperture, giving a bandwidth of 0.4 nm.

The global response of the instrument (i.e., monochromator plus detector) has

been absolutely calibrated using the facilities available at CNR-IFN and described in

details in [139], in order to measure the DUV photon flux generated in the interaction

region at the different harmonics. This was performed by tuning the monochromator to

one of the harmonics and opening completely its slits. In such a way, the beam enters

the monochromator without being clipped at the entrance slit and is diffracted by the

grating. The harmonic of interest then exits the monochromator without being clipped

at the output slit, and is detected by the photomultiplier. We verified that even with the

slits completely open the different harmonics were clearly separated at the output.

The signal in the EUV was analyzed through a grazing-incidence flat-field spec-

trometer equipped with a 1200-gr/mm gold-coated grating and tuned in the 80−35 nm

spectral region. The spectrum is acquired by a 40−mm-diameter microchannel plate

intensifier with MgF2 photocathode and phosphor screen optically coupled with a low-

noise CCD camera. Also in this case, the global response of the instrument (i.e., grat-

ing and detector) has been absolutely calibrated, as described in detail in [140, 141].

Since the spectrometer works without an entrance slit, having the harmonics genera-

tion point as its input source, all the generated EUV photons enter the instrument and

are diffracted onto the detector.

V.3 Results and discussions

V.3.a Deep-ultraviolet region

Figure V.3 shows the spectral characterization from four sets of measurements,

corresponding to four different wavelengths of the driving pulse: 1350, 1550, 1750,

and 1900 nm. One can see that, in our experimental conditions, the longer is the

wavelength of the driving beam, the narrower is the bandwidth of the fundamental

pulse and the one of its harmonics. It is important to stress that the stability of the

beam provided by the parametric source ensures a very good reproducibility of the

measurements.

Below 150 nm, the efficiency of the DUV monochromator is dramatically low. Thereby,

the analysis of harmonic spectra has been done only down to 150 nm. Since the third

harmonics of the considered driving IR wavelengths are generally located in the visi-

ble, i.e., out of the monochromator range, harmonic orders from fifth to ninth have been
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Figure V.3: IR spectra (left side) and corresponding harmonic spectra (right side) in the 400–150 nm

spectral region. H5, H7 and H9 stand respectively for the fifth, seventh and ninth harmonics of the driving

IR beam.
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Figure V.4: Overlap of the harmonic spectra for four drive IR wavelengths (1350, 1550, 1750 and

1900 nm). The harmonic spectrum resulting from the drive wavelength of 1900 nm has been vertically

magnified (×5).

analyzed. As expected at these relatively low orders, the signal quickly decreases with

increasing harmonic order. Indeed, the intensity of harmonics before the plateau region

is related to the probability of multiphoton ionization of the gas atoms [142]. Like the

driving beam, harmonics have a large bandwidth (a few tens of nanometers), intrinsic

to an ultrashort pulse source.

The overlap of the harmonic spectra shows a full tunability of the source in the

DUV spectral region (Fig. V.4). The range between 400 and 350 nm corresponds to

either the fifth harmonic of a 1750–2000 nm fundamental beam or the third harmonic

of a 1050–1200 nm fundamental beam. These wavelengths are the boundaries of the

accessible spectral range of the used parametric source, so that in these regions the

IR spectrum is less stable and moreover the beam energy is lower than in the 1350–

1550 nm “peak region”. Hence harmonics in the 400–350 nm region are also less

intense. The third harmonic of a 1050–1200 nm fundamental beam can be generated

with better conversion efficiency in the frame of classical nonlinear optics in crystals

[143].

Figure V.5 clearly shows that when the driving wavelength ranges from 1350 to

1900 nm, as in these measurements, harmonic orders from fifth to eleventh completely

cover the DUV spectral region. Furthermore, the third harmonic, not shown in Fig. V.5,

also allows tunability in the visible region. Obviously this overlap and thereby the tun-

ability in the ultraviolet range improve at shorter wavelengths, where narrower IR tun-

ability is thus sufficient.

The photon flux of the harmonics has been measured by fully opening the slits of

the monochromator in order to get all the signal on the photomultiplier. The results

are summarized in Table V.1. Around 107 photons per shot are generated in the DUV
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Figure V.5: Tunability in the DUV. The lines represent the wavelength ranges that are covered by har-

monic orders from fifth to evelenth, generated by drive wavelengths ranging from 1350 nm to 1900 nm.

Table V.1: Absolute number of photons provided in the DUV spectral range for four different drive

wavelengths. Left column: central wavelength of the drive beam; center column: wavelengths corre-

sponding to the peak signal of the indicated harmonics; right column: measured photons/shot for each

harmonic.

drive IR harmonic photons/shot

[nm] [nm (order)]

1160 414 (3rd) 2.0×108

248 (5th) 6.1×107

177 (7th) 3.6×107

1350 270 (5th) 4.2×107

196 (7th) 1.8×107

153 (9th) 1.3×107

1450 285 (5th) 6.1×107

204 (7th) 1.6×107

161 (9th) 8.2×106

1800 367 (5th) 1.3×107

262 (7th) 7.0×106

206 (9th) 3.4×106
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spectral region, corresponding to a beam energy of the order of 10 pJ. One sees that

the higher the driving wavelength, the smaller the harmonic photon flux. Regarding

the ninth harmonic of the driving laser for 1350, 1450 and 1800 nm drive wavelengths

(λIR), the wavelength scaling of the harmonic conversion efficiency is estimated to be

about λ−6
IR . Even if the exact scaling at constant peak intensity cannot be provided here

(as it would require a dedicated experiment), we underline that such an estimate is in

agreement with recent theoretical studies which show that the harmonic efficiency in

the plateau region scales as λ−6
IR , not as λ−3

IR as previously believed [144]. Moreover,

in [145], the conversion efficiency of further plateau harmonics (from 78 to 39 nm) has

recently been measured to be proportional to λ−6±1.1
IR in krypton. Although increasing

the driving wavelength allows to extend the harmonic plateau [146], there is a penalty

in terms of harmonic efficiency. As already explained in Chapter I, the lowering of

harmonic efficiency at longer driving wavelength can be well understood in the frame

of the semi-classical model since it corresponds to a longer time spent by the electrons

into the continuum before recombination and thus, a higher probability to be lost and

not to be involved in the harmonic emission.

V.3.b Extreme-ultraviolet region

The same procedure has been followed for the measurements performed in the

EUV region, using the detection system described before. Harmonic spectra are re-

ported in Fig. V.6 for three different driving wavelengths (1350, 1450, 1550 nm) and

their overlap in the 45–35 nm spectral range is shown in Fig. V.7. Figure V.8 shows

that by varying the driving wavelength from 1350 nm to 1550 nm one attains the full tun-

ability in the EUV, through relatively high-order harmonics. An interesting point is that

one specific ultraviolet wavelength can be obtained from multiple drive wavelengths

through different harmonic orders.

The shapes of DUV (Fig. V.3) and EUV (Fig. V.6) harmonics are noticeably differ-

ent. In the first case, the use of a scanning monochromator involves unsmooth spectra

due to shot-to-shot fluctuations of the IR energy and the harmonic generation process.

Besides, the resolution of the EUV detection system is about 1.6 times smaller than

that in the DUV. One main point to consider is that the generation of harmonics obeys

to different mechanisms in these spectral regions. In the perturbative framework, the

spectrum of the nth harmonic field can be represented as a nth-order autoconvolution

of the spectrum of the fundamental field. Thus complex spectral structures in the fun-

damental spectrum can be inherited by the low harmonics such as, in Fig. V.3, the fifth

harmonic of a 1350-nm central drive wavelength. This is not seen in higher harmonics
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Figure V.7: Overlap of the harmonic spectra in the range 45–35 nm for three drive IR wavelengths

(1350, 1450 and 1550 nm). The harmonic spectrum resulting from the drive wavelength of 1550 nm has

been vertically magnified (×5).
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Figure V.8: Tunability in the EUV. The lines represent the wavelength ranges that are covered by

harmonic orders from number nineteen to thirty-nine, generated by drive wavelengths ranging from

1350 nm to 1550 nm.

(Fig. V.6), since the generation mechanism is there attributed to the inteference among

EUV emissions corresponding to different electron quantum trajectories.

The absolute number of photons in the EUV is reported in Table V.2 for harmonic

orders 21, 29 and 35 of 1350, 1450 and 1550 nm driving wavelengths. Such a photon

flux corresponds to an energy per harmonic per shot about two orders of magnitude

smaller than in the DUV. The different nature of the harmonic generation process and of

phase matching conditions for low and high harmonics can also explain the difference

of photon flux between the DUV and EUV spectral regions.

Different strategies can be pursued to overcome this low photon flux. As a first pos-

sibility, one could design a more powerful parametric source [147]. A complementary
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Table V.2: Absolute number of photons provided in the EUV spectral range for three different drive

wavelengths. Left column: central wavelength of the drive beam; center column: wavelengths of har-

monic orders 21, 29 and 35; right column: measured photons/shot for each harmonic.

drive IR harmonics photons/shot

[nm] [nm]

1350 63 1.3×104

46 5.8×103

38 2.8×103

1450 69 4.4×104

50 9.9×103

41 4.7×103

1550 75 1.4×104

54 3.1×103

45 6.5×102

strategy is the improvement of the HHG process in terms of tunability and conversion

efficiency. In this respect, a promising technique that could be investigated is mixing

the fundamental wavelength of the parametric source with either its second harmonic

or with a standard powerful Ti:Sa laser source, as demonstrated in [148] or similarly in

[149]. Moreover, as shown in [150], using the simultaneous irradiation of an extreme-

ultraviolet pulse, the dependence of the harmonic yield from the wavelength of the

driving beam can be significantly reduced.

V.4 Summary

The full tunability of a femtosecond photon beam produced through HHG driven

by a parametric source has been demonstrated in the whole ultraviolet spectral range.

This source opens the way to novel scientific experiments. The main drawback comes

from the relatively low harmonic conversion efficiency, resulting from a drive wavelength

longer than in classic HHG setups. Increasing the harmonic photon flux would extend

the range of possible scientific experiments.





Conclusion and prospects

Free-Electron Lasers and High-order Harmonic Generation sources compete to-

gether in the attractive challenge that is to extend the possibilities of scientific appli-

cations towards the X-rays. In this extent, we studied some of required qualities of

such facilities. This manuscript is one of the first documents providing comprehensive

characterizations of a seeded single-pass FEL with a wide aperture leading to a bet-

ter knowledge of light properties in the spatial and spectro-temporal domains. This is

also a work dedicated to be a base for the studies that will be continued, especially at

FERMI@Elettra. Finally, parallels that can be drawn between FEL’s and HHG and the

different possibilities they offer to the users are likely to make improve their capabilities

and the current understanding of their physics.

In this manuscript, I first presented the results of good spatial coherence of the light

provided at FERMI@Elettra. A fundamental aspect I tried to understand is: how can

the seeding improve the transverse quality of the FEL emission? For answering to this

question completely, it will be possible to perform, on FERMI@Elettra, measurements

of spatial coherence also in SASE mode, which would enable doing a fair compari-

son at the same facility, at the same wavelength i.e., in the same machine operational

conditions. In addition to this, the propagation of the spatial phase should be studied,

via systematic wavefront measurements on the seed laser and on the FEL emission,

changing the properties of the seed. Furthermore, many questions remain open con-

cerning the effects of the transverse characteristics of the electron beam. Wavefront

measurements have already been done on SASE sources [151, 152], and can also be

compared with results obtained at FERMI@Elettra. However, the wavefront sensor is

often used as a tool for optimizing the beam focusing for experiments, and thus used

after specific mirrors: this will have to be avoided if one aims at characterizing the FEL

light directly after the source so that the comprehension of the FEL physics is made

easier. In parallel to the experiments carried out on our FEL facility, we studied the

optimization of the spatial quality of an infrared beam used for driving HHG. A notice-

able enhancement has been measured. Now, it would be of great interest to see if the

properties of coherence and wavefront quality are also transmitted via HHG, and how

it could depend on the generation configuration. For the moment, wavefront charac-

terizations on FEL sources give contradictory results [153, 154]. Also, we now wish to

compare HHG and FEL’s assets.

This spatial study has been followed by a work relying on the chirp properties in a

seeded FEL. A first application is the production of two separate pulses with different
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wavelengths, which could be used as a self-standing source for two-colour pump-probe

experiments, without requiring an external laser. The production of two colours can be

put in parallel with the Young’s experiment that we implemented for coherence mea-

surements: the two sub-pulses interfere temporally, and the temporal quadratic phase

of the FEL emission corresponds in the Young’s experiment to the spatial dispersion

that is induced during propagation. Both studies are therefore similar and the interfer-

ence fringes that are observed in the Young’s experiment are the analogy of the beating

structure that is observed temporally with a two-colour spectrum. The spectrum cor-

responds to the Fourier transform of the temporal intensity and the far-field diffraction

pattern of coherence measurements is the spatial Fourier transform of the two point

sources that are the slits. As mentioned in Chapter I, FERMI@Elettra is now at its sec-

ond stage of development which allows it to generate lower wavelengths. Preliminary

results indicate that two FEL peaks produced by a usual CHG setup are successfully

amplified in a second cascade of undulators implemented downstream. Even if the

double-cascade represents the near future of FERMI@Elettra, the two-colour FEL that

we developed requires many further characterizations. Among others, its behaviour in

high-gain regime and the transverse properties of the emission will have to be stud-

ied. Even if it is quite novel, the two-colour emission of an FEL is not completely new.

We can cite the case of [155, 156], which was however in the mid-infrared region and

where the two peaks were produced simultaneously, which resulted in a strong tem-

poral modulation due to the frequency beating. More recently, a potential soft X-ray

two-colour source has been discussed in [157], however without wavelength tunabil-

ity and temporal control. All these sources exhibit qualities that will be compared and

exploited for applications such as pump-probe experiments.

A second application of the presence of quadratic phase in the FEL emission is the

direct retrieval of the temporal shape of the pulses [158]. Here again, we can rely on

a spatio-temporal analogy: the Fraunhofer diffraction corresponds to the “far-field" ap-

proximation that we found in the case of a linearly-chirped optical pulse, which allows

to retrieve its temporal shape similarly to the fact that we obtain a typical and easy-to-

study diffraction pattern if we are in far-field spatially. The quadratic term of the FEL

phase induces a temporal dispersion of the pulse spectral component. The instanta-

neous frequency at a given time is the result of the interference of multiple spectral

components. The number of spectral components contributing to it is large for small

temporal dispersion (i.e., small chirp) and decreases for increasing temporal disper-

sion (i.e., large chirp). For sufficiently large chirps, one can approximately associate a

single spectral component to each temporal position in the pulse. When this happens,
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the temporal form of the pulse becomes similar to its spectral shape.

A very interesting prospect concerning the presence of quadratic temporal phase in

the FEL radiation, and the possibility to manage it easily before the emission by means

of the seed laser chirp, is its chirped-pulse amplification [64]. This hot topic has been

discussed for a long time [159, 160, 161] but its implementation on FERMI@Elettra

would be an important step for the production of even more intense, but also of shorter

and Fourier-transform limited pulses. No specific stretcher would be required prior to

the undulators since the chirp stems mainly from the seed, but also from the electrons.

The chirp of the latter and its quantification, and its combination with the one of the

seed, is also part of the upcoming spectro-temporal studies on seeded FEL’s.

The tunability of the wavelength of the EUV radiation, an important asset for ex-

periment, is possible either in FEL’s or in HHG facilities. However, a lack of standard

HHG sources is the impossibility to generate radiation whose polarization is tunable.

On the other hand, as we demonstrated in [162], FEL’s are capable to provide ellip-

tical to circular polarization without any effort. The possibility to generate circularly

polarized high-order harmonics is thus a big challenge that will have to be taken up.

Finally, especially in FEL sources where efforts have been mostly focused on spatial

and spectral studies, further temporal characterizations (intensity shape, longitudinal

coherence) are required.

As a final word, it is important to stress that FEL and HHG sources are not only

two tools that are in competition for providing the best EUV light. First, they are com-

plementary since it has been demonstrated in [163] that HHG can be used for injecting

seeded FEL’s, allowing to reach even shorter wavelength while providing high photon

fluxes with coherent radiation. They can also be used together in pump-probe exper-

iments. Beyond that, they are two great supports for electromagnetism and atomic

studies, be there experimental, numerical or theoretical, and for the understanding of

physical processes.
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