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Abstrat

A panel based method for automati optimization of aerodynami surfaes using

pressure based funtionals is presented, where a potential �ow is used as a valid

approximation of the attahed �ow passing an arbitrary body. The optimiza-

tion is performed subjet to the Stratford separation riterion and geometrial

onstraints, where a favourable pressure distribution that indiretly leads to a re-

dued drag represents the solution. The minimization of funtionals is done using

a sequential quadrati programming algorithm. The method is simple and has

low omputational demands. Its e�ieny is demonstrated in three oneptually

di�erent test ases. In ase of an optimization of a fairing, enlosing a human

powered biyle, the drag is redued through a postponement of the transition

from laminar to turbulent �ow and the thinning of the boundary layer in the

pressure reovery region. In ase of a fairing of a wing-fuselage juntion on an

airplane, a minimal drag at the same amount of lift is obtained through an elimi-

nation of a massive root �ow separation at moderate angle of attak, and in ase

of an optimization of a bulb keel of a sailboat, a favourable pressure distribution

and onsequently redued drag is obtained simply through a smoother and on

average slower �ow passing the optimized surfaes.

Key words: aerodynamis, numerial optimization, pressure based

funtional, panel method, favourable pressure distribution, Stratford

riterion, laminar-turbulent transition, pressure drag, visous drag,

boundary layer.
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Povzetek

V doktorski disertaiji je predstavljena metoda za avtomati£no optimizaijo aero-

dinamskih povr²in s pomo£jo tla£nih funkionalov. Metoda temelji na panelni

metodi za izra£un tla£nih porazdelitev, kjer je potenialni tok uporabljen kot vel-

javen pribliºek prilepljenega toka, ki obteka poljubno telo. V metodi je vklju£en

tudi Stratfordov odepitveni kriterij ter geometrijske omejitve, njen rezultat pa je

ugodna porazdelitev tlaka, ki posredno nakazuje na zmanj²anje upora telesa. Za

minimizaijo funkionalov je uporabljen SQP algoritem. Metoda je enostavna in

zahteva malo proesorske mo£i. Zmogljivost metode je prikazana na treh razli£nih

testnih primerih. Pri optimizaiji zunanje lupine vozila na £love²ki pogon se upor

zmanj²a zaradi premika laminarno-turbulentnega prehoda proti konu telesa in

zaradi stanj²anja mejne plasti v obmo£ju tla£nega okrevanja. Pri drugem testnem

primeru, optimizaiji prehoda krila na trup letala, je minimalni upor pri isti ve-

likosti vzgona pri srednje velikih vpadnih kotih doseºen z eliminaijo odepljenega

toka na korenu krila. Pri zadnjem testnem primeru, optimizaiji kobilie jadr-

nie, pa izra£unana ugodna porazdelitev tlaka vpliva na zmanj²an upor posredno

preko enakomernej²e in v povpre£ju po£asnej²e porazdelitve hitrosti.

Klju£ne besede: aerodinamika, numeri£na optimizaija, tla£ni funk-

ional, panelna metoda, ugodna porazdelitev tlaka, Stratfordov od-

epitveni kriterij, laminarno-turbulentni prehod, tla£ni upor, viskozni

upor, mejna plast.
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Nomenlature

Latin symbols

a0 = Stratford number "soft" maximum parameter

a1,2 = Stratford number parameters

b = bias number

B = Bernstein polynomial

c = hord length, m

cf = loal skin frition drag oe�ient

CD = drag oe�ient

CDf
= skin frition drag oe�ient

CDp
= pressure drag oe�ient

Cp = pressure oe�ient

C ′
p = anonial pressure oe�ient

CL = lift oe�ient

d = deformation vetor �eld, m

F = ost funtion

f = external spei� fore, N/kg

G = Stratford number

GM = Stratford number �soft� maximum

g = spatial vetor, m

h = Bézier surfae value

I = turbulene intensity

k = optimization variable

l = referene body length, m

L = lift, N

M = Mah number

N = number of surfae panels

NC = number of ells
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n = surfae normal vetor, m

p = pressure, Pa

P = an arbitrary point in spae

R = sphere radius, m

Re = Reynolds number

Rec = Reynolds number, based on the length c

Rex′
= Reynolds number, based on the length x′

r = position vetor, m

S = surfae, m

2

St = Strouhal number

s = integration path, m

t = time, s

T = referene time, s

u, v = surfae oordinates

Vs = veloity of sound, m/s

V = veloity vetor, m/s

V = volume, m

3

x, y, z = Cartesian oordinates, m

x′
= e�etive length of the boundary layer, m

xm = the beginning of the pressure reovery, m

w = weight

Greek symbols

α = angle of attak,

◦

β = turbulent visosity ratio

γ = vortex distribution, m/s

Γ = irulation, m

2
/s

δ = boundary layer thikness, m

ζ = vortiity vetor, /s

µ = doublet strength, m

2
/s

ν = kinemati visosity, m

2
/s

ρ = density, kg/m

3

σ = sink/soure strength, m

3
/s

τw = wall shear stress, Pa
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Φ = veloity potential, m

2
/s

Φi = internal veloity potential, m

2
/s

ω = inverse turbulent time-sale, /s

ω′
= angular veloity, /s

Ω = solid angle

Subsripts

AN = analytial

B = body

D = doublet

lam = laminar

low = lower

max = maximal value

min = minimal value

new = new value

old = old value

opt = optimal

orig = original

S = soure

turb = turbulent

TE = trailing edge

up = upper

U = uniform

x, y, z = x, y, z diretion

W = wake

∞ = freestream

Supersripts

†
= dimensionless

* = perturbation
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Aronyms

ec = equality onstraints

lb = lower optimization variable boundary, m

nec = nonequality onstraints

RHS = right hand side of an equation

ub = upper optimization variable boundary, m
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Chapter 1

Introdution

Automati aerodynami optimization is an ongoing �eld of researh. It ouples

the �elds of omputational �uid dynamis (CFD) and numerial optimization.

In order to obtain an optimal aerodynami shape (e.g. at minimal drag), many

�ow omputations are needed. A lower degree of a CFD method omplexity

therefore results in a faster and more pratial optimization method. Further-

more, a simpler method typially fouses on only ertain aspets of the �ow (e.g.

laminar-turbulent transition), whih helps to fous the optimization proess.

The use of alulus of variations, whih is the basis of all modern aerodynami

optimization methods, for the optimal aerodynami shape design was explored al-

ready in 1965 by Miele [1℄. Its appliation in optimal ontrol theory for ontrol of

systems governed by partial di�erential equations [2℄ was later used in ompress-

ible potential �ow problems [3℄. Independently it was also used in aerodynami

design via CFD by Jameson [4℄ who proposed to treat the design problem as a

ontrol problem in whih the ontrol is the shape of the boundary.

A lass of methods developed to study the design of nonplanar wing surfaes

onerns mostly the study of indued drag by analysing the vortiity distribution

in the Tre�tz plane, a virtual plane far enough downstream from the body [5℄.

Suh methods are also suitable for multidisiplinary approahes where further

aspets suh as strutural weight and visous drag are taken into aount [6�8℄.

Another lass of methods deals with a problem of studying the two dimensional

airfoil setions [9, 10℄ and optimizing them for best drag at given lift. These

setions an then form the basis of more omplex wing analyses.

The largest amount of work has been dediated to optimization of full three

dimensional aerodynami on�gurations. Some of the studies are presented and

desribed in overview papers [11�13℄. A number of studies [14�17℄ fous on the
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full set of Navier-Stokes equations, devising methods for the alulation of ideal

shapes, and often also taking into aount strutural onsiderations. These stud-

ies require signi�ant omputational resoures. A simpli�ation of the �uid model

is therefore often desirable, and work has been done in employing the nonvisous,

Euler equations in the transoni regime [18�21℄. A further redution in the �uid

model an be performed by using potential based methods, suh as the panel

method [22�27℄ whih is a lass of boundary element methods (BEM) [28�30℄.

Sine a volume mesh surrounding the aerodynami surfae is at the panel method

replaed by a surfae mesh, the problem is simpli�ed and the optimization proe-

dure aelerated signi�antly. In suh studies, drag is estimated using the bound-

ary layer equations via pressure distributions as supplied from the potential �ow.

The �uid model an be redued even further by using a meshless method of funda-

mental solution (MFS) whih shows prominent results for potential �ows [31�33℄.

But sine the surfae of the body being optimized still needs to be disretized

in order to be able to reshape, the MFS method is not very pratial from the

surfae optimization point of view.

In all optimization methods, one the �uid model is hosen, an optimization of

a ost funtion an be performed using various minimization shemes [34℄. Most

ommonly, shemes that require a alulation of a gradient of a ost funtion with

respet to surfae parameters are applied, suh as the quasi-Newton method.

The gradients an be alulated by diret numerial di�erentiation, however,

many studies employ the so alled adjoint formulation, where the gradients an

be omputed via a alulation of additional �ow equations that orrespond to

surfae perturbations [14,18�20℄. On the other hand, the alulation of gradients

an be avoided by hoosing a method that only requires the alulation of the

funtional itself. In reent years, geneti algorithms are gaining prominene [16℄.

The regime of interest of the present work is a low Mah number (M < 0.3),

moderate to high Reynolds number (106 ≤ Re ≤ 107) type of �ow. In this

regime, the �ow an be onsidered inompressible. For well designed aerodynami

surfaes, the �ow an be also well separated into the essentially invisid region

away from the aerodynami surfae, with visous e�ets being dominant only in

the thin boundary layer lose to the surfae (on the order of hundredths of the

typial dimension in this regime), and in the (thin) wake behind the surfae. The

external �ow outside the boundary layer and the wake an be therefore desribed

by one of the potential �ow methods, the most prominent of these being the panel

method. The boundary layer �ow is then dominated by the invisid external

2



pressure distribution and, if there is no separation of �ow present, the boundary

layer only loosely a�ets the external �ow by inreasing the e�etive thikness of

the present aerodynami surfae [35℄.

The main idea behind the present work is that the alulation of the boundary

layer may not be neessary for obtaining a low drag aerodynami shape. As the

boundary layer �ow is driven by the pressure distribution, one an tailor pressure

distribution diretly in order to promote good boundary layer behaviour. The

problem an therefore be transferred from the diret alulation of drag using

boundary layer equations towards designing pressure funtionals whih, when

minimised, will give pressure distributions that promote favourable boundary

layer �ows.

For two dimensional airfoils, a suessful pressure funtional that minimizes

the integral of the absolute value of the pressure gradient has already been em-

ployed [9℄. A similar formulation, that depends on a surfae pressure distribution

and a surfae gradient of this distribution, is in present work extended to three

dimensional shapes. In order to obtain pressure distributions aross the aero-

dynami surfae, in-house panel method odes were developed on the basis of a

onstant doublet singularity surfae distribution. The trade-o� between auray

and simpliity was sought. The minimization of the funtionals was done using

sequential quadrati programming (SQP) algorithms, whih are onsidered to be

among the most e�ient methods for solving nonlinear onstraint optimization

problems [36, 37℄.

The main result of the present work is therefore a fast and pratial method

for optimization of three dimensional low speed aerodynami shapes. A novel

approah towards aerodynami optimization employs a fully invisid formulation

that promotes e�ient boundary layer �ow, even though an information about the

atual boundary layer �ow is deliberately lost. This approah is onsistent with

the typial task of an aerodynami designer, where surfae pressure distributions

are tailored manually in order to obtain smoothly varying �ows.

The theory that lies behind the proposed surfae optimization method is de-

sribed in Chapter 2. The method itself is presented in Chapter 3, whih is

divided into two main omponents for the present work, the panel method and

the surfae optimization. In Chapter 4, the method is tested on three fundamen-

tally di�erent examples, suh as a fairing of a human powered vehile, a fairing

of a wing-fuselage juntion at the airplane and two fairings (hull-�n and �n-bulb)

at the keel of a sailboat. The results are validated with full Reynolds averaged

3



Navier-Stokes (RANS) alulations.
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Chapter 2

Theory

2.1 Potential Flow

A �xed �nite ontrol volume with a onstant volume and surfae area submerged

in a �ow �eld with density distribution ρ is onsidered �rst. Sine the �ow is

moving through the ontrol volume the time rate of hange of mass and momen-

tum an be observed in it. If the onservation of mass and Newton's seond law is

applied to the ontrol volume and transformed to di�erential form, the ontinuity

equation is written as

∂ρ

∂t
+∇ · ρV = 0 (2.1)

and the full Navier-Stokes equation as

ρ

(

∂V

∂t
+V · ∇V

)

= ρf−∇p+ ρν∇2
V+

1

3
ρν∇(∇ ·V). (2.2)

The ontinuity equation states that the mass an neither be reated nor destroyed

or in other words the mass must be onserved. The momentum equation on the

other hand desribes the time rate of hange of momentum due to the sum of all

fores ating on observed ontrol volume. The Navier-Stokes equation (Eq. (2.2))

is written in Cartesian oordinates and in this form holds true for Newtonian

�uids only. These two statements, together with the equation of state, present

the fundamental equations of aerodynamis and allow us to desribe any kind of

motion of a Newtonian �uid.

The present work applies to the regime of high Reynolds number

Re =
lV

ν
(2.3)
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and low Mah number

M =
V

Vs

(2.4)

�ows (106 ≤ Re ≤ 107 and M < 0.3 for the typial ases presented in this

work), where l and Vs represent a referene body length and the veloity of sound,

respetively. Low Mah number indiates that we are dealing with inompressible

�ow where density doesn't hange with time and spae. The ontinuity equation

(Eq. (2.1)) for inompressible or onstant density �uid an therefore be written

as

∇ ·V = 0. (2.5)

High Reynolds numbers, as it will be shown next, enables one to neglet

the visous e�ets in the outer region of the �ow. The Navier-Stokes equation

for inompressible �ow and without body fores an be written in dimensionless

form as

St
∂V†

∂t†
+V

† · ∇†
V

† = −∇†p† +
1

Re
∇†2

V

†, (2.6)

where the dimensionless harateristi quantities used are ∇† = l∇, V

† = V/V∞,

t† = t/T and p† = p/ρV 2
∞, where V∞ represents a freestream veloity magni-

tude. The ratio between inertial and visous fores is presented by the freestream

Reynolds number Re = V∞l/ν and the importane of time-dependent phenomena

by a form of the Strouhal number St = l/TV∞.

All the terms in Eq. (2.6) are of order of one exept the last term on the right

hand side of equation, whih is for high Reynolds numbers negligible ompared

to the other terms. In regions further away from solid boundaries, where veloity

approahes the freestream veloity V∞ of undisturbed �ow, shear stress derivative

is of the order of one (∇†2
V

† ≈ 1) and for high Reynolds numbers this visous

term an be negleted. In thin layer adjaent to body surfae (Fig. (2.1)), on the

other hand, the shear stress derivative an be quite substantial and the visous

term in Eq. (2.6) beomes omparable to the other terms and an't be negleted

even for high Reynolds numbers.

Consequently, there are two distintive regions surrounding the body in high

Reynolds number �ows [38℄. In the immediate viinity of the body there is

a thin boundary layer, where the visous e�ets play a signi�ant role in �ow

development. In this region boundary layer equations [35℄ need to be solved in

order to obtain the shear stress distribution and orresponding frition fores.

Sine the visous e�ets are e�etively on�ned in this thin boundary layer, the

6
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Figure 2.1: High Re attahed �ow around an arbitrary body an be ap-

proximated by two distintive regions: a boundary layer with harateristi

visous e�ets and an outer potential �ow region.

�ow further away from the solid surfae is said to be visous free. The �ow

in this outer region an therefore be desribed with inompressible and invisid

aerodynami equations whose solution provides a pressure distribution on the

boundary of the region. The same pressure distribution is felt by the observed

body sine for attahed �ows an assumption an be made that the pressure doesn't

hange aross the boundary layer [35℄.

A high-Reynolds number approximation is a valid assumption for numerous

problems suh as low speed aerodynamis in general aviation, hydrodynamis of

marine vessels, et. It simpli�es the �ow desription and allows one to obtain a

pressure distribution on a body surfae with less di�ulty than does a Navier-

Stokes solution. Another important aspet to be onsidered is rotation of the

�ow. A simpli�ation of the �ow desription in the outer region, that will be

introdued next, allows one to write the aerodynami equations in a form that

will be used through the remainder of present work.

As a onsequene of veloity variations within the �uid, eah �uid element

experienes translation, rotation and deformation while moving with the �ow. Its

rotation an be e�etively desribed by vortiity vetor, whih is de�ned through

angular veloity vetor as

ζ = 2ω′ = ∇×V. (2.7)

When �uid elements rotate while moving with the �ow, the �ow is onsidered to

be rotational or ∇×V 6= 0. On the other hand, after Kelvin's theorem [22℄

DΓ

Dt
= 0, (2.8)

whih states that the time rate of hange of irulation Γ around a losed urve

onsisting of the same �uid elements is zero, previously nonrotating ideal �uid

elements an not start rotating in the region of negligible visous fores. This

7



kind of �ow is alled irrotational and an be desribed by expression

ζ = ∇×V = 0 (2.9)

The �ow in the outer invisid region an be therefore denoted as irrotational

where Eq. (2.9) holds true. Sine a url of a gradient of any salar funtion

is identially zero, we an write the veloity vetor as a gradient of a veloity

potential Φ as

V = ∇Φ, (2.10)

where

V = (Vx, Vy, Vz) = (
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z
). (2.11)

Sine an irrotational �ow an be desribed by veloity potential, it is also alled

a potential �ow.

The inompressible ontinuity equation (Eq. (2.5)) for an irrotational �uid

an be further written as

∇ ·V = ∇ · ∇Φ = ∇2Φ = 0. (2.12)

This linear elliptial di�erential equation is Laplae's equation, whose solution is

a potential �eld. One the veloity distribution is alulated from Eq. (2.10), the

pressure distribution on body surfae needs to be obtained in order to alulate

the aerodynami fores and moments.

In order to do that, the inompressible, invisid and steady Navier-Stokes

equation without body fores needs to be rewritten with the help of equation

V · ∇V = ∇
V 2

2
−V× ζ (2.13)

as

−V× ζ +∇
V 2

2
= −∇

p

ρ
. (2.14)

For an irrotational �ow (ζ = 0) Eq. (2.14) an be further simpli�ed to

∇

(

V 2

2
+

p

ρ

)

= 0, (2.15)

whih holds true for a steady �ow only if the expression in the parentheses is a

8



spatial onstant

V 2

2
+

p

ρ
= onst. (2.16)

The derived equation is alled a Bernoulli's equation. It onnets magnitude of

veloity and pressure of every point in the �ow, whih enables one to ompute the

pressure distribution diretly from the veloity distribution. By omparing Eq.

(2.16) at two points in the �ow, where one is at in�nity, the following expression

for pressure oe�ient holds true

Cp =
p∞ − p
1
2
ρV 2

∞

= 1 +
V 2

V 2
∞

. (2.17)

2.2 Drag

All aerodynami fores and moments a body situated in a �uid �ow experienes

have two root auses:

• pressure surfae distribution and

• shear stress surfae distribution.

The �uid moving along a solid boundary ats on the body solely through these two

mehanisms. Both distributions represent an average fore distribution per unit

area. The pressure distribution represents a normal stress with fores oriented

normal to the body surfae, whereas shear stress ats tangential to the body

surfae. By integrating them over the whole body surfae, total fore and moment

ating on the body an be obtained. The fore an be further resolved into two

omponents, one in diretion of a freestream alled a drag, and one in diretion

perpendiular to the freestream alled a lift.

There are three ontributions to a total drag fore: pressure drag, skin frition

drag due to shear stress, and indued drag due to lift. In this work we are

interested only in the �rst two ontributions, even though indued drag an have

a major ontribution to total drag in some ases, e.g. an airplane on take-o� [39℄.

Aording to d'Alembert's paradox [40℄, a ompletely attahed invisid �ow

passing a nonlifting body with an arbitrary shape doesn't ause drag on the body.

This an be observed by taking into onsideration only the outer region of the

�ow desribed by the potential theory (Setion 2.1). As soon as visosity in the

boundary layer is taken into onsideration, visous e�ets produe skin frition

and possibly also �ow separation whih together always produe a �nite drag.

9



A no-slip ondition at the body surfae, due to a fritional fore between the

surfae and the �uid, auses a retarded �ow right above the surfae. In the region

of an adverse pressure gradient it an happen that the �ow, already slowed down

by the fritional fores, may no longer sustain an inreasing pressure. The �ow

an stop or even reverse its diretion and start moving upstream (Fig. (2.2(a))),

whih auses the �ow to separate from the surfae and reate a large wake of

reirulating �ow behind the body. At the region of separated �ow the pressure

drops (Fig. (2.2(b))) and an therefore no longer anel the pressure distribution

over the reminder of the body. A result is a pressure drag fore due to a �ow

separation. A separated �ow should be avoided sine besides a large drag, it

produes also a major lift derease or even a stall.

n

V

x

y

(a)

Cp

0

-0.1

0.1

x

(b)

Figure 2.2: (a) Boundary layer veloity pro�les of a separated �ow, due to

adverse pressure gradient. (b) Pressure distribution on the upper side of

the airfoil of an attahed (dashed) and separated �ow (solid).

Over the range of Reynolds number between 106 and 107, where the main

interest of the present work lies, the external �ow passing a slender body usually

experienes a laminar to turbulent boundary layer transition. Sine a laminar

boundary layer has smooth and regular streamlines, whereas the motion of a �ow

in a turbulent boundary layer is very irregular and full of verties of all sizes, the

two �ows have di�erent harateristis and produe a di�erent amount of drag.

Beause of a high di�usivity of a turbulent boundary layer, the �uid elements

with higher veloity an approah the surfae loser and the elements with smaller

veloity an digress further away from the surfae. Turbulene therefore produes

an exhange of momentum and energy whih thikens the boundary layer. A �at

plate at a zero inidene has a thikness of a laminar boundary layer aording

to H. Blasius [41℄ proportional to the square root of a distane x along the plate

and inversely proportional to the square root of the Reynolds number (based on

10



the length of the plate c)

δlam = 5.0c1/2
x1/2

Re
1/2
c

. (2.18)

This result presents an exat solution of the L. Prandtl's laminar boundary layer

equations [38℄. On the other hand, there is no pure theory to desribe a turbulent

boundary layer. The thikness of the turbulent boundary layer is therefore given

approximately by [40℄

δturb = 0.37c1/5
x4/5

Re
1/5
c

. (2.19)

The boundary layer thikness δ is in these ases de�ned as a distane from the

solid surfae to the point in the �ow in surfae normal diretion n, with a veloity

magnitude equal to 99% of the freestream veloity V∞ (Fig. (2.3)). For the

example of a �at plate at zero inidene the relation δturb > δlam indeed holds

true for every x along the plate.

n

V0.99V
∞

lam

turb

0

Figure 2.3: A typial veloity pro�le in a laminar (solid) and a turbulent

boundary layer (dashed) and orresponding boundary layer thiknesses.

A high degree of mixing of �uid elements in turbulent boundary layer also

produes di�erent veloity pro�les adjaent to the body surfae ompared to

the laminar �ow. A typial veloity pro�le in boundary layer before and after

transition is presented in Fig. (2.3). The turbulent boundary layer has a larger

veloity gradient (∂V/∂n)n=0 at the wall than laminar boundary layer [35℄ and

sine a shear stress of a Newtonian �uid is diretly proportional to the veloity

gradient

τw = ρν

(

∂V

∂n

)

n=0

, (2.20)

also the fritional stress is greater for turbulent boundary layer. By integrating

the skin frition oe�ient cf = τw/
1
2
ρ∞V 2

∞ over the omplete surfae of the body,

the frition drag oe�ient of the body an be alulated. In the ase of a �at

plate with a length c at zero inidene in a laminar boundary layer, the frition

11



drag an be expressed after [41℄ as

CDf,lam
=

1.328

Re
1/2
c

, (2.21)

and for a plate in a turbulent boundary layer after [40℄ approximately as

CDf,turb
=

0.074

Re
1/5
c

. (2.22)

The frition drag of turbulent boundary layer an be therefore muh larger

than the frition drag of laminar boundary layer, in ase of an attahed �ow

passing an arbitrary body. Due to mixing and the assoiated momentum transfer

the average �ow veloity near the body surfae is higher for turbulent �ow. Fluid

elements of a turbulent �ow near the body surfae have more energy and an

better overome skin frition and therefore withstand larger adverse pressure

gradients. For this reason the turbulent �ow doesn't separate from the surfae

as readily as laminar �ow. If the �ow does eventually separate, the separated

region is smaller for the turbulent �ow and onsequently the pressure drop less

expliit [35℄. The pressure drag of the separated turbulent boundary layer is

therefore smaller than the pressure drag of the separated laminar boundary layer.

It depends on the shape of the body or the part of the body what kind of �ow

is preferred. If the body is blunt, laminar �ow auses large laminar bubbles [42℄

that lead to �ow separation and onsequently large pressure drag. For blunt

bodies turbulent �ow is desired, whereas for slender bodies usually laminar �ow

is preferable sine its frition drag omponent is larger than its pressure drag

omponent. If there is a hane the �ow will separate, e.g. at the pressure

reovery region, the transition from laminar to turbulent �ow should our right

before the separation. In this way, in order to ahieve the smallest drag possible,

laminar �ow with smaller skin frition is preferred in the region of favourable

pressure gradient, where the �ow is usually attahed, and a turbulent �ow with

smaller pressure drag in the pressure reovery region.

Laminar-Turbulent Transition. An exat laminar to turbulent �ow tran-

sition loation is not a trivial thing to predit, sine it is a�eted by many pa-

rameters suh as Reynolds number, pressure distribution of the outer �ow, the

roughness of the wall, the turbulene intensity of the outer �ow, et. In fat, the

transition doesn't happen at a point but over a region of a �nite length. Any

real �ow is in one way or another subjet to smaller or bigger disturbanes and

12



the visosity is the fator that ats to restrain produed instabilities. Above a

ertain limit of the Reynolds number, the inertial fores are so large in relation to

the visous ones that the disturbanes are not su�iently damped and will start

to grow. The transition proess starts and the �ow goes through di�erent stages

before it beomes a ompletely turbulent �ow. The transition is most notieable

by a great inrease in the boundary layer thikness and in the wall shear stress

(Eqs. (2.18) - (2.22)).

A transition that starts with two dimensional Tollmien-Shlihting waves that

are superimposed on the laminar �ow is alled a natural transition [35℄. The basi

laminar �ow is therefore distorted by the growth of the unstable two dimensional

primary instabilities that get ampli�ed downstream in the boundary layer and

eventually transform into three dimensional seondary instabilities that lead to

Λ-struture formations. These are replaed by turbulent spots, whih are the last

phase before the fully turbulent boundary layer develops.

If the amplitude of the turbulene intensity in the freestream is larger than

the amplitude of the two dimensional primary instabilities at the natural tran-

sition, this beginning phase of the transition an be by-passed. In ase of an

intense freestream turbulene or even high degree of surfae roughness, the tran-

sition starts diretly with three dimensional seondary instabilities or even with

turbulent spots. This type of transition is alled a by-pass transition [43�45℄.

In order to postpone the transition and onsequently redue the drag of the

body, the likelihood for the formation of the instabilities in the �ow should be as

low as possible. The stability theory of a laminar �ow states that the urvature

of the veloity pro�le at the body surfae is the ruial fator for the stability of

the laminar �ow [35℄. Aording to the boundary layer equation at the wall [35℄

ρν

(

d2V

dn2

)

n=0

=
dp

dx
, (2.23)

the pressure gradient diretly ontrols the urvature of the veloity pro�le and

therefore onsiderably in�uenes the stability of the laminar �ow. A negative

pressure gradient an lower the amount of instabilities in the �ow and postpone

the transition, whereas a positive pressure gradient an not only strongly am-

plify the disturbanes but even initiate the transition. Streamwise instabilities

that lead to Tollmien-Shlihting waves an be therefore ontrolled by using a

favourable pressure gradient and by minimizing the extent of the pressure reov-

ery region.
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If the diretion of pressure gradient is inlined at an angle with respet to

the freestream diretion, the boundary layer and the outer region will try to

follow di�erent paths. If there is a rather large angle between the two diretions,

the ross-�ow instabilities an our in the boundary layer that an, similar

to Tollmien-Shlihting waves, begin the transition proess. A typial example

of this phenomenon is a swept wing or a rotating disk [46, 47℄. In order to

avoid ross-�ow instabilities, the strong pressure gradient omponent in diretion

perpendiular to the freestream should be minimized. This is another instability

soure that an be ontrolled by using a suitable pressure gradient.

Both ontributions of drag, pressure drag due to �ow separation and skin

frition drag due to shear stress, are a onsequene of visosity of the �uid. Even

though the potential �ow doesn't produe drag, the potential �ow theory an still

be used to indiretly in�uene on the amount of drag through pressure distribu-

tion (as was shown in the present setion), whih presents the base of the surfae

optimization method in the present work.

2.3 Solution of Laplae's Equation

In order to ompute a pressure distribution aused by the potential �ow passing

an arbitrary body, Laplae's equation (Eq. (2.12)), a seond-order linear partial

di�erential equation, needs to be solved. The fat that the Laplae's equation

is linear is partiularly important, beause a sum of any number of elementary

solutions is also a solution of this equation. For example if eah of n separate

solutionsΦ1, Φ2, ..., Φn solves Laplae's equation, then also the sum w1Φ1+w2Φ2+

...+wnΦn represents a solution, where w1, w2, ..., wn represent an arbitrary set of

real numbers.

2.3.1 Elementary Solutions

A solution omposed of a surfae distribution of elementary singularity solutions

also satis�es Laplae's equation. In this way the problem redues to �nding only

the strengths of eah elementary solution on the body's surfae. The problem

therefore beomes a boundary-value problem where the boundary onditions are

satis�ed with proper elementary solution strengths. Sine we are dealing with a

simple steady potential �ow, where no visous and ompressible e�ets need to be

aounted, using this method is omputationally muh less demanding, ompared
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(a)
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Figure 2.4: A two dimensional representation of (a) a soure and (b) a

sink elementary solution, denoted with streamlines (lines with arrows) and

equipotential irles (dashed irles).

to methods that solve equations for the whole �uid domain V, suh as e.g. �nite

volume methods.

There exists a number of elementary solutions, that by de�nition produe

irrotational and inompressible �ow and at the same time limit to zero at an

in�nite distane from their origin (where the in�uene of the body's presene

diminish to zero) and an be summed into a general solution. One of the examples

is a soure/sink �ow where all the streamlines are straight lines emanating from/

sinking into a entral point (Fig. (2.4)). The potential at an arbitrary point

P in a three dimensional domain V at a distane r from the sink/soure enter

loation is then [22℄

ΦS = −
σ

4πr
. (2.24)

The veloity aused by this point soure/sink an be obtained by using Eq. (2.10).

The veloity has only the radial omponent that varies inversely with distane

from the entral point

V =
σ

4π

r

|r|3
. (2.25)

A positive σ represents a soure, whereas a negative σ a sink. In ase of a soure

elementary solution the �ow is introdued from a point and in ase of a sink the

�ow is diminishing into a point. This phenomenon violates the onservation of

mass and the point must be, in ase of e.g. surfae integration, exluded from

integration.

Another example of an elementary �ow is a doublet �ow. It is omposed out of

a soure and a sink a distane g apart, as depited in Fig. (2.5(a)). The veloity
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potential at a point P , a distane r from the soure-sink pair, an be obtained as

Φ(P ) = −
σ

4π

(

1

|r|
−

1

|r− g|

)

. (2.26)

In a limit, when the distane g between the soure and the sink goes to zero,

while keeping a produt gσ �nite and equal to µ, the potential goes to

Φ(P ) = lim
g→0

gσ→µ

−
σ

4π

(

|r| − |r− g|

|r||r− g|

)

. (2.27)

The numerator of Eq. (2.27) |r| − |r− g| goes in the limit to g cos θ and denomi-

nator |r||r− g| to r2. If the doublet points in diretion normal to the surfae (in

diretion of n), the potential an be written as

Φ = −
µn · r

4πr3
. (2.28)

As in the ase of a soure or a sink, the doublet �ow an be interpreted as a

�ow being indued by a disrete doublet of a strength µ plaed at an arbitrary

point. Therefore, a doublet is a singularity that indues about itself the double-

lobed irular �ow pattern shown in Fig. (2.5(b)). The potential an be further

rewritten to take a form of a normal derivative of a soure potential as

ΦD =
µ

4π
n · ∇

(

1

r

)

. (2.29)

The third elementary �ow example is a vortex �ow, with all the streamlines

as a onentri irles about an in�nite line, as skethed in Fig. (2.6(a)). The

veloity along any given irular streamline is onstant but varies inversely with

a distane from the vortex line and an be expressed in ylindrial oordinates

as [22℄

V =

(

0,−
Γ

2πr
, 0

)

, (2.30)

where Γ represents the irulation of observed vortex line aligned with the z axis.

The last example of an elementary solution, to be presented in the present

work, is a uniform �ow (Fig. (2.6(b))), e.g. a uniform �ow with veloity V∞

oriented in the positive x diretion

ΦU = V∞x (2.31)
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g cos θ

r - g
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Figure 2.5: (a) A doublet elementary solution is omposed out of a sink

and a soure a distane g apart. (b) Streamlines (irles with arrows) and

equipotential irles (dashed irles) around a doublet of strength µ in a

two dimensional representation.

Γ

(a)

V

(b)

Figure 2.6: (a) A ross setion of a �ow about a vortex of strength Γ
laying perpendiular to the plane of the paper and (b) a uniform �ow in

diretion of a freestream, denoted with streamlines (urves with arrows)

and equipotential lines (dashed lines).

A simple ombination of elementary �ows an already produe some basi

potential �ows [22℄, e.g. a �ow over a Rankine oval (uniform �ow and a soure-

sink pair), nonlifting (two dimensional doublet �ow) or lifting (two dimensional

doublet and vortex �ow) �ow over a irular ylinder, et.
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2.3.2 Two Dimensional Elementary Solution Distributions

In this subsetion some two dimensional ases of elementary solutions distributed

along a single axis will be examined and their solution sought. At the end a

suitable distribution of singularities will be hosen in order to desribe the �ow

past an arbitrary body.

If a two dimensional soure distribution σ(x) along the x axis is examined

(Fig. (2.7(a))), the veloity in y diretion at an arbitrary point, as a sum of the

in�uene of all disrete elementary soures laying in points x0 (two dimensional

form of Eq. (2.25)), has a form of

Vy(x, y) =
1

2π

∫ x2

x1

σ(x)
y

(x− x0)2 + y2
dx. (2.32)

In a limit, where y goes to zero, the integral goes to zero at all values of x exept

at x = x0, therefore only points σ(x0) ontribute to the integral. That is why

σ(x) an be moved out of the integral in Eq. (2.32) and replaed by σ(x0). The

integration limits an now be pulled to in�nity in both diretions and the result

doesn't hange. The y omponent of veloity, when y is limiting towards zero

from the positive or the negative diretion, an be therefore written as

Vy(x, 0±) = lim
y→0±

σ(x)

2π

∫ ∞

−∞

y

(x− x0)2 + y2
dx. (2.33)

The result is after integration simply [22℄

Vy(x, 0±) =
∂Φ

∂y
(x, 0±) = ±

σ(x)

2
. (2.34)

For an arbitrary surfae soure distribution, the result an be rewritten as a

di�erene between normal derivatives of external and internal potential

σ =
∂Φ

∂n
−

∂Φi

∂n
, (2.35)

where subsript i indiates the limit to surfae from under the surfae and no

subsript the limit to surfae from above the surfae.

A two dimensional doublet distribution along the x oordinate pointing in

y diretion (Fig. (2.7(b))) produes at an arbitrary point a veloity potential

Φ(x, y) that an be expressed as a sum of the in�uene of all disrete elements

laying in points x0 (two dimensional form of Eq. (2.28)) as
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Φ(x, y) = −
1

2π

∫ x2

x1

µ(x)
y

(x− x0)2 + y2
dx. (2.36)

This potential has a similar form as the y omponent of veloity resulting as a

presene of a soure distribution (Eq. (2.32)) and also has a similar solution.

When approahing y = 0 from positive or negative diretion, a jump in potential

is reated, that an be written as

Φ(x, 0±) = ∓
µ(x)

2
. (2.37)

Strength of a doublet an be therefore expressed as a potential di�erene in points

right under and above the surfae as

µ = Φi − Φ. (2.38)

Veloity Vx an be further omputed as

Vx(x, 0±) =
∂Φ

∂x
(x, 0±) = ∓

1

2

dµ(x)

dx
. (2.39)

Sine a normal derivative of potential is zero at the body's surfae, a doublet

distribution results only in tangential �ow at the surfae of the body.

A two dimensional vortex distribution γ(x) an be treated in a similar manner

(Fig. (2.7())). The omponent of veloity in x diretion at an arbitrary point

an be expressed as a sum of the in�uene of all disrete elements laying in points

x0 (Eq. (2.30)) as

Vx(x, y) =
1

2π

∫ x2

x1

γ(x)
y

(x− x0)2 + y2
dx. (2.40)

In a similar manner as at the last two examples, the tangential veloity omponent

right above and right under the surfae an be omputed as

Vx(x, 0±) =
∂Φ

∂x
(x, 0±) = ±

γ(x)

2
. (2.41)

For an arbitrary surfae vortex distribution, the result an be rewritten as a

di�erene between tangential derivatives of external and internal potential as

γ =
∂Φ

∂x
−

∂Φi

∂x
. (2.42)

By omparing Eq. (2.39) and Eq. (2.41), it an be observed, that the doublet
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distribution an replae the vortex distribution suh that

γ(x) = −
dµ(x)

dx
. (2.43)

A ombination of body surfae doublet distribution that indues only the

tangential omponent of veloity right at the surfae, soure distribution that

indues a normal veloity jump aross the surfae together with a freestream �ow

looks like a good ombination to model a �ow around an arbitrary body. For

wake modeling only doublet distribution is suitable, beause it orretly onsiders

a potential jump when rossing the wake, whih will be presented in the next

subsetion. Additional distribution of vorties is in both ases redundant sine it

is equivalent to doublet distribution.

x x

y

1 2 x

( )x
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x x
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Figure 2.7: (a) Soure, (b) doublet and () vortex distribution along x axis.

2.3.3 Kutta Condition

Let us now onsider an arbitrary lifting body, e.g. a wing, and observe the

irrotational �ow passing the body on a ross-setion plane parallel to the plane

of symmetry and perpendiular to span diretion at some hosen span loation

(Fig. (2.8)). If the veloity vetor is integrated over a urve lying on observed

plane starting from the point right under the wake going around the body and

�nishing at a point right above the wake, the bound irulation of the wing is

alulated as

Γ =

∫ b

a

V · ds =

∫ b

a

∇Φ · ds =

∫ b

a

dΦ = Φb − Φa. (2.44)

Sine the wake itself is omposed of free vortiity that advets into the �ow as a

surfae emanating from the trailing edge of the wing, it must be exluded from

the integration, otherwise the Eq. (2.10) for the potential �ow doesn't hold true.

The bound irulation is therefore equal to a potential di�erene in points right

above and right under the wake. In the ase without a wake, the two potentials
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anel eah other, and irulation is zero. Aording to Kutta-Joukowski theorem

L = ρ∞V∞Γ (2.45)

there learly needs to be a wake present in order to model a lifting surfae.

a

b

TE= 0

V

s

Figure 2.8: A path of integration, in order to alulate the bound iru-

lation, around an arbitrary wing from point a to point b oiniding with

a ross-setion plane perpendiular to span diretion at some hosen span

loation. The Kutta ondition is denoted at the trailing edge of the wing.

By omparing Eq. (2.38) and Eq. (2.44), a linear dependene between the

strength of a doublet that models the wake and the bound irulation at an

arbitrary span position an be observed

Γ = −µ. (2.46)

Sine the potential �ow is de�ned up to a onstant (Eq. (2.10)), there is an

in�nite number of possible theoretial potential �ow solutions orresponding to

the in�nite hoies for values of Γ. In real life a wing at eah angle of attak

produes a single value of lift. That is why a ondition is needed that will give

the orret irulation around a partiular lifting body at �xed irumstanes and

in this way one partiular solution out of all possible.

This ondition omes from the fat that a steady �ow is smoothly leaving

the upper and the bottom surfaes at the trailing edge (TE) of the lifting body.

In a ase of a �nite angle trailing edge a stagnation line is indued along the

trailing edge, whereas in the ase of a usped trailing edge an equal veloity
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vetor (in diretion and magnitude) for both �ows, oming from the upper and

bottom surfae, an be observed. For both types of the trailing edge the vortiity

along the edge is aording to Eq. (2.7) zero and the Kutta ondition an be

summarized with a single expression (Fig. (2.8)) as

γTE = 0. (2.47)

By applying just stated Kutta ondition in doublet and vortiity distribution

relation (Eq. (2.43)), where x diretion goes along the wake, it an be seen that

the doublet strength must be onstant along the wake in the streamwise diretion

or µW = onst. at an arbitrary span loation.

The same result an be demonstrated by looking at the problem from another

perspetive. It doesn't matter at whih point along the wake at a hosen spanwise

position the integration of veloity around the body is started (Eq. (2.44)). As

long as the starting vortex is exluded from integration, the same amount of

irulation will always be embraed, whih denotes the same potential di�erene

in points right above and under the wake. The wake isn't a solid surfae, that is

why it an't produe lift and therefore aording to Kutta-Joukowski there are no

bound vorties in the wake. The wake is omposed only from free vorties whose

strength is preserved along the wake in the streamwise diretion. The amount of

irulation that is released into the wake at some point along the body's span,

omes from the upper and the lower surfae right at the trailing edge

ΓW = Γup − Γlow (2.48)

or after Eq. (2.46)

µW = µup − µlow. (2.49)

If Kutta-Joukowski ondition is now written for the free vortex distribution γW

in the wake as

ρV× γW = 0, (2.50)

a ondition for the wake shape an be derived as

γW ‖ V. (2.51)

Free vorties are therefore aording to this linear theory parallel to the �ow

streamlines and ontinue to in�nity. In real life though, the vorties in�uene
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on eah other and together with the external �ow in�uene introdue additional

nonlinear e�ets, suh as wake roll-up [22℄ and vortex breakup [48℄.
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Chapter 3

Method

In this hapter, a surfae optimization method applied in all test ases (Chapter

4) is presented. First, a lassi �rst-order panel method is summarized after J.

Katz and A. Plotkin [22℄. Next, an eletrostati analogy of a surfae integral over

a panel doublet distribution is introdued. This analogy is then used in order

to write a novel form of a panel method, a tool for surfae potential distribution

alulation. A model of a wake and a method for a veloity, pressure and pressure

gradient distribution alulation is presented at the end of the �rst setion.

In the seond setion, a omplete proedure of surfae optimization is pre-

sented, how the transformation of an initial surfae is desribed and implemented,

what are the ost funtions being minimized in order to obtain optimal results

and �nally, whih onstraints are being used at di�erent test ases.

3.1 Panel Method

3.1.1 The Problem

The present work deals with a steady inompressible potential �ow in a volume

V with an outer boundary S∞ enlosing an arbitrary body with surfae SB and

possibly also a wake surfae SW behind the body. The problem is treated in

a body �xed oordinate system. The veloity and pressure distributions are

obtained by the Laplae's equation (Eq. (2.12)) and Bernoulli's equation (Eq.

(2.17)), respetively. The problem is a boundary-value problem, where boundary

onditions need to be de�ned.

Beause of the invisid property of the �uid in the potential �ow, the no-slip

ondition on the solid surfae isn't satis�ed. Furthermore, sine the �ow an't

physially penetrate into the body, the veloity vetor must be tangent to the
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surfae and onsequently only the normal omponent of veloity equals zero at

the solid surfae boundary

V · n = ∇Φ · n =
∂Φ

∂n
= 0, (3.1)

where n is a vetor normal to the body's surfae. On the other hand, the distur-

bane in the �ow reated by the presene of the body should deay with distane

r from the body. At domain's outer region (r → ∞) the following limit must

hold true

lim
r→∞

(∇Φ− V∞) = 0. (3.2)

Far away from the body, toward in�nity, the �ow therefore approahes the uniform

freestream ondition. But sine an invisid potential �ow is being dealt with, the

wake doesn't vanish far from the body. Beause of this, the limit Eq. (3.2) doesn't

hold true in the immediate viinity of the wake on domain's outer region.

3.1.2 Classi First-Order Panel Method

Total potential at an arbitrary point P in the observed domain V as a onsequene

of a soure and a doublet distribution on the surfae of the body and the wake

an be onstruted after J. Katz and A. Plotkin [22℄ as a sum of a perturbation

potential Φ∗
and a freestream potential Φ∞ as

Φ(P ) = Φ∗(P ) + Φ∞(P ), (3.3)

or

Φ(P ) =

∫

SB

(ΦD(P ) + ΦS(P )) dS +

∫

SW

ΦD(P )dS + Φ∞(P ). (3.4)

The wake is modeled by a thin doublet sheet and the body by a doublet and a

soure surfae distribution. Physial surfae normals n always point out of the

observed volume, therefore out of the volume V on boundary S∞ and into the

body on surfae SB. The freestream potential has a form of

Φ∞ = V∞,xx+ V∞,yy + V∞,zz. (3.5)

Introduing Eqs. (2.24) and (2.29) for ΦS and ΦD into Eq. (3.4) results in

Φ(P ) =
1

4π

∫

SB+SW

µ n · ∇

(

1

r

)

dS −
1

4π

∫

SB

σ

(

1

r

)

dS + Φ∞. (3.6)
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In order to solve this main potential equation the boundary onditions need to

be satis�ed. The outer boundary ondition at surfae S∞ (Eq. (3.2)) requires the

derivative of perturbation potential to go to zero due to a small reah of body's

in�uene on the freestream and large distane from the body.

∇Φ∗|S∞
= 0. (3.7)

In other words, veloity should be equal to freestream veloity far from the body.

Again, this holds true at the whole outer region S∞ exept in the immediate

viinity of the wake. Aording to Eqs. (2.24) and (2.29), both elementary

solutions already satisfy this boundary ondition.

On the other hand, the Neumann boundary ondition on the observed body's

surfae SB (Eq. (3.1)) states that the �ow an not go into the solid body and, as

a onsequene, the normal omponent of veloity is zero

∇ (Φ∗ + Φ∞) · n = 0. (3.8)

Now that boundary onditions to the problem are spei�ed, a unique solution

still an't be obtained. There is an in�nite number of di�erent soure and doublet

distribution ombinations that satisfy these boundary onditions (Eqs. (3.7) and

(3.8)). An arbitrary hoie therefore has to be made in order to de�ne a desirable

ombination of elementary solutions and solve the Eq. (3.6). There are also some

physial onsiderations that need to be dealt with in the problem. For example

the right amount of irulation around the body needs to be assured in order

to model a lifting body. This is ahieved by properly modeling the wake and

inorporating the Kutta ondition (Eq. (2.49)) at the trailing edge.

If the boundary SB is enlosed, then as a onsequene of Neumann boundary

ondition (Eq. 3.8), the potential inside the body without internal singularities

an be a onstant

Φi = onst. (3.9)

An equivalent statement says that veloity inside the body equals zero ∇Φi =

Vi = 0. With the help of this observation a Dirihlet boundary ondition an be

set in terms of the potential inside the body. The inner potential an be then

expressed as

Φi(x, y, z) =
1

4π

∫

SB+SW

µ n·∇

(

1

r

)

dS−
1

4π

∫

SB

σ

(

1

r

)

dS+Φ∞ = onst. (3.10)
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Both, the Neumann and Dirihlet boundary onditions equivalently state that

normal omponent of veloity on body's surfae must be zero.

Besides hoosing di�erent soure/doublet ombinations in order to satisfy

boundary onditions, one must also hoose an appropriate onstant for inner

potential in order to �nd a solution of Eq. (3.10). As it will be shown next,

an inner potential that is not a onstant an also be hosen. Following J.

Katz and A. Plotkin [22℄, the inner potential an be set to freestream poten-

tial Φi = Φ∗
i + Φ∞ = Φ∞, whih redues Eq. (3.10) to the simpler form

1

4π

∫

SB+SW

µn · ∇

(

1

r

)

dS −
1

4π

∫

SB

σ

(

1

r

)

dS = 0. (3.11)

A di�erene between normal derivatives of a total potential outside and inside

the body is de�ned aording to Eq. (2.35) as a soure strength. Considering that

the freestream potential is a onstant and that a positive normal vetor points

into the body, the expression for the soure an be simpli�ed as

−σ =
∂Φ

∂n
−

∂Φi

∂n
=

∂Φ∗

∂n
−

∂Φ∗
i

∂n
. (3.12)

Sine Φ∗
i = 0 everywhere inside the body also ∂Φ∗

i /∂n = 0 on SB holds true. If

the Neumann boundary ondition (Eq. (3.8)) is rewritten as ∂Φ∗/∂n = −n ·V∞,

the soure strength an be written as

σ = n ·V∞. (3.13)

Even though a freestream potential that is not a onstant is hosen as an inner

potential, the Neumann boundary ondition (Eq. (3.8)) is still satis�ed if the

soure distribution is de�ned aording to Eq. (3.13).

The soure distribution is now hosen and sine the freestream distribution

for a partiular problem is usually known, the doublet distribution is left to be

de�ned. After alulating the body surfae doublet distribution that satis�es

the boundary ondition, the solution is still unique only for a nonlifting body.

For a lifting surfae the wake doublet distribution needs to be de�ned as well.

As was shown in the previous hapter, the wake doublets an be expressed with

body doublets through a Kutta ondition (Eq. (2.49)), whih assures the orret

amount of lift fore the �ow indues on the body.

The surfae of the body and the wake should now be disretized into NB

body surfae panels and NW wake surfae panels, respetively (Fig. (3.1)). The
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Dirihlet boundary ondition (Eq. (3.11)) must be spei�ed for a olloation

point, whih lies right under the entroid of eah body panel. Therefore, for eah

one of NB olloation points, the following statement holds true

NB
∑

k=1

1

4π

∫

SB,k

µ n · ∇

(

1

r

)

dS +

NW
∑

i=1

1

4π

∫

SW,i

µ n · ∇

(

1

r

)

dS

−

NB
∑

k=1

1

4π

∫

SB,k

σ

(

1

r

)

dS = 0.

(3.14)

An integral over eah individual panel is omputed �rst, where µ, σ and n are

doublet strength, soure strength and surfae normal of eah in�nitesimally small

surfae dS, respetively. Eah panel's entroid is a distane r away from the

orresponding olloation point. The next step is a summation of ontributions

of all the panels in order to take into aount the in�uene of the whole doublet

and soure surfae distribution in one olloation point. An assumption an be

now made, that eah panel has a onstant doublet and/or soure distribution

over its surfae. Eq. (3.14) an be rewritten as

NB
∑

k=1

Cjkµk +

NW
∑

i=1

Cjiµi −

NB
∑

k=1

Bjkσk = 0, (3.15)

for eah olloation point j. All panel integrals are replaed by oe�ients Cjk, Cji

and Bjk, where indies k and i run over all the body and wake panels, respetively.

N

N

B

W

k k

i
j

n

,

Figure 3.1: Disretization of the body and the wake surfae into NB body

panels and NW wake panels, respetively. All body and wake panels have

onstant doublet and/or soure distribution over their surfaes. The ollo-

ation point (red dot) lies right under the entroid (blak dot) of eah body

panel.

If the soure strengths are seleted aording to Eq. (3.13), then oe�ients
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Bjk are known and an be moved to the right hand side (RHS) of the equa-

tion. Sine there is NB body doublet strengths and NW wake doublet strengths,

together NB + NW unknowns, and only NB equations, one for eah olloation

point, the Kutta ondition (Eq. (2.49)) needs to be applied in order to onnet

the body and wake doublets. Aording to Kutta ondition, eah wake doublet

an be expressed in terms of the body trailing edge doublets as

µi = µi,up − µi,low, (3.16)

where µi,up is a doublet on the upper and µi,low on the lower side of the body

surfae at the trailing edge, both neighbours of the orresponding wake doublet.

The in�uene of eah wake panel an therefore be written as

Cjiµi = Cji(µi,up − µi,low). (3.17)

If Eqs. (3.17) are inserted into Eq. (3.15), then a new set of oe�ients an

be introdued as Ajk = Cjk, if body panel is not at the trailing edge and as

Ajk = Cjk ± Cji, if body panel is at the trailing edge.

In this way, the number of unknowns beomes equal to the number of equa-

tions. System of equations an now be written as

NB
∑

k=1

Ajkµk =

NB
∑

k=1

Bjkσk. (3.18)

In short, eah panel has a onstant doublet and/or soure distribution whih

auses a hange of potential in an arbitrary point P in the observed volume. If a

potential at the point P , as an in�uene of the whole body and wake, is sought,

eah panel's distribution needs to be integrated �rst and the in�uene of all the

panels summed afterwards.

3.1.3 Eletrostati Analogy

A simpler method that an be used in order to ompute a potential at an arbi-

trary point P as a onsequene of a presene of a body leans on an analogy to

eletrostatis. Aording to the analogy, the eletrostati potential at a point P

is, as a onsequene of a panel with a onstantly distributed eletri dipole over

its surfae, proportional to the solid angle of observed panel looking from the

point P [49℄.
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If a doublet distribution replaes the eletri dipole distribution, a veloity

potential instead of an eletrostati potential an be omputed. A potential in

j-th olloation point as a onsequene of i-th panel is therefore proportional to

the doublet strength µi of the panel multiplied by the solid angle Ωji (Fig. (3.2))

at whih the point sees this panel

Φ∗
j = −

µi

4π
Ωji. (3.19)

Sine panels with a onstant doublet distribution are onsidered in present work,

the eletrostati analogy represents a major simpli�ation to the problem. More-

over, it an be applied to panels of an arbitrary shape.

A Dirihlet boundary ondition in a form of a onstant inner potential (Eq.

(3.9)) is used, where a value of zero is hosen as the onstant

Φj = Φ∗
j + Φ∞,j = 0. (3.20)

In this way, a body soure distribution is redundant, whih additionally simpli�es

the method. Of ourse, any other onstant di�erent from zero, ould also be used.

This would only shift the doublet distribution by a onstant, but the results for

the external potential would remain the same.

Pj

µ

Ωji

i

Figure 3.2: Solid angle Ωji of a panel with a onstant doublet surfae dis-

tribution µi, looking from the olloation point Pj .

If the freestream potential is written as an integral of a freestream veloity

Φ∞,j = V∞,xxj + V∞,yyj + V∞,zzj = RHSj, (3.21)

the base system of equations of the problem an be expressed by ombining Eqs.
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(3.19) - (3.21) as

1

4π
Ωjiµi = RHSj. (3.22)

After omputing the doublet distribution as a solution of the system of equations

(Eq. (3.22)), where additionally the Kutta ondition needs to be onsidered

based on the proedure desribed with Eqs. (3.16) and (3.17), all distributions

are known, all boundary onditions are satis�ed and the potential Φ at any point

in the observed volume V an be de�ned. Sine a body surfae veloity, pressure,

and gradient of a pressure distributions are in pursuit, a speial interest lies in

the value of the potential in eah panel entroid.

3.1.4 Wake

An invisid outer �ow is onsidered as a valid approximation for omputing a

surfae pressure distribution of an attahed �ow passing a body, but in order

to de�ne the potential distribution around the lifting body, the visosity at its

trailing edge an't be negleted. A �nite visosity is inorporated in the prob-

lem through Kutta ondition (Subsetion 2.3.3) and onsequently through an

nonphysial surfae behind the body alled a wake.

In the ase where a part of the body has no lear trailing edge, e.g. a wing-

fuselage on�guration, two di�erent wake setions should be used [50℄. Behind

the wing, a wake denoted as wake A is used. Its doublet strength distribution

is de�ned through the Kutta ondition. For the fuselage, on the other hand, an

assumption an be made that it doesn't shed vortiity into the wake. The doublet

distribution of the wake behind the fuselage, wake B, must be therefore, aording

to Eq. (2.43), onstant in the spanwise diretion. These wake B doublets must

also have the strength equal to their �rst neighbour in the wake A, otherwise

there would be a �nite vortex in the region of the fuselage-wing juntion. Wake

A therefore has doublets that are variable in the spanwise diretion and onstant

in the streamwise diretion (Subsetions 2.3.2 and 2.3.3), whereas wake B has a

onstant distribution of doublets.

A deision has been made to always use the shape of the wake as a �at plane,

therefore negleting wake roll-up, leaving the trailing edge of the lifting body at

an angle utting the trailing edge angle in half - along biseting plane. In this

way, the same shape of the wake an be used for all angles of attak. Sine the

surfae pressures are insensitive to the angle of inlination of the wake [51℄, this

approximation gives solutions that are essentially as aurate as an be expeted
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from the potential �ow assumption. In true nature, the wake is far from the body

eventually dissipated by visous and turbulent e�ets (vortex breakup). That is

why, a reasonable length of the wake should su�iently desribe the real ase. In

all test ases in present work, the wake therefore extends approximately thirty

lifting-body hord lengths behind the body.

3.1.5 Veloity, Pressure, and Gradient of a Pressure Dis-

tributions

Sine we are dealing with a potential �ow, the veloity at the body surfae is not

equal to zero and is tangent to the surfae. Veloity vetor of i-th body panel in

its entroid point an be omputed from its own potential and the potential of its

neighbours. An arbitrary panel is a neighbour of the panel i if they share an edge

and if an angle between their normals is less that 60◦, as it was hosen. Sine

quadrilateral panels are hosen for this work, the maximal number of neighbours

eah panel has is four. At sharper edges, e.g. at a wing trailing edge, there are

only three neighbours, and at some orners even just two neighbours.

If entroids of all the neighbours, where the potentials are alulated, are

projeted on i-th panel's loal oordinate system (Fig. (3.3)), then i-th panel's

potential Φi together with its neighbours' potentials an be used to onstrut a

linear approximation. The potential at an arbitrary point in the viinity of the

entroid i an be expressed as

Φ = Φi +

(

∂Φ

∂x

)

xi +

(

∂Φ

∂y

)

yi, (3.23)

where xi and yi represent the loal oordinates and expressions (∂Φ/∂x) and

(∂Φ/∂y) the veloity omponents in this oordinate system. If expression Eq.

(3.23) is evaluated at projeted entroid of eah neighbour, the unknown gradients

an be omputed with a weighted least square method, where the minimum

min

[

∑

j

wj

(

Φi +

(

∂Φ

∂x

)

i

xj +

(

∂Φ

∂y

)

i

yj − Φj

)2
]

(3.24)

is sought. The system of equations that needs to be solved in order to ompute
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veloity omponents in loal oordinate system for i-th panel is then









∑

j wjx
2
j

∑

j wjyjxj
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∑

j wjy
2
j

















(∂Φ/∂x)i

(∂Φ/∂y)i









=









∑

j wj (Φj − Φi) xj

∑

j wj (Φj − Φi) yj









.

(3.25)

The weight wj is hosen to be reiproal square distane between j-th and i-th

entroid point in global oordinate system (Fig. (3.3)). Neighbours that are

loser to i-th entroid have a greater in�uene on the result and vie versa. The

solution of Eq. (3.25) represents, after a transformation to a global oordinate

system, a veloity surfae distribution V.

y

x

i

i

i

j

(x ,y )
j j

wj

1

Figure 3.3: i-th panel with its four neighbours. Blak dots denote entroids,
whereas red dots denote their projetion on i-th loal oordinate system.

The surfae pressure distribution, or more preisely the dimensionless pres-

sure oe�ient distribution, an be omputed in the next step from the veloity

surfae distribution using Bernoulli's equation (Eq. (2.17)). Information about

the gradient of a pressure distribution over the body surfae is also needed, sine

it is used for the alulation of a ost funtion that is being minimized during

surfae optimization. The gradient of a pressure is omputed from the pressure

distribution in a similar manner to the omputation of the veloity from the

potential.
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3.2 Surfae Optimization

In this setion, a proedure of surfae shape transformation is desribed that takes

plae during surfae optimization. Next, the ost funtions are presented that

are used in present work in order to obtain a favourable pressure distribution.

Optimization onstraints that enable inreased ontrol of surfae transformation

are introdued at the end of this setion.

A mathematial expression that desribes the optimization problem an be

written as

min
k

F (k) suh that



















nec(k) ≤ 0

ec(k) = 0

lb ≤ k ≤ ub.

(3.26)

Here, the optimization variables k, that minimize the ost funtion F (k) under

di�erent onstraints are in pursuit. nec(k) and ec(k) are nonequality and equal-

ity onstraints, while lb and ub represent the lower and the upper optimization

variable boundaries, respetively.

Surfae optimization an be done for the whole body, or just for a part of its

surfae, alled a path. During the whole body optimization the omplete body

surfae is free to hange, whereas during the optimization of a seleted surfae

path, only the path an take a new shape and the rest of the body has a �xed

surfae.

3.2.1 Bézier Surfae and Deformation Vetor Field

As it was already stated, the surfae of the observed body is meshed with quadri-

lateral panels. A point ommon to all neighbouring panels lying around it is

alled a node. This meshed original surfae represents an initial ondition for

the surfae optimization. The shape of the path is hanged by moving its node

points aording to the deformation vetor �eld and magnitude of hange surfae

funtion. Deformation vetor �eld sets the diretion and additionally the �xed

share of shift for eah node. Magnitude of hange surfae funtion on the other

hand sets the varying share of node shift and is de�ned by a Bézier surfae [52℄.

Bézier surfae is therefore used only to desribe the magnitude of the trans-

lation of our path and not to desribe its surfae diretly. A Bézier surfae

multiplied by a deformation vetor �eld d is added to the original path and

together they form a new shape, whih is depited in Fig. (3.4). For a position
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of an arbitrary node i the following equation then holds true

ri,new = ri,old + h(ui, vi)di, (3.27)

where 0 ≤ ui ≤ 1 and 0 ≤ vi ≤ 1 represent surfae oordinates of i-th node on the

path and h(ui, vi) a salar value of a Bézier surfae. ri is a position of i-th node

in global Cartesian oordinate system. The Bézier surfae h(u, v) that is used to

translate all the nodes on the path parametrized with surfae oordinates (u, v)

is de�ned as

h(u, v) =
n

∑

i=1

m
∑

j=1

Bn
i (u)B

m
j (v)ki,j, (3.28)

where one of the Bernstein polynomials is

Bn
i (u) =

(

n− 1

i− 1

)

ui−1(1− u)n−i
(3.29)

with binomial oe�ient as

(

n− 1

i− 1

)

=
(n− 1)!

(i− 1)!(n− i)!
. (3.30)

Indies i and j run through all the n×m salar ontrol points ki,j, that represent

the optimization variables. With a proper value of eah ontrol point a minimal

ost funtion an be ahieved and therefore an optimal path shape designed.

From the stated it an be seen, that only a small number of variables is needed

to smoothly hange the shape of the original surfae, instead of a few hundreds

or even thousands in order to shift eah node separately.

If all ontrol points are equal to zero, then also the values of Bézier surfae

in all the nodes are zero and the path preserves its shape. The same result

an be observed if the deformation vetor is zero. Sine a shift of eah node

is ontrolled in two ways, di�erent shape features an be assured. With Bézier

surfae a smooth path shape hange is ahieved, whereas with a proper hoie

of the deformation vetor �eld e.g. a tangeny to the �xed surfae around the

path an be preserved. Sine a deformation vetor �eld, instead of a Bézier

surfae, is used in order to preserve the tangeny, a smaller number of ontrol

points is needed and a path is able to take a more dynami shape lose to its

edge. A smaller number of ontrol points onseutively means a omputationally

less demanding problem.

A diretion of deformation d is de�ned for every node in advane and it doesn't
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Figure 3.4: Eah node on the surfae (i-th node depited in blue olour) is

during optimization proess transformed in spae by adding to its position

vetor ri a deformation vetor di (red vetor �eld) multiplied by a value of

the Bézier surfae h(u, v) (its ontrol points k are depited in green olour)

at that position.

hange during the optimization. On the other hand, for the Bézier surfae ontrol

points, sine they are optimization variables, only the initial values are de�ned

at the beginning of the optimization proess.

In the present work, a ase dependent deformation vetor �eld is used, sine

a nature of eah ase is di�erent. In general, a deformation vetor �eld must

give enough freedom for the path to take an optimal shape, but it still needs

to properly onstrain and diret the translation of nodes in order to ahieve

physially reasonable results. In some ases a deformation in diretion of a surfae

normal is a good hoie, e.g. it enables a blu� body to expand and ontrat in

all diretions, but it usually needs to be onstrained in order not to push the

surfaes together. Although this redues the in�uene of a body on the �ow and

onsequently the drag, the zero-ross-setion solution is physially not aeptable.

On highly urved surfaes a deformation in normal diretion an also result in an

intersetion of panels, whih additionally leads to some numerial problems.

A tangeny to the �xed surfae around the path an be preserved by mul-

tiplying a normalized deformation vetor �eld by a funtion that tangentially

desends to zero at the path edge. Away from the edge, this funtion should

have a value of one, so that the amount of deformation in this region is ontrolled
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mainly by the Bézier surfae. A proper deformation vetor �eld hoie is, as was

stated, of great importane in order to ahieve optimal results without problems

during optimization.

3.2.2 Cost Funtions

Aording to the potential �ow theory, the �ow passing an arbitrary body doesn't

produe drag (Setion 2.2). Beause of this reason, the proposed optimization the-

ory an be used to minimize drag only in an indiret way, e.g. through a surfae

pressure distribution. A funtional or a ombination of funtionals (ost fun-

tion) should therefore be used, whih will, when minimized, produe a favourable

pressure distribution.

A minimization of a ost funtion in a form of an integration of a pressure

gradient aross the body's surfae

F =

∫

|∇Cp| dS (3.31)

smoothens the pressure distribution [9℄, whih prevents unneessary �utuations

of the �ow veloity. In a disretized form the ost funtion an be written as

F =
∑

i

|∇Cp|i Si, (3.32)

where Si is a surfae area of i-th panel. As it will be shown in Chapter 4, a

minimization of a ost funtion in a form of Eq. (3.32) results in a plateau-like

pressure distribution in a streamwise diretion aross the body. At the leading

edge of the body, the pressure quikly drops to the plateau pressure value and at

the pressure reovery region it quikly inreases bak to the freestream pressure.

In this way a minimal amount of aeleration and deeleration of the �ow is

ahieved, whih redues instabilities in the boundary layer and an lead to a

thinner boundary layer.

Why the minimization of Eq. (3.32) leads to a plateau-like pressure distribu-

tion an be best seen in a two dimensional ase, where the integral of the pressure

gradient an be written as

∫
∣

∣

∣

∣

∂Cp

∂x

∣

∣

∣

∣

dx =
∑

i

|Cp,i − Cp,i+1| , (3.33)

where Cp,i represent pressure oe�ient values in points with zero pressure gra-
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dient. Imagine now a pressure distribution around an airfoil, where only the

upper side of the shape is being optimized with a �xed lift fore onstraint (Fig.

(3.5(a))). It is lear that the sum in Eq. (3.33) reahes the minimal value when

the maximal Cp,min is obtained. Sine the surfae under the pressure distribution

urve must remain onstant beause of the �xed lift fore onstraint, the optimal

pressure distribution on the upper side of the airfoil must obtain a plateau-like

shape with a plateau pressure value at maximal Cp,min (Fig. (3.5(b))). Even

though test ases in present work (Chapter 4) don't have �xed lift fore on-

straint, the surfae under the pressure distribution urve, beause of the geomet-

rial onstraints and the nature of the deformation vetor �eld, is still onstrained

and a �nite maximal Cp,min exists.

-Cp

,min-Cp

x

S = const.

0

(a)

-Cp

,min-Cp

x

S = const.

0

(b)

Figure 3.5: Two dimensional pressure distribution over the upper side of

(a) an airfoil and (b) its optimal distribution.

If a parameter b, alled a bias, is added to the pressure gradient in the stream-

wise diretion as

F =
∑

i

√

(

∇‖Cp − b
)2

i
+ (∇⊥Cp)

2
i Si, (3.34)

the minimization will try to ahieve a streamwise pressure gradient value equal

to b on as many panels as possible. An appropriate value of bias will hange the

plateau-like region of a pressure distribution to a ramp-like distribution, whih

will gradually aelerate the �ow as far bak to the end of the body as possible.

A favourable pressure gradient therefore postpones the transition and may also

prevent the �ow separation.

As an be seen from Eq. (3.34), a gradient of a pressure surfae distribution

is omposed out of a streamwise omponent and its transverse omponent. Sine

the latter is responsible for introduing a ross-�ow instabilities into the boundary

layer, the sum of both omponents should be minimized. The pressure distribu-
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tion beomes therefore smoother in all diretions. In all test ases of present

work both omponents have been treated equally regarding the minimization of

the ost funtion, as per Eq. (3.34).

Introdued ost funtions should have after minimization a positive impat

on the amount of instabilities in the boundary layer, but nevertheless, additional

steps should be taken in order to properly design also the pressure reovery region.

In next subsetion a riterion will be introdued as a onstraint, that onsiders

espeially this part of the surfae.

3.2.3 Constraints

Stratford riterion. In some ases the pressure reovery region an be so severe

that the �ow detahes from the body surfae and tremendously inreases the drag.

In order to prevent this from happening a Stratford riterion [53℄ is additionally

inorporated as a onstraint during optimization proess.

The Stratford riterion is a rather simple method to estimate a point where

the laminar or turbulent �ow will detah from the body surfae on the basis of

the Reynolds number, the pressure distribution and the gradient of the pressure

distribution. It is a onservative riterion that predits the separation just a bit

before the methods based on the full boundary layer equations [54℄. Even though

it is a simple and easy to implement method, it still enables one to ompute

a pressure distribution that is everywhere on the edge of the separation, whih

permits a maximum extent of laminar �ow and a rapid pressure reovery region.

Sine the laminar and the turbulent �ows have di�erent harateristis, the

riterion forms for both �ows also di�er. In ase of a �ow transition right before

the reovery region, the Stratford riterion for separation of a turbulent �ow

G = Cp′
√

x′
dCp′

dx

(

106

Rex′

)0.1

=







0.35, d2p
dx2 < 0

0.39, d2p
dx2 > 0

, (3.35)

but with a �history� of a laminar �ow

x′ =

∫ xm

0

(

V

Vmax

)5

dx+ (x− xm), (3.36)

should be used. x′
in Eq. (3.36) represents an e�etive length of the boundary

layer, where the integral takes into onsideration what happened to the �ow along

the body's surfae up to the beginning of the pressure reovery. C ′
p is a anonial
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pressure oe�ient

C ′
p = 1−

V 2

V 2
max

=
Cp − Cp,min

1− Cp,min
, (3.37)

whose derivative is

dC ′
p

dx
= −

1

Vmax

dV

dx
=

1

1− Cp,min

dCp

dx
. (3.38)

x′
is an e�etive boundary length that goes along the body in a streamwise

diretion, xm is a value of a streamwise oordinate indiating the beginning of

the pressure reovery, and Cp,min and Vmax are the orresponding minimal pressure

and maximal veloity magnitude, respetively. Reynolds number is onstruted

from the maximal veloity Vmax and e�etive length x′
.

The Stratford riterion (Eq. (3.35)) is valid only for anonial pressure oef-

�ients C ′
p < 4/7. For larger numbers it doesn't hold true, but it an still serve

as a referene. The riterion was used at all reovery regions of the present work,

even if there is an absene of a theoretial justi�ation of its validity.

There are two di�erent ritial values of a Stratford number G, at whih the

�ow suppose to separate, depending on the shape of the pressure reovery region

(Eq. (3.35)). For a onave reovery 0.35 is used and for a onvex 0.39.

The aim of this onstraint is to keep the Stratford number of eah panel

under this ritial value, but sine the number of onstraints should be as small

as possible in order to shorten the omputation time, eah panel shouldn't be

onstrained separately.

Moreover, neither should a single panel with the maximal Stratford number be

onstrained. If only one panel with urrently the largest number is onstrained,

only that panel will reeive attention during an optimization step, in order to

be put under onstraint. But in the next step some other panel ould have the

largest number and that one will be in the spotlight. During the optimization

proess jumping from panel to panel an our, whih an bring some onvergene

problems. To avoid this problems, the best way is to onstrain an average of a

few panels with the largest Stratford numbers. The funtion that is therefore put

under onstraint is

GM =

∫

SB
G(r)ea0(Gmax−G(r))dr

∫

SB
ea0(Gmax−G(r))dr

. (3.39)

Gmax is the maximal Stratford number and the parameter a0 de�nes how many

panels with largest Stratford numbers are taken into onsideration. The bigger

the parameter a0 > 0 the smaller number of panels will in�uene on the number
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GM . The number GM is always smaller ompared to the maximal panel Stratford

number, exept in a limit, when a0 → ∞, they are equal. In this way all the Strat-

ford number peaks sattered through the path will be smoothly and gradually

put under onstraint and fewer problems with onvergene should our.

The Stratford number path distribution is in the �rst test ase (Setion 4.2)

weighted also with a �soft� Heaviside funtion of pressure as

Gi,new =
Gi,old

1 + exp
(

Cpi−a1
a2

) , (3.40)

so that the region with maximal pressure, suh as at the trailing edge, isn't

taken into onsideration during the optimization. At the trailing edge region

the �ow leaves the body into the wake and an produe a short high pressure

impulse. Sine it is not possible to get rid of this anomaly, it is better to ignore

it, otherwise the optimization an spend a lot of time optimizing that region and

at the end diverge or produe unusable results. This proedure is, beause of

some onvergene problems, omitted at the latter two test ases (Setions 4.3

and 4.4).

Another modi�ation of the Stratford riterion is introdued into the method

beause of some onvergene problems at the �nal stage of the optimization. The

optimization is �rst run with parameters xm, Cp,min and Vmax (Eqs. (3.36)-(3.38))

de�ned at eah iteration suessively. After a few iterations of optimization, when

the method �nds an approximate optimal shape and these parameters settle down,

the optimization is deliberately stopped. Parameters xm, Cp,min and Vmax de�ned

at the last iteration and the integral in Eq. (3.36) alulated onsidering also these

parameters are then used as onstants at the omplete optimization proedure.

These parameters therefore don't vary from iteration to iteration any more, but

remain �xed through the whole optimization. Without this simpli�ation, the

solution tends to diverge in some ases. For the sake of generality, the same

simpli�ation is used in all test ases. In ases without onvergene problems the

method is veri�ed to produe idential solutions with or without this modi�ation.

Geometrial onstraints. One way of ontrolling the amount of modi�a-

tion of a path is by bounding the size of ontrol points of Bézier surfae (Eq.

(3.28)) that de�nes the hange of the path shape. Sine there is a small number

of ontrol points, their size has an in�uene on a wider region of the path. In

some ases a very loal ontrol of shape modi�ation is needed, usually beause

of some pakaging problems, but also in other appliations, e.g. to maintain the
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shape of a trailing or leading edge. These geometrial onstraints are therefore

useful at ontrolling the exat magnitude of translation at some hosen points

and in this way preventing the surfae to ontrat or indent at those points.

The Stratford riterion (Eq. (3.35)) and these geometrial onstraints are

introdued into optimization proess as nonequality nonlinear onstraints (Eq.

(3.26)).
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Chapter 4

Results

In this hapter, a onvergene analysis of the panel method with an example of a

sphere is made �rst. Next, the results of proposed surfae optimization analysis

on three oneptually di�erent test ases are presented and evaluated with results

obtained by CFD analysis. All three test ases originate from real world ases.

At all test ases, the body surfae was �rst meshed using a program alled

Salome, whih is an open-soure software that provides a generi platform for

pre- and post-proessing for numerial simulation. This original mesh was then

used as an initial ondition for the surfae optimization proess, for whih a

program was written in Matlab environment. During this proess a Matlab's

funtion alled fminon, whih uses a superlinear onvergent sequential quadrati

programming method (SQP) with an ative-set method as a quadrati program-

ming subproblem solver [34℄, has been used in order to �nd a minimum of a

onstrained nonlinear multivariable ost funtion. A solution of the subproblem

is then used for a line searh proedure [55℄ for a new major iteration. Funtion

fminon therefore requires prede�ned initial estimate and boundaries of all opti-

mization variables, and pointers to the ode of the ost funtion and all possible

onstraints that are used at eah iteration of the optimization proess.

CAD models were then onstruted from the optimized surfae meshes and

together with the original surfaes put into the CFD analysis in order to evaluate

the results. For CFD omputations a �nite volume program alled OpenFOAM

with its RANS solver for inompressible and visous �ows, simpleFoam, was used.

The meshes for this purpose were onstruted with the snappyHexMesh subrou-

tine.

In the �rst test ase, where a laminar-turbulent transition plays an important

role, a k−kL−ω turbulene model [56℄ was used in order to predit the loation of
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transition. In the remaining two ases the simpler one equation Spalart-Allmaras

turbulene model [57℄ was used, beause it has already shown good performane

in juntion �ows [58℄. All the CFD omputations were run to full onvergene,

whih was determined by the �attening of all residuals (at values smaller than

10−5
) and fores.

4.1 Panel Method Veri�ation

The proposed panel method is veri�ed using an example of a potential �ow pass-

ing a sphere. In order to redue the omputation time, the ase is onsidered

as a symmetrial problem, where only a half of a sphere surfae is disretized

into di�erent number of quadrilateral panels NB. The system of equations (Eq.

(3.22)) is in this way halved, but the seond half of the sphere with symmetrial

doublet distribution is still taken into onsideration. The in�ow is parallel to the

symmetry plane that uts the sphere on two halves. The property of a symmetry

plane is that none of the streamlines an ross it and that the streamline that

starts on this plane at the in�ow will stik to it all the way around the body and

onwards.

At eah number NB a relative di�erene between panel method results and

analytial solution for a potential

ΦAN (r, θ) = V∞ cos θ

(

r +
R3

2r2

)

(4.1)

and a veloity surfae distribution

Vθ,AN(r, θ) = −V∞ sin θ

(

1 +
R3

2r3

)

(4.2)

is omputed as

∑NB

i Si |Φi − (ΦAN )i|
∑NB

i Si|(ΦAN)i|
(4.3)

and

∑NB

i Si |Vi − (Vθ,AN)i|
∑NB

i Si(Vθ,AN)i
. (4.4)

Eah summation runs over all the panels with surfae areas Si. Eah analytial so-

lution is, the same as panel method results, omputed in entroid of orresponding

panel. Sphere radius and inlet veloity are hosen as R = 1 and V∞ = (1, 0, 0).
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It an be seen from Fig. 4.1(a) that the relative di�erene between the om-

puted and the analytial solution is inversely proportional to the number of panels

NB. With inreasing number of panels, the panel method onverges to the ana-

lytial solution. On the other hand the time of omputation (. time) inreases

faster than N2
B in this ase. A deision has to be made as to what is a reasonable

number of panels in order to aquire results with a satisfatory auray, but at

the same time not to inrease the omputation time exessively.

An example of omputed veloity surfae distribution where a half of a sphere

is disretized into NB = 578 panels is presented in Fig. 4.1(b). The in�ow travels

from the left to the right side of the �gure. Sine a potential �ow without visosity

e�ets is applied, the veloity surfae distribution at the impat side equals the

one at the reovery region. The fore ating on the sphere is therefore equal to

zero (d'Alembert paradox).
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Figure 4.1: (a) A relative di�erene between omputed and analytial so-

lution of a potential and a veloity surfae distribution for a sphere and

an indiated omputation time with respet to the number of panels NB.

(b) Veloity surfae distribution over a sphere disretized into NB = 578
panels.

4.2 Test Case No. 1: Laminar-Turbulent Transi-

tion

In the �rst test ase an optimization of a surfae of a human powered vehile

is treated (Fig. 4.2). Besides rolling resistane of the tyres, the fairing of this

biyle (propelled by a person lying inside) auses all the drag of the vehile.
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An optimization of the shape of the fairing should therefore notably improve the

biyle performane.

Figure 4.2: A biyle propelled by a person lying inside a ompletely losed

fairing.

The biyle is usually driven under small ross-wind onditions, and sine its

shape is slender, the �ow stays attahed. The major omponent of a drag fore

is therefore skin frition, where the laminar-turbulent transition loation plays a

signi�ant role on its size (Setion 2.2). In order to redue the skin frition drag,

the laminar �ow needs to be promoted as far bak to the end of the biyle as

possible.

A favourable surfae pressure distribution is therefore in pursuit, that will

gradually aelerate the �ow as long as possible and in a pressure reovery region

not just prevent the �ow from separation, but also thin the boundary layer. With

a smoother pressure distribution, a smaller pressure drag an be attained. An

average speed of the biyle is 90km/h and its length is 2.5m, whih means that

it is driven approximately at Re = 4.2 · 106. The wheels and their fairings aren't

taken into the onsideration in this test ase.

4.2.1 Veri�ation

In the optimization proess a omplete surfae of the fairing is optimized, but

beause of the bilateral symmetry of the problem, the system of equations (Eq.

(3.22)) needs to be written only for a half of the body. The ground e�et is

introdued through another symmetry plane at the ground level. The imaginary

doublet distribution under the ground symmetry plane enables one not to inlude

the ground surfae into the simulation. In ase of a real visous �ow, the tur-

bulene produed at the ground is in this way negleted, but the results of the

48



potential �ow alulations aren't hanged beause of this simpli�ation. Sine we

are more interested in a favourable pressure distribution and its in�uene on the

transition position, the same simpli�ation is used in CFD analyses.

In this test ase a zero angle of attak is onsidered and sine the shape has

bilateral symmetry, there is no need for the wake to be modeled. A deformation

vetor points in diretion of a surfae normal at eah node position (Fig. (4.3)).

The deformation vetor �eld is normalized in the middle of the body and gradually

dereases to zero toward the nose and the trailing edge of the biyle. This

property is ahieved by multiplying the normalized deformation vetor �eld by a

proper funtion, whih alters the deformation vetor �eld as

dnew =
u2(1− u)2

(1/2)4
dold, (4.5)

where the surfae oordinate 0 ≤ u ≤ 1 runs along the body surfae in a stream-

wise diretion. The nodes at the nose and the trailing edge are in this way �xed

and the length of the biyle remains unaltered.
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Figure 4.3: Deformation vetor �eld saled by a fator of 0.25.

In order for the fairing to enlose all the mehanial and strutural parts, and

also to give the ylist enough spae inside the fairing to sit, pedal and steer,

geometrial onstraints at some ritial points are added to the problem. The

onstraints don't allow the surfae to ontrat at these points, but the surfae is

free to expand everywhere. In the pressure reovery region the Stratford riterion

onstraint (Eq. (3.35)) is used in order to prevent the �ow over the modi�ed shape

from separating. The �soft� maximum (Eq. (3.39)) is onstrained with a onave
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pressure reovery ritial Stratford number GM < 0.35, where a0 = 130, a1 = 0.2

and a2 = 0.01 are used. In this way the pressure reovery region takes a shape

that allows the pressure to reover to the freestream value in as short distane as

possible while remaining attahed.

Sine the pressure reovery region starts at approximately the same stream-

wise loation over the whole body surfae, the same onstant integral from Eq.

(3.36) is used for all reovery region panels. Its value is omputed as an averaged

integral value over three equally spaed surfae streamlines that run from the

nose of the body to the pressure reovery region. It is omputed after a few steps

of optimization (Subsetion 3.2.3), averaged over all optimizations in this test

ase, and then used as a onstant at all omplete optimization proedures.

The magnitude of hange surfae funtion (Bézier surfae) is at all optimiza-

tion omputations ontrolled with 12× 7 number of ontrol points, unless other-

wise stated. Twelve points are in a streamwise diretion and seven in its transverse

diretion. The size of all ontrol points is ompletely unonstrained (unde�ned

lb and ub in Eq. (3.26)).

One of the optimizations was �rst arried at three di�erent numbers of sur-

fae panels in order to hose a proper surfae mesh density for the rest of the

optimizations. Relative di�erenes of ost funtion values between the original

and the optimized surfaes with respet to the number of surfae panels is pre-

sented in Fig. (4.4(a)). A mesh density with NB = 720 panels is a reasonable

hoie, beause the relative di�erene of the ost funtion di�ers from the �ner

mesh result only by about 0.1%, the omputation times, on the other hand, are

redued signi�antly. Similar searh for an appropriate volume mesh density was

done also for the CFD analysis, where omputations were arried for an original

surfae at three di�erent numbers of volume ells omposing the mesh. The rel-

ative di�erene of fores between all meshes and a mesh with the highest density

with respet to the number of ells is presented in Fig. (4.4(b)). A mesh with

17.3 million ells was hosen to be used at the rest of the simulations in this test

ase. With a �ner mesh, the pressure fore hanges by 1.3%, whereas the frition

and the lift fore by less than 0.23%, whih is an aeptable omputation error.

An example of a volume mesh surrounding the original surfae used for the

CFD analysis is shown in a top view in Fig. (4.5(a)). A body surfae and a

slie through a volume �eld are oloured in pressure and magnitude of veloity

olour shemes, respetively. Sine a low Reynolds number k−kL−ω turbulene

model with no wall funtions was employed for the CFD omputations, a very
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Figure 4.4: (a) A onvergene of a relative di�erene between initial ost

funtion value and its minimized value with respet to the body surfae

mesh density at optimization proess. (b) A onvergene of the fore oef-

�ients with respet to the volume mesh density for the CFD analysis.

high density mesh had to be onstruted at the body surfae. Beause of this, 15

layers of ells parallel to the surfae shape were used to surround the whole body,

whose thikness smoothly inreases with fator 1.3 to the outer mesh size. A

zoomed in part of a mesh right next to the surfae wall oloured in a magnitude

of veloity olour sheme is presented in Fig. (4.5(b)). A gradual inrease of

veloity from zero at the wall to the freestream veloity an be observed, whih

indiates a proper mesh density at the wall.

(a) (b)

Figure 4.5: (a) A slie through a mesh in a top view, surrounding the

original surfae, used in the CFD analysis. (b) High density wall mesh

layers, oloured in magnitude of veloity olour sheme, smoothly inrease

to the outer mesh size.

As already stated, minimization of the ost funtion equal to the sum of pres-

sure gradient redues the variation of the pressure distribution in the �ow around

a body. Furthermore, giving the optimization method enough freedom to move
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surfae nodes, a pressure distribution equal to undisturbed pressure p∞ should

result. In order to hek if the proposed optimization method produes results

aording to this statement, an optimization without geometrial onstraints was

run. The deformation vetor �eld pointed, only for this test, in the diretion

normal to the symmetry plane. The result of the optimization is presented in

Fig. (4.6(a)). The optimization method produed the optimal result under the

given irumstanes. It �attened the fairing surfae to oinide with the sym-

metry plane, whih produed a freestream pressure distribution over all surfae

area. Consequently, a zero pressure drag and a minimal frition drag, due to the

remaining of the surfae, was ahieved.

Giving the optimization method more freedom to move the surfae nodes

therefore produes a smaller ross setion of the body. If the freedom is given

through a larger number of ontrol points (15 × 10), while still satisfying the

geometrial onstraints, a wave-like surfae shape results. A front view of the op-

timized surfae is presented in Fig. (4.6(b)). The surfae embraes the onstraint

points (red dots in Fig. (4.6(b))), while at the same time tries to minimize the

ross setion of the fairing. The �amplitude� of the wave-like surfae is not severe,

beause pressure gradients also in a diretion perpendiular to the freestream are

inorporated in the ost funtion.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

 

x

 

z

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

(a)

00.10.2
0

0.1

0.2

0.3

0.4

0.5

0.6

 

y

 

z

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 4.6: A result of an optimization with (a) no geometrial onstraints

- �at surfae oiniding with the symmetry plane, (b) larger number of on-

trol points - wave-like surfae embraing the geometrial onstraint points

(red dots).

4.2.2 Results

The resulting optimal surfaes were evaluated using a CFD analysis. In order

to simulate a natural transition from laminar to turbulent �ow, a very small
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turbulene intensity (de�ned as the ratio of the root-mean-square of the velo-

ity �utuations to the mean freestream veloity) I = 0.01% and turbulent vis-

osity ratio (de�ned as the ratio of turbulent to laminar (moleular) visosity)

β = 0.01 were used at the in�ow. The relative di�erenes of drag and surfae

areas between original and optimal surfaes at di�erent bias numbers and the

orresponding pressure oe�ient distributions over a streamline aross all sur-

faes are presented in Fig. (4.7(a)) and Fig. (4.7(b)), respetively. A omparison

of surfae pressure distributions between panel method omputations and CFD

analyses for the original surfae and the optimal surfaes at b = 0 and b = −0.2

are presented in Fig. (4.8), Fig. (4.9) and Fig. (4.10).
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Figure 4.7: (a) Relative di�erene of drag and surfae areas of all optimized

surfaes ompared to the original surfae, omputed with OpenFOAM. (b)

A pressure distribution over a streamline aross the original and all optimal

surfaes.

Surfae area used in oe�ient alulations is the area of the original sur-

fae shape. The streamlines (green urve) and the geometrial onstraint points

(red dots) are depited in panel method alulation Figs. (4.8(a)), (4.9(a)) and

(4.10(a)). The symmetry plane at all CFD alulations (Figs. (4.8(b)), (4.9(b))

and (4.10(b))) is oloured in magnitude of veloity olour sheme.

As an be seen from Fig. (4.7(a)), the pressure drag of solutions at all val-

ues of bias were redued from 10% and up to 25%. Suh a high pressure drag

redution beomes apparent by omparing surfae pressure distributions of the

original shape (Fig. (4.8)) and both optimal shapes (Fig. (4.9) and Fig. (4.10)).

Instead of high and low pressure loal regions at the original surfae, a muh

steadier pressure distribution an be observed for the optimized shapes. A muh
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Figure 4.8: Surfae pressure distribution of an original surfae omputed

with (a) a panel method (b) a CFD analysis.

smoother pressure distribution redues the amount of instabilities in the �ow,

whih onsequently also thins the boundary layer. A major ontribution to the

redution of the pressure drag is also due to the unsatis�ed Stratford riterion at

the pressure reovery region of the original surfae.

If a basi ost funtion in a form of a sum of pressure gradient distribution

(Eq. (3.32)) is used, a minimization of its value produes a plateau-like pres-

sure distribution in a streamwise diretion aross the body (blue urve in Fig.

(4.7(b))). An even pressure distribution on a major part of the fairing an be

also observed in Fig. (4.9). If a small bias is added to the pressure gradient in a

streamwise diretion (Eq. (3.34)), the plateau hanges into a ramp-like pressure

distribution (green and red urves in Fig. (4.7(b))). A gradual derease of sur-

fae pressure up to the reovery region an also be observed in Fig. (4.10). The

minimization would like to ahieve as many panels with a pressure gradient value

equal to bias as possible. In this way loal aeleration and deeleration of the
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Figure 4.9: Surfae pressure distribution of an optimal surfae at b = 0.0
omputed with (a) a panel method (b) a CFD analysis.

�ow is redued, but as a onsequene of the geometrial onstraint points, there

are still some regional varianes of pressure that an not get diminished.

How the optimization deforms the surfae shape in order to ahieve the

plateau- and ramp-like pressure distribution an be observed in Fig. (4.11). The

�gure presents three horizontal slies through the �ow passing the original and

two optimal (b = 0.0 and b = −0.2) surfaes in a top view. The slies lie at the

mid height of bodies and are oloured in magnitude of veloity olour sheme. At

b = 0.0 (Fig. (4.11(b))) the optimization produed a blunt nose and an almost

onstant body thikness all the way to the reovery region, whih moved all the

aeleration of the �ow to the front of the body. At b = −0.2 ase (Fig. (4.11()))

a muh pointier nose and a gentle surfae shape slope behind it an be notied.

In this way a gradual aeleration of the �ow on �rst two thirds of the surfae

was ahieved.

Another shape harateristi that an be observed in Fig. (4.11) is a smaller

maximal width of optimal bodies ompared to the original surfae. The position
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Figure 4.10: Surfae pressure distribution of an optimal surfae at b = −0.2
omputed with (a) a panel method (b) a CFD analysis.

of the maximal width is also moved forward. In this way a high trough of negative

pressure at approximately x = 1.75m of the original shape (blak urve in Fig.

(4.7(b))) is diminished and onsequently a shorter reovery region ahieved. For

both optimal surfaes, a slightly thinner boundary layer with a faster �ow at the

reovery region was produed (Fig. (4.11)), whih additionally helps to redue the

pressure drag. At the trailing edge of the body, on the other hand, the situation

hanges. Beause of the larger trailing edge angle, the optimal surfaes produe

slightly thiker boundary layer ompared with the original surfae.

A smoother �ow in�uenes also the amount of the frition drag. A favourable

pressure distribution delays the formation of the instabilities, whih postpones

the transition from laminar to turbulent �ow (Fig. (4.12)). The original and

two optimized surfaes (b = 0.0 and b = −0.2) are oloured in inverse turbulent

time-sale ω [56℄ olour sheme (denoted as omega in Fig. (4.12)), where a step in

a value of ω indiates the point of transition. An average loation of a transition

is in the ase of a b = 0.0 optimal surfae at approximately the same longitudinal
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(a)

(b)

()

Figure 4.11: A horizontal slie through the �ow passing the (a) original

surfae, (b) optimal surfae at b = 0.0 and, () optimal surfae at b = −0.2.
The slies lie at the mid height of bodies.

distane x as in the ase of an original shape. An inrease of skin frition drag

of an optimal surfae at b = 0.0 is therefore a onsequene of an inrease of the

surfae area. The orrelation of the two quantities is in this ase obvious from

Fig. (4.7(a)). At smaller bias numbers, on the other hand, the postponement of

the transition impats the amount of frition drag by a larger extent than the

hange of the surfae area. The average loation of transition for the optimal
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surfae with b = −0.2 (Fig. (4.12())) is notieably moved bak to the end of the

fairing ompared to the original shape. Its skin frition drag is, mostly beause

of this reason, redued by 7% (Fig. (4.7(a))).

At this test ase it was shown, that proposed optimization method an be

suessfully used at reduing a drag fore of a sleek body having an attahed

�ow. The optimization produes a muh smoother pressure distribution, whih

thins down the boundary layer and redues the pressure drag. A favourable pres-

sure gradient over a major part of the surfae that postpones the transition and

onsequently redues the amount of the frition drag, is possible by inorporating

an amount of streamwise pressure gradient bias into the ost funtion.

4.3 Test Case No. 2: Wing-Root Separation

An optimization of a fairing that modi�es the shape of the wing-fuselage juntion

is treated in this ase. A shape of a wing-fuselage on�guration was modeled, for

whih it was antiipated that it has problems with wing root �ow separation as a

ause of a wing-fuselage �ow interferene. With this test ase it will be shown that

the proposed surfae optimization an be used to eliminate this massive root �ow

separation. Moreover, the resulting surfaes have similar features as proposed

by numerous papers on the topi [59�62℄, that is, a smoother surfae blending

of a wing to a fuselage instead of a sharp orner juntion, slight indenting of a

fuselage over and under the wing, and a hord-wise extended wing leading and

trailing edge in the root region.

The outer part of the wing experienes a freestream �ow angle of attak

dereased by the indued angle, as a onsequene of a �nite wing. On the other

hand, the root part of the wing in reality feels an inreased angle of attak, beause

of the ylindrial shape of the fuselage. At a moderate freestream angle of attak,

the �ow aelerates around the fuselage in the vertial diretion and experienes

the highest veloity right at the wing (for a mid wing-fuselage on�guration).

Beause of this inrease in the vertial omponent of veloity, the root of the

wing �ies at an e�etive angle of attak that is greater than the freestream one.

This auses the �ow to separate more readily even at moderate freestream �ow

angles of attak and at relatively smaller angles than the rest of the wing. Sine

the �ow separation at the wing root propagates in a delta shape along the wing

and the fuselage, it inreases the drag substantially and an even redue the

responsiveness of the airplane ontrol surfaes [63℄. This e�et should therefore
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(a)

(b)

()

Figure 4.12: Surfae distribution of inverse turbulent time-sale ω [56℄ for

(a) original surfae, (b) optimal surfae at b = 0.0 and, () optimal surfae

at b = −0.2.

be avoided.

Even though the main goal of the seond test ase is to eliminate the wing

root separation, the ase is evaluated also at an angle o� attak equal to zero.

As it will be shown in this setion, the optimization in ase of α = 0 redues the

pressure drag, but slightly inreases the skin frition drag due to the inrease of

the surfae areas.
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4.3.1 Veri�ation

The evaluated geometry has a bilateral symmetrial shape. The airfoil used at

the wing design is on the other hand not symmetrial. In order to simplify the

model, the tail isn't taken into onsideration. Its absene has little in�uene on

the solution, sine its loation is far from the fairing.

The ase is onsidered as a lifting problem, where both the wing and the

fuselage, beause of their nonsymmetry and/or �nite angle of attak, produe

some amount of lift. This is why there is a wake modeled behind the whole body,

but the Kutta ondition is satis�ed only on wing's trailing edge. For the fuselage,

the assumption is made that it doesn't shed vortiity into the wake, whih results

in a onstant doublet wake strength. The wake has a shape of an inlined �at

plane that is leaving the trailing edge of the body along the wing's trailing edge

bisetor plane and extends approximately thirty wing-hord distanes behind the

body. The surfaes of the body and the wake are disretized into NB and NW

panels, respetively. The surfae mesh, where only the beginning of the wake

is depited, is presented in (Fig. (4.13)). The panels are oloured in doublet

strength distribution for a zero angle of attak ase. The wake doublet strength

learly shows its linear relationship to the bound irulation strength (Eq. (2.46)).

Sine the fuselage produes less lift ompared to the root of the wing, its bound

irulation must be, aording to Kutta-Joukowski theorem, smaller, whih means

also a smaller absolute value of a doublet strength. A similar relationship an be

written for the wingtip where the lift distribution goes to zero. As it an be seen

in Fig. (4.13), at the end of the wing the doublet strength also goes to zero. On

the other hand, the maximum absolute value of doublet strength lies at the wing

span loation with the maximum lift.

Sine the main interest is eliminating the separation, the basi ost funtion

(Eq. (3.32)) together with the Stratford separation riterion (Eq. (3.35)) is used

in an optimization analysis. The Stratford onstraint for the pressure reovery

region has, in this ase, a signi�ant role in removing the separated �ow. Even

though a slightly higher ritial Stratford number (Eq. (3.35)) of 0.50 is used to

assure the onvergene, favourable results are still ahieved and will be presented.

In this ase a0 = 50 is used in order to ompute GM (Eq. (3.39)). Sine the

pressure reovery region starts at di�erent streamwise loations on the fairing

surfae, a linearly dereasing value of the integral from Eq. (3.36) is used for

reovery region panels, where the maximum is at the fuselage and the minimum
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Figure 4.13: Body and wake doublet distribution at α = 0◦, omputed with

panel method. Only a part of the wake is presented.

at the wing. The minimal integral value is omputed as an integral over the

streamline at the wing-fairing juntion that runs from the point right above the

stagnation point to the pressure reovery region. The maximal integral value is

on the other hand omputed as an integral over the streamline that runs from

the nose of the fuselage to the pressure reovery region on the fairing-fuselage

juntion. They are omputed after a few steps of optimization (Subsetion 3.2.3),

averaged over all optimizations at the same angle of attak and used as a onstant

at all omplete optimization proedures at the same angle of attak.

In all optimization omputations, unless otherwise stated, 12 × 4 number of

ontrol points in order to ompute the magnitude of hange surfae funtion (Eq.

(3.28)) is used, of whih twelve are around the fairing in a streamwise diretion

and four are in a spanwise diretion. All ontrol points are slightly onstrained

(lb = −0.4m and ub = 0.4m in Eq. (3.26)) in order to prevent oinidene of

nodes and also to assure a physially aeptable surfae shape.

The deformation vetor of eah node on the fairing that is being optimized

points in the spanwise diretion (Fig. (4.14)), whih preserves the geometry of

the wing. Vetors in nodes, that lie lose to the leading edge of the wing point in

diretion of the leading edge, whereas vetors that lie lose to the trailing edge

point parallel to the trailing edge diretion. Vetors are normalized, but on the

half of the fairing loser to the fuselage (0 ≤ u ≤ 0.5) multiplied by a dereasing

funtion (Eq. (4.5)) in order to remain tangential to the �xed fuselage surfae.

In order to ahieve a proper preision of the results, the optimization of a

ase at a moderate angle of attak (α = 8◦) has been run at three di�erent
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Figure 4.14: Path that is being optimized (grey panels) and its deformation

vetor �eld saled by a fator of 0.125 (red vetors).

surfae mesh densities. After a omparison of a relative di�erene between the

initial value of the ost funtion and its �nal onverged value for di�erent mesh

densities (Fig. (4.15(a))), a mesh with a number of panels equal to NB = 1150

was hosen for all optimization omputations. In this way the results di�er from

the �ner mesh results only by a few tenths of a perent, but the omputation

times are redued signi�antly.

All optimization results at all hosen angles of attak together with the orig-

inal surfae shape have been veri�ed in a CFD analysis using the OpenFOAM

program. A proper volume mesh density had to be hosen also for the CFD anal-

ysis. An air�ow around one of the optimal surfaes at an angle of attak equal to

8◦ with three di�erent mesh densities has been simulated. A relative di�erene

of pressure and frition drag oe�ient and lift oe�ient between simulations

with di�erent mesh density and a simulation with the highest mesh density is

presented in Fig. (4.15(b)). From the �gure it an be seen that the ase with

approximately �ve million ells is a reasonable hoie for the simulation, sine all

the oe�ients hange less than 0.2% if the mesh gets re�ned even further. The

same number of ells was used at the rest of the simulations in this test ase.

Sine a high Reynolds number Spalart-Allmaras turbulene model was used, a

value of y+ [64℄ was also heked after hoosing the mesh density. A y+ surfae

distribution together with a slie through a mesh oiniding with the symmetry

plane is presented in Fig. (4.16). The values of y+ on�rm an appropriate surfae

mesh density hoie.
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Figure 4.15: (a) A onvergene of a relative di�erene between initial ost

funtion value and its minimized value, with respet to the body surfae

mesh density at optimization proess. (b) A onvergene of the fore oef-

�ients with respet to the volume mesh density at CFD analysis.

Figure 4.16: y+ surfae distribution and a slie through a mesh of a on-

verged simulation of an air�ow around one of the optimized surfaes at 8◦

angle of attak.
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4.3.2 Results

The optimization of the fairing has been run at di�erent ombinations of two

angles of attak, α1 = 0◦ and α2 = 8◦. The sum of ost funtion values at both

angles has been weighted aording to equation

(1− w) · Fα1
+ w · Fα2

. (4.6)

If the weight w is equal to zero, the ase is being optimized only at an angle

of attak α1, whereas if the weight is one, only the α2 ase is being optimized.

Besides zero and one, three additional weights have been used in this work, 0.25,

0.5 and 0.75.

First, the optimized surfaes at weights w = 0 and w = 1 have been sought,

where the original surfae was used as an initial ondition of the optimization

proess. These two optimized surfaes were then used as an initial ondition at

the rest of the values of weight w. Therefore, there are two families of solutions.

One where the initial surfae was the optimal surfae at α1 (w = 0) and the other

with the initial surfae being the optimal surfae at α2 (w = 1).

All optimized surfae shapes at all values of weight together with the original

surfae have then been evaluated with CFD analysis. The relative di�erene

of pressure, frition and total drag between the original and optimal shapes is

at angle of attak α1 = 0◦ presented in Fig. (4.17(a)) and at α2 = 8◦ in Fig.

(4.17(b)).

The two families of solutions are presented with the same olour, but with

a di�erent line style. Solutions that have a w = 0 optimal shape as an initial

ondition are onneted with a solid line to their initial ondition, and solutions

with a w = 1 optimal shape as an initial ondition are onneted with a dash-dot

line to their initial ondition.

At both angles of attak, the solution w = 0 and the solutions that derive

from it have smaller pressure and total drag, but larger frition drag ompared to

the solution w = 1 and solutions with w = 1 as an initial ondition. It an be also

seen from Fig. (4.17), that all solutions have larger frition drag ompared to the

original shape. In order to �nd an explanation for the frition drag inrease after

the optimization, the surfae areas of the whole body (fuselage, wing and fairing)

of all solutions have been plotted in Fig. (4.17) in order to ompare them with

the frition drag. It an be seen from the �gures, that the two relative di�erenes

have a good orrelation at α1 = 0◦ and a poor one at α2 = 8◦. The di�erene
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Figure 4.17: Relative di�erene of drag and surfae area of all optimized

surfaes ompared to the original surfae, omputed with OpenFOAM at

angle of attak equal to (a) α1 = 0◦ and (b) α2 = 8◦.

between the relative inrease of the area and the frition drag is at α1 smaller

than 0.3%, whereas at α2 approximately 3%. The fritional omponent of the

drag at zero angle of attak therefore inreases mainly beause of the inrease of

the wetted surfae.

On the other hand, at moderate angles of attak, where the separation ours

at the wing root region, the inrease of the area only slightly in�uenes the amount

of the frition drag. At the separated region, the �ow veloity at the surfae is
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small or an even have an opposite diretion. After optimization, the �ow is

attahed to the surfae, its veloity at the surfae signi�antly inreases, whih

produes the major part of the frition drag inrease.

Even though the frition is ampli�ed at all optimized shapes, the thinning

of the boundary layer, as a result of the pressure gradient minimization, still

in�uenes the amount of total drag at both angles of attak by a larger extent.

The boundary layer and the wake are muh thinner at α2 = 8◦ beause of the

reattahment of the �ow, whih results in more than 20% of derease in pressure

drag and onsequently in more than 16.5% of derease in total drag for w = 0

solution and all of its three derivatives.

The exeptions at zero angle of attak are the w = 1 solution and its two loser

derivatives at w = 0.5 and w = 0.75. The optimized shape of these solutions

bulked up on the upper front region of the fairing, whih redued the reovery

region behind the new bulge and assured an attahed �ow. At zero angle of attak,

on the other hand, this bulge inreased the reovery region, whih thikened the

boundary layer and produed more pressure drag than the original surfae.

It is also interesting to note that the optimized shape at w = 1 for the angle

of attak α2 = 8◦ is poorer than the solution at w = 0 and all of its derivatives.

Sine the problem has at least two loal minima solutions, the hoie of an initial

ondition plays an important role at optimization proess.

Comparing pure drag data does not, however, reveal the whole piture. It

must also be determined how the optimization e�ets the lift fore. The data for

three di�erent surfae shapes has been presented on the polar plot in Fig. (4.18).

Besides the original shape, an optimal shape with a minimal total drag at both

angles of attak (w = 0.75, initial ondition at w = 0) and an optimal shape

at w = 1 have been hosen to be ompared. A surfae area used in oe�ient

alulations is the area of a planform of the original wing strethed tangentially to

the symmetry plane at the middle of the fuselage. The dots in the �gure denote

the drag and the lift oe�ients at angles of attak equal to 0

◦
, 6

◦
and 8

◦
. For the

original surfae additional simulations have been run at angles of attak equal to

7

◦
and 9

◦
, but the data for the latter angle is o� the plot. A �t with a polynomial

urve of degree of four for eah data group was added to the �gure, where data

only at the smaller three angles of attak was used on the original surfae. It an

be seen from the Fig. (4.18), that the drag of the original shape dramatially

inreases and the lift dereases at angles greater than 7

◦
(CD > 0.058). At these

angles the massive separation ours, whih ompletely hanges the air�ow over
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Figure 4.18: Polar plots for an original and two hosen optimal surfae

shapes. The data at di�erent angles of attak is �tted with a polynomial

urve of degree of four.

the fairing. At the optimized shapes, on the other hand, no separation ours.

Even though the polar of the w = 1 solution is shifted to higher drag oe�-

ients ompared to the other two surfaes, it is also shifted to higher lift oe�-

ients. By omparing the polar urves in the Fig. (4.18) it an be stated, that

the solution at w = 1 produes the least drag of the three at the same amount of

lift. Although the w = 0.75 solution has the smallest drag at all observed angles

of attak, the w = 1 solution is still a preferred one to be used on the airplane due

to its better polar. The fat that at the same lift a smaller drag an be ahieved

is the most important ahievement at the surfae optimization of a lifting body.

A omparison of a surfae pressure distribution between the panel method

omputations and the CFD analysis for the original surfae and the optimal sur-

fae at w = 0.75 (initial ondition is a solution at w = 0) at zero angle of attak

are presented in Fig. (4.19) and Fig. (4.20), respetively. Pressure distribu-

tions obtained with the panel method and CFD alulations are omparable even

though a muh oarser surfae mesh is used at the former method. The surfae

optimization produed an indent fairing at the fuselage-wing juntion, as an be

seen from the shape of the white line in Fig. (4.20). Sine the �ow is aelerated

around the wing and at the same time around the fuselage, an unneessary high

speed �ow is ahieved at the original fairing, whih auses an additional amount

of drag (Setion 2.2). This e�et is redued at the optimized surfae, where a

slightly larger pressure is ahieved at the observed region. The drag redution
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Figure 4.19: Surfae pressure distribution of an original surfae omputed

with (a) a panel method and (b) a CFD analysis at zero angle of attak.

an be observed in Fig. (4.17(a)).

The pressure distributions for the same two surfae shapes and additionally

also for the optimized shape at the w = 1, omputed with the panel method

and CFD alulations, but this time all at the angle of attak equal to 8◦, are

presented in Fig. (4.21), Fig. (4.22), and Fig. (4.23), respetively.

The pressure distributions between the panel method and the CFD analysis

are again omparable, with an exeption of the original shape around the fairing.

The panel method predits a smooth and attahed potential �ow (Fig. (4.21(a))),
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Figure 4.20: Surfae pressure distribution of an optimal shape at w = 0.75
with an initial ondition of a w = 0 shape, omputed with (a) a panel

method and (b) a CFD analysis at zero angle of attak.

whereas the CFD analysis alulates a huge separation at the wing-fuselage jun-

tion (Fig. (4.21(b))). A bundle of streamlines, oloured in a magnitude of veloity

olour sheme, is added to all CFD analysis �gures in order to emphasize the im-

provement of the optimized surfaes with respet to the original one at the 8

◦
of

angle of attak. For the original shape the streamlines detah from the surfae

already at the beginning of the wing, very lose to the leading edge. At both op-

timized shapes, on the other hand, the streamlines remain attahed all the way
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Figure 4.21: Surfae pressure distribution of an original surfae omputed

with (a) a panel method and (b) a CFD analysis at angle of attak equal

to 8

◦
.

to the trailing edge and only a small separation an be observed. Despite some

separation, the �ow is smoothly passing a major part of the body. The aerody-

namis of the airplane are improved, as an be seen also from Figs. (4.17(b)) and

(4.18).

At all the CFD alulation �gures a slie, oiniding with the symmetry plane,

with a veloity magnitude distribution is added. At some �gures also a white line

on the surfae in a spanwise diretion is added in order to have a better pereption
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Figure 4.22: Surfae pressure distribution of an optimal shape at w = 0.75
with an initial ondition of a w = 0 shape, omputed with (a) a panel

method and (b) a CFD analysis at angle of attak equal to 8

◦
.

of the surfae shape. The shape of the fairing at the bottom side is qualitatively

the same for all optimal ases. The surfae at the fuselage is slightly indented

ompared to the original shape (Fig. (4.24)), whih slows down the �ow and

helps to improve the harateristis of the fairing.

At this test ase it was shown that the proposed optimization an be used to

get rid of the massive separation in the wing root region. In this way, a signi�ant

redution of drag is ahieved. Whether the shape will indent in the fuselage in
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Figure 4.23: Surfae pressure distribution of an optimal shape at w = 1
with an initial ondition of an original shape, omputed with (a) a panel

method and (b) a CFD analysis at angle of attak equal to 8

◦
.

order to deelerate the �ow or bulge out in order to redue the reovery region

depends primarily on the shape used for the initial ondition. In this work two

families of solutions were enountered, whih proves the importane of the initial

ondition in the optimization proess.
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Figure 4.24: Surfae pressure distribution of (a) an original shape and (b)

an optimal shape at w = 0.75 with an initial ondition of a w = 0 shape,

omputed with a panel method at an angle of attak equal to 8

◦
.

4.4 Test Case No. 3: High Reynolds Number

In the last test ase, the bulb keel of a sailboat is treated. More spei�ally, the

two fairings between the hull and the �n and between the �n and the bulb are

optimized. This test ase distinguishes itself from the previous ases by having a

greater Reynolds number. Even though a typial veloity is small ompared to

previous ases, beause of the water as a medium of the �ow, the Reynolds number

is equal to or greater than 107. Large Re numbers ause an earlier transition than

do smaller Re numbers, whih means that turbulent �ow is present more or less

throughout the whole surfae area. Beause of this, the amount of wetted area
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and the surfae veloity should be kept as small as possible in order to redue

the drag.

4.4.1 Veri�ation

The body has a bilateral symmetrial shape whih is preserved during surfae

optimization. The problem is treated at small angles of attak, α = 4◦ and

smaller, where typial ruise takes plae. Only the surfae of the hull under

the waterline is taken into onsideration, where the water level is onsidered

as a symmetry plane. The waves aren't taken into aount. The roll angle of

the sailboat, as a onsequene of the fore in the sails, is also not taken into

onsideration in this work.

Sine most of the �ow is turbulent in this test ase, its veloity should be

as small as possible and unneessary aelerations and deelerations should be

avoided. That is why a basi ost funtion (Eq. (3.32)) is used, whih auses

almost an uniform pressure distribution and in this way the smallest negative

pressure.

In all optimization omputations 14× 6 number of ontrol points are used to

ompute the magnitude of hange of the surfae funtion (Eq. (3.28)). 14 are

used in the streamwise diretion around eah of the two fairings and 6 are used

in the spanwise diretion. All ontrol points are slightly onstrained (lb = −1.0m

and ub = 1.0m in Eq. (3.26)) in order to prevent oinidene of nodes and also

to assure a physially aeptable surfae shape.

Deformation vetors of all nodes of both fairings that are being optimized

point in diretion parallel to the spanwise diretion of the �n (Fig. (4.25)), whih

preserves the geometry of the �n. Vetors in nodes, that lie lose to the leading

edge of the �n point in diretion of the leading edge, whereas vetors that lie lose

to the trailing edge point parallel to the trailing edge diretion. Deformation

vetor �eld of both juntions are normalized on both juntion halves lose to

the �n, but gradually derease to zero (Eq. (4.5)) toward the hull and the bulb,

respetively. In this way both pathes remain tangential to �xed surfaes.

A Stratford riterion (Eq. (3.35)) is used in order to prevent the �ow sepa-

ration in the pressure reovery region. Sine the pressure reovery has a onvex

shape, a value of 0.39 is used as a ritial Stratford number in order to onstrain

the value of GM (Eq. (3.39)). In this ase a0 = 100 is used in order to ompute

GM (Eq. (3.39)). Sine the pressure reovery region starts at di�erent streamwise
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(a) (b)

Figure 4.25: Pathes, (a) hull-�n and (b) �n-bulb fairing, that are being

optimized (grey panels) and their deformation vetor �elds saled by a

fator of 0.25 (red vetors).

loations on the body, a linearly dereasing value of the integral from Eq. (3.36)

is used for reovery region panels at both fairings. Maxima are at the hull and

the bulb and minima at the �n. The minimal integral value of the upper fairing is

omputed as an integral over the streamline at the �n-fairing juntion that runs

from the point right next to the stagnation point (on the pressure sution side) to

the pressure reovery region. The maximal integral value is, on the other hand,

omputed as an integral over the streamline that runs from the nose of the hull

to the pressure reovery region on the fairing-hull juntion. Similar integration

is done for the �n-bulb fairing. All integrals are omputed after a few steps of

optimization (Subsetion 3.2.3), averaged over all optimizations at the same angle

of attak and used as a onstant at all omplete optimization proedures at the

same angle of attak.

The wake is modeled behind the �n, but strethes also behind the hull and

the bulb. The Kutta ondition is met only along the trailing edge of the �n.

For the hull and the bulb the assumption is made that they don't shed vortiity

into the wake, with the exeption of a single vortex at the end of the bulb (outer

edge of the wake). The doublet distribution in the wake behind them is therefore

onstant. The wake oinides with the symmetry plane of the body at all observed

angles of attak and it strethes approximately thirty �n hord lengths behind

the body. A body and a wake doublet distribution, where only a part of the

wake an be seen, is for the original shape at 4

◦
angle of attak presented in Fig.

(4.26).

A surfae optimization of a ase at an angle of attak equal to 4

◦
has been
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Figure 4.26: Body and wake doublet distribution at α = 4◦, omputed with

a panel method. Only a part of the wake is presented.

run at three di�erent surfae mesh densities. After a omparison of the relative

di�erene between the initial value of the ost funtion and its �nal onverged

value for di�erent mesh densities (Fig. (4.27(a))), a mesh with a number of panels

equal to NB = 1780 has been hosen for all optimization omputation. Compared

to the �ner mesh, the omputation times are in this way redued signi�antly and

the results di�er only for a few tenths of a perent.

For the CFD analysis a proper volume mesh density also had to be hosen.

For one of the optimal shapes the �ow passing the surfae at angle of attak equal

to 4◦ has been simulated with three di�erent mesh densities. A relative di�erene

of pressure and frition drag oe�ient and lift oe�ient between simulations

with di�erent mesh densities and a simulation with the highest mesh density is

presented in Fig. (4.27(b)). The ase with approximately 11 million ells is a

reasonable hoie for the simulation, sine by re�ning the mesh even further, all

the oe�ients hange for less than 0.4%. The same mesh density was used at

the rest of the simulations of the sailboat keel. Sine a high Reynolds number

Spalart-Allmaras turbulene model was used, the same as at the airplane test

ase, a value of y+ was heked after hoosing the mesh density. A y+ body

surfae distribution is presented in Fig. (4.28). A slie through a mesh oiniding

with the symmetry plane is added to the �gure. A proper mesh density at the

surfae is on�rmed by the values of y+.
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Figure 4.27: (a) A onvergene of a relative di�erene between initial ost

funtion value and its minimized value, with respet to the body surfae

mesh density at optimization proess. (b) A onvergene of the fore oef-

�ients with respet to the volume mesh density at CFD analysis.

Figure 4.28: y+ surfae distribution and a slie through a mesh of a on-

verged simulation of an air�ow around one of the optimized surfaes at 4◦

angle of attak.

4.4.2 Results

Similar to the previous test ase, the optimization of both fairings has been run

at three di�erent ombinations of two angles of attak, α1 = 0◦ and α2 = 4◦,

where the Eq. (4.6) has been used to ompute the weighted sum. Again, if w = 0

or w = 1, the ase is optimized only at the 0

◦
or 4

◦
angle of attak, respetively.
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If w = 0.5, an optimal surfae with a minimal sum of pressure gradient at both

angles of attak together is being searhed. The original surfae was used as an

initial ondition at all weights. For w = 0.5 ase di�erent initial onditions were

tried, but the optimization always onverged to the same solution. The fairings

were optimized suessively. The upper fairing, that was optimized �rst, was used

afterwards for the optimization of the bottom fairing. Sine the pathes are more

than 1.5m apart in the spanwise diretion, a negligible error was made beause

of this.

Eah of the optimized surfaes was evaluated with a CFD analysis. The

relative di�erenes of fores and surfae area values with respet to the simulation

results of the original shape are presented in Fig. (4.29). Compared to the original
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Figure 4.29: Relative di�erene of drag and surfae area of all optimized

surfaes ompared to the original surfae, omputed with OpenFOAM at

angle of attak (a) α1 = 0◦ and (b) α2 = 4◦.

shape, the total drag was redued for all solutions. The smallest drag at both

angles of attak, an be observed at w = 1 solution. For α1 (Fig. (4.29(a)))

the total drag is redued by 0.5% and for α2 (Fig. (4.29(b))) by approximately

0.43%. Even though the redutions of the drag are a few tenths of a perent

ompared to the original shape, the numbers are still notable, beause of the

large absolute value of the total drag. In Fig. (4.29) the relative hanges of the

omplete body drag are presented. The perentage of the relative redution of

drag for only the fairings is muh higher, sine they over only 11% of the total

body surfae. Besides that, approximately one third of the surfae is due to the

�n, whih doesn't hange the shape during optimization. Beause of this, even

though the relative redution of the total drag of the whole body has the same
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order of magnitude as the mesh density error (Fig. (4.27(b))), the results are still

signi�ant.

The absolute value of the frition drag is about 14 times larger than the pres-

sure drag at zero angle of attak and 5 times larger than at an angle of attak

equal to 4

◦
. Even though the pressure drag at α1 redued by more than 3% for

all solutions, the total drag still hardly exeeded the −0.5% hange, beause of

the large ontribution of the frition drag. Similar situation an be observed at

α2, where the pressure drag for w = 0.5 and w = 1 examples even inreased om-

pared to the original surfae. The minimization of the frition drag omponent

is therefore in this test ase muh more important ompared to the pressure drag

in order to optimize the shape of the surfae. The surfae area of body after

eah optimization hanged for less than one tenth of a perent ompared to the

original body (Fig. (4.29)). The redution of the surfae area is therefore not the

primary reason for frition drag redution. The major ontribution goes to the

smoother and on average slower �ow around an optimized surfae.

During sailing, the sailboat rolls by an angle at whih the moments produed

by the wind in the sails and by the weight in the bulb equalize [65℄. Sine

typially the sailboat also slightly drifts at an leeway angle (α angle at this test

ase), as a onsequene of the wind, a lift fore on the �n is generated, whih

o�ers an additional roll angle ontrol of the sailboat. The lift fore therefore ats

in diretion perpendiular to the streamwise and spanwise diretion of the �n.

Polar urves of the original and all optimized surfaes are presented in Fig. (4.30),

where also the hange of the lift oe�ient an be observed as a onsequene of

the optimization. A surfae area used in oe�ient alulations is an area of the

planform of the �n, ut at the hull, and strethed tangentially to the middle of

the bulb.

The dots in the �gure denote the drag and the lift oe�ients at angles of

attak equal to 0

◦
, 3

◦
and 4

◦
. A �t with a polynomial urve of degree of four for

eah data group is added to the �gure. From the Fig. (4.30) it an be seen, that

all optimized surfaes have besides smaller drag also larger lift oe�ient at all

angles of attak greater than zero. The polar urves therefore shift in a favourable

diretion. The solution at w = 1 has the smallest drag at all lift oe�ients, whih

makes it the one to use at the real ase. The solution at w = 0.5 almost oinides

with the optimal one, whih is also in agreement with the data from the Fig.

(4.29).

A omparison of a surfae pressure distributions between the panel method
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Figure 4.30: Polar plots for an original and optimal surfae shapes. The

data at di�erent angles of attak is �tted with a polynomial urve of degree

of four.

omputations and the CFD analysis for the original surfae and the optimal

surfae at w = 1 are at zero angle of attak presented in Fig. (4.31) and Fig.

(4.32) and at 4

◦
angle of attak in Fig. (4.33) and Fig. (4.34), respetively.

The �gures are presented from the pressure �sution side� view. In all CFD

omputation �gures a slie, oiniding with the symmetry plane, with a veloity

magnitude distribution and a white line on the surfae in a spanwise diretion

is added in order to have a better pereption of the �ow passing the body and

the surfae shape, respetively. The pressure distributions omputed with the

panel method are as in the previous two test ases (nonseparated �ow examples)

omparable with the CFD analysis. The surfae optimization produed an indent

surfae at the sides of the hull-�n fairing (e.g. Fig. (4.32(b))), similar to the

airplane test ase at zero angle of attak (e.g. Fig. (4.20(b))). Sine the �n and

the hull have muh more slender shape ompared to the wing and the fuselage

from the previous test ase, the aeleration around the fairing is not so intense

and as a onsequene, the indent is not so severe. At the leading and trailing edge,

on the other hand, the surfae bulged. The sharp orner between the �n and the

hull hanged into a smooth surfae transition, whih is additionally presented in

the body front view in Fig. (4.35). The interferene of the hull and the �n on the

�ow passing the fairing is in this way redued, whih stabilizes and slows down

the �ow and indiretly redues the drag.
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Figure 4.31: Surfae pressure distribution of an original surfae omputed

with (a) a panel method and (b) a CFD analysis at zero angle of attak.
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Figure 4.32: Surfae pressure distribution of an optimal shape at w = 1.0,
omputed with (a) a panel method and (b) a CFD analysis at zero angle of

attak.
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Figure 4.33: Surfae pressure distribution of an original surfae omputed

with (a) a panel method and (b) a CFD analysis at 4

◦
angle of attak.
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Figure 4.34: Surfae pressure distribution of an optimal shape at w = 1.0,
omputed with (a) a panel method and (b) a CFD analysis at 4

◦
angle of

attak.
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Figure 4.35: Front view of the pressure surfae distribution of the �n-hull

fairing at 4

◦
angle of attak omputed with the panel method for (a) original

surfae and (b) optimized surfae at w = 1.

The surfae of the �n-bulb fairing went through similar hanges during op-

timization, but in a muh smaller extent. The surfae of the original fairing

apparently already had a shape lose to the optimal one.
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Chapter 5

Conlusion

A novel method for automati optimization of aerodynami surfaes using pres-

sure based funtionals is presented in this work. For this purpose, potential �ow

is used as a valid approximation of the attahed �ow passing over an arbitrary

body. The outome of the method is a favourable pressure distribution that in-

diretly results in a redued drag. The minimization of a ost funtion is done

using a sequential quadrati programming algorithm.

The proposed panel method that is used to ompute pressure distribution is

�rst validated using an example of a potential �ow passing a sphere. The relative

di�erene between the panel method solution and the analytial solution is shown

to be inversely proportional to the number of panels the surfae is disretized into.

The proposed optimization method is then used in three oneptually di�erent

test ases. All ases are evaluated with results obtained by CFD analysis.

In the ase of optimization of a fairing, enlosing a human powered vehile,

it is shown that the transition from laminar to turbulent �ow is delayed and the

boundary layer at the pressure reovery region is thinned. In this way, the total

drag of the biyle is redued by more than 10%. In the seond test ase, where

the fairing of the wing-fuselage juntion on an airplane is optimized, a massive

root �ow separation at moderate angle of attak is eliminated. The total drag at

angle of attak equal to 8

◦
is redued by more than 16.5%. Even though a great

importane of the initial ondition is shown in this ase, the shape of the fuselage

at the fairing is still in most optimization results indent in order to deelerate the

�ow. The resulting surfae shape resembles similar test ases in the literature,

as was presented in Chapter 4. The last test ase represents an optimization of

a bulb keel of a sailboat, where both fairings (hull-�n and �n-bulb) are being

treated. In this high Re ase the total drag is redued by 0.5% and 0.43% at
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0

◦
and 4

◦
angle of attak, respetively. The primary reason for redution is a

smoother and on average slower �ow around optimized surfaes.

With the proposed method, satisfatory results an be obtained suh that

lower drag on the aerodynami surfaes an be antiipated. The method is on-

eptually simple and omputationally low demanding. Even though a strutured

mesh is used in present work, the method an be equivalently used also with

an arbitrary unstrutured mesh, whih enables one to rearrange the panels in

order to redue their number. Beside geometrial onstraints and Stratford ri-

terion other onstraints an be easily inorporated into the method suh as e.g.

a �xed wing lift, wing bending moment, surfae area et. This favourable pres-

sure distribution based method an also be extended to reshape e.g. a wing in

order to produe a maximal lift oe�ient or even a shok-free surfae [40℄ in

ase of a transoni �ight. The method therefore enables one to takle di�erent

aerodynami problems with minor modi�ations.

On the other hand, the method still has some limitations that need to be

adopted suh as a need for a prede�ned path and deformation vetor �eld, a

possibility of intersetion of panels during the optimization proess and a lak

of information about the drag fore. The latter drawbak onsequently means a

need for a CFD evaluation of eah optimization result in order to estimate the

fore with whih the �ow ats on the body. A logial upgrade of the method is

therefore an introdution of the boundary layer equations into the method, whih

enables one to diretly estimate displaement thikness and drag fore [35℄. The

latter an be then used as an additional funtional that in a ombination with

existing pressure based funtionals o�er an even wider spetrum of possible ost

funtions that need to be further researhed and tested.

Pressure distribution resulting from the optimization proess using the exist-

ing method an be simply explained as is shown in present work. By upgrading

the method, on the other hand, one needs to realize that the oneptual simpli-

ity of the method and onsequently the understanding of results is being lost.

Moreover, the drag omputed with the boundary layer equations rely on the

exatness of the turbulene model inorporated in the equations, whereas the

pressure distribution is largely model independent.

Even though the results of the present method represent an improvement

regarding the pressure distribution and onsequently the drag fore of the body,

it would be also interesting to ompare them with other optimization methods.

Original ontributions in the present dissertation are
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- A novel three dimensional potential �ow optimization method where pres-

sure based funtionals are used to shape optimal aerodynami surfaes.

- Funtionals are found that, when minimized, redue the growth of the

Tollmien-Shlihting waves and ross-�ow instabilities and onsequently

promote laminar boundary layer.

- An implementation of the Stratford separation riterion as a onstraint

in the three dimensional optimization proedure using a "soft" maximum

priniple and Heaviside pressure funtion weight.

- A new priniple of reshaping the aerodynami surfae where a onstant

deformation vetor �eld multiplied by the variable Bézier surfae is added

to the original shape and where the Bézier surfae ontrol points represent

also the optimization variables.

The advanement of the siene and engineering as a onsequene of this

dissertation is therefore:

- A fast, automati, oneptually simple, and omputationally low demanding

optimization method that an be used already in the preliminary phase of

airraft design.

- The method enables one to design aerodynami surfaes that promote lam-

inar boundary layers and prevent �ow separation in the pressure reovery

regions together with di�erent geometrial onstraints.

- The usage and the e�ieny of this simple method was shown on di�erent

test ases taken from real life engineering appliations.

During authors graduate studies a paper with a related topi was published

in the Journal of Airraft

- Andreja²i£, M., and Veble, G., �Shape Optimization of Nonplanar Lifting

Surfaes and Planar-Nonplanar Break Points,� Journal of Airraft, Vol. 50,

No. 3, 2013, pp. 798-806.

The present work will be submitted as a paper to the Journal of Airraft as

- Andreja²i£, M., and Veble, G., �Optimization of Aerodynami Surfaes us-

ing Pressure Based Funtionals.� (Will be submitted in 2014)

89





Bibliography

[1℄ Miele, A., Theory of Optimum Aerodynami Shapes: External Problems

in the Aerodynamis of Supersoni, Hypersoni, and Free-Moleular Flows,

Aademi Press, New York, 1965.

[2℄ Lions, J. L., Optimal Control of Systems Governed by Partial Di�erential

Equations, Springer-Verlag, New York, 1971, Translated by S.K. Mitter.

[3℄ Pironneau, O., Optimal Shape Design for Ellipti Systems, Springer-Verlag,

New York, 1984.

[4℄ Jameson, A., �Aerodynami Design via Control Theory,� NASA CR-181749,

1988.

[5℄ Blakwell, J. A., Jr., �Numerial Method to Calulate the Indued Drag or

Optimum Loading for Arbitrary Non-Planar Airraft,� NASA SP-405, May

1976.

[6℄ Kroo, I. M., �Design and Analysis of Optimally-Loaded Lifting Systems,�

AIAA Paper 84-2507, Otober 1984.

[7℄ Jansen, P. W., Perez, R. E., and Martins, J. R. R. A., �Aerostrutural Opti-

mization of Nonplanar Lifting Surfaes,� Journal of Airraft, Vol. 47, No. 5,

September-Otober 2010, pp. 1490-1503.

doi:10.2514/1.44727

[8℄ Andreja²i£, M., and Veble, G., �Shape Optimization of Nonplanar Lifting

Surfaes and Planar-Nonplanar Break Points,� Journal of Airraft, Vol. 50,

No. 3, 2013, pp. 798-806.

doi:10.2514/1.C031991

[9℄ Veble, G., �A Parameter Free Cost Funtion for Multi-Point Low Speed

Airfoil Design,� CMES: Computer Modeling in Engineering & Sienes, Vol.

91



36, No. 3, 2008, pp. 243-260.

doi:10.3970/mes.2008.036.243

[10℄ Gamboa, P., Vale, J., Lau, F. J. P., and Suleman, A., �Optimization of a Mor-

phing Wing Based on Coupled Aerodynami and Strutural Constraints,�

AIAA Journal, Vol. 47, No. 9, 2009, pp. 2087-2104.

doi:10.2514/1.39016

[11℄ Dulikravih, G. S., �Aerodynami Shape Design and Optimization: Status

and Trends,� Journal of Airraft, Vol. 29, No. 6, 1992, pp. 1020-1026.

doi:10.2514/3.46279

[12℄ Newman, J. C., III, Taylor, A. C., III, Barnwell, R. W., Newman, P. A., and

Hou, G. J.-W., �Overview of Sensitivity Analysis and Shape Optimization

for Complex Aerodynami Con�gurations,� Journal of Airraft, Vol. 36, No.

1, 1999, pp. 87-96.

doi:10.2514/2.2416

[13℄ Jameson, A., �CFD for Aerodynami Design and Optimization: Its Evolu-

tion over the Last Three Deades,� 16th AIAA Computer Fluid Dynamis

Conferene, Orlando, FL, USA, 2003.

[14℄ Jameson, A., Martinelli, L., and Piere, N. A., �Optimum Aerodynami De-

sign using the Navier Stokes Equation,� Theoret. Comput. Fluid Dynamis,

Vol. 10, Iss. 1-4, 1998, pp. 213-237.

doi:10.1007/s001620050060

[15℄ Leoviriyakit, K., Kim, S., and Jameson, A., �Aero-Strutural Wing Plan-

form Optimization Using the Navier-Stokes Equations,� 10th AIAA/ISSMO

Multidisiplinary Analysis and Optimization Conferene, Albany, NY, USA,

2004.

doi:10.2514/6.2004-4479

[16℄ Peigin, S., and Epstein, B., �Robust Drag Minimization of Aerodynami

Wings in Engineering Environment,� Journal of Airraft, Vol. 43, No. 4,

2006, pp. 1195-1204.

doi:10.2514/1.18634

[17℄ Epstein, B., Jameson, A., Peigin, S., Roman, D., Harrison, N., and Vassberg,

J., �Comparative Study of Three-Dimensional Wing Drag Minimization by

92



Di�erent Optimization Tehniques,� Journal of Airraft, Vol. 46, No. 2, 2009,

pp. 526-541.

doi:10.2514/1.38216

[18℄ Reuther, J. J., Cli�, S. E., Hiks, R. M., and van Dam, C. P., �Pratial

Design Optimization of Wing/Body Con�gurations Using the Euler Equa-

tions,� 10th AIAA Applied Aerodynamis Conferene, Palo Alto, CA, USA,

1992, pp. 330-342.

doi:10.2514/6.1992-2633

[19℄ Reuther, J., Jameson, A., Farmer, J., Martinelli, L., and Saunders, D., �Aero-

dynami Shape Optimization of Complex Airraft Con�gurations via an Ad-

joint Formulation,� 34th Aerospae Sienes Meeting and Exhibit, Reno, NV,

USA, 1996.

doi:10.2514/6.1996-94

[20℄ Reuther, J. J., Jameson, A., Alonso, J. J., Rimlinger, M. J., and Saunders,

D., �Constrained Multipoint Aerodynami Shape Optimization Using an Ad-

joint Formulation and Parallel Computers, Part 1,� Journal of Airraft, Vol.

36, No. 1, 1999, pp. 51-60.

doi:10.2514/2.2413

[21℄ Leoviriyakit, K., and Jameson, A., �Aero-Strutural Wing Planform Opti-

mization, � 42st Aerospae Sienes Meeting and Exhibit, Reno, Nevada,

USA, 2004.

doi:10.2514/6.2004-29

[22℄ Katz, J., and Plotkin, A., Low-Speed Aerodynamis, 2nd edition, Cambridge

University Press, UK, 2001.

[23℄ Ragab, S. A., �Shape Optimization of Surfae Ships in Potential Flow Using

an Adjoint Formulation,� AIAA Journal, Vol. 42, No. 2, 2004, pp. 296-304.

doi:10.2514/1.9094

[24℄ Sevant, N. E., Bloor, M. I. G., and Wilson, M. J., �Aerodynami Design of

a Flying Wing Using Response Surfae Methodology,� Journal of Airraft,

Vol. 37, No. 4, 2000, pp. 562-569.

doi:10.2514/2.2665

93



[25℄ Wang, X., and Shan, X., �Shape Optimization of Stratosphere Airship,�

Journal of Airraft, Vol. 43, No. 1, 2006, pp. 283-287.

doi:10.2514/1.18295

[26℄ Dodbele, S., van Dam, C. P., Vijgen, P. M. H. W., and Holmes, B. J.,

�Shaping of Airplane Fuselages for Minimum Drag,� Journal of Airraft, Vol.

24, 1987, pp. 298-304.

doi:10.2514/3.45444

[27℄ Ahuja, V., and Hart�eld, Jr., R. J., �Aero-Propulsive Optimization of

the Boeing-737 Wing-Engine Integrated Geometry using Smart Panel Ap-

proahes and Modi�ed Potential Theory,� 29th AIAA Applied Aerodynamis

Conferene, Honolulu, Hawaii, 2011.

doi:10.2514/6.2011-3805

[28℄ Hess, J. L., �Calulations of Potential Flow about Bodies of Revolution

having Axes Perpendiular to the Free-Stream Diretion,� Journal of the

Aerospae Sienes, Vol. 29, No. 6, 1962, pp. 726-742.

[29℄ Hess, J. L., and Smith, A. M., �Calulations of Nonlifting Potential Flow

about Arbitrary Three-Dimensional Bodies,� Journal of Ship Researh, Vol.

8, 1964, pp. 22-44.

[30℄ Cheng, A. H. D., and Cheng, D. T., �Heritage and Early History of the

Boundary Element Method,� Engineering Analysis with Boundary Elements,

Vol. 29, 2005, pp. 268-302.

[31℄ Chen, C. S., Karageorghis, A., and Smyrlis, Y. S., The Method of Funda-

mental Solution - A Meshless Method, Dynami Publishers, In., Atlanta,

USA, 2008.

[32℄ �arler, B., �Solution of Potential Flow Problems by the Modi�ed Method of

Fundamental Solutions: Formulations with the Single Layer and the Dou-

ble Layer Fundamental Solutions,� Engineering Analysis with Boundary El-

ements, Vol. 33, Iss. 12, 2009, pp. 1374-1382.

doi:10.1016/j.enganabound.2009.06.008

[33℄ Chen, W., and Wang, F. Z., �A Method of Fundamental Solutions without

Fititious Boundary,� Engineering Analysis with Boundary Elements, Vol.

94



34, Iss. 5, 2010, pp. 530-532.

doi:10.1016/j.enganabound.2009.12.002

[34℄ Noedal, J., and Wright, S. J., Numerial Optimization, 2nd edition,

Springer, USA, 2006.

[35℄ Shlihting, H., and Gersten, K., Boundary Layer Theory, 8th revisited and

enlarged edition, Springer-Verlag, Germany, 2000.

[36℄ Seanell, M., and Suleman, A., �Sequential Optimization Algorithms for

Aerodynami Shape Optimization,� 10th AIAA/ISSMO Multidisiplinary

Analysis and Optimization Conferene, Albany, New York, USA, 2004.

doi:10.2514/6.2004-4631

[37℄ Seanell, M., and Suleman, A., �Numerial Evaluation of Optimization Algo-

rithms for Low-Reynolds-Number Aerodynami Shape Optimization,� AIAA

Journal, Vol. 43, 2005, pp. 2262-2267.

doi:10.2514/1.12563

[38℄ Prandtl, L., Über Flüssigkeitsbewegungen bei sehr kleiner Reibung. Ver-

handlg. III. Intern. Math. Kongr. Heidelberg, 484-491, 1904. See also: L.

Prandtl: Gesammelte Abhandlungen zur angewandten Mehanik, Hydro-

und Aerodynamik, in 3 Teilen (1961).

[39℄ Kroo, I. M., �Drag due to Lift: Conepts for Predition and Redution,�

Annual Review of Fluid Mehanis, Vol. 33, January 2001, pp. 587�617.

doi:10.1146/annurev.�uid.33.1.587

[40℄ Anderson, Jr., J. D., Fundamentals of aerodynamis, 4th edition, MGraw-

Hill, In., New York, 2007.

[41℄ Blasius, H., Grenzshihten in Flüssigkeiten mit kleiner Reibung. Z. Math.

Physik, Bd. 56, 1-37. Engl. translation in NACA-TM-1256, 1908.

[42℄ Dini, P., and Maughmer, M. D., �Loally Interative Laminar Separation

Bubble Mode,� Journal of Airraft, Vol. 31, 1994, pp. 802-810.

doi:10.2514/3.46564

[43℄ Ovhinnikov, V., Choudhari, M. M., and Piomelli, U., �Numerial Simu-

lations of Boundary-Layer Bypass Transition due to High-Amplitude Free-

Stream Turbulene,� J. Fluid Meh., Vol. 613, 2008, pp. 135-169.

doi:10.1017/S0022112008003017

95



[44℄ Morkovin, M. V., �Reent Insights into Instability and Transition to Turbu-

lene in Open-Flow Systems - Final Report,� NASA-CR-181693, 1988.

[45℄ Reshotko, E., �Progress, Aomplishments and Issues in Transition Re-

searh,� AIAA Paper 97-1815, 1997.

doi: 10.2514/6.1997-1815

[46℄ Sari, W. S., Reed, H. L., and White, E. B., �Stability and Transition of

Three-Dimensional Boundary Layers,� Annu. Rev. Fluid Meh., Vol. 35,

2003, pp. 413-440.

doi: 10.1146/annurev.�uid.35.101101.161045

[47℄ Shrader, L. U., Amin, S., and Brandt, L., �Transition to Turbulene in the

Boundary Layer over a Smooth and Rough Swept Plate Exposed to Free-

Stream Turbulene,� J. Fluid Meh., Vol. 646, 2010, pp. 297-325.

doi:10.1017/S0022112009993284

[48℄ Lewellen, D. C., Lewellen, W. S., Poole, L. R., DeCoursey, R. J., Hansen, G.

M., Hostetler, C. A., and Kent, G. S., �Large-Eddy Simulations and Lidar

Measurements of Vortex-Pair Breakup in Airraft Wakes,� AIAA Journal,

Vol. 36, 1998, pp. 1439-1445.

doi:10.2514/2.535

[49℄ Sinigoj, A. R., Osnove Elektromagnetike, 3rd edition, Fakulteta za elek-

trotehniko, Ljubljana, Slovenia, 1999.

[50℄ Epton, M. A., and Magnus, A. E., �PAN AIR - A Computer Program for

Prediting Subsoni or Supersoni Linear Potential Flows about Arbitrary

Con�gurations Using a Higher Order Panel Method, Vol. I. Theory Dou-

ment (Version 3.0),� NASA CR-3251, 1990.

[51℄ Hess, J. L., �Calulation of Potential Flow About Arbitrary Three-

Dimensional Lifting Bodies,� MDonnell Douglas Rept. No MDC J5679-01,

1972.

[52℄ Farin, G., Curves and Surfaes for CAGD: A Pratial Guide, 5th edition,

Morgan Kaufmann Publishers, San Franiso, USA, 2001.

[53℄ Stratford, B. S., �The Predition of Separation of the Turbulent Boundary

Layer,� J. Fluid Meh., Vol. 5, Iss. 1, 1959, pp. 1-16.

doi:10.1017/S0022112059000015

96



[54℄ Chmielewski, G. E. , �Boundary-Layer Considerations in the Design of Aero-

dynami Contrations, � Journal of Airraft, Vol. 11, 1974, pp. 435-438.

doi:10.2514/3.60363

[55℄ Gill, P. E., Murray, W., and Wright, M. H., Numerial Linear Algebra and

Optimization, Vol. 1, Addison Wesley, 1991.

[56℄ Walters, D. K., and Cokljat, D., �A Three-Equation Eddy-Visosity Model

for Reynolds-Averaged Navier�Stokes Simulations of Transitional Flow,� J.

Fluids Eng., Vol. 130, Iss. 12, 2008, pp. 1-14

doi:10.1115/1.2979230

[57℄ Spalart, P. R., and Allmaras, S. R., �A one-equation turbulene model for

aerodynami �ows,� AIAA Paper 92-0439, 1992.

doi:10.2514/6.1992-439

[58℄ Paiorri, R., Di Masio, A., and Favini, B., �A Comparative Study of Turbu-

lene Models for Juntion Flow, � 32nd AIAA Fluid Dynamis Conferene

and Exhibit, St. Louis, Missouri, USA, 2002.

doi:10.2514/6.2002-2964

[59℄ Maughmer, M., Hallman, D., Ruszkowski, R., Chappel, G., and Waitz,

I., �Experimental Investigation of Wing/Fuselage Integration Geometries,�

Journal of Airraft, Vol. 26, 1989, pp. 705-711.

doi:10.2514/3.45828

[60℄ Van Oudheusden, B. W., Steenaert, C. B., and Boermans, L. M. M.,

�Attahment-Line Approah for Design of a Wing-Body Leading-Edge Fair-

ing,� Journal of Airraft, Vol. 41, 2004, pp. 238-246.

doi:10.2514/1.353

[61℄ Li, C., Ye, Z., and Wang, G., �Simulation of Flow Separation at the Wing-

Body Juntion with Di�erent Fairings,� Journal of Airraft, Vol. 45, 2008,

pp. 258-266.

doi:10.2514/1.26638

[62℄ Song, W., and Lv, P., �Two-Level Wing-Body-Fairing Optimization of a Civil

Transport Airraft,� Journal of Airraft, Vol. 48, 2011, pp. 2114-2121.

doi:10.2514/1.C031472

97



[63℄ Raymer, D. P., Airraft Design: A Coneptual Approah, 4th edition, AIAA

Eduation Series, Virginia, USA, 2006.

[64℄ Cebei, T., and Cousteix, J., Modeling and Computation of Boundary-Layer

Flows, 2th revisited and enlarged edition, Horizons Publishing, Long Beah,

California, USA, 2005.

[65℄ Fossati, F., Aero-Hydrodynamis and the Performane of Sailing Yahts: The

Siene Behind Sailboats and Their Design, Adlard Coles Nautial, London,

UK, 2009.

98


