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Abstract

In this work the prospects of cosmic ray astronomy in general and possibili-
ties for particles originating from the galactic center and active galactic nuclei
are investigated numerically by integrating trajectories of incoming cosmic
rays backwards in time, in different models of the galactic magnetic field. In
principle it is concluded that cosmic ray astronomy is possible for cosmic pro-
tons with energies of 10 EeV and above. In the case of the galactic center it is
shown that for 0.1 to 1 EeV protons the galactic center is unobservable at Earth
except when the galactic magnetic field is assumed to have field reversal at the
galactic disk. For the active galactic nuclei case, the observed correlation be-
tween ultra-high energy cosmic-ray arrival directions and positions of active
galactic nuclei, as reported by the Pierre Auger Observatory, is recalculated
using original Auger data, corrected for magnetic deflections. The correlation
becomes weaker, indicating that either the galactic magnetic field models are
inaccurate or that the Auger data correlates with other astronomical objects
rather than active galactic nuclei.
One of the predicted effects of magnetic deflections of cosmic rays from a
common point source is the forming of thread-like multiplets. Their existence
can be used to infer the position of the sources, making them a useful tool
in cosmic ray astronomy. Groups of thread-like multiplets are constructed
from data using the minimum spanning tree method. An interesting group
of thread-like multiplets are found in proximity of Centaurus A. Simulations
show that these multiplets probably are a result of chance coincidence.

Key words: propagation of ultra high energy cosmic rays, comic ray astron-
omy, galactic magnetic field models, magnetic deflections, extra-galactic ex-
posure, galactic center, active galactic nuclei, thread-like multiplets.





Povzetek

V pričujočem doktorskem delu so z uporabo numerične povratne integracije
trajektorij v različnih modelih galaktičnega magnetnega polja v splošnem
raziskane možnosti za obstoj astronomije kozmičnih žarkov in možnosti, da
so izvori teh energetskih delcev center Galaksije in aktivna galaktična jedra.
Splošni zaključek predvideva možnost astronomije (astronomskih opazovanj)
kozmičnih žarkov z energijami nad 10 EeV. V primeru galaktičnega centra se
izkaže, da je iz Zemlje neopazljiv v vseh modelih galaktičnega magnetnega
polja razen v tistih, ki vsebujejo inverzijo magnetnega polja na prehodu skozi
galaktično ravnino. V primeru aktivnih galaktičnih jeder, za katere je Ob-
servatorij Pierre Auger objavil korelacijo med vpadnimi smermi kozmičnih
žarkov ekstremnih enerij in pozicijami aktivnih galaktičnih jeder, so originalni
podatki preračunani z upoštevanjem uklona nabitih delcev v galaktičnem
magnetnem polju. Ugotovimo, da korelacija postane šibkejša, kar lahko kaže
na dejstvo, da so modeli galaktičnega magnetnega polja neustrezni ali pa, da
originalne meritve zares korelirajo in izvirajo iz drigih astronomskih objektov.
Eden izmed napovedanih indikatorjev magnetnega uklona kozmičnih
žarkov, ki izvirajo iz skupnega izvora, je oblikovanje podaljšnih nizov dogod-
kov. Njihovo identificiranje in obstoj so lahko uporabna orodja v astronomiji
kozmičnih žarkov. Kandidate za skupine teh nizov kontruiramo s pomočjo
metode drevesa najmanjše razsežnosti (minimum spanning tree). Ta metoda
nam na izmerjenih podatki daje zanimive skupine nizov v bližini Centaurus
A. Na žalost pa simulacije kažejo, da so lahko ti nizi le produkt naključnih
sovpadanj.

Key words: razširjanje kozmičnih žarkov ekstremnih energij, astronomija
kozmičnih žarkov, modeli galaktičnega magnetnega polja, magnetni ukloni,
ekstragalaktična izpostavljenost, galaktični center, aktivna galaktična jedar,
nizi dogodkov.
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Chapter 1

Introduction

The origin and nature of the Ultra-high Energy Cosmic Rays (UHECR) has been a mystery ever
since they were discovered in the period 1910 to 1912 [1]. Their energies reach up to and beyond
1020 eV, meaning that the microscopic particles can obtain macroscopic energies as 1018 eV is
almost 1 J. Hence the questions about how and where they are accelerated, have been timely
asked for decades. Speculations about the possible acceleration sites range from Active Galactic
Nuclei (AGN) to Radio lobes [2, 3, 4, 5]. The main reason for their elusiveness is the steeply
falling flux at high energies. The flux for the UHECR above 1020 eV is less than 1 event per
square kilometer per century! Tremendous amount of effort has been invested in solving the
puzzles surrounding the UHECR. Historically this led to the discoveries of the positron, muon,
pion particles [6, 7, 8, 9], in addition to strange particles like kaons and lambdas, thus making the
cosmic ray research the initiator of particle physics [10, 11]. By the development of better particle
accelerators astrophysics and particle physics were separated as two distinctive fields of science.
However, there are economical limits as far as the center-of-mass energy of terrestrial particle
accelerators is concerned. The most important particle accelerator today is LHC at CERN with a
maximum center-of-mass energy of 14 TeV. Clearly, the only way to study particles with energy
in the range 1019 eV and above is to measure UHECR. However, as already mentioned, these
particles are extremely rare. The southern site of the Pierre Auger Observatory (PAO) was built
in order to gather a large amount of ultra-high energy data in reasonable time [12].

The UHECR are charged particles and are bent by magnetic fields. For cosmic ray astronomy
this imposes an additional uncertainty since the galactic magnetic field is poorly understood. If
the field is stronger than anticipated then experiments like PAO would not be feasible in terms of
assigning their potential origin. If the field is within reasonable limits an effort has to be made in
order to establish the deflections of the UHECR and correct their arrival directions or to establish
energy limits where the deflections are negligible. This thesis is centered around this task.

Following sections give a brief description of the data detection and reconstruction methods
used by the PAO. The energy spectrum, being one of the three fundamental observables [10] of
UHECR, is also discussed.

1.1 Pierre Auger Observatory

The methods for detecting cosmic rays have greatly improved ever since Victor Hess’ daring bal-
loon missions in the beginning of the twentieth century [1]. As cosmic rays penetrate the sky they
interact with air molecules, producing secondary particles. A cascade is started where enormous
amount of secondary particles are produced. This cosmic ray induced cascade is called Extensive
Air Shower (EAS). By collecting the secondaries on the ground via Surface Detectors (SD) the en-
ergies and the directions of the cosmic ray primaries are found. The majority of earlier UHECR
experiments were measuring the properties of the EAS at ground. Alternatively, the Fly’s Eye
experiment developed a technique to measure the fluorescence light emitted by excited nitrogen

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The Auger detector. Red dots are water tanks detecting Cherenkov radiation. These
are surrounded by four buildings containing telescopes that measure fluorescence light.

molecules by which the energies and the directions of the cosmic rays are determined [13].
The Pierre Auger experiment combines for the first time in the history of comic ray experi-

ments both Surface and Fluorescence Detector (FD) on a grand scale. The Auger detector is thus
a hybrid detector with an optimal angular accuracy and energy measurement [12]. The following
sections describe the EAS and the reconstruction procedure of obtained data.

1.1.1 Auger layout

In figure 1.1 the Auger layout is shown [14]. The Auger surface detector covers 3000 km2 of the
Argentinian Pampa Amarilla plain with 1600 detector units (see figure 1.1). Each of the units
contains 12 tons of water. When particles from the cascade pass through, Cherenkov radiation in
water is detected. The SD units are powered by both solar power and batteries. These are sur-
rounded by four stations containing six Schmidt optic telescopes (FDs). The telescopes measure
the fluorescence light emitted by excited nitrogen molecules.

The light detected by the SDs and FDs are converted into photoelectrons by PMTs, constitut-
ing the signal.

1.2 Extensive air showers

Due to their low flux it is impossible to detect a sufficient amount of UHECR directly by means
of a single detector. The properties of the EAS over huge detection areas are rather used to infer
cosmic ray energies and arrival directions. Figure 1.2 shows schematically the development of
the EAS [15].

The energy of the cosmic ray primary is depleted through different types of cascades. The
hadronic EAS is launched by a cosmic ray nucleon or nucleus primary that interacts hadronically
producing a nucleonic cascade until reaching the ground. In addition, an enormous amount of
neutral pions decay into photons, and because of this about 90% of the cosmic ray energy is
feeding the electromagnetic cascade [12]. The rest of the energy is channeled through charged
pion decays,

π± → µ± + ν±µ . (1.1)

An important property of the EAS is the depth of maximum Xmax that is measured by the fluores-
cence detectors. It is measured from the top of the atmosphere as an amount of traversed matter
in the units of g cm−2 [16].
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Figure 1.2: The different cascades and components constituting the EAS. The nucleon cascade
(here termed hadronic cascade) is caused by the EAS initiating cosmic ray primary. As the pri-
mary traverses towards the ground, charged and neutral pions are produced, contributing to
the muonic and electromagnetic components of the EAS as they decay. Here the contribution of
kaons is also depicted.

At a certain altitude hmax the number of secondaries N produced by the cosmic-ray-induced
shower reach a maximum, Nmax = N (hmax). The integrated air density traversed by the shower
from the top of the atmosphere (i.e. infinite height) to the altitude hmax is denoted as Xmax [17].

A heavy cosmic ray primary, like iron, with a given energy produces an EAS that develops
higher up in the atmosphere than an EAS produced by a proton with the same energy [18, 19].
This also implies that for iron the shower produces a maximum number of secondaries higher
up in the atmosphere as well. Thus, the Xmax for iron induced showers is in average lower than
for protons.

The depth of maximum changes [20] approximately as a function of the energy of the shower
inducing cosmic ray and its atomic mass A,

Xmax ∝ ln
(

E
A

)
. (1.2)

The second important property of the EAS is its lateral spread and is measured by the SD.

1.3 Reconstruction – surface detector

The Pierre Auger experiment uses water tanks as the surface detectors. As charged relativistic
particles hit the water tanks Cherenkov photons are produced. These are collected by PMTs that
yield a signal that is used to infer the energy of the cosmic ray. The direction of the latter is
determined by a fit of the shower axis1 of the EAS [12, 16, 21, 22, 23] to the arrival times recorded
by the SD stations.

1.4 Shower geometry

Experiments using surface detectors, like water Cherenkov tanks, take the advantage of the fact
that the front of the EAS does not hit the tanks simultaneously. Rather, the EAS hits the tanks

1The shower axis points opposite to the direction of the propagation of the shower.
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Figure 1.3: The shower front modelled as planar front. The barycenter is assumed to be at the
origin [22].

at different arrival times. As a first approximation, the direction of the cosmic rays are deduced
from the arrival times assuming a planar shower front [12, 16, 22, 23]. The EAS front viewed as
planar front is shown in figure 1.3.

The central features in figure 1.3 are the barycenter
(
b and the shower axis â. For the plane

model the barycenter is the origin from where all the distances are measured [22, 24] and is also,
in first approximation, assumed to be the shower impact point on the ground [22]. The barycenter
is given [24, 25, 26] by a signal-weighted sum2,

(
b = ∑i

√
Si

(xi

∑i
√

Si
, (1.3)

where Si is the signal measured in station i. The shower evolution (x (t) is described as [22],

(x (t) =
(
b + c (t− t0) · â, (1.4)

where axis â is a normal vector3 pointing towards the incoming direction of the cosmic ray, and
time t0 is measured when the shower track arrives at the barycenter. In order to obtain the
direction of the shower axis, and thus the direction of the incoming comic ray, a shower plane is
defined perpendicular to the shower axis [22]. This plane arrives at a point (x at the time,

ct (⇀x) = ct0 −
(

(x−
(
b
)
· â, (1.5)

and the direction of the shower axis is found by minimizing χ2,

χ2 = ∑
i

|ti − t (⇀xi) |2

σ2
ti

= ∑
i

|cti − ct0 + ⇀xi â|2

c2σ2
ti

, (1.6)

where ti is the measured signal start time and ⇀xi = (xi −
(
b the relative position of station i. σti is

the time uncertainty of station i.
The planar front model is only used for finding the first approximation of the shower axis

[22]. The shower front is described more accurately as a concentric spherical front (see figure
1.4).

2
(
b is a point and not a vector. The difference between a point and a vector is shown by affine transformations. The

rotational part of an affine transformation changes the direction of a vector, while the translational part of an affine
transformation changes the absolute value of the coordinates of a point [22].

3Normalized vectors will be denoted with a caret, i.e. â.
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Figure 1.4: The shower front modelled as a spherical front. t0 is the approximated starting time
of the shower [22].

The concentric spherical shower front reaches station i at time ti [22],

cti = ct0 + |
(
Rc −

(xi|, (1.7)

where t0 indicates the time when the shower is initiated and
(
Rc is the apparent origin of the

shower (shower center) [22], and the shower axis is obtained by minimizing

χ2 = ∑
i

(c (ti − t0)− |Rc â− ⇀xi|)
2

c2σ2
ti

, (1.8)

where â is the shower axis.

1.5 Shower energy

The secondaries of a shower are scattered laterally out from the axis primarily by Coulomb scat-
tering [27]. The lateral signals from different stations are fitted with a suitable Lateral Distribution
Function (LDF) as seen in figure 1.5. The core distance is the distance of a station from the impact
point of the shower on the ground. The signals are in units of Vertical Equivalent Muon (VEM).
One VEM is equivalent to the signal detected by the PMTs when a single muon enters the station
vertically, centered on the tank axis.

For the Auger experiment the signals are most accurately reconstructed for core distances of
1000 m and the corresponding parameter in the LDF is denoted as S1000. The measured signal is
given by [22]

S (r) = S1000 fLDF (r) (1.9)

where fLDF (r) is a shape parametrization [22, 28] where fLDF (1000 m) = 1. The distance r is
measured perpendicularly from the station to the axis of the shower [24].

There is a proportionality between S1000 and the shower inducing cosmic ray energy [12, 29].
By obtaining S1000 from the chosen LDF distribution the energy of the shower inducing cosmic
ray is inferred by the Constant Intensity Cut (CIC) method [30, 31].

1.6 Reconstruction – fluorescence detector

As seen in figure 1.1 four buildings with telescopes measuring fluorescence light are located
around the SD array. The EAS emits fluorescence light produced by excited nitrogen molecules
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Figure 1.5: The signals yielded by the SDs as a function of the distance from the impact point
of the shower core on the ground (core distance). The dots denote the signals from different SD
stations while the cross represent the S1000 signal.

in the air. The number of fluorescence photons produced by charged particles propagating a
distance dl is

dNγ

dl
= YfNe, (1.10)

where Ne is the number of charged particles, and Yf is the fluorescence yield in photons per
charged particle per meter [12, 32].

The fluorescence photons are measured at several atmospheric depths X, yielding the longi-
tudinal profile of the shower N (X), and in turn, the integral of the longitudinal profile yields the
total electromagnetic shower energy.

1.7 Shower geometry

The fluorescence photons in equation (1.10) are seen as narrow pattern of PMT hits of the FD
camera as seen in figure 1.6, and the Shower Detector Plane (SDP) in figure 1.7 is defined by
these hits [33]. In order to find the direction of the shower axis in the SDP plane, the impact
parameter Rp and the incident angle ψ = π − χ0 are determined [16, 34]. Like for the SD the
shower axis is deduced from timing. The arrival time of the fluorescence light at each PMT is
[35],

ti = T0 +
Rp

c
tan

(
χ0 − χi

2

)
, (1.11)

where T0 is the time when the shower is at distance Rp away from the detector, χ0 is the angle
between the shower axis and the ground, and χi is the height angle of PMT i. By introducing the
incident angle ψ = π − χ0, equation (1.11) is rewritten [34], and the parameters Rp, ψ, and T0

defining the shower axis are found by χ2 minimization,

χ2 =
N

∑
i

(ti − ti,obs)
2

σ2
i

, (1.12)

where ti,obs is the observed hit time for PMT i and σ2
i its uncertainty [12]. Here Rp, ψ, and T0 are

varied so that a minimum of equation (1.12) is achieved.
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Figure 1.6: The narrow pattern of PMT hits on the FD camera caused by the fluorescence photons.
The shower front is modeled as a planar front [33].
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Figure 1.7: The shower detector plane constructed from the PMT hits in the fluorescence detector.
Here the shower axis is denoted with vector Ŝ, and Si is the point of fluorescence emission [33].

1.8 Shower energy

As noted in section 1.6 the energy of the shower inducing cosmic ray is retrieved by integrat-
ing the longitudinal profile N (X) of the shower. The profile is described by the Gaisser-Hillas
function [36],

N (X) = Nmax

(
X− X0

Xmax − X0

) Xmax−X0
λGH exp

(
Xmax − X

λGH

)
, (1.13)

where Nmax is the maximum shower size, λGH is a constant related to the primary-air cross-
section, and X0 improves the modeling of the profile.

The profiles of equation (1.13) are generated and compared to the observed profiles. The
parameters Nmax, Xmax and X0 are varied until the generated profile is comparable with the
observed and thus the depth of the maximum in the electromagnetic cascade is obtained [12].
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Figure 1.8: The correlation between the S38◦ signal and the energy as measured by the FDs.

The energy is given straightforwardly by integrating the measured profile [12],

Eem =
Ec

λr

∫
Ne (X) dX, (1.14)

where Ec is the electron critical energy and λr the electron radiation length in air [37].

1.9 Hybrid reconstruction

Both detection methods described above have their unique systematic uncertainties. These are
highly reduced by the hybrid detection.

The time ti in equation (1.11) has almost linear dependence on the elevation angle χi. The
departure from linearity is not easily seen for short tracks, i.e. for tracks that are reconstructed for
a small range of χi values [38]. As mentioned in section 1.7 the parameters Rp, ψ = π− χ0 and T0

are varied in order to find the χ2 minimum. However, due to the almost linear form of equation
(1.11) for short tracks there exist several possible solutions of Rp and ψ that are compatible with
measurement error [12, 24, 38], leading to uncertainties in the energy and angular reconstruction.

This ambiguity in equation (1.11), which is used to time fit the SDP as given by the fluores-
cence data, is constrained by time of shower impact on ground that is obtained from the SD [34].
This is the essence of the hybrid method.

CIC reconstruction

The energy of the primaries is reconstructed in accordance to the CIC method [30, 31, 39, 40]
using the energy measured by the FD and S1000 from the SD. The method assumes the flux of
cosmic rays reaching the Earth is isotropic and homogeneous for all energies. However, for a
given energy the S1000 signal is reduced with increasing zenith angle θ due to attenuation of the
shower [31, 40] in the atmosphere. At larger zenith angles there are fewer shower particles and
hence lower S1000 values. The intensity distribution of S1000 is plotted as a function of cos2 (θ)
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and uniformity of the intensity is obtained by requiring that each bin contains the same amount
of events [24, 31]. The attenuation curves are consequently fitted [40] with the function,

CIC(θ) = 1 + a x + b x2, (1.15)

where x = cos2 (θ) - cos2 (38◦). The S1000 is converted into a reference signal [22, 31],

S38◦ =
S(1000)
CIC(θ)

. (1.16)

Having obtained the S38◦ signal the energy is deduced by relating S38◦ to the energy measured
from the FD [31]. For each S38◦ value (deduced from the SD) in figure 1.8, there is a corresponding
energy as measures by the FD [40].

A clear linear relation is seen and the energy is in general calculated as [31]

E = 0.149 (S38◦)
1.8 EeV. (1.17)

1.10 Energy spectrum

One of the most fascinating aspects of UHECR is the measured spectrum of their energies. Fig-
ure 1.9 shows the energy spectrum as measured over the years by different types of cosmic ray
experiments. The most striking feature is the enormous extension of the spectrum in flux (31
orders of magnitude) and energy (12 orders of magnitude) [41]. The flux rate changes around
the energies 1015, 1018 and 1019 eV. In the jargon of cosmic ray research these flux rate chang-
ing regions in figure 1.9 are called the “knee”, the “second knee” and the “ankle”. There exists
an abundance of literature dealing with these features of the energy spectrum and the possible
acceleration mechanisms of the cosmic rays as shown in [42] and the references therein.

The knee at 1015 eV was discovered in 1958 [42] and several possible explanations of its origin
exist [43]. The second knee was discovered soon after [44]. The ankle discovered in the sixties is
thought to indicate the transition from galactic cosmic rays to extra-galactic cosmic rays. As seen
in figure 1.9 (modified from [11] and [16]) the flux for energies above 1020 eV is extremely low.
This suppression is explained by the Greisen-Zatsepin-Kuz’min (GZK) cutoff [45, 46]. Greisen,
Zatsepin, and Kuz’min showed that protons interacting with the Cosmic Microwave Background
(CMB) eventually lose energy through pion production,

p + γCMB → n + π+

→ p + π0

→ p + e+ + e−. (1.18)

They predicted a cutoff in the energy spectrum at EGZK = 6 · 1019eV. A cutoff at similar energies
is also predicted for heavy nuclei [45] and photons (for details see [16, 42] and references therein).

The GZK cutoff makes, in principle, charged particle astronomy possible. For 1020 eV protons
equations 1.18 yield an attenuation length of less than 50 Mpc implying not only their extra-
galactic origin but also where the source candidates are located. An additional constraint was
put on possible sources for the UHECR by Hillas [3]. The Larmor radius of a cosmic ray [3]
accelerated in a source with magnetic field B can be written as,

rL =
1.08

Z

(
E

1015 eV

)(
µG
B

)
, (1.19)

where Z is the charge of the accelerated particle. By requiring that the size of the source is larger
than the Larmor radius,

L >
2 rL

βs
, (1.20)
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Figure 1.9: The measured energy spectrum of different cosmic ray experiments through history.
The highest achievable energy at LHC accelerator is also shown.

where L is the size of the acceleration site and βs is the efficiency of the acceleration mechanism,
equation (1.19) is transformed into [3],(

E
1015 eV

)
<

Zβs

2.16

(
B

µG

)(
L

pc

)
. (1.21)

Equation (1.21) shows that the maximum energy obtained by a cosmic ray is a function of the
both the size and the strength of the magnetic field of the source. The cosmic rays are contained
in the acceleration site until inequation (1.20) is violated.

Figure 1.10 shows the magnetic fields and the sizes of the potential sources of the UHECR.
The diagonal lines are given by the equation(

B
µG

)
>

2.16
Zβs

(
E

1015 eV

)(pc
L

)
, (1.22)

for protons with energy of 1020 eV, and βs = 1 and βs = 1/300. Acceleration sites below these
lines are unable to produce protons with energies above 1020 eV. All the sites are excluded for
βs = 1/300 while for βs = 1 only AGN and jets from radio galaxies remain.
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Figure 1.10: The sizes and magnetic field strengths of potential acceleration sites of the UHECR.
Diagonal lines are given by equation (1.22) for 1020 eV protons with two different values of βs.
The plot [47], modified from [48], is a version of the famous Hillas plot [3].
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Chapter 2

The Galactic Magnetic Field

2.1 Introduction

With the construction of the Pierre Auger Observatory charged particle astronomy is now a real
possibility, complementing optical and radio astronomy. However, this requires a deeper un-
derstanding of the Galactic Magnetic Field (GMF). The GMF is not measured directly. A wide
range of methods are used to deduce its magnitude and general structure. However, different,
even contradictory, results have emerged even when the same method was applied. In litera-
ture this has led to an inflation of models trying to describe the GMF. This chapter reviews the
most important ones and subsequently checks their impact on the ultra-high energy cosmic rays
traversing the galaxy. Particles of extra-galactic origin have additionally traveled through wast
distances filled with Inter-Galactic Medium (IGM) and the corresponding Extra-Galactic Mag-
netic Field (EGMF). The chapter starts with a general description of the journey of the charged
particles through both galactic and extra-galactic magnetic field.

2.2 Propagation of UHECRs in the galactic and the extra-galactic
magnetic field

The strength of the extra-galactic magnetic field components outside of cluster of galaxies is sup-
posed to have the upper limits [49],

BEGMF
rand ≈ 1 nG,

〈BEGMF
LS 〉 ≈ 0.01 nG, (2.1)

where BEGMF
rand is the amplitude of the random component and 〈BEGMF

LS 〉 is the large scale compo-
nent of the extra-galactic magnetic field. For an ultra-relativistic cosmic ray the gyroradius in a
constant magnetic field is given by [49],

rg =
E

ZeBc
, (2.2)

where E is its energy, Ze is its charge, and B is the magnetic field. Assuming B = 〈BEGMF
LS 〉,

equation (2.2) can be rewritten as

rg =
(

10.8
Z

)(
E

1020 eV

)(
10−11 G
〈BEGMF

LS 〉

)
109 pc. (2.3)

13
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The deflection α of cosmic rays traveling a distance D is approximately given by α ≈ D/rg, and
thus the deflection in the large scale field is expressed as [49],

α = 0.53◦Z
(

D
100 Mpc

)( 〈BEGMF
LS 〉

10−11 G

)(
1020 eV

E

)
. (2.4)

For Auger energies up to E = 100 EeV for protons (Z = 1) and 〈BEGMF
LS 〉 = 10−11 G, equation

(2.2) yields a gyroradius of approximately 10 Gpc. The trajectories of 100 EeV protons are thus
linear in the large scale component of the extra-galactic magnetic field. This indicates negligible
deflections. By using E = 100 EeV, 〈BEGMF

LS 〉 = 10−11 G, Z = 1 and D = 100 Mpc equation (2.4)
yields a deflection of only 0.5◦.

For the random component the calculation is not so straightforward. The extra-galactic sky
is filled with randomly oriented magnetic cells with a given coherence length, `coh. The cosmic
rays are deflected randomly after encountering each such cell, resulting in a diffusion in the plane
perpendicular to the direction of travel [49]. Given a magnetic cell of size 2`coh the deflection of
a charged particle traversing through it is [49],

δα ≈
2ZeBEGMF

rand,⊥`coh

E
. (2.5)

where BEGMF
rand,⊥ is the component of BEGMF

rand that is perpendicular to the velocity direction of the
cosmic ray. In a distance D the charged particle has encountered N magnetic cells with different
field orientations yielding different deflections. The Root Mean Square (RMS) deflection is

α2
rms = 〈δα2

1〉+ 〈δα2
2〉+ · · · =

N

∑
i
〈δα2

i 〉, (2.6)

where N = D/2`coh is the number of magnetic cells encountered by the traversing charged
particles. Expression 2.6 is rewritten as [49],

α2
rms = N

∑N
i 〈δα2

i 〉
N

= N 〈〈δα2〉〉 = 2D`coh

(
Ze
E

)2
〈〈BEGMF

rand,⊥〉〉, (2.7)

and at our galaxy the RMS deflection angle is

αrms ≈ 10.5◦Z

(
BEGMF

rand
1 nG

)(
1020 eV

E

)√(
D

100 Mpc

)(
`coh

1 Mpc

)
. (2.8)

For `coh = 1 Mpc, BEGMF
rand = 1 nG and D = 50 Mpc, the deflection is 7.4◦ for 100 EeV protons.

Apparently equation (2.8) seems to make charged particle astronomy, at least for large distances,
very difficult. However, due to the chaotic and uneven nature of the intergalactic space filled with
galaxy clusters and filaments the deflections of the traversing particles are less than expected [50].

Particles traveling through massive clustered regions at distances of order ∼ 100 Mpc experi-
ence significant deflections [50]. However, these massive clustered regions cover only a negligible
fraction of the sky, and thus, by excluding them, the deflections caused by the intergalactic mag-
netic field is only of order 1◦ − 2◦ [50]. Here the effects of the intergalactic field are thus omitted
all together.

The GMF also have large scale and random components. The large scale deflection is given
by [51],

α = 0.53◦Z
(

D
kpc

)(
BGMF

LS
µG

)(
1020 eV

E

)
, (2.9)

where BGMF
LS is the large scale component of the GMF.
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The equations (2.4) and (2.9) for the extra-galactic and galactic large-scale components are the
same. Only the units differ due to the different scales involved.

The random component of the GMF is constituted by magnetic cells with coherence lengths
in the range of only 10 pc to 100 pc [52]. The magnetic strength, BGMF

rand , of each of these cells is
comparable to the strength of the large scale component, BGMF

LS [52].
Assuming that the distance D traveled by the charged particles in the galaxy is much larger

than the coherence length `coh of the galactic magnetic cells, the deflection caused by the random
component of the GMF is estimated to [53],

αrms ≈ 0.01◦Z

(
BGMF

rand
µG

)(
1020 eV

E

)√(
D

kpc

)(
`coh
1 pc

)
. (2.10)

As is shown in the following section the magnitude of the GMF and its components is de-
rived by various observational methods, including Faraday rotation. Using Faraday rotation
measurements J.L. Han and G.J. Qiao [54], and R.G. Rand and A.G. Lyne [55] found an aver-
age local large scale regular field strength of 1.4 µG. For 100 eV protons traveling 20 kpc, and
BGMF

LS = BGMF
rand = 1.4 µG and `coh = 100 pc, equations (2.9) and (2.10) yield deflections of 10◦ and

0.6◦, respectively. It is clear that the deflection caused by the random component of the GMF is
negligible.

2.3 Experimental methods

There are many ways to calculate or infer the magnitude or the structure of the GMF. The obser-
vational methods are [56],

• Faraday rotation,

• Synchrotron emission,

• Zeeman splitting,

• Starlight polarization.

Faraday rotation is the most used method for deriving models of the GMF. Faraday rotation
measurements are convenient since the line-of-sight component of the large scale regular compo-
nent of the GMF, or BGMF

LS, q , is derived directly (see e.g. [52]). Synchrotron emission on the other
hand yields the magnitude of the perpendicular component of both the total and the large scale
regular field, complementing Faraday rotation (see e.g. [52]). Zeeman splitting is difficult to ob-
serve and starlight polarization does not provide any information that is not already found by
synchrotron emission [56]. Thus, only Faraday rotation and Synchrotron emission are discussed
in the following sections.

2.3.1 Faraday rotation

Faraday rotation of pulsars makes a direct estimation of BGMF
LS, q in a given region possible, and

combining this with the fact that pulsars have known distances and emit very linearly polarized
light, creates a very powerful tool for probing the GMF [54, 57]. In addition, the pulsars are
numerous ensuring a three dimensional description of the field [58]. In the following Faraday
rotation is derived (for more details see reference [59] where the whole derivation presented here
is found).

When a electromagnetic wave from pulsars traverses the galaxy, along the way it encounters
and displaces free electrons in the interstellar medium. For electrons the equation of motion for
a displacement ⇀s in a magnetic field in the z-direction is expressed as [59],

d2⇀s
dt2 = − e

me

(
⇀

E +
d⇀s
dt
×

⇀

B
)
− f

m
⇀s, (2.11)
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where me is the electron mass, f is the force constant and
⇀

B = (0, 0, Bz).
⇀

E is the electric field
caused by the electromagnetic wave. The differential equation (2.11) is solved by introducing
complex functions of the form

⇀s = ⇀s0 exp (iωt) ,
⇀

E =
⇀

E0 exp (iωt) . (2.12)

In addition, assuming that ⇀s and
⇀

E are perpendicular to the z-direction, and given the relations
E± = Ex ± iEy and s± = sx ± isy, equation (2.11) is written as(

ω2
0 −ω2 −ωΩ

)
s+ = − e

m
E+,(

ω2
0 −ω2 + ωΩ

)
s− = − e

m
E−, (2.13)

where Ω is the electron cyclotron frequency Ω = eBz/me, and ω2
0 is f /m. In short, s± is rewritten

as
s± = − e

m
E±

ω2
0 −ω2 ∓ωΩ

. (2.14)

The electric displacement and its polarization is given respectively by

D± = εε0E± = ε0E± + P±, (2.15)
P± = −enes±, (2.16)

where ne is the electron density and s± is given by the equation (2.14). Using the expression in
equation (2.14), the polarization P± in equation (2.16) is rewritten as

P± = −enes± = E±
nee2/m

ω2
0 −ω2 ∓ωΩ

. (2.17)

Equation (2.15) eventually yields

ε± = 1 +
P±

ε0E±
= 1 +

nee2/ε0m(
ω2

0 −ω2 ∓ωΩ
) ≡ n2

± (ω) , (2.18)

where n± (ω) is the refractive index. n+ (ω) and n− (ω) describe two different waves pass-
ing through the interstellar medium, namely left-handed and right-handed circularly polarized
waves. The variable ω is thus the angular frequency, ω = 2π f . Their associated electric fields in
the presence of a magnetic field yield the following relations

n (ω) =
1
2

(n+ (ω) + n− (ω)) ,

φ =
w
2c

(n+ (ω)− n− (ω)) z, (2.19)

where φ is the angle of polarization. Assuming Ω � ω and that the medium has a low density
(n (ω) ≈ 1 and ω0 = 0), equation (2.19) yields the total angle of the rotation of the polarization
plane

dφ ≈ e3

2ε0m2
e cω2

∫ ls

0
ne (`) Bq (`) d`, (2.20)

where Bq (`) is the line-of-sight large scale regular component of the magnetic field and ne (`) is
the electron density along the line of sight [56]. Equation (2.20) is usually written as [56],

φ = RM λ2 + φ0, (2.21)
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Figure 2.1: A compilation of RMs from pulsars. The sizes of the symbols are proportional to
the RM values. The symbols + and × denote positive RM values while negative RM values are
given by circles and squares. New measurements are in red while old measurements are in black.
Plot is taken from J.L. Han et al. [58]. For details about the (old and new) measurements and the
different catalogs used see the same reference.

where the measured quantity RM is the Rotation Measure and is given by φ/λ2. φ0 is the initial
polarization angle of the traveling electromagnetic wave and λ is its wave length. In terms of
degrees rotated per square meter the Rotation Measure is rewritten as [56],

RM ≈ 14◦

m2

∫ ls

0

( ne

cm−3

)( Bq
µG

)(
d`

kpc

)
. (2.22)

The electromagnetic waves emitted by the pulsars are linearly polarized and are measured by
radio telescopes. The RM angle is deduced by measuring the polarization rotation angle, φ, for
many wavelengths [56, 60]. The results of these measurements are seen in figure 2.1 (taken from
[58]). The figure is a compilation of RM data from pulsars in the spiral arms for galactic latitudes
|b| < 8◦. The positive and negative values correspond to different field directions indicating field
reversals between the spiral arms.

After mapping RM values from pulsars, the task is to determine the magnetic strength of
the different regions and spiral arms of the galaxy. In order to get the magnetic field a second
quantity is needed, namely the Dispersion Measurement, DM (see e.g. [52, 54, 57, 58, 61, 62]),

DM =
3.1 · 1013

m2

∫ ls

0

( ne

cm−3

)( d`

kpc

)
. (2.23)

The average regular magnetic field along the line of sight (see e.g. [52, 54, 57, 58, 62]) is given by,

Bq
µG

= 1.232
RM
DM

. (2.24)
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Figure 2.2: The upper panel shows measured RM values of pulsars lying inside a region denoted
by two circles of radius of 5.5 and 6.5 kpc from the galactic center. In the lower plot the region
is delimited by circles of 6.5 and 7.5 kpc. The RM values are compared to distances and the
DM values of the pulsars. The magnetic field strength is inferred in the top-right corners. Red
markers indicate outliers. Plot is taken from H. Men et al. [57].

Figure 2.2 (taken from [57]) shows the RM-DM distributions of pulsars in two different regions
fitted with equation (2.24). The deduced field strengths are seen in the top-right corners.

After the line-of-sight regular-field strength of the different regions is determined, an overall
model consisting of several free parameters is imposed. The goal of the chosen model is to en-
compass all the field directions and their strengths in the different regions of the galaxy in the
best possible way.

Deducing the GMF strength using RMs has its weaknesses. Firstly, electromagnetic waves
traveling through random fields do not Faraday rotate [61]. Secondly, equation 2.24 is only valid
if the regular magnetic field and the electron density ne are uncorrelated [52]. However, if they
are anti-correlated equation 2.24 underestimates the field, and thirdly, the field is further under-
estimated if there are field reversals that are not accounted for [52].

Using RM measurements, J.L. Han and G.J. Qiao [54], and R.G. Rand and A.G. Lyne [55]
found the local regular field strength to be 1.4± 0.2 µG.
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Figure 2.3: The radio emission (contours) and magnetic field vectors from the M51 galaxy mea-
sured by the VLA [63] and Effelsberg [64] radio telescopes. The picture of the galaxy is from the
Hubble Space Telescope (Graphics by [65]. Copyright: A. Fletcher and R. Beck/Hubble Heritage
Team [66]). Figure taken from [60].

2.3.2 Synchrotron emission

Electrons from jets or supernova remnants radiate as they traverse the magnetic field of the
galaxy [61]. Like RM discussed in the previous section, synchrotron emission is measured by
radio telescopes. Figure 2.3 shows the radio emission from the M51 galaxy and the direction of
its magnetic field. The emissivity [56] of an electron with energy E is given by

J (ν, E) ∝ BGMF
⊥

(
ν

νc

)1/3
f
(

x =
ν

νc

)
, (2.25)

where E is the energy of the electron, BGMF
⊥ is the perpendicular component of the GMF, and ν

is the frequency of the radiation emitted. The function f (x) is close to one for x → 0 and zero
when x approaches infinity. The critical frequency νc is defined as [56],

νc = νL

(
E

mc2

)2
, (2.26)

where νL =
(
eBGMF
⊥ /2πm

)
is the Larmor frequency given by Ω/2π, where Ω is defined in section

2.3.1. From the profile of equation (2.25) it is obvious that the emission peak is around ν ≈ νc. In
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addition, equation 2.25 shows that the emissivity is a function of the perpendicular component
of the galactic magnetic field. The synchrotron emission is a function of J (ν, E).

The total intensity of the synchrotron emission depends on the distribution of the electrons, ne
[56, 61]. The most common assumption is that the electron distribution has a power-law structure
[56] of the form,

ne (E) dE = ne0

(
E
E0

)−γ

dE, (2.27)

where ne0 is the normalization of distribution and γ is the spectral index. The synchrotron emis-
sivity [56] is thus given by,

jν =
∫

J (ν, E) ne (E) dE, (2.28)

where J (ν, E) is given by equation 2.25. In order to deduce the field strength another property is
needed, namely the total energy density,

εtot = (1 + k)εre + εB, (2.29)

where k is the ratio of the total energy of heavy nuclei and electrons [52, 67] and εB is the density
of the magnetic energy [56]. The total kinetic energy density of the electrons, εre, is given by the
integral [56, 67],

εre =
∫

ne (E) E dE. (2.30)

One of two assumptions is usually made in order to deduce the magnetic field strength. The
magnetic field is estimated either by assuming equipartition where the magnetic energy density
is equal to the total electron kinetic energy density, or by minimizing the total energy density
with respect to the magnetic field [56, 67].

The total kinetic electron energy density in equation (2.30) is usually obtained by using a
fixed integration interval in radio frequency [56, 67]. By integrating over radio frequencies and
minimizing the total energy density with respect to the field yields a field strength that is weaker
than when equipartition is assumed [67]. However, as noted by Beck and Beck et al. (e.g [52, 67,
68]), the two assumptions can yield similar field strengths if the total kinetic electron energy, as
in equation (2.30), is calculated by using a fixed integration interval in energy. By using a fixed
integration interval in energy the revised average total field strength for both assumptions (see
[67] for details) has the form,

BGMF
⊥ ∝

(
Iν (K + 1)

L

)1/(α+3)
, (2.31)

where Iν is the synchrotron intensity, L is the length of the region emitting radio waves, K is the
ratio of proton and electron number densities, and α = (γ− 1) /2 is the spectral index of the
synchrotron emission. Identical field strengths are obtained for the two assumptions when α = 1
[67]. The synchrotron intensity is related to the synchrotron emissivity as,

Iν = L
∫

J (ν, E) ne (E) dE = L jν, (2.32)

The synchrotron intensity and spectral index α are measured from the observations. The intensity
of the synchrotron emission thus yields the average strength of the perpendicular component of
the total galactic magnetic field [52].

As mentioned before, the polarization of the synchrotron emission also plays an important
role in determining the field strength. It yields the average perpendicular component of the
regular field [52]. In presence of regular field only, the synchrotron emission is highly polarized
while depolarized emission indicates a fluctuating or a random field [56, 61].

While RM might possible underestimate the field, synchrotron emission measurements per-
haps overestimate it [52]. A local total perpendicular field was estimated by E.M. Berkhuijsen in
reference [52] to 6± 2 µG from radio synchrotron data.

Next section reviews different models of the GMF found in literature and investigates their
effects on propagation of the UHECRs.
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Figure 2.4: Our galaxy with its named spiral arms. The sun is located about 30000 light years or
8.5 kpc away from the galactic center. Figure taken from [69].

2.4 Models of galactic magnetic field

Our galaxy consists of a spiral disk (z = 0) with a radius of 20 kpc and a surrounding halo with a
large volume. A 2D drawing is shown in figure 2.4.

In the literature the different models of the GMF have the following main components (see
e.g. [70, 71]):

• Large “regular” field. The regular fields penetrate the whole galaxy disk and its surround-
ing halo. In addition evidence exists for dipole and toroidal fields near the galactic center.

• Small turbulent (or non-regular) fields. The turbulent or random fields have a given coher-
ence length and are distributed throughout the spiral arms.

The use of RM of pulsar light has yielded contradictory results and these components are
described differently in different papers.

The regular field is said to be bi-symmetrical, denoted by BSS, if field reversals occur between
the spiral arms (see e.g. [54, 72, 73, 74]) . The regular field is axis-symmetrical, denoted by ASS,
when there are no field reversals between the arms (see e.g. [75] and references therein).

In all the models the regular field strength has a common structure where only the numerical
values of the parameters and the form of a radial function differ. If sign reversal of the field
between the spiral arms is assumed, the magnitude of the regular field is given by the function
(see e.g. [51, 54, 74, 76, 77, 78, 79]),

Bdisk = Bradial cos(θ − β ln(r/ξ0)). (2.33)

Here θ is the azimuthal angle which rotates clockwise when viewed from the galactic north pole
(see figure 2.5), ξ0 is the distance to the field maximum and r is the galactocentric cylindrical
radius. The model dependent function, Bradial, describes the field in the radial direction. β is
dependent on the angle between the azimuthal component of the magnetic field and the field
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Figure 2.5: The coordinate system used in models of the GMF in literature. The Sun is located at
the positive y-axis and the azimuthal angle θ rotates clockwise as viewed from the galactic north
pole. θ = 0◦ corresponds to galactic longitude of lG = 180◦. The position of Earth is given by
R = (0, 8.5, 0)kpc. In the next section, a new azimuthal angle φ is introduced so that φ = 0◦

corresponds to lG = 0◦. Plot is taken from Kachelrieß et al.[51]. Note that the plot shows the
spiral arm structure from Wainscoat et al. [80].

itself, called the pitch angle p,

β =
1

tan p
(2.34)

The measurement of p is related to the rotation of the azimuthal angle and the logarithmic spiral
structure of the galaxy given by (see e.g. [62, 73, 79]),

Rspiral = R0 exp (kθ) , (2.35)

where Rspiral is the radius of the logarithmic spiral, R0 is a scale radius and k is,

k = tan p. (2.36)

For our galaxy Rspiral increases in the counterclockwise direction (as viewed from the galactic
north pole) i.e. for negative θ values [62, 79]. Hence, k has a negative value in all the models.

In the axis-symmetrical assumption where the field direction remains the same only positive
values of the magnitude are retained.

The azimuthal and radial parts of the GMF are given by the pitch angle (see e.g. [51, 54, 76,
77, 78, 79]),

Br = Bdisk sin p, (2.37)
Bφ = Bdisk cos p. (2.38)
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In agreement with the radio structure of the galaxy, as found by K. Beuermann et al. [81], the
field magnitude in the halo is derived from the disk field in all the models [51]. It is described by
the function [51],

Bhalo = f (z)Bdisk. (2.39)

The field in the halo decreases as |z| increases. This is ensured by the model dependent factor
f (z), usually an exponential with a certain scale height. In addition, as in the case with the disk
field, the symmetry properties of the halo field are not clear [68]. The odd parity models where
the field changes sign while going through the disk, are denoted with A. When the field has even
parity, the model is denoted as S. Following the example of reference [51] the models used in this
study are denoted by the initials of their creators. Basically, the models differ due to different
values of the parameters described above.

Recently however, it was suggested that the GMF might have much more complex regular
structure than a mere ASS or BSS configuration [57]. Likewise Han et al. [54] suggest that the
GMF has a BSS structure but with both clockwise and anti-clockwise fields. The issue is addi-
tionally complicated by discrepancies in the estimations of the field strength. This discussion is
far from finished. Here only models that are well established and that are in one or other way
complementary, are used.

Concerning the random fields that are spread out in the galaxy, Tinyakov and Tkachev [82]
calculated the deflections caused by the turbulent fields to be of the order of 3 to 30% of the
deflections induced by the regular field. Most of the GMF models in literature neglect these
fields.

In the next section a new coordinate system is defined.

2.4.1 Coordinate system

In all of the models found in literature the azimuthal plane angle θ runs clockwise as viewed
from the galactic north pole (see figure 2.5). θ = 0◦ corresponds to a galactic longitude of 180◦.

In the present thesis a new coordinate system is used so that the new azimuthal angle, φ,
runs counterclockwise as viewed from the galactic north pole, corresponding to the galactic lon-
gitude (see figure 2.6) i.e. φ = 0◦ corresponds to a galactic longitude of 0◦. The new (cylindrical)
coordinates are defined as

ρ =
√

x2 + y2, tan φ =
y
x

, z = z. (2.40)

Here x and y coordinates are in the galactic disk, and positive and negative z-directions point
to the galactic north and south pole, respectively. φ runs counterclockwise when viewed from
the galactic north pole, starting from the axis that corresponds to a galactic longitude of 0◦. This
axis is the new positive x-axis whereas in the models it is the negative y-axis. The position of the
Sun is now R = (−8.5, 0, 0) kpc. However, spherical coordinates are used to describe the dipole
components of some of the GMF models

r =
√

x2 + y2 + z2, tan φ =
y
x

, cos θ =
z
r

. (2.41)

As noted in the previous section, the measurement of p is related to the rotation of the azimuthal
angle and the logarithmic spiral structure of the galaxy [62, 79]. In the new coordinates, equation
(2.35) is changed to

Rspiral = R0 exp (kφ) , (2.42)

where k = tan p. As both φ and Rspiral increase in the counterclockwise direction (as viewed from
the galactic north pole), k is positive in the new coordinates. In section 2.4 (and in the models) the
pitch angle is measured from magnetic field vector to the azimuthal magnetic field component
pointing in the clockwise direction. With the new azimuthal plane angle φ defined here, the
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Figure 2.6: The coordinate system used in this work. The galactic center is at the origin. The
red horizontal axis is the x-axis and the sun is located at x = −8.5 kpc (marked with text and
arrow). The vertical red axis is the y-axis. The angle φ starts at the positive x-axis and rotates
anticlockwise as viewed from the galactic north pole. The underlying picture of the galaxy is
taken from [69].

pitch angle is measured from the field vector to the azimuthal component that now points in the
counterclockwise direction. This yields,

pnew = −180◦ − pmodel, (2.43)

where pmodel is given by the models. Here tan (pnew) or k is positive. This causes a sign change of
β in equation (2.34) effectively changing the overall field direction. This is corrected by rewriting
equation (2.33) as

Bnew
disk = Bradial cos(φ− β ln(ρ/ξ0)− π). (2.44)

In Cartesian coordinates the field is given by,

Bnew
x = (x sin pnew − y cos pnew) Bnew

disk f (z)
Bnew

y = (y sin pnew + x cos pnew) Bnew
disk f (z) (2.45)

The reviewed models in the next section are expressed in the new coordinates defined in this
work.

2.4.2 Stanev model

Many models in literature use the models suggested by Stanev [76] as a starting point. Stanev in-
vestigates the proposed field structures by studying the deflections and anisotropies of simulated
particles. The consequences of the GMF models for any search for sources are also discussed.

Two “extreme” models are constructed in order to demonstrate the effects of the GMF, namely
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Figure 2.7: Vector field for the Stanev ASS-A model 0.1 kpc above the galactic disk. The vector
length is proportional to the field amplitude and the size of the arrows is proportional to the field
strength caused by B = (b2

x + b2
y)1/2. The Sun’s location is indicated by the red circle.

the BBS-S and the ASS-A model1. Bradial is set to

Bradial =
ρ

R
µG, ρ > 4 kpc,

Bradial = 6.4 µG, ρ ≤ 4 kpc, (2.46)

where R = −8.5 kpc is the distance of the Sun from the galactic center. The pitch angle is −170◦

and ξ is 10.55 kpc. The strength of the halo field, regardless of the parity, is described2 by an
exponential with two scale heights,

|Bhalo| = |Bdisk| exp (−|z|/z0) , (2.47)

where z0 is 1 kpc and 4 kpc for |z| < 0.5 and |z| > 0.5, respectively. In addition, a component of
the magnetic field in the z-direction of magnitude 0.3 µG is added to the models. Thereby, the
total number of models in reference [76] is increased to four.

1It was noted [78] that Stanev alternated the odd and even parity designations.
2The minus sign and the absolute value is missing in reference [76].
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Figure 2.8: Vector field for the Stanev BSS-S model 0.1 kpc above the galactic disk. The vector
length is proportional to the field amplitude and the size of the arrows is proportional to the field
strength caused by B = (b2

x + b2
y)1/2. The Sun’s location is indicated by the red circle.

Figure 2.7 and 2.8 show vector fields for the ASS-A and BSS-S configurations for z = 0.1 kpc
above the galactic disk.

The field configurations are clearly visible. The spiral arms have the same field direction in
figure 2.7 while in figure 2.8 it is clear that the field direction changes from arm to arm.

2.4.3 Tinyakov and Tkachev model

Tinyakov and Tkachev (TT) constructed two models [77] for two purposes:

• to check the correlation between UHECRs and BL Lacs after correcting for the GMF,

• to establish the charge composition of the UHECRs.

A BSS scenario with either an even or odd parity is used. The radial component of the field is
described as

Bradial = B0
ρ0

ρ cos φ′
, (2.48)



2.4. MODELS OF GALACTIC MAGNETIC FIELD 27

x  [kpc]
-20 -15 -10 -5 0 5 10 15 20

y 
 [

kp
c]

-20

-15

-10

-5

0

5

10

15

20

Figure 2.9: Vector field for the TT BSS-A model 0.1 kpc above the galactic disk. The vector
length is proportional to the field amplitude and the size of the arrows is proportional to the
field strength caused by B = (b2

x + b2
y)1/2. The Sun’s location is indicated by the red circle.

where B0 is the local field strength of magnitude 1.4 µG [54, 55] and φ′ is a phase constant depen-
dent on the pitch angle and the distance to the first field reversal,

φ′ = ln
(

1 +
d
R

)
/ tan p− π

2
. (2.49)

with p = −172◦ and d = −0.5 kpc. Like in the Stanev model Bradial is set to constant for ρ < 4 kpc.
The halo field is determined by an exponential with a single scale height h of 1.5 kpc,

Bhalo = sign(z)Bdisk exp (−|z|/h) . (2.50)

The scale height is chosen in accordance to [54, 73]. The disk field in equation (2.44) is now of the
form,

Bdisk = Bradial cos(φ− β ln(ρ/R) + φ′ − π). (2.51)
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Figure 2.10: Vector field for the HMR ASS-A model 0.1 kpc above the galactic disk. The vector
length is proportional to the field amplitude and the size of the arrows is proportional to the field
strength, B = (b2

x + b2
y)1/2. The Sun’s location is indicated by the red circle.

2.4.4 Harari, Mollerach, and Roulet model

Among other, Harari, Mollerach, and Roulet [78] deal with issues like deflections, composition,
magnification/demagnification, and multiple images of sources. Two models were constructed,
BSS-S and ASS-A, that differ in certain aspects from the Stanev and TT models. Firstly, the radial
component is described by a function that not only decreases as 1/ρ for ρ > 4 kpc but also
disappears at the galactic center,

Bradial = B0
3R
ρ

tanh3
(

ρ

ρ1

)
, (2.52)

with B0 = 1 µG. Here ρ1 is set to 2 kpc. The halo field is also described by a hyperbolic function
with two scale heights, z1 (0.3 kpc) and z2 (4 kpc),

Bhalo =
1

2 cosh
(

z
z1

) +
1

2 cosh
(

z
z2

) . (2.53)
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Figure 2.11: Vector field for the HMR BSS-S model 0.1 kpc above the galactic disk. The vector
length is proportional to the field amplitude and the size of the arrows is proportional to the field
strength, B = (b2

x + b2
y)1/2. The Sun’s location is indicated by the red circle.

The halo field in the ASS-A model has an additional hyperbolic factor, tanh (z/20 pc) that takes
into account the odd parity. Other parameters are identical to the ones in the Stanev model.

In figures 2.10 and 2.11 the fields disappear at the galactic center in accordance with equa-
tion (2.52).

2.4.5 Kachelrieß, Serpico and Teshima model

For a directional and composition analysis Prouza and Šmı́da [79] constructed an elaborate model
containing poloidal, toroidal, and turbulent field components. The disk field is modeled as for the
Stanev model with a clockwise rotating θ while the poloidal and toroidal components are given
in ordinary spherical coordinates. Some aspects of this model were modified by Kachelrieß,
Serpico, and Teshima (KST) [51]. Here, this modification of the Prouza and Šmı́da (PS) model is
denoted as the KST model.

In the KST model the disk field is defined as in equation (2.51), i.e. as in the TT model. For the
halo field component the KST model uses an exponential with a single scale height of 0.2 kpc.
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Figure 2.12: Vector field for the KST BSS-S model 0.1 kpc above the galactic disk. The vector
length is proportional to the field amplitude and the size of the arrows is proportional to the field
strength caused by B = (b2

x + b2
y)1/2. The Sun’s location is indicated by the red circle.

The Cartesian components of a circular toroidal field are given by [51, 79],

Bx = −BT sign(z) sin φ, (2.54)
By = BT sign(z) cos φ, (2.55)

with BT as modified by KST,

BT = BT,max(ρ)
1

1 +
(
|z|−H

P

)2 (2.56)

where H = 1.5 kpc is the height of the maximum above the galactic plane, P = 0.3 kpc is the
Lorentzian width. BT,max(r) is given in terms of Heaviside step functions,

BT,max = 1.5µG
[

Θ (R0 − ρ) + Θ (ρ− R0) exp
(

R0 − ρ

R0

)]
(2.57)

where R0 is 8.5 kpc. Relation (2.57) ensures that the toroidal field vanishes for large values of ρ.
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Figure 2.13: The three regions divided according to the galactic longitude l. Region A (l < −55◦),
region B (−55◦ < l < 55◦), and region C (l > 55◦).

This is in accordance with the fact that the toroidal field does not exist outside the solar circle [51,
83].

In order to take into account the existence of a local field of 0.2 to 0.3 µG pointing in the
z-direction (see [54]), dipole components given in spherical coordinates were added in the PS
model. As noted in section 2.4.1, equation (2.41), dipole components are described by spherical
coordinates. In the KST model the dipole components are given by [51, 79],

Bx = −3µG
2r3 sin 2θ cos φ, (2.58)

By = −3µG
2r3 sin 2θ sin φ, (2.59)

Bz = −µG
r3 (3 cos2 θ − 1), (2.60)

where µG is the magnetic momentum. A singularity is clearly present at the galactic center in the
equations (2.60). Thus, a sphere of radius 500 pc with Bz = −100 µG is added at the center of the
galaxy. In contrast, the PS model uses a cylinder of radius 50 pc and height 300 pc with a 2 mG
field inside it.

Although the PS model includes turbulent field components these were discarded in the KST
model. In addition both the KST and the PS model adopt a spiral arm structure as described by
Wainscoat et al. [80]. Here this specific structure is omitted.

The field as predicted by the KST BSS-S model is seen in figure 2.12. The field is very strong
in the inner region near the galactic center due to the presence of the powerful dipole field and
the sphere of Bz = −100 µG.

The KST BSS-S, HMR ASS-A, HMR BSS-S and TT BSS-A models are used in the following
analysis. The goal is to establish at what energies cosmic ray astronomy is possible for the differ-
ent GMF models. Following the example of [51, 78] this is done by obtaining the deflections and
the extra-galactic exposure of a given cosmic ray experiment.

2.5 Magnetic Deflections

In order to get an idea about the effects of the GMF models on the cosmic ray propagation,
particles with different energies and incoming directions are backtracked until the galactocentric
distance of 20 kpc is exceeded. Due to the substantial information contained in the following
plots it is convenient to divide the sky in three regions along the galactic longitude: l < −55◦

(region A), −55◦ < l < 55◦ (region B) and l > 55◦ (region C) (see figure 2.13). The calculated
deflections for different energies are shown in figures 2.14 to 2.17.
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2.5.1 Backtracking

For ultra-relativistic particles in a quasi-static magnetic field B the equations of motions [49] are
given by the Lorentz force (see appendix A),

d⇀x
cdt

= n̂, (2.61)

dn̂
cdt

=
qc
E

n̂×
⇀

B. (2.62)

Here n̂ is the unit vector along the direction of flight [49] and E and q are the energy and charge
of the ultra-relativistic particles. s = ct is the length travelled by the particles.

The path of the incoming particles is obtained by integrating equations (2.62) for their corre-
sponding anti-particles leaving Earth in the direction of the incoming particles [78, 84]. Hence,
the last equation in (2.62) is rewritten as

dn̂
cdt

= − qc
E

n̂×
⇀

B. (2.63)

At time t = 0, n̂ is just the direction of the outgoing anti-particle which is equivalent to the incom-
ing direction of its corresponding particle. Integrating the direction of anti-particles forwards in
time is thus equivalent to integrating the direction of the corresponding particles backwards in
time. This is denoted as backtracking of particles.

Vector ⇀x at t = 0 is given by ⇀x = (−8.5, 0, 0) kpc, indicating the position of the Sun from the
center of galaxy.

It is not possible to solve equation (2.63) analytically. Instead, the Runge-Kutta method is
applied (for details see e.g. [85, 86]). Here the 5th order Runge-Kutta method is used and equation
(2.63) is integrated numerically in steps.

The size of the steps is either fixed or adaptive. Here adaptive stepsize is used. This yields
small steps where the magnetic field is complex and thus a high degree of accuracy is achieved.
Where the magnetic field is simpler larger steps are used without loss of accuracy.

Suitable integrators are found in reference [85]. Equations (2.63) are backtracked using the
odeint routine [85] that includes the 5th order Runge-Kutta method with adaptive stepsize con-
trol.

In the next section the cosmic rays are assumed to be protons. Each proton is assigned a unique
initial direction at Earth given by galactic longitude and latitude. The galactic longitudes and
latitudes are given in steps of 0.5◦ in the range [−179.5◦, 179.5◦] and [−89.5◦, 89.5◦], respectively.
A total of 64800 directions are thus generated.

Starting from Earth protons are backtracked until they are a distance of 20 kpc away from the
galactic center. This corresponds to the extent of the galaxy.

The deflections are subsequently calculated according to

cos (α) = n̂init · n̂last, (2.64)

where n̂init is the (unique) initial direction of the particles at Earth and n̂last is the backtracked
position outside the galaxy.

In figures 2.14 to 2.17 in the next section the deflection α is plotted for each initial direction
n̂init (given by galactic longitude and latitude). Since the initial directions are unique there is only
one deflection value for each direction. The deflections range from 0◦ to 180◦.

The figures are plotted using −l rather than l. This is done in order to plot results in galactic
coordinates according to astronomical convention.

As pointed out in the introduction, cosmic rays suffer from energy losses while propagating
through the Universe. In the local Universe, the energy loss length of cosmic rays with energies
0.1 EeV to 150 EeV, range from 4 Gpc down to 10 Mpc, respectively (see figure 1 in reference [49]).
The energy losses of cosmic rays propagating in our galaxy (with its extent of only 20 kpc) are
thus negligible. Hence, energy losses are not taken into account when protons are backtracked.
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Figure 2.14: Deflection maps for HMR ASS-A model for different energies of the cosmic rays.
Hammer-Aitoff projection is used.

2.5.2 HMR ASS-A model

Figure 2.14 clearly shows a symmetric structure where the deflections above and beneath the
galactic plane are exactly the same. The average deflections for the lowest energies of 0.1, 0.5,
and 1 EeV are in the range 81◦ to 84◦. The distribution function for a large number of random
isotropic deflections is given by

dN
dα

∝ sin (α) , (2.65)

where N is the total number of deflections. This distribution peaks at the average deflection of
90◦. The deflections for the 0.1, 0.5, and 1 EeV energies are thus compatible with random isotropic
deflections. However, their corresponding deflection plots show large variations among them in
the regions A, B, and C.

For 5 EeV the largest deflections occur in region B and the average deflections yield 47◦, 70◦

and 57◦ for region A, B, and C respectively. The average deflection for the whole sky is 58◦. There
are thus again large variations between the three regions. This is also reflected in the Root Mean
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Square (RMS) values given by,

RMS =

√∫
α2
(

dN
dα

)
dα, (2.66)

where dN/dα is the deflection distribution. The RMS for all regions is 31◦. For region A, B, and
C the values are 20◦, 43◦, and 21◦, respectively.

The 5 EeV deflections might be considered to be of a transitional character, lying between
random isotropic deflections and the deflections at higher energies. The deflections and the RMS
values remain largest in region B for the 10 EeV and 30 EeV energies. From 30 EeV to 50 EeV
the region of the largest deflections is shifted, from region B to C. However the difference in
deflections is not significant. For 50 EeV the average deflections are 4.6◦ , 5.9◦, and 6◦ for region
A, B and C respectively, with an average deflection for the whole sky being 5.5◦. For 100 EeV
the numbers are 2.3◦, 2.8◦, 3.1◦, for region A, B, and C, respectively. The average deflection for
the whole sky is 2.7◦. This is not surprising at all since the deflection is inversely proportional to
energy.

2.5.3 HMR BSS-S model

In this model the field direction does not change at the disk, ensuring that the symmetric structure
found in figure 2.14 is absent from figure 2.15. As for the HMR ASS-A model the deflections are
random and isotropic for 0.1 EeV, 0.5 EeV, and 1 EeV energies.

For 5 EeV the highest deflections are found in region C while for larger energies (E > 5 EeV)
the largest deflections are found in region A. The regional differences, however, are negligible
for energies above 5 EeV. In addition, energies equal and above 5 EeV are deflected less than in
the HMR ASS-A model. However, the differences between the two models in average deflec-
tions above 50 EeV are negligible as the deflections in both models are more and more inversely
proportional to energy (α ∝ 1/E).

The difference with the HMR ASS-A model is clear. The deflections at higher energies are
largest in region A rather than in region B and C, as in the HMR ASS-A case.

2.5.4 TT BSS-A model

The most striking feature of this model is the high degree of symmetry of the deflections. As in
the HMR models the regional differences are large. The deflections for the 0.1 EeV and 0.5 EeV
energies are compatible with random isotropic deflections, but the average deflections for these
energies are much lower here than in the HMR models.

However, the deflections for 1 EeV deviate from a random isotropic behavior. While the av-
erage deflections of the regions are similar (in the range 46◦ to 51◦), the RMS values differ sig-
nificantly. Region A and C have RMS values of 31◦ and 39◦ i.e. the values are compatible with
random isotropic deflections. In region B the RMS value is 16◦.

At 5 EeV the deflections in region B are the largest. For the rest of the energies, region C is
dominating yielding a regional B-C pattern for the movement of the highest average deflections.
In addition the average deflections over the whole sky are lower than in the HMR models for all
energies.

2.5.5 KST BSS-S model

Due to its strong dipole field in the vicinity of the galactic center the KST BSS-S model is distinc-
tively different than the other models.

The massive strength of the dipole field ensures rather large regional variations at higher
energies. While the average deflection over the whole sky is only 2.7◦ for 100 EeV the average
deflections in region A, B, and C are 1.1◦, 5.9◦, and 1.4◦ respectively. Thus, here the deflection
maps differ largely with the other models.
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E = 0.1 EeV E = 0.5 EeV

E = 1 EeV E = 5 EeV

E = 10 EeV E = 30 EeV

E = 50 EeV E = 100 EeV

Figure 2.15: Deflection maps for HMR BSS-S model for different energies of the cosmic rays.
Hammer-Aitoff projection is used.
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E = 0.1 EeV E = 0.5 EeV

E = 1 EeV E = 5 EeV

E = 10 EeV E = 30 EeV

E = 50 EeV E = 100 EeV

Figure 2.16: Deflection maps for TT BSS-A model for different energies of the cosmic rays.
Hammer-Aitoff projection is used.
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E = 0.1 EeV E = 0.5 EeV

E = 1 EeV E = 5 EeV

E = 10 EeV E = 30 EeV

E = 50 EeV E = 100 EeV

Figure 2.17: Deflection maps for KST BSS-S model for different energies of the cosmic rays.
Hammer-Aitoff projection is used.
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TT BSS−A KST BSS− S

Figure 2.18: Deflection distributions for 0.1 EeV, 1 EeV, 10 EeV and 100 EeV for different models.

2.5.6 Deflection distributions

From the figures above it is clear why cosmic ray astronomy is only possible for the highest
energies. This is also shown in figure 2.18 where the all-sky deflection distribution, dN/d cos α,
for different models and energies (0.1, 1, 10 and 100 EeV) is presented.

As expected, the deflections vanish at higher energies. The average deflection over the whole
sky for 100 EeV is 2.7◦, 2.1◦, 1.6◦, and 2.7◦ for HMR ASS-A, HMR BSS-S, TT BSS-S, and KST BSS-S,
respectively.

However, in the case of the KST BSS-S model there exist large regional differences. Region B,
where the dipole field is present, has an average deflection of 5.9◦, i.e. 3.2◦ higher than the overall
sky average.

Going downwards to 10 EeV a shift to higher deflections occurs for all models. However, the
deflections still peak approximately around 0◦ for all models except HMR ASS-A. In the latter
model the deflections peak around 27◦.

For 1 EeV the distributions begin to flatten for the HMR models. The KST BSS-S model has
a rather flat distribution up to deflections around 60◦. For the TT model the distribution shows
that the majority of the deflections are in the range 60◦ or lower.

For 0.1 EeV a flat distribution is clearly seen for the KST BSS-S model as expected from random
isotropic deflections. The distributions for the HMR models look relatively flat. The TT model
however still shows a preference for small deflections and the distribution peaks below 37◦. But
overall this latter distribution is compatible with random deflections.

The distributions become more and more flat as the energies are reduced. As shown in equa-
tion (2.2) the gyroradius of the cosmic rays is rg ∝ E/B. For a given field strength the gyroradius
becomes smaller for lower and lower energies. It is well known that a point is reached when the
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HMR ASS−A HMR BSS− S

TT BSS−A KST BSS− S

Figure 2.19: Deflection distributions for energies from the transitional range (2, 5, 6, 8 EeV) for
different models.

gyroradius is smaller than the thickness of the galaxy, ensuring that the cosmic rays with lower
energies are trapped. When arrival directions of these particles at Earth are backtracked out of
the galaxy the exit direction, n̂last, is random and covers the whole sky uniformly.

Conversely, the distributions become more and more narrow as the energies increase. For
extremely high energies the distributions should become delta functions located at 0◦ (cos α = 1).
Clearly a transition as a function of energy takes place. Four energies (2, 5, 6, and 8 EeV) from this
transitional region and their deflections are shown in figure 2.19. It is clear that the distributions
shift towards lower deflections and it is also clear that there are large differences between the
models.

The 2 EeV distributions for the HMR models are approximately flat while for the TT BSS-A
and KST BSS-S the distributions are shifted towards smaller deflections. In fact, for the TT BSS-A
and KST BSS-S models all the deflection distributions are shifted to the right and towards lower
deflections when compared with the HMR models.

For the TT BSS-A model this is not surprising. It was shown in section 2.5.4 that the TT BSS-A
model ensures the lowest overall average deflections for all the eight energies considered there.

Since the strength of the disk field Bdisk is approximately the same for all models these dif-
ferences might be explained by the different descriptions of the halo field, Bhalo. The TT BSS-A
and KST BSS-S models use exponentials in order to suppress the field strength for increasing
|z|-values, while the HMR models use the hyperbolic function in equation (2.53). By using scale
heights of z1 = 0.3 kpc and z2 = 4 kpc, equation (2.53) decreases the field strength more slowly
with increasing z-values as compared to the exponentials in the TT BSS-A and KST BSS-S models.

Figure 2.20 shows the average deflections and the RMS values for different models and en-
ergies. Up to 1.5 EeV the deflections are extremely large and fluctuating in mean value. The
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Figure 2.20: Left panel: The average deflection for different energies and models. Right panel:
The Root Mean Square (RMS) measure of the deflection distributions for different models and
energies.

exception is the TT model with its much sharper decline of deflection when energy is increased.
The deflections are, if not totally, rather randomly isotropic and chaotic in this range. This is also
reflected in the RMS plot. The distributions are highly spread up until 1.5 EeV.

In the transitional region in figure 2.19, the KST BSS-S and the TT BSS-S models produce more
small deflections than the HMR models. This is also indicated in figure 2.20 where the average
deflections for the TT BSS-A and KST BSS-S models are lower than the HMR models.

From 10 EeV and upwards the deflections are approaching a ballistic region for all models
and follow the relation,

α =
D
E

, (2.67)

where D is deflection power in the units of [EeV ◦]. At 10 EeV the average deflection is around
20◦ for all the models. This yields,

〈α〉 = 20◦
(

10 EeV
E

)
= 2◦

(
100 EeV

E

)
, (2.68)

yielding an average 2◦ deflection for 100 EeV protons.
However, for the ballistic region, differences appear in the RMS plot. The RMS values for the

KST BSS-S model are substantially larger than in the other models. The RMS values of the KST
BSS-S model become relatively constant in the transitional region and remain so in the ballistic
region. For the KST BSS-S model thus the RMS values in the transitional and ballistic ranges
are comparable. A difference with the other models is also seen in figure 2.18. The 100 EeV
distribution for the KST BSS-S model clearly shows a relatively large tail. These differences are
explained by the deflection discrepancies of the three regions. In region A and B the deflections
are very small and vary very little, yielding an average deflection of order 1◦. In region B the
deflections are extremely varied ranging from 100◦ and more at the galactic center region to
negligible deflections towards the galactic poles yielding an average deflection of order 6◦.

If the HMR and the TT BSS-A models are describing the GMF sufficiently accurately, cosmic
ray astronomy is possible for energies above 10 EeV. In this range the deflections are inversely
proportional to the energy (see equation (2.68)). This is only partly true for the KST BSS-S config-
uration. Here the deflections in region A and C follow equation (2.68) while this equation is not
valid for region B.

Overall, cosmic ray astronomy is thus feasible for energies above 10 EeV, provided that the
field strengths of the models are accurate. As noted before, the field strengths of the models are
derived by using RM measurements.

J.L. Han and G.J. Qiao [54], and R.G. Rand and A.G. Lyne [55], using RM measurements,
calculated the average regular field along the line of sight to be BGMF

LS, q = 1.4 µG. Assuming this
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value for the large scale component of the GMF, equation (2.9) yields a deflection of 10◦ for
100 EeV protons traveling 20 kpc. This is an overestimation as the field strength is reduced for
increasing |z|-values.

E.M. Berkhuijsen, in reference [52], found an average local total perpendicular field of 6 µG
using synchrotron measurements. Using this value, equation (2.9) yields a deflection of 64◦. As
noted in the previous sections, synchrotron emission measurements probably overestimate the
field. However, if future measurements show that the total field is indeed of order 6 µG, then
cosmic ray astronomy would be very difficult.

In this section the deflections are calculated for proton primaries with different energies.
However, figures 2.21 to 2.24 are also valid for other primaries if the energies are corrected ac-
cordingly. By requiring that a given primary is deflected as much as a proton primary with a
given energy Eproton, equation (2.63) yields

Eprimary =
Zprimary

Zproton
Eproton (2.69)

where Zproton = 1 is the proton charge and Zprimary the charge of the given primary. For iron
Zprimary = 26. From equation (2.69) it is clear that a 26 EeV iron primary has the same trajectory as
an 1 EeV proton primary. Equation (2.69) is generally true for all primaries and their trajectories.
In the ballistic regime another approximation can be made, namely,

αprimary ≈
Zprimary

Zproton
αproton (2.70)

The deflection maps for 100 EeV protons are thus equivalent to the deflection maps of 2600 EeV
iron.

2.6 Extra-galactic exposure

Due to their geographical location, the daily rotation of the Earth, and the zenith angle depen-
dence of the detector acceptance, cosmic ray experiments are more exposed to cosmic rays from
some parts of the sky than others. Experiments located in only one hemisphere are for instance
only with vanishing efficiency able to detect cosmic rays from other parts of the sky. By running
experiments simultaneously on the northern and southern hemispheres the combined detectors
are exposed to cosmic rays from every direction of the sky. However, assuming that there exists
a 4π detector at Earth3, the isotropic influx of cosmic rays at Earth4 would nevertheless corre-
spond to a non-uniform distribution of arrival directions on the extra-galactic sky5 due to prop-
agation effects through the GMF [51, 78]. In other words6, sources do not contribute equally to
the isotropic cosmic ray flux at Earth and cosmic rays from certain sources might not be detected
at Earth [51, 78]. The distribution of the arrival directions on the extra-galactic sky yields the
extra-galactic exposure.

While the maps in section 2.5 convey information about the deflections of the cosmic rays
arriving at Earth from different parts of the sky, the extra-galactic exposure maps in this section
show the contributions to the cosmic ray flux at Earth from different portions of the extra-galactic
sky. Figures 2.21 to 2.24 show extra-galactic exposure maps for the GMF models and several
different energies. The maps are obtained by backtracking 50 000 randomly generated arrival
directions of protons at Earth, until they are 20 kpc away from the galactic center.

In this section, it is assumed that the cosmic rays are detected by a 4π detector7 at Earth.

3A 4π detector has a uniform exposure to the total sky.
4In the backtracking picture this corresponds to the isotropic distribution of initial directions that are used for back-

tracking.
5In the backtracking picture this corresponds to the final directions of cosmic rays when they exit the galaxy.
6In the forward-tracking picture.
7The detector has a total sky coverage. The Auger coverage is not taken into account.
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E = 0.1 EeV E = 0.5 EeV

E = 1 EeV E = 5 EeV

E = 10 EeV E = 30 EeV

E = 50 EeV E = 100 EeV

Figure 2.21: Extra-galactic exposure maps for the HMR ASS-A model for different proton energies
in Hammer-Aitoff projection. 50 000 random arrival directions are backtracked until they are
outside the galaxy and the corresponding final directions of the tracks are histogrammed.

2.6.1 HMR ASS-A model

The most obvious feature in figure 2.21 is the symmetry with respect to the z-axis. This is again
due to the axis-symmetric configuration of the HMR-ASS-A model. Another striking feature is
the almost isotropic distribution of the particle directions at 0.1 and 100 EeV. The distributions
are isotropic for different reasons. At 0.1 EeV the deflections are large, ensuring that the parti-
cles are almost randomly spread all over the sky when backtracked. Physically it means that
the cosmic ray isotropy at Earth is caused by particles that entered the galaxy isotropically and
homogeneously. At 0.5 EeV two huge gaps appear in the central region around z = 0. Cosmic
rays originating from extra-galactic sources in these regions are off limit for the detector placed
at Earth’s position, constituting blind spots for observers. The two gaps develop into a huge
blind spot for energies up to 5 EeV. Now, the extra-galactic particles detected at Earth originate
from sources in the vicinity of the galactic north and south pole only, making charged particle
astronomy difficult at this energy. For 10 EeV and upwards the gap narrows down to a small
region covering the whole vicinity of the galactic equator. Clearly, energies higher than 100 EeV
are required in order to have access to particles from the whole extra-galactic sky. The arrival
isotropy at very high energies is due to the low deflections of the particles. The particles just sim-
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E = 0.1 EeV E = 0.5 EeV

E = 1 EeV E = 5 EeV

E = 10 EeV E = 30 EeV

E = 50 EeV E = 100 EeV

Figure 2.22: Extra-galactic exposure maps for the HMR BSS-S model for different proton energies
in Hammer-Aitoff projection. 50 000 random arrival directions are backtracked until they are
outside the galaxy and the corresponding final directions of the tracks are histogrammed.

ply traverse through the galaxy. Thus, for the HMR ASS-A model the particles from the whole
extra-galactic sky are only accessible for very low or very high energies.

2.6.2 HMR BSS-S model

In contrast to figure 2.21, figure 2.22 shows a huge inaccessible region for 0.1 EeV. In this case,
almost all the extra-galactic particles that are detected at Earth originate from sources in region
C in the northern galactic hemisphere. In addition, the blind region is progressively narrowed
down with increasing energy. This is a quite different behavior than in the HMR ASS-A model
where the blind region does not exist at 0.1 EeV, is huge at 5 EeV, and small at 100 EeV.

As in figure 2.15 the symmetry is broken since the field along the z-axis does not change
direction.

2.6.3 TT BSS-A model

With respect to the development of the blind region on the sky, the exposure maps in figure
2.23 are similar to those in figure 2.22. The blind region is largest for 0.1 EeV, gradually decreas-
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E = 0.1 EeV E = 0.5 EeV

E = 1 EeV E = 5 EeV

E = 10 EeV E = 30 EeV

E = 50 EeV E = 100 EeV

Figure 2.23: Extra-galactic exposure maps for the TT BSS-A model for different proton energies
in the Hammer-Aitoff projection. 50 000 random arrival directions are backtracked until they are
outside the galaxy and the corresponding final directions of the tracks are histogrammed.

ing with higher energy. Due to the field reversal at the disk the exposure maps are symmetric,
resembling the ones in figure 2.21. This reversal also ensures that the distribution for higher
energies is less isotropic than in the case of HMR BSS-S model.

2.6.4 KST BSS-S

The exposure maps for the KST model are truly unique due to its dipole field. The most striking
feature is the significant size of the blind region around the galactic center from 30 EeV and up-
wards. For 0.1 EeV and 0.5 EeV the blind regions are located in the regions around the galactic
north and south poles. At 1 EeV a transition takes place, and from 5 EeV and onwards the blind
spot is contained in the region around the galactic center. The dipole field in equation (2.60)
increases towards the galactic center as

Bz = −246 µG
(

r
kpc

)−3
(2.71)
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E = 0.1 EeV E = 0.5 EeV

E = 1 EeV E = 5 EeV

E = 10 EeV E = 30 EeV

E = 50 EeV E = 100 EeV

Figure 2.24: Extra-galactic exposure maps for the KST BSS-S model for different proton energies
in Hammer-Aitoff projection. 50 000 random arrival directions are backtracked until they are
outside the galaxy and the corresponding final directions of the tracks are histogrammed.

for z = 0 and r2 = x2 + y2. This implies that even particles of large energies are significantly
deflected.

From the plots for 30, 50, and 100 EeV it is clear that a high degree of isotropy prevails in
region A and C.

2.6.5 Conclusion

The figures in sections 2.6.1 to 2.6.4 clearly show different degrees of isotropy. One of the many
estimators of isotropy is the normalized information entropy S, defined as

S = −∑
Ni
N ln

(
Ni
N

)
Ai
4π ln

(
Ai
4π

) , (2.72)

where Ni is the number of particles in sky bin i and Ai the fraction of the full solid angle of
bin i (size of the corresponding patch). N is the total number of particles, in this case 50 000.
The relation (2.72) is zero in the extreme anisotropy case where all the particles land in one bin.
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Figure 2.25: The entropy estimator of isotropy for different energies and models.

Conversely, it is one when the amount of particles in every bin is proportional to the bin size
(isotropic distribution). In figure 2.25, the isotropy is lowest for the HMR BSS-S and TT BSS-A
models for energies lower than 1 EeV. From 1 EeV and onwards all the models have more or
less the same degree of isotropy that converges to 1 at higher energies. The exception is the
KST model with its higher degree of isotropy in this energy range. Although the overall sky is
isotropic for higher energies this is not true for the different sky regions. There are blind regions
that have to be taken into account. For the HMR ASS-A and TT BSS-A models there are blind
regions along the vicinity of the galactic equator for energies up to 100 EeV. For the KST model
a large blind region around the galactic center remains even for the highest energies. As noted
in section 2.5, for the KST BSS-S model the deflection of 100 EeV protons in region B is of order
6◦, making any attempt for a source search with high accuracy impossible (under the working
assumption that the models accurately describe the GMF).



Chapter 3

Magnetic Deflections at the Galactic
Center

3.1 Introduction

Although the Galactic Center (GC) is not known for excesses of very high energy cosmic rays
it has been a subject of anisotropy studies by several cosmic ray experiments, including PAO.
In addition, the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) measures
positron-annihilation signal from the GC [87]. The GC is a source of positron-annihilation X-rays
at 511 keV [88] (see figure 3.1).

The AGASA experiment reported a cosmic ray excess of 22% from a part of the GC region
(see e.g. [89]), for energies around 1 EeV. By reexamining the data from the SUGAR experiment,
Bellido et al. found another excess from a region around 10◦ around the GC [90, 91].

Although PAO rejected the claims of GC excesses found in data gathered by other experiments
(see [92] and references therein), cosmic ray excess from the GC is recently found for an energy
threshold of Eth = 1017.8 eV and angular radius of γ = 11◦ by R. Bonino and G. Navarra [93],
but at much smaller levels. They suggest a prescription for a cosmic ray excess search using the
parameters Eth and γ.

Figure 3.1: Left panel: The figure shows the GC excess for the parameters Eth = 1017.8 eV and γ =
11◦. Black star is the GC while the blue star represents the point with maximum excess. Figure
taken from Bonino and Navarra [93]. Right panel: The 511 keV X-ray signal due to positron
annihilation, from the INTEGRAL measurement [94].

Due to the low energy threshold of the excesses reported it is often assumed that the cosmic

47
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Figure 3.2: The impact parameter, d, between the GC and the path obtained by backtracking. û is
the initial arrival direction as a function of l0 and b0 defined in the text.

rays originating from the GC are neutrons (see e.g. [89, 90, 91, 92] and the references therein).
The production and decay of neutrons also involves production of protons [91, 95].

For an anisotropy search, establishing the size of the deflections of potential protons is crucial
and many attempts are found in literature.

For example, G.A. Medina-Tanco and A.A. Watson [91] investigate the deflections of protons
that are produced by propagating and decaying neutron primaries. Using different GMF models
they are unable to reproduce at Earth the excesses reported by [89, 90] due to large deflections.
They suggest the possibility of proton primaries being responsible for the observed excesses if
the source is located closer than 1.6 kpc from Earth.

On the other hand, R.W. Clay [95] investigates the deflection of GC protons resulting from
neutron production. Due to lack of a precise method some approximations are made by R.W.
Clay. GC protons are said to be observed at Earth if they reach the radial distance of 8.5 kpc from
the GC, and if their distance to the galactic plain is less than 1 kpc. Using a GMF model with both
regular and random components deflections of order 10◦ are found for 10 EeV protons. R.W. Clay
also concludes that a source in the GC is undetectable for protons with energies below 1 EeV.

The following chapters take these appraisals as a starting point. The goal is to assess the
deflections of GC protons within the assumption that some of the GMF models are correct or at
least quantitatively describing the GMF correctly.

A powerful procedure is constructed in section 3.2 that makes it possible to obtain the arrival
directions at Earth of protons originating exactly from the GC. This makes it possible to calculate
deflections precisely, unlike in [95] where the deflections are merely indicative.

The GC is located at the galactic disk and thus the symmetry of the magnetic field with respect
to disk crossing is important in this study. In the following chapter the HMR ASS-A and BSS-S
models are used. Since the TT BSS-A and KST BSS-S models have the same symmetries with
respect to the disk as the HMR models, they are not used in the following considerations.

The results of this study are published in reference [96].

3.2 Shooting procedure

In order to establish the deflections of the cosmic rays originating from the GC region their in-
coming directions at Earth are needed. These are obtained by the shooting procedure described
here.

Starting from the position of the Earth, given by (−8.5, 0, 0) kpc, a single proton with fixed
energy E is backtracked using the relativistic equations of motion (2.63). The initial direction û is
given by the input parameters, galactic longitude l0 and latitude b0. Consequently, an initial path
with a certain distance to the GC is acquired. What is required, however, is to find the proton
trajectory with impact parameter d (see figure 3.2) equal to zero. For d = 0, the trajectory goes
through the GC. Points (x1 and (x2 are the closest and the next closest points, respectively, to the
path from the GC.
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With a fixed energy the minimal impact parameter can only be obtained by varying the initial
coordinates l0 and b0 until the subsequent backtracking yields a trajectory that is as close as
possible to the GC. For this purpose TMinuit [97] is used. TMinuit is a multipurpose package in
ROOT used for minimization of functions with respect to chosen parameters.

After the initial path is acquired, TMinuit varies the initial coordinates, l0 and b0. The new
varied coordinates are used for backtracking and a new proton path that is closer to the GC is
obtained.

The procedure continues until a minimal possible impact parameter d is obtained. As noted,
the trajectories go through the GC only if d = 0.

The distance to the galactic center from the interpolated proton path is given by,

d2 =
1
s2

[
|s|2|p|2 − (⇀s · ⇀p)2

]
, (3.1)

where ⇀p is the vector between the GC and (x1 the closest point of the proton’s path to the GC. ⇀s is
the vector between (x1 and the next closest point to the GC, (x2.

The new directions yielding a zero for equation (3.1) are called shooting directions for an
obvious reason. When shooting directions are backtracked they yield trajectories that go directly
through the GC.

3.3 Shooting directions

Ten thousand proton events are generated with randomized energies between 0.1 to 150 EeV. The
initial randomized directions û, given by the input parameters l0 and b0, are chosen to be inside
a window of ± 20◦ around the direction to GC and are then run through the TMinuit minimizer
to find the final directions that produces trajectories going through the GC. Shooting directions
obtained by the procedure described in section 3.2 are shown in figure 3.3.
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Figure 3.3: The shooting directions resulting in cosmic ray tracks going through the GC for the
HMR ASS-A model for energies in the range 0.1 EeV to 150 EeV.

The HMR ASS-A model is used. As noted in section 3.2 these shootings directions, when
backtracked, lead to propagation of particles through the GC. The shooting directions are thus
the GC images as seen at Earth. In figure 3.3 there are shooting directions continuously moving
with changing energy. In addition, figure 3.3 is filled with scattered shooting directions both
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Figure 3.4: The shooting directions resulting in cosmic ray tracks going through the GC for the
HMR BSS-S model for energies in the range 0.1 EeV to 150 EeV.

above and below the disk. For the HMR ASS-A model the shooting directions are symmetrical
due to the field reversal with respect to the galactic disk.

For the HMR BSS-S model the shooting directions are only found below the galactic disk. This
is due to the non-reversal of the field at disk crossing. The shooting directions for the HMR BSS-S
model are shown in figure 3.4.

3.4 Deflections

Observing from Earth, the direction towards the GC is simply ûGC = (1, 0, 0). The deflection α
for particles arriving from the GC is thus given by,

cos α = ûsh · ûGC = ux, (3.2)

where ûsh is the shooting direction and ux is its x-component. Since cos α = (1− sin2 α)1/2 and
ux = (1− u2

y − u2
z)1/2 expression (3.2) is rewritten as,

sin α =
√

u2
y + u2

z , (3.3)

where uy and uz are given by the shooting directions. Figure 3.5 shows the deflections of protons
from the GC in the energy range 0.1 EeV to 150 EeV.

From 5 EeV to 150 EeV the deflections change smoothly with changing energies. At 0.1 EeV to
1 EeV a chaotic regime prevails and the deflections are scattered with respect to changing energy.
A transitional phase is seen between 1 EeV and 5 EeV. There also exists a set of deflections that
are zero or close to zero covering the whole energy range. This trivial solution, like the chaotic
deflection regime between 0.1 EeV and 1 EeV, is a result of the field reversal with respect to the
z-axis. As shown in a figure 3.6 the field for the HMR ASS-A model goes to zero at z = 0. This
makes it possible for protons with energies as low as 0.1EeV to propagate to Earth. In the next
sections two energy ranges are investigated. The higher energy range from 10 EeV to 150 EeV,
and the lower energy range from 0.1 EeV to 1 EeV.

For the HMR BSS-S model the deflections change smoothly with changing energy as seen in
figure 3.7. The deflections are in the range 2 EeV to 150 EeV.



3.4. DEFLECTIONS 51

energy  [EeV]

-110 1 10 210

]°
D

ef
le

ct
io

n
  [

0

2

4

6

8

10

12

14

16

18

20

Figure 3.5: The energies and their corresponding deflections in the HMR ASS-A model for ener-
gies in the range 0.1 EeV to 150 EeV. Note the solution with no deflection.
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Figure 3.6: The magnitude of the magnetic field produced by the HMR ASS-A model at the
position of the Earth as a function of the z-coordinate. Note the zero-field at z = 0. This ensures
that cosmic rays with even the lowest energies originating from the GC are not deflected. The
zero-field creates a “channel” that lies on the galactic disk between Earth and the GC where non-
deflected particles propagate.
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Figure 3.7: The energies and their corresponding deflections in the HMR BSS-S model for energies
in the range 0.1 EeV to 150 EeV.
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Figure 3.8: Upper and lower plots show trajectories in the xz plane for shooting directions with
0◦ < b < 90◦ and −90◦ < b < 0◦, respectively. The energies are continuous between 10 (blue)
and 150 EeV (red). HMR ASS-A model is used for GMF.
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Figure 3.9: The xy plane trajectories for continuous energies between 10 (blue) and 150 EeV (red).
HMR ASS-A model is used for GMF.

3.4.1 High energies

HMR ASS-A model

Figure 3.8 shows the tracks of proton trajectories in the xz plane ending at Earth at x = −8.5 kpc
and starting at the GC. The upper plot shows the trajectories for shooting directions with latitudes
in the range 0◦ < b < 90◦, i.e. for positive ûz values. The lower plot shows trajectories when the
ûz values are negative. Note that the trajectories are above and below the galactic disk for positive
ûz and negative ûz, respectively.

Figures 3.9 and 3.10 display the trajectories in the xy and yz plane, respectively.
The most striking feature in the two latter plots is the extent of the trajectories into the y-

direction. The trajectories reach a maximum of only y = ±0.014 kpc. Clearly the deflections are
negligible in y direction i.e. ûy ≈ 0. Effectively, the trajectories are restricted predominately into
x and z-directions. In the following, this fact is used to derive a simplified picture of the force
acting on a cosmic ray.
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Figure 3.10: Upper and lower plots show trajectories for shooting direction with 0◦ < b < 90◦

and −90◦ < b < 0◦, respectively, in the yz plane. The energies are continuous between 10 (blue)
and 150 (red) EeV. HMR BSS-S used as GMF model. Note that the z and y axes are not given in
the same scale.
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Figure 3.11: The magnitudes of the Bx and By components of the disk field from the HMR-ASS-A
model in blue and red, respectively. The magnitudes are calculated 0.1 kpc above the disk and
along the direction towards the GC.

The Cartesian components of the galactic magnetic field are expressed as,

Bx = (x sin p− y cos p)Bhalo,
By = (y sin p + x cos p)Bhalo, (3.4)

where the pitch angle is p = −170◦ and the field component Bhalo is defined in chapter 2. Since
sin p is negligible and the starting position of the backtracked particles is ⇀xEarth = (−8.5, 0, 0)
kpc equations (3.4) yield,

Bx ≈ 0,
By ≈ (x cos p)Bhalo. (3.5)

Figure 3.11 gives an idea of the discrepancy regarding the magnitudes of the components. The
figure shows the Bx and By components 0.1 kpc above the disk and along the direction towards
the GC.
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Since the HMR models lack a Bz component and ûy ≈ 0, the Lorentz force becomes,

FLorentz ≈ ûx By ẑ. (3.6)

The Lorentz force in (3.6) acts only in the z-direction. On the way to Earth the cosmic rays oscillate
up and down around z = 0, as evident from figure 3.8. The Lorentz force is thus acting like a
restoring force in a harmonic oscillator.

Low energies

The Lorentz force acting like a restoring force has repercussions for the low energy particles.
As seen from figure 3.8 and equation (3.6), the particles are pulled back into the galactic disk.
Taking into account the “channel” in figure 3.6 this yields ”a particle in a box”-behavior for the
low energy protons as seen in figure 3.12. For this figure the initial randomized directions are
generated inside a window of ±10◦ around the galactic center. Energies are generated in the
range of 0.1 EeV to 1 EeV.
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Figure 3.12: ”Particle in a box” behavior of several generated cosmic ray protons in the “channel”.
Energies range from 0.1 EeV to 1 EeV. Initial directions are generated in the range ±10◦ around
the GC.

The Lorentz force, drawing particles back towards the galaxy disk, acts as a potential wall,
trapping the particles inside the region −0.2 kpc < z < 0.2 kpc around the disk. Above 1 EeV,
particles start to escape this region and enter the transitional regime in figure 3.5. For increasing
energies the deflections begin to change continuously, yielding the trajectories in the figures 3.8
to 3.10. Note that the trivial solution with no deflection is always present due to zero-field caused
by the field reversal with respect to z-direction.

The channel solution also implies that sources located in the GC are detectable at Earth, no
matter how low the energy of the GC particles.
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3.4.2 Deflections - HMR BSS-S

High energies

In contrast to the HMR ASS-A model the BSS-S version produces proton deflections only in the
range 2 EeV to 150 EeV due to the non-changing field along the z-direction. Hence, the model is
not interesting for lower energies. However, unlike the HMR ASS-A model the BSS-S model has
field reversals between the spiral arms.

Figure 3.13 shows that the trajectories are both above and below the galactic disk in the xz
plane. Compared to figure 3.8 it is clear that the particles are deflected less than in the HMR
ASS-A model. Figures 3.14 to 3.15 show the trajectories in the xy and yz planes, respectively.
Figure 3.16 shows the differences between the Bx and By components of the model 0.1 kpc above
the disk and along the direction towards the GC. The magnitudes alternate between positive and
negative values. This is due to the field reversals between the spiral arms.

The deflections in the two HMR models are compared in figure 3.17. The deflection of 10 EeV
protons in the HMR BSS-S model is comparable to the deflections found in [95]. In the case of the
HMR ASS-A model, however, the deflections are around 10◦ larger.
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Figure 3.13: The xz plane trajectories for continuous energies between 10 (blue) and 150 EeV
(red). HMR BSS-S is used as GMF model.
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Figure 3.14: The xy plane trajectories for continuous energies between 10 (blue) and 150 EeV
(red). HMR BSS-S used as GMF model.
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Figure 3.15: The yz plane trajectories for continuous energies between 10 (blue) and 150 EeV
(red). HMR BSS-S is used as GMF model.

x  [kpc]              
-9 -8 -7 -6 -5 -4 -3 -2 -1 0

G
]

µ
M

ag
n

et
ic

 f
ie

ld
 c

o
m

p
o

n
en

ts
  [

-6

-4

-2

0

2

4

6

Figure 3.16: The magnitudes of the Bx and By components of the HMR BSS-S model in blue and
red, respectively. The magnitudes are calculated 0.1 kpc above the disk and along the direction
towards the GC. The field alternates between positive and negative values since the BSS config-
uration ensures sign reversals between the spiral arms.
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Figure 3.18: Deflections calculated by the equations (3.3) (red dots) and (3.7) (blue dots).

3.5 Simplified equations of motion

As shown in the previous section, the deflections in the y direction are negligible. By assuming
ûy ≈ 0 the deflection α for particles originating from the GC in equation (3.3) is now given by,

sin α = uz, (3.7)

where arcsin (uz) is just the galactic latitude b obtained from the shooting procedure. The de-
flections as given by equations (3.3) and (3.7) are compared in figure 3.18. In the transitional
range between 1 EeV and 5 EeV discrepancies appear, especially between 1 EeV and 2 EeV. In the
chaotic range these discrepancies are clearly visible. However, there is a full agreement for ener-
gies in the range from 5 EeV to 150 EeV. The global structure of the deflections for high energies
is thus well described by equation (3.7). The assumption ûy ≈ 0 is thus perfectly valid for high
energies. The deflections for high energies are thus equivalent to the galactic latitudes b as seen in
equation (3.7).

From section 3.4.1 it is clear that y ≈ 0 and Bx ≈ 0. These facts are used in the following to
derive an effective propagation model.

By assuming y ≈ 0, uy ≈ 0 and Bx ≈ 0 and ux ≈ 1 (since ux = cos l · cos b where l is galactic
longitude and b is galactic latitude) the equations of motion are rewritten in the following form,

dx′

cd(t)
= ux,

dz
cd(t)

≈ uz,

duz

cd(t)
≈ − qc

E
By(x′, z). (3.8)

The first equation is integrated analytically. At t = 0 the position of the particles is at Earth.
Integrating yields

x′ = ct− 8.5 kpc. (3.9)

From equations (3.8) it is clear that there are no deflections when z = 0 since By(x′, 0) is zero.
Hence only the first equation remains, showing that the cosmic rays travel linearly from the
GC to Earth when z = 0. Figure 3.19 compares the galactic latitudes obtained by the shooting
procedure when ordinary and simplified equations of motions are used. As noted the deflections
are equivalent to the galactic longitudes for high energies. From 5 EeV and higher, there is no
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Figure 3.19: Shooting latitudes versus energy. The latitudes obtained by the ordinary equations
of motion and the simplified equations in blue and green, respectively.

difference between the two sets of latitudes. Hence the effective propagation model is valid for
high energies. As expected, this agreement deteriorates as the energy decreases.

3.6 Conclusion

As noted in the introduction, a prescription for GC excess search is under development by the
PAO. The scan parameters suggested in [93] include an energy threshold of 1017.8 eV and an
angular radius of 11◦. Section 3.4.1 established that the By component of the magnetic field is
dominating, ensuring propagation mainly in the xz direction. If propagation in only x direction
is assumed, the Lorentz force yields,

By = −
E sin

(
α
2
)

qcL/2
, (3.10)

where α is the observed deflection and L is the distance to the GC, 8.5 kpc. Substituting the
constants and the variables for their magnitudes and units, yields,(

By

nG

)
≈ −252 sin

(α

2

)( E
EeV

)
, (3.11)

where E is the energy of the particles. Using the parameters maximizing the GC excess found in
reference [93] sets a boundary on By of 15 nG. Assuming that Bx ≈ 0 (see equation (3.5)) and that
the GC is really the source of this excess, the average magnetic field thus is only 15 nG, putting a
constraint on the models.

This estimated value is low compared to the By components of the HMR models in figures
3.11 and 3.16. Fortunately, as seen in figure 3.11 there exists in the HMR ASS-A model a channel
where the field is zero or extremely low, yielding a trivial solution with no deflection. The low
estimation of By in equation (3.11) is thus compatible with the HMR ASS-A model. The trivial
solution also implies that a source in the GC is indeed observable at Earth, no matter how low
energy the GC cosmic rays have.

The BSS-S configuration yields smaller deflections for higher energies than the ASS-A, as
seen in figures 3.13 - 3.17. But this is irrelevant for the search of a cosmic ray excess from the
GC as 10 EeV particles are deflected around 15◦ in this model! For the HMR ASS-A model the
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Figure 3.20: Shooting directions for energies lower than 10 EeV (blue) are superimposed on an
event excess map from GAP-2008-008 [93].

deflections for 10 EeV particles range from 25◦ down to almost zero due to the existence of the
trivial solution.

The field reversal with respect to the disk in the HMR ASS-A model also looks appropriate
when the excess map of the GC from [93] is scrutinized. Clearly the excesses above and below
the disk plane in figure 3.20 might be explained by a field reversal in the z direction. Shooting
directions in the energy range from 10 EeV and lower, obtained for the HMR ASS-A model are
superimposed on the excess map. Although the shooting directions are not smeared out as much
as the excess, they are compatible with the two excess clouds above and below the galactic disk.
Each of the clouds are smeared out around 10◦. For E = 1017.8 eV and α = 10◦ equation (3.11)
yields a magnitude of 14 nG.

If the parameters in the proposed prescription are kept, models with non-changing field with
respect to the z direction and a field strength as strong as implied by the HMR BSS-S model are
excluded. Conversely, a 1017.8 eV threshold makes sense within models like the HMR ASS-A.

If it turns out that our galaxy indeed has a BSS-S configuration and a magnitude as large
as predicted in the HMR BSS-S model the excess observed from the GC can only be explained
by emissions of neutral primaries, like neutrons. The neutron primary assumption has been
suggested before by many papers.

Any verified excess from the GC will have a huge impact on not only the constraining of the
models of the GMF but also on the composition of the cosmic rays from the GC.



Chapter 4

Magnetic Deflections and Active
Galactic Nuclei

4.1 Introduction

In 2007 PAO reported an observed correlation of UHECR events and Active Galactic Nuclei
(AGN) in Science [98]. A long and more detailed paper was published in 2008 [99]. A descrip-
tion of the search method is found in appendix B.2. After an exploratory scan on data from the
period January 2004 to May 2006 anisotropy was confirmed [98, 99, 100]. The anisotropy was
reconfirmed using data from May 2006 to August 2004 [98, 99]. The scan was repeated on the full
data set from January 2004 till the end of August 2007. The scan parameters yielding maximum
anisotropy were Eth = 57 EeV, zmax = 0.017 and Ψ = 3.2◦ [98, 99], where Eth is the minimum
energy and zmax the maximum redshift. Ψ is the correlation maximizing angular separation be-
tween the Auger events and the AGNs. A total of 5.6 events were expected to correlate by chance.
Instead, 20 out of a total 27 events above 57 EeV correlated with 20 AGNs with a minimum bino-
mial scan probability of 4.6× 10−9 (non-penalized). Some of the Auger events correlated to two
or more AGNs making the total number of correlations 25 (see table 4.1). The real chance prob-
ability after penalizing for scanning was calculated to be P = 10−5. The difference between the
two probabilities is explained in appendix B. Significant anisotropy is also observed for angular
separations up to 6◦. This range was denoted as the “angular scale of correlation” [99]. Following
the Auger Collaboration’s report a huge debate ensued challenging those claims.

The effect of the galactic magnetic field was briefly mentioned in reference [99]. Using the
HMR BSS-S model under the assumption that the cosmic rays are protons, Auger events were
backtracked until their distance to the galactic center reached 20 kpc. It was concluded that the
deflections were compatible with the angular range of correlation provided that the HMR BSS-S
model is more or less reliable and that the correlating cosmic rays are protons. The deflections are
shown in figure 4.1. However, this conclusion was based on using only the HMR BSS-S model.
In addition, the backtracked Auger events were not used for calculating the new “corrected”
correlation.

The goal of this chapter is to check if the correlation between the UHECR – AGN is reasonable
after taking into account the magnetic deflections. This is done in three analyses. In all of them it
is assumed that the cosmic rays are protons.

The first analysis in section 4.3 investigates the deflections of generated protons that originate
exactly from the AGNs in table 4.1. In order to get the arrival directions of protons originating
exactly from the AGNs a shooting procedure is constructed (section 4.2). These arrival directions
(shooting directions) are then used to calculate the deflections caused by different GMF models.
The deflections are compared with the angular distance Ψ = 3.2◦.

In the second analysis (section 4.4) the arrival directions of generated protons originating
exactly from the AGNs are compared to the Auger data directions. In addition, the backtracked

61
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Auger Event Energy [EeV] l [◦] b [◦] AGN lAGN [◦] bAGN [◦]
200719304931 90.3 12.2 −49.0 4627 10.1 −50.7
200719304931 90.3 12.2 −49.0 4624 9.9 −50.4
200603501150 85.2 −165.9 −46.9 1030 −169.6 −46.5
200603501150 85.2 −165.9 −46.9 1045 −169.4 −45.6
200414200633 84.5 −50.8 27.6 3285 −47.2 28.1
200505400622 83.6 −75.6 −78.6 556 −76.8 −78.3
200433900105 83.4 −27.9 −17.0 4427 −27.7 −14.7
200618504666 82.9 88.8 −47.1 4837 85.8 −49.4
200714500527 77.8 −163.8 −54.4 968 −165.8 −55.5
200506300054 71.1 58.8 −42.4 4673 63.0 −41.8
200722101059 70.9 −21.8 54.1 3516 −20.9 53.8
200706903088 69.8 −51.4 19.2 215 −50.5 19.4
200629900147 69.0 −51.2 17.2 215 −50.5 19.4
200629900147 69.0 −51.2 17.2 3312 −48.5 16.2
200629604873 68.5 −170.6 −45.8 1015 −173.6 −46.2
200629604873 68.5 −170.6 −45.8 1030 −169.7 −46.5
200629604873 68.5 −170.6 −45.8 1045 −169.4 −45.6
200428200333 66.1 −49.6 1.7 3370 −50.2 1.5
200708401685 64.0 −109.4 23.8 1900 −107.0 26.0
200434300218 63.3 −34.4 13.0 114 −33.9 14.0
200530601050 58.7 48.8 −28.7 4547 50.5 −26.0
200605500287 58.6 −27.6 −16.5 4427 −27.7 −14.7
200705100383 57.7 63.5 −40.3 4673 63.0 −41.8
200508101056 57.6 −52.8 14.1 3090 −54.7 13.3
200529501100 57.4 4.2 −54.9 4671 8.0 −54.8

Table 4.1: Auger data [98, 99] and their correlating AGN(s) from the Véron-Cetty-Véron cata-
log [101].

positions of the correlating Auger data are compared to the positions of their correlating AGNs.
Two tentative “criteria” are made:

• The directions of the correlating Auger events should match the arrival directions (shooting
directions) of generated protons originating exactly from the original AGNs in table 4.1.
Here this criterion is fulfilled if the angular separation between the correlating Auger events
and the generated protons originating exactly from the original AGNs is 1◦ or less. This
number corresponds to the angular resolution of PAO.

• The positions of the backtracked correlating Auger events should lie inside a circle of radius
3.2◦ around their correlating AGN.

The criteria taken together imply that the measured correlating data have indeed its origin at
the original AGNs, if the GMF models are correct. The first criterion checks if the path traveled
by the Auger event points directly to its correlating AGN or not. The second criterion checks if
the backtracked Auger event is inside the correlation circle defined by [98, 99]. Generally, the
positions of backtracked events outside the galaxy, obtained by the constant velocity directions
outside the galaxy, are viewed upon as pointing towards the source position, provided that the
extra-galactic field is negligible.

Thirdly, in section 4.5, the correlation is recalculated after taking into account the galactic
magnetic field. The code and procedure for the calculation of the correlation is the same as used
in [98, 99, 100] and is found in reference [102]. The positions and red-shift distances of AGNs
used in [98, 99] are found in the Véron catalog [101].

The results from the three analyses are discussed in section 4.6.
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Figure 4.1: The deflections of Auger events under the proton assumption. The energy is above
57 EeV and the HMR BSS-S model is used. Note that this figure, produced here, is identical to the
right plot in figure 8 in reference [99].

4.2 Shooting

Starting at Earth, protons with fixed energies and initial directions expressed in galactic longi-
tude l0 and latitude b0 are backtracked until they are outside the galaxy. The directions of the
backtracked protons just outside the galaxy are denoted as ûlast.

Unlike in the case of the galactic center there is no way to define a distance between the tra-
jectories of the backtracked particles and their corresponding AGNs, that might be subsequently
minimized.

However, knowing the direction of the AGNs, ûAGN, and the directions of the backtracked
particles outside the galaxy, ûlast, the following scalar magnitude is defined and minimized with
TMinuit,

∆u = |ûlast − ûAGN|. (4.1)

When protons are backtracked out of the galaxy with the initial galactic coordinates l0 and b0, an
∆u is acquired. TMinuit varies the initial coordinates until a minimum ∆umin is found. For ∆u =
0 the direction of the backtracked protons outside the galaxy points directly to the AGNs. The
new initial coordinates after minimization are the coordinates of incoming protons originating
from the AGNs. Due to the finite numerical accuracy, however, a limit on the minimum is set
to ∆umin < ε where ε = 0.5◦ is the accuracy. In the following, the directions (given by galactic
coordinates) of incoming protons originating from the AGNs are called shooting directions. The
shooting directions are thus the AGN images at Earth as conveyed by the protons. The shooting
procedure is demonstrated in figure 4.2.

Protons with 500 randomly chosen (l0, b0) and fixed energies in the range 0.1 to 150 EeV are
generated and backtracked in the HMR ASS-A configuration.
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Figure 4.2: Upper plot shows the shooting directions (red) obtained for protons with energies
from 0.1 EeV to 150 EeV in the HMR ASS-A configuration. The AGN (blue) was chosen arbitrarily
from the Véron-Cetty-Véron catalog [101]. It has ID number 108 and its position in equatorial
coordinates is RA = 217.9279◦, DEC = 63.0367◦. With its redshift quoted as zero this AGN lies
closer than 4.2 Mpc from our galaxy and thus lies inside the local group of galaxies. Lower plot
shows the thread-like shooting directions for protons in the range 7.5 EeV to 148 EeV. Note the
three shooting directions of the 7.5 EeV protons at the end of the string. The transitional directions
are seen on the galactic disk below the end of the thread-like string. The energies above 7.5 EeV
are not labeled (i.e. the shooting directions in the thread-like string).

The ûAGN is given by the position of an AGN from the Véron-Cetty-Véron catalog with the ID
number 108 (chosen arbitrarily for this illustration). In the upper plot in figure 4.2 the shooting
directions obtained by the procedure are shown. The blue dot represents the position of AGN
108. A thread-like string of shooting directions is seen. These move closer to the AGN position
with increasing energies in the range 7.5 EeV to 148 EeV. An enlarged view of this string is seen
in the lower plot. Labels for energies above 7.5 EeV are not shown. Three shooting directions for
7.5 EeV protons are seen at the end of the thread-like string. This pileup of shooting directions of
7.5 EeV protons indicates a cutoff. The energy range of the thread-like string (7.5 EeV to 148 EeV)
corresponds approximately to the “ballistic limit” defined in chapter 2 where the deflection is a
function of ∼ 1/E. Just below the pileup and on the galactic disk, four shooting directions for
protons in the energy range 6 EeV to 7 EeV are seen. These are not part of the thread-like string.
Due to their proximity to the string these shooting directions might be regarded as transitional di-
rections between the thread-like string and the more chaotic random shooting directions. Below
6 EeV the shooting directions become completely random. These random shooting directions are
also not a part of the thread-like string and are seen in both plots.

Figure 4.3 shows 50 trajectories in the xz plane obtained by backtracking protons with the
shooting directions from figure 4.2. Earth is located at (−8.5, 0) kpc. The bundle with large
number of trajectories to the left, below x < −8.5 kpc, is a result of backtracking part of the
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Figure 4.3: The trajectories in the xz plane aiming at the AGN. The trajectories are obtained
by backtracking 50 shooting directions in figure 4.2 until the galaxy boundary (set at distance of
20 kpc). The thick bundle of trajectories to the left (below x < −8.5 kpc) is a result of backtracking
part of the thread-like string of shooting directions. The single trajectory to the left of the bundle
is due to one of the transitional shooting directions. The trajectories to the right, above x >
−8.5 kpc, are due to the random shooting directions. Note that x and z axes are not given in the
same scale.

thread-like string of shooting directions in figure 4.2. The trajectories start at Earth (x = −8.5 kpc)
and leave the galaxy almost linearly, pointing to the AGN. The single trajectory to the left of the
bundle is due to the backtracking of one of the transitional shooting directions in figure 4.2. The
trajectory seems to have broken off from the bundle, implying its transitional character. The
remaining trajectories above x > −8.5 kpc are due to the random shooting directions. These
trajectories start at Earth position and traverse a large part of the disk before escaping the galaxy
in the direction of the AGN. All the trajectories satisfy ∆umin = ε.

Assuming that the HMR ASS-A model gives a reasonable magnetic field strength, it is clear
from this example how thread-like structures are produced. For protons with extremely high
energies the shooting directions are inseparable from the AGN position. When the energies are
lowered the AGN image is shifted on the sky as the thread-like structure in figure 4.2 shows.
For protons in the energy range 6 EeV and lower, the AGN “image” is spread all over the sky.
Shooting directions are from now on referred to as “AGN images”. The issue of multiple images
of cosmic ray sources is thoroughly discussed in reference [78].

Thread-like structures are further discussed and analysed in chapter 5. A similar shooting
procedure is constructed by G. Golup et al. , see reference [103] for details.
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Figure 4.4: The 90.3 EeV and 57.4 EeV Auger events (black dots) and their correlating AGN(s)
(red squares). The backtracked positions of the Auger events (triangles) are also seen. The AGN
images (red crosses) are obtained by the shooting procedure and represent the arrival directions
of protons that originate exactly from the AGNs. Here the HMR ASS-A model is used.

4.3 Magnetic deflections and Ψ

As mentioned in the introduction it was found that the observed angular range of correlation (1◦

to 6◦) is compatible with the deflections of the Auger events in the HMR BSS-S model [99] if the
Auger events are assumed to be protons. The deflections in reference [99] were calculated as,

cos αdata = ûdata · ûlast (4.2)

where ûdata is the direction of the Auger events and ûlast is the direction of the backtracked proton
outside the galactic magnetic field.

In this section the size Ψ of the circles yielding maximum correlation, found by the PAO [98,
99], is compared to the deflections of generated protons that originate from the original AGNs.

What is therefore needed is the arrival direction of these protons, i.e. the AGN images. For
this purpose the shooting procedure from section 4.2 is used.

In table 4.1 there are 20 Auger events correlating with 20 AGN. Some of the Auger events
correlate to two or more AGNs making the total number of correlations 25.

25 protons are thus generated with the energies of the corresponding Auger events. For ex-
ample, the 90.3 EeV Auger event in table 4.1 correlates with two AGNs. An energy of 90.3 EeV is
thus assigned to the generated protons from these AGNs. This is shown in figure 4.4.

Figure 4.4 shows the 90.3 EeV and 57.4 EeV Auger events together with their correlating
AGNs. AGN images at Earth, as conveyed by the arrival directions of two 90.3 EeV and one
57.4 EeV generated protons originating exactly from the AGNs are seen. The backtracked posi-
tions of the Auger events are also shown. The HMR ASS-A model is used.

Some mismatches are seen in figure 4.4. The AGN images (the arrival directions of protons
originating exactly from the AGNs), shown as red crosses, are far away from the Auger data
events. Provided that the HMR ASS-A model is more or less correct this indicates that the Auger
events in figure 4.4 do not originate from the particular (claimed) AGNs. In addition, the back-
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Figure 4.5: Deflection angles αimage between the AGN images at Earth and the real directions of
the corresponding AGNs calculated for different models.

tracked positions of the Auger events should be close to their correlating AGNs. This is also not
the case in figure 4.4.

The deflections of protons originating exactly from the AGNs are calculated by taking the
scalar product of the AGN images and the directions of the AGNs,

cos αimage = ûimage · ûAGN, (4.3)

where ûimage is the AGN image (the arrival direction of a proton originating from a given AGN)
and ûAGN is the AGN direction. The deflections, calculated for all the 25 generated protons using
different models, are shown in figure 4.5.

The average deflections are 3.1, 3.3, 2.4, and 2.2◦ for HMR ASS-A, HMR BSS-S, TT BSS-A
and KST BSS-S, respectively. The use of 3.2◦ circles in [99] is thus acceptable when magnetic
deflections, as produced by the models here, are taken into account. This is however not sufficient
to conclude that the Auger events originate from the particular AGNs. The AGN images should
also be compatible with the directions of the Auger events (the first criterion in section 4.1). This is
certainly not the case for the AGN images in figure 4.4. As noticed in chapter 2, different models
and their configurations have different impacts on different energies and different regions of the
sky. So, even if the deflections of the generated protons originating exactly from the original
AGNs are compatible with Ψ, it is not given that their arrival directions (shooting directions)
are compatible with the directions of the Auger events. As seen in figure 4.4 even the shooting
direction of the generated 90.2 EeV proton fails the first criterion. Either the field strength is too
large or the observed correlation between the 90.2 EeV Auger event and its corresponding AGNs
is inaccurate.

In the next section the criteria defined in section 4.1 are checked for different models.

4.4 Magnetic deflections and Active Galactic Nuclei

Figure 4.6 shows the AGN images as observed on Earth, the true positions of the AGNs, Auger
events and backtracked Auger events. The Auger events seem to be clustered together in three
regions of the sky. These three regions are given by the red, blue and green rectangles. Here only
the red region is studied. The figures of blue and green regions for different models are found in
appendix B.

The energies of the Auger events are indicated in all the figures.
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Figure 4.6: Sky map including the Auger data events (black dots), the backtracked Auger events
(triangles), AGN images obtained with the shooting procedure (red crosses) and the AGN (red
squares). Here the HMR ASS-A model is used. Three regions that will be enlarged in the follow-
ing plots are denoted with rectangles of different color.

Figure 4.7: The first rectangle with red boundaries taken from figure 4.6. Here the HMR ASS-A
model is used.

In figure 4.7 (HMR ASS-A model) the backtracked positions of the Auger events with energies
of 64 and 84.5 EeV fulfill the second criterion. The first criterion is also satisfied as the Auger
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Figure 4.8: The first rectangle with red boundaries taken from figure 4.6. Here the HMR BSS-S
model is used.

events practically have the same directions as the AGN images with less than 1◦ difference. The
second criterion is fulfilled due to the high energies of these events. When backtracked these
events are not sufficiently bent by the GMF model and thus their backtracked directions lie inside
the 3.2◦ limit.

The remaining seven Auger events and their corresponding backtracked directions fail to
meet one or both of the criteria. In the galactic regions around b ≈ 20◦ and b ≈ −20◦, the main
deficiency is that the AGN images lie at lower galactic longitudes than the Auger events. Note
that the AGN near the 66.1 EeV event in the vicinity of the galactic equator lacks its image at
Earth. No minimum of equation (4.1) was found by the shooting procedure that could yield a
shooting direction for a proton originating from this AGN. This is not surprising when looking at
the exposure map in figure 2.21 in chapter 2. As mentioned before the huge black region in figure
2.21 is a blind spot for observers at Earth i.e. cosmic rays originating from extra-galactic sources
in this region are unobservable at Earth. Clearly, the AGN in question lies in the middle of the
blind region stretching several degrees in galactic latitude above and below the galactic equator.
The angular separation between the backtracked 66.1 EeV event and its corresponding AGN is
10◦, stressing the large size of the blind region.

While two Auger events (with their corresponding backtracked positions) in figure 4.7 passed
the criteria when the HMR ASS-A model is used, only one of them does the same when the HMR
BSS-A model is used, namely the 64 EeV event on the right side of figure 4.8. The backtracked
positions of the 58.6, 63.3, 70.9, and 83.4 EeV events pass the second criterion. Note that the AGN
near the galactic equator now has its image at Earth. As is seen in figure 2.22 there are no blind
regions for the HMR BSS-S model at higher energies. Thus, in contrast to the HMR ASS-A model,
it is perfectly well that the correlating AGN is situated near the galactic equator. However, the
66.1 EeV event and its backtracked position do not pass the criteria. The AGN image is located
far below the Auger event position, while the backtracked position of the Auger event is located
far above the AGN position. This implies that the field near the galaxy disk is too strong and
of the opposite direction. A near-zero field is needed like in the HMR ASS-A case but with an
extra-galactic exposure as high as in the HMR BSS-S case.

The 64 EeV Auger event (and its backtracked position) passes the criteria for the third model
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Figure 4.9: The first rectangle with red boundaries taken from figure 4.6. Here the TT BSS-A
model is used.

in a row in figure 4.9. The backtracked positions of the 70.9, 63.3, 57.6, and 69 EeV events pass the
second criterion.

The most striking feature with the TT BSS-A model is the region near the galactic equator. As
is the case with HMR ASS-A model, the AGN in this region does not have an image at Earth.
The blind region for the TT BSS-A model is smaller than the HMR ASS-A model for energies
above 50 EeV as seen not only in figure 2.23 but also by comparing the backtracked positions of
the 66.1 EeV event in figure 4.7 and 4.9. The backtracked position in figure 4.9 is closer to the
plane since the blind region for the TT BSS-A model ends nearer to the plane. While the angular
separation between the backtracked position of the 66.1 EeV event and its corresponding AGN is
10.5◦ in the HMR ASS-A model, in the TT BSS-A model this number is reduced to 3.7◦.

The 64 EeV event and its backtracked position in figure 4.10 fails the criteria for the first time.
The elaborate structure of the KST model also makes sure the 69 EeV event and its backtracked
position passes both criteria for the first time for one of its correlating AGNs.

Finally, the backtracked positions of the 84.5 EeV, 83.4 EeV, 70.9 EeV, and 69.8 EeV events pass
the second criterion.

The findings for all models and all regions in figure 4.6 are summarized in figures 4.11 to
4.14. The left plots show the angular distances between the backtracked positions of the Auger
events and the their corresponding AGNs (second criterion) while the right plots show the an-
gular distances between the AGN images and the corresponding correlating Auger events (first
criterion).

The average angular separation between the backtracked positions of the Auger events and
their corresponding AGNs is 3.6◦, 3.7◦, 3.0◦, and 2.8◦ for HMR ASS-A, HMR BSS-S, TT BSS-A,
and KST BSS-S models, respectively. However, the number of times criterion two is passed is very
similar for all the models. This number is 12, 11, 14, and 15 for HMR ASS-A, HMR BSS-S, TT
BSS-A, and KST BSS-S models, respectively.

Criterion one is satisfied only once for the HMR BSS-A and TT BSS-S models while this num-
ber for the HMR ASS-A and KST BSS-S models is four.
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Figure 4.10: The first rectangle with red boundaries taken from figure 4.6. Here the KST BSS-A
model is used.
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Figure 4.11: Left plot: The angular separations of the backtracked Auger events to their corre-
sponding AGNs. Right plot: The angular distances between the AGN images and the corre-
sponding correlating Auger events. The HMR ASS-A model is used for both plots. These plots
should be compared to figure 4.1.
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Figure 4.12: Left plot: The angular separations of the backtracked Auger events to their corre-
sponding AGNs. Right plot: The angular distances between the AGN images and the corre-
sponding correlating Auger events. The HMR BSS-S model is used for both plots. These plots
should be compared to figure 4.1.
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Figure 4.13: Left plot: The angular separations of the backtracked Auger events to their corre-
sponding AGNs. Right plot: The angular distances between the AGN images and the corre-
sponding correlating Auger events. The TT BSS-A model is used for both plots. These plots
should be compared to figure 4.1.
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Figure 4.14: Left plot: The angular separations of the backtracked Auger events to their corre-
sponding AGNs. Right plot: The angular distances between the AGN images and the corre-
sponding correlating Auger events. The KST BSS-S model is used for both plots. These plots
should be compared to figure 4.1.
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Figure 4.15: Plots showing the scan probabilities for different GMF models as a function of angu-
lar distances and energy. The minimum probability in all the plots is set to 10−8.

4.5 Magnetic deflections and UHECR-AGN correlation

In this section the scan is repeated for Auger data from the period of 1 January 2001 to 31 August
2007. The data set is first backtracked in different models before scanning. The data is thus
corrected for magnetic deflections caused by the GMF models. As in [98, 99, 100] only Auger
events with larger energies than 40 EeV are used. Figure 4.15 shows the scan probabilities for
different angles and energies and for different models. The cut is made on zmax obtained by the
scanning procedure for different models. The results are summarized in table 4.2.

The minimum probability is obtained for angular distances that are remarkably similar to
the one found by the PAO, lying in the range 3.8 to 4.5 degrees. The same holds true for the
minimum energy of Emin = 57.4 EeV for the HMR ASS-A and TT BSS-A models. This is exactly
the same minimum as the one found for uncorrected data. The HMR ASS-A and KST BSS-S
models yield a slightly larger cut, Emin = 57.6 EeV. Consequently, there are 26 Auger events
above Emin = 57.6 EeV while there are 27 for the former cut. Due to these cuts the minimum scan
probability differs between the models.

For the HMR ASS-A model the minimum probability in the scan is obtained by an angular
separation of 4.5 degrees. As a result more Auger events are expected to correlate with the AGNs
compared to the other models. An expected number of 8.6 events and a total of 21 observed
events yield a minimum scan probability that is higher relative to the other models. This is also
seen in figure 4.15. A minimum probability of 7.95 · 10−7 is seen for the HMR ASS-A model
at around 57 EeV. For the KST BSS-S model the minimum probability is very similar, namely
4.73 · 10−7. In comparison, the minimum probability from [98, 99] is 4.5 · 10−9.

These minimum probabilities are around one order of magnitudes larger than the minimum
probabilities obtained for the TT BSS-A (3.83 · 10−8) and HMR BSS-S (4.06 · 10−8) models.

The similarities of the minimum probabilities of the HMR ASS-A and KST BSS-S models on
one hand, and HMR BSS-S and TT BSS-A on the other might be explained by the minimum
energy cut, Emin. As noted Emin is 57.6 EeV for the HMR ASS-A and KST BSS-S models, and
57.4 EeV for the HMR BSS-S and TT BSS-A models.

This energy cut might also be used to make a judgment on the UHECR-AGN correlation and
the GMF models. The energy cut was originally introduced in the scan to remove Auger events
that are susceptible to large magnetic deflections [98, 99]. By correcting the Auger events for
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Model Emin [EeV] N Γmax[◦] zmax Nobs Nexp Pmin[·10−10]
No model 57.4 27 3.2 0.017 20 5.6 45
HMR ASS-A 57.6 26 4.5 0.017 21 8.6 7950
HMR BSS-S 57.4 27 4.3 0.013 20 6.4 406
TT BSS-A 57.4 27 3.8 0.017 21 7.1 383
KST BSS-S 57.6 26 3.8 0.013 17 5.1 4734

Table 4.2: The new scan parameters after correcting for magnetic deflections for different models.
N is the total number of events above the energy cut, Nexp is the expected number of chance
correlations, zmax is the maximum redshift, Γmax is the maximum angular separation between
the AGNs and the Auger events, and Pmin is the minimum binomial scan probability.

magnetic deflections a smaller energy cut is expected if the UHECR-AGN correlation is correct.
As seen in table 4.2 the Emin for the different models, however, is either equal or close to equal
the value for Emin found in data. This has two implications. Either the UHECR-AGN correlation
is not real or the GMF models are not accurate descriptions of the field.

4.6 Conclusion

In section 4.3 it is established that the size of the correlation circles Ψ = 3.2◦ found by PAO
[98, 99] is reasonable after calculating the magnetic deflections of protons originating exactly
from the AGNs.

In section 4.4 the criteria defined in the introduction are checked. The models meet the criteria
poorly.

After correcting the incoming directions of data for the deflections as predicted by the four
models, 11 to 15 backtracked events remain inside the correlation circles of size 3.2◦.

Only four AGN images match the directions of the corresponding correlated Auger events in
the HMR ASS-A and KST BSS-S model, while for the other two models this number is only one.

More importantly only 4 Auger events meet both criteria for the HMR ASS-A and KST BSS-S
models. This number is only 1 for the TT BSS-A and HMR BSS-S models.

It is also shown that for models with field reversals along the z-directions, protons originating
from AGNs close to the galactic equator do not reach Earth. Hence, if these models describe a
realistic configuration of the GMF the 66.1 EeV event and its corresponding AGN in table 4.1 are
not correlated.

As noted, the number of Auger events passing both criteria is highest for the HMR ASS-A and
KST BSS-S configurations. This did not prevent the scanning procedure to yield the highest scan
probabilities for these two models. This is clearly due to the slightly higher energy cuts obtained
for the HMR ASS-A and KST BSS-S models. Conversely the TT BSS-S yields the lowest minimum
probability despite only one events passed both criteria for this model. The HMR BSS-S model
yields the second lowest minimum probability.

The corrected minimum scan probabilities for the different models are comparable to the min-
imum probability found by PAO. If the observed UHECR-AGN correlation is real the probabili-
ties in table 4.1 should be lower, and a lower value of Emin would be expected, provided that the
models are accurate. Since this is not the case two scenarios are possible:

• The GMF models are not accurate descriptions of the field.

• The Auger data do not correlate with AGNs but most probably with some other astronom-
ical objects.

Here it is assumed that the UHECRs are protons. How the UHECR-AGN correlation changes
when other composition assumptions are made, is discussed in the references [104, 105, 106].



76 CHAPTER 4. MAGNETIC DEFLECTIONS AND ACTIVE GALACTIC NUCLEI



Chapter 5

Thread-like Multiplets

5.1 Introduction

One of the main goals of the Pierre Auger experiment is to find the sources of UHECRs. As-
suming that the highest energy cosmic rays have an extra-galactic origin any enhancement of
the cosmic ray flux for a given direction or region might also indicate the position of the source.
But this is difficult to detect due to the rarity of such energetic events. In addition, it was shown
in chapter 2 that the galactic magnetic field makes the exposure to the extra-galactic sky highly
non-uniform even for high energetic protons. Regional flux enhancement induced by the galactic
magnetic field might therefore be confused for detection of a source, making it even more vital
to collect as many cosmic rays with the highest energies as possible. The Auger aperture and its
superior detection area will ensure that more charged particles at EeV-scale are collected than in
all previous experiments. Still, this rate is lower than what is needed for a direct detection.

One of the expected possible effects of the galactic magnetic field is the forming of thread-like
multiplets of arrival directions. Theoretically, this should occur when cosmic rays of different
energies originate from a common point-like source, as shown in section 4.2. Particles with suffi-
cient energy in such a cluster point straight back to the common source due to the relatively small
deflections. For decreasing energies the arrival directions are shifted and a thread-like structure
of multiplet should appear. A linear fit to such a structure should in principal yield the source
position. Thread-like multiplets might thus become a powerful tool in cosmic ray astronomy.

In the search for thread-like multiplets, Harari, Mollerach and Roulet [108, 109, 110] con-
structed a Minimal Spanning Tree (MST) by using the arrival directions of the Auger data. The
MST does not in itself find thread-like multiplets, rather it yields localized clusters of arrival di-
rections. The clusters are investigated further and consequently some thread-like structures and
their potential sources are found. Appendix C explains this method in detail.

Here the MST is constructed with the arrival directions of the Auger data events from January
2004 until the end of 2008. A MST is constructed from these arrival directions in such a way that
the total length between the first chosen arrival direction and last is minimal [108, 109, 110]. The
MST has no loops and is unique [108]. The size of the tree, i.e. the number of arrival directions
constituting the tree, is governed by the energy cut Emin where energies below this cut are re-
moved. The angular distance d between two arrival directions constituting the MST is called a
“branch” length. The average branch length of the MST is denoted as 〈d〉. In order to get clus-
ters of arrival directions, branches in the MST are cut away if they are larger than some defined
fraction of the mean length. These clusters are projected into a tangential plane on the celestial
sphere through the gnomonic projection [111] and rotated so that thread-like clusters are found
along a longitudinal coordinate z (see appendix C for details). As the deflection at high energies
is a function of 1/E, the correlation coefficient C (z, 1/E) for the longitudinal coordinate z and
1/E is calculated. The clusters are more and more elongated for higher values of C (z, 1/E). Here
the limit of the correlation coefficient is set to C (z, 1/E) > 0.95 and thus only the very thread-like
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Figure 5.1: Thread-like multiplets obtained for Emin = 15 EeV and dmax = 〈d〉. Multiplicity of the
multiplets is larger than or equal to 5. The sources obtained by linear fits are denoted by the red
crosses (source fit).

clusters remain. These are denoted as thread-like multiplets or simply threads. In large clusters,
however, several threads might be found as the events in the cluster can satisfy C (z, 1/E) > 0.95
by combining with each other in different ways. Auger events forming threads are called signal
events. Auger events not forming threads are called background events. Threads are fitted with
a linear function in 1/E (inverse energy). This is denoted as source fit. The source fit gives the
source position of the thread and deflection power D, indicating the deflection size.

To sum up, the following definitions are used in the following sections.

• Emin is the minimum energy cut removing arrival directions of Auger events with energies
below this cut.

• dmax is the cut on the maximum branch length and is given by some fraction of the average
branch length 〈d〉 of the MST. Branch lengths above dmax are removed.

• Signal event is an Auger event that is part of a thread-like multiplet.

• Background event is an Auger event that is not part of a thread-like multiplet.

• Source fit gives the source position of the events in the thread.

In the following sections the positions of the sources, obtained by source fits, are compared
to the positions of the backtracked signal events constituting the threads. Also here the signal
events are assumed to be protons.

5.2 Cuts

As noted in the introduction and in appendix C, the total number of threadlike multiplets is a
function of the Emin and dmax cuts. This is demonstrated in figures 5.1 to 5.7, showing the Auger
events forming thread-like multiplets, denoted as “signal”, and the sources obtained by fitting.
“Background” designates all the Auger events surviving the energy cuts but are not part of any
thread-like multiplets. It is also noted that there is no way to know what the appropriate values
of these cuts are, i.e. the cut values that produce genuine thread-like multiplets. To determine
if a thread-like structure is genuine or not, the probability of finding such a structure by chance
(section 5.6) has to be evaluated. Another way to check if thread-like multiplets are genuine
or not is by assuming that the MST procedure produces sources accurately and that the GMF
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Figure 5.2: Thread-like multiplets obtained for Emin = 15 EeV and dmax = 0.8 〈d〉. Multiplicity of
the multiplets is larger than or equal to 5. The sources obtained by linear fits are denoted by the
red crosses (source fit).

is accurately described by a given model (section 5.3). If this assumption is correct then the
backtracked position of the signal events forming a given thread should converge at the source
position. In this section, cuts are applied in order to find thread-like multiplets that are further
investigated in section 5.3 and 5.6.

The cuts are set to Emin = 15 EeV to Emin = 30 EeV for the energies and dmax = 〈d〉 and
dmax = 0.8 〈d〉 for the branch lengths. The minimum multiplet size is set to five events.

The 15 EeV cut yields 1799 events from data. Out of these, 125 events form the multiplets in
figure 5.1. Two large groups of sources around the l ≈ −120◦ and near the galactic center are
observed. As noted in appendix C, after the tree is cut some clusters may contain a large number
of events. The MST procedure is only able to produce the source position by fitting threads.
The events in a large cluster thus might combine in many ways yielding several threads and
several sources. However, it is an implicit assumption that threads found in each large cluster
has a common source. This common source position of the threads in a cluster is thus unknown
but the distribution of the sources obtained by fitting might indicate approximately where the
source of the threads is located. Events of the clusters not being part of any thread, denoted as
“background”, are also seen in figure 5.1. Disjoint groups of threads are clearly visible. These
groups are the remaining parts of the original clusters given by the MST procedure.

The two mentioned source groups are a result of two corresponding large groups of threads.
In figure 5.2 the branch length cut of dmax = 0.8 〈d〉 reduces the amount of thread-like mul-

tiplets substantially. The remaining multiplets are constituted by 35 signal events. An interest-
ing long string of signal events is situated near the galactic center. These nine events form, by
different combinations, three septuplets, twelve sextuplets and twenty-nine quintuplets. This
configuration is analysed in the next section.

For the 20 EeV cut, figures 5.3 and 5.4 display no large number of sources. In figure 5.4 three
quintuplets remain. The 15 signal events constituting the three quintuplets are also present in
figures 5.1 and 5.3. In figure 5.2 two of these events with the energies 38 EeV and 53.8 EeV, are
present near the galactic center.

By increasing the cut to Emin = 25 EeV only 13 signal events are present. However, a new
large grouping of sources, caused by seven signal events, appears near the galactic center in
figure 5.5. In addition, the two signal events with the energies 38 EeV and 53.8 EeV are again
present, demonstrating the resiliency of these events after having appeared on all figures except
for figure 5.6. The other 6 signal events are responsible for a sextuplet and three quintuplets.
These signal events are also the sole survivors of the dmax = 0.8 〈d〉 cut as shown in figure 5.6.
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Figure 5.3: Thread-like multiplets obtained for Emin = 20 EeV and dmax = 〈d〉. Multiplicity of the
multiplets is larger than or equal to 5. The sources obtained by linear fits (source fit) are denoted
by the red crosses.

Figure 5.4: Thread-like multiplets obtained for Emin = 20 EeV and dmax = 0.8 〈d〉. Multiplicity
of the multiplets is larger than or equal to 5. The sources obtained by linear fits (source fit) are
denoted by the red crosses.

Figure 5.7 is showing four sources due to four quintuplets and is by far the most interest-
ing plot in this section. After the publication of the Science paper [98] of the Pierre Auger Col-
laboration, demonstrating the correlation between cosmic rays and AGNs, T. Wibig and A. W.
Wolfendale [112] noted that the majority of the Auger data events are scattered into three regions
as seen in figure 5.8. Each region is associated with distinctive nearby radio galaxies or possible
known/unknown radio contenders, favored by the authors as sources of the cosmic rays. Re-
gion A is associated with Centaurus A. Two radio galaxies in the Fornax cluster are thought to
be the possible sources in region B while in region C there are no clear candidates. The potential
sources present in figure 5.7 correspond nicely to region A. Centaurus A, marked as a green cross,
is partly hidden by one of the multiplets.
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Figure 5.5: Thread-like multiplets obtained for Emin = 25 EeV and dmax = 〈d〉. Multiplicity of the
multiplets is larger than or equal to 5. The sources obtained by linear fits (source fit) are denoted
by the red crosses.

Figure 5.6: Thread-like multiplets obtained for Emin = 25 EeV and dmax = 0.8 〈d〉. Multiplicity
of the multiplets is larger than or equal to 5. The sources obtained by linear fits (source fit) are
denoted by the red crosses.

5.3 The galactic magnetic field models and threadlike multiplets

In this section the cuts in section 5.2 are applied on Auger data. The resulting signal events
forming the multiplets/threads are then backtracked in different galactic magnetic field config-
urations and compared to the sources obtained by fitting. If the MST procedure produces the
sources accurately and if the GMF is described accurately by a model, then the signal events
forming the multiplets, when backtracked, should converge at the source positions.

The multiplets are tracked until a distance of 20 kpc from the galactic center is exceeded. The
velocities of the tracked events and the sources obtained are shown in the figures 5.10 to 5.16.

A similar study was conducted in [109] where a single octuplet was backtracked in a modified
Stanev BSS-A model with Bz = 0.15 µG yielding a common “source”. In addition, similar results
were achieved by changing the periodicity of the same model [109].
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Figure 5.7: Thread-like multiplets obtained for Emin = 30 EeV and dmax = 1 〈d〉. Multiplicity
of the multiplets is larger than or equal to 5. The sources obtained by linear fits (source fit) are
denoted by the red crosses. Centaurus A is indicated by a green cross.

Figure 5.8: Sky map from [112] showing Auger events from [98] in three regions.

5.3.1 Cut: Emin = 15 EeV and dmax = 0.8 〈d〉

The cuts applied in this section yield the groups with thread-like multiplets in figure 5.9. The
signal events with the highest energy in every thread are also shown. Note the group of nine
signal events at the galactic plane. As noted in section 5.2, it is assumed that the threads in a
group have a common origin. However after fitting, all the threads yield a source each. Luckily
the source positions are highly focused, as seen in figure 5.3, indicating the source position of the
entire group. If the signal events in a given group indeed originate from a common source the
backtracked positions of these events thus should focus into the source positions obtained by a
linear fit to the threads themselves. The signal events are backtracked in different models and the
results are shown in the next figures.

In figure 5.10 the HMR ASS-A model yields particle velocities that, when projected to the
sky, are either moving perpendicularly to the source positions or that are moving in the opposite
direction, away from the sources.

For signal events near or at the galactic plane the perpendicular direction of the velocities is
due to the extra-galactic exposure produced by the HMR ASS-A model. As was shown in figure
2.21 in chapter 2, cosmic rays originating from extra-galactic sources located around a large part
of the galactic equator are not accessible to observers at Earth. This blind region, however, gets
smaller with higher energies. By backtracking signal events with different energies situated in
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Figure 5.9: Thread-like multiplets obtained by Emin = 15 EeV and dmax = 0.8 〈d〉. Multiplicity
is equal or larger than 5. The numbers indicate the energies of the highest energy events in the
threads.

Figure 5.10: Thread-like multiplets obtained by Emin = 15 EeV and dmax = 0.8 〈d〉. Multiplicity is
equal or larger than 5. The sources obtained by linear fits are denoted by the red crosses (source
fit). HMR ASS-A model is used. The blue dots indicate the evolution of the velocity vector.

the blind region a spectroscopic effect is seen. As an illustration of this effect the backtracked
positions of the three highest energy signal events in the string of nine events in figure 5.9 should
be compared to each other. These three signal events have the energies 38 EeV, 41.2 EeV and
53.8 EeV. With figure 2.21 in mind a spectroscopic effect is clearly seen for the backtracked posi-
tions of these signal events near the galactic plane in figure 5.10. The 38 EeV and 41.2 EeV signal
events are backtracked further away than the 53.8 EeV event. Events with lower energies are
backtracked further away since the extra-galactic exposure is lower at these energies. Thus, the
backtracked positions of the highest energy events are closer to the galactic disk. The remaining
multiplets at situated well inside the extra-galactic exposure.

For the group with the 36.7 EeV signal event at (l = 10◦, b = −55◦) the velocities, initially
moving away from the source, make a turn of almost 90◦ around l = 5◦ and propagate towards
the source. The position of the source is not reached but at least the propagation direction is
correct.

In figure 5.11 the velocities tend to point towards the galactic north pole since the field does
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Figure 5.11: Thread-like multiplets obtained by Emin = 15 EeV and dmax = 0.8 〈d〉. Multiplicity is
equal or larger than 5. The sources obtained by linear fits are denoted by the red crosses (source
fit). HMR BSS-S model is used. The blue dots indicate the evolution of the velocity vector.

Figure 5.12: Thread-like multiplets obtained by Emin = 15 EeV and dmax = 0.8 〈d〉. Multiplicity is
equal or larger than 5. The sources obtained by linear fits are denoted by the red crosses (source
fit). TT BSS-A model is used. The blue dots indicate the evolution of the velocity vector.

not change sign with respect to the z direction. Although the BSS-S configuration is very different
from ASS-A, as its extra-galactic exposure shows in figure 2.22, most of the backtracked events
are scattered away from the sources. Just like in figure 5.10 the backtracked signal events of the
group at (l = 10◦, b = −55◦) show a reasonable proximity to the source. The velocities bounce
towards the source and the backtracked position of the events are much more focused and closer
to the source than in figure 5.10. The backtracked positions of the (signal) events in the thread to
the right at (l = −95◦, b = −20◦) almost coincide with the source position1.

The TT BSS-A model produces a highly non-uniform exposure, ensuring a high degree of
scattering of the backtracked events. However, two exceptions are seen in figure 5.12. The back-
tracked positions of the threads at (l = 30◦, b = −50◦) and (l = 5◦, b = −20◦) coincide with the

1In the next section the spread of the backtracked positions of the signal events (in different groups) are calculated
with respect to the positions of their respective sources. This is done in order to determine qualitatively how well the
backtracked positions of the signal events match the source positions.
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Figure 5.13: Thread-like multiplets obtained by Emin = 30 EeV and dmax = 〈d〉. Multiplicity is
equal or larger than 5. The numbers indicate the energies of the highest energy events in the
threads. The green cross shows the position of Centaurus A.

sources obtained by fitting.
If it is assumed that the MST produces the sources accurately then none of the models de-

scribe the real GMF accurately. The majority of the threads are found at the galactic disk in the
figures above. As noted before, models with field reversals with respect to z produce highly non-
uniform extra-galactic exposure at the galactic equator. Even if the HMR BSS-S model produces
a much more uniform exposure, nevertheless only the single thread at (l = −95◦, b = −20◦) has
a backtracked position that corresponds to the source obtained by fitting.

If it is assumed that the models used in this sections are more or less accurate description
of the galactic field, then the MST method is not yielding satisfactory results. In this case the
multiplets formed are a result of chance or coincidence. This issue is further discussed in section
5.6.

5.3.2 Cut: Emin = 30 EeV and dmax = 〈d〉
The cuts applied in this section yield groups with thread-like multiplets in the Centaurus A re-
gion, as shown in figure 5.13. The position of Centaurus A is also indicated.

The backtracked events in the figures 5.14 to 5.16 miss the mark completely. However, in
figure 5.14 the velocities of the backtracked events above the galactic plane propagate in the right
direction but it seems that the deflections should be at least two times larger.

In figure 5.15 all the velocities point northwards and are in no way focusing towards the
sources. In figure 5.16 all the velocities are moving away or perpendicular to the sources. If the
threads from the Centaurus A region (region A) are genuine then the models are inaccurate. The
probability of finding multiplets in region A is discussed in section 5.6.

5.4 Adjustment of the models

In this section the strength of the models is adjusted so that the backtracking of the Auger events
yield positions that hopefully converge towards the source positions obtained by fitting threads.

Groups of signal events are chosen from figure 5.9 and 5.13. These are backtracked for differ-
ent magnetic field strengths given by the adjusted models.

Four groups of signal events are selected for backtracking in the adjusted models. These are
shown in figure 5.17 and 5.18. Group A (black rectangle) consists of 6 events that lay in a region
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Figure 5.14: Thread-like multiplets obtained by Emin = 30 EeV and dmax = 〈d〉. Multiplicity is
equal or larger than 5. The sources obtained by linear fits are denoted by the red crosses (source
fit). HMR ASS-A model is used. The blue dots indicate the evolution of the velocity vector. The
green cross shows the position of Centaurus A.

Figure 5.15: Thread-like multiplets obtained by Emin = 30 EeV and dmax = 〈d〉. Multiplicity is
equal or larger than 5. The sources obtained by linear fits are denoted by the red crosses (source
fit). HMR BSS-S model is used. The blue dots indicate the evolution of the velocity vector. The
green cross shows the position of Centaurus A.

close to Centaurus A in figure 5.17. The 6 events combine in two different ways, giving two
threads (quintuplets) and thus two sources after fitting.

In figure 5.18 three groups are selected. Group B (blue rectangle) is located at (l = 30◦, b = −50◦)
and has a highest energy signal event of 75.5 EeV. The group consists of 6 events forming two
quintuplets.

Group C is located to the far right in figure 5.9 and has a highest energy signal event of
25.8 EeV. The group consists of a single thread (quintuplet) with a single source.

The string of nine events near the galactic center constitutes group D. As noted these nine
events form, by different combinations, three septuplets, twelve sextuplets and twenty-nine quin-
tuplets.

The fitting procedure also yields the deflection power D as defined in appendix C. The aver-
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Figure 5.16: Thread-like multiplets obtained by Emin = 30 EeV and dmax = 〈d〉. Multiplicity is
equal or larger than 5. The sources obtained by linear fits (source fit) are denoted by the red
crosses. TT BSS-A model is used. The blue dots indicate the evolution of the velocity vector. The
green cross shows the position of Centaurus A.

Figure 5.17: Thread-like multiplets obtained by Emin = 30 EeV and dmax = 〈d〉. Multiplicity is
equal or larger than 5. The numbers indicate the energies of the highest energy events in the
multiplets. The green cross shows the position of Centaurus A. The black rectangle indicates
group A that is backtracked in this section.

Group 〈D〉
A 568.9
B 124.5
C 125.9
D 249.2

Table 5.1: The average deflection power 〈D〉 in units of [◦ EeV]. 〈D〉 is calculated by taking the
average of the deflection powers of the threads in the groups.

age deflection power for each group is shown in table 5.1.
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Figure 5.18: Thread-like multiplets obtained by Emin = 15 EeV and dmax = 0.8 〈d〉. The rectangles
indicate the groups that are backtracked in this section. Group B (blue), group C (green) and
group D (red).

5.4.1 Spread of the backtracked groups

Here it is assumed that the MST procedure is correct, i.e. the threads are created due to magnetic
deflections. If a GMF model is accurate then the backtracked positions of the signal events in the
groups should focus into the source position(s). As shown in section 5.3.1 and 5.3.2 the HMR
ASS-A, HMR BSS-S, and TT BSS-A models produce different and contradictory results due to the
different field configurations. For example in figure 5.10 (HMR ASS-A model) and 5.11 (HMR
BSS-S model) the backtracked positions in group B fail to converge at the source positions while
in figure 5.12 (TT BSS-A model) this procedure succeeds.

In the following the models are tuned so that the backtracked positions of the groups, hope-
fully, converge into the source positions obtained by fitting the threads in the groups. The groups
are thus used to adjust or “correct” the models for their strength.

In reference [109] the periodicity of the Stanev model was varied in order to produce tracked
trajectories of a correlated octuplet that converged into a single point. Here the field strengths,
given by the GMF models, are varied by a factor f . This is expressed as,

B f = f BGMF, (5.1)

where BGMF is the field strength given by the GMF models. The goal is to find a field strength
B f , given by factor f , that produces backtracked event positions that are maximally focused into
a source position. As an illustration, the events in group A are backtracked in different modified
versions of the HMR ASS-A model in figure 5.19.

The field strength of the HMR ASS-A model is modified with factor f in the range [-10, 10].
Blue and red dots denote backtracked positions in the different modifications of the model.

A blue backtracked position is obtained by using a modification of the HMR ASS-A model
that is produced by a positive factor f . Conversely, a red backtracked position is obtained by
using a modification of the HMR ASS-A model that is produced by a negative factor f .

Note that the position of Centaurus A and the sources obtained by linear fits are obscured
by the backtracked positions. Group A is denoted with the black dots and located in the middle
where the backtracked positions for positive and negative factors meet.

Figure 5.20 is an enlargement of figure 5.19. Some of the backtracked event positions focus
for positive values of f , at the source positions. In order to quantify how well this focusing is, the
spread of the backtracked group is calculated.
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Figure 5.19: The events from group A backtracked in different modifications of the HMR ASS-A
model. The field strength is modified by factors f in the range [-10, 10]. A blue backtracked
position is obtained by using a modification of the HMR ASS-A model that is produced by a
positive factor f . A red backtracked position is obtained by using a modification of the HMR
ASS-A model that is produced by a negative factor f . The sources obtained by linear fits to the
threads of group A are denoted by the red crosses. The (obscured) green cross shows the position
of Centaurus A.
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Figure 5.20: The events from group A backtracked in different modifications of the HMR ASS-
A model. The field strength is modified by factors f in the range [-3, 3]. A blue backtracked
position is obtained by using a modification of the HMR ASS-A model that is produced by a
positive factor f . A red backtracked position is obtained by using a modification of the HMR
ASS-A model that is produced by a negative factor f . The sources obtained by linear fits to the
threads of group A are denoted by the red crosses. The (obscured) green cross shows the position
of Centaurus A.

The spread of the backtracked group defined as,

σ =

√
1

N − 1 ∑
i
|⇀ncms − n̂i|2, (5.2)

where n̂i are the backtracked positions of each event in a given group and the average direction
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⇀ncms is given by,
⇀ncms = ∑i n̂i

N
. (5.3)

Zero spread means that all the backtracked events converge into a common point while large
values of (5.2) indicate high degree of dispersion of the backtracked group. In addition, the
spread of the backtracked groups is also calculated with respect to the source positions obtained
by fitting.

The equations (5.2) and (5.3) are rewritten as,

σsou =

√
1
N ∑

i
|⇀nsou − n̂i|2, (5.4)

where n̂i are still the backtracked positions of each event in a given group and ⇀nsou is defined as

⇀nsou =
∑j n̂j

N
, (5.5)

where j runs over all source directions. ⇀nsou is thus the barycenter of the sources. σsou is the
spread of the backtracked events with respect to the barycenter of the sources.

The barycenter of the sources might be interpreted as the source position of the group. Thus,
when σsou is zero, all the backtracked events converge into the “source position” as given by the
threads.

Figure 5.21 shows the spreads obtained for different groups by varying the field strengths of
different models. The left plots show the spreads for the factor range [-20, 20] while the right
plots spotlight the region where the global and local spread minima are found. Table 5.2 shows
the factors f yielding the minimum spread, as defined in equation (5.2), for different models.
Table 5.3 shows the corresponding minimum spreads for the modified versions of the models.
Table 5.4 shows the factors f yielding the minimum spreads between the source barycenter and
the backtracked events. Table 5.5 shows the corresponding minimum spread σsou.
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Figure 5.21: Left panel: The spread in equation (5.2) is calculated for the groups backtracked in
different modifications of the models, given by factor f . The factors used are in the range [-20,
20]. Right panel: The regions where the minimum spreads are found. The dotted lines yield the
spread of the backtracked events with respect to the source barycenter, as expressed in equation
5.4. The colour of the dotted lines indicate the model used.
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Model Group A Group B Group C Group D
HMR ASS-A 2.3 −0.3 −0.7 0.0
HMR BSS-S 2.5 −0.3 0.6 0.1

TT BSS-A 9.0 0.8 −1.1 0.4

Table 5.2: Factors f in equation (5.1) yielding minimum spread as defined in equation (5.2).

Model Group A Group B Group C Group D
HMR ASS-A 3.2◦ 1.4◦ 1.3◦ 3.9◦

HMR BSS-S 3.1◦ 1.2◦ 1.3◦ 4.0◦

TT BSS-A 3.2◦ 1.1◦ 1.4◦ 3.3◦

Table 5.3: The spreads given by the minimum factors in table 5.2. The spread is calculated with
equation (5.2).

Model Group A Group B Group C Group D
HMR ASS-A 3.0 −0.3 −0.7 0.0
HMR BSS-S 0.1 −0.3 0.7 0.2

TT BSS-A −0.8 0.8 −1.0 0.5

Table 5.4: Factors f in equation (5.1) yielding minimum spread as defined in equation (5.4).

Model Group A Group B Group C Group D
HMR ASS-A 3.1◦ 2.4◦ 1.9◦ 11.0◦

HMR BSS-S 13.0◦ 1.7◦ 1.2◦ 10.9◦

TT BSS-A 12.5◦ 1.0◦ 2.3◦ 9.8◦

Table 5.5: The minimum spread given by the minimum factors in table 5.4. The spread is calcu-
lated with equation (5.4).

In order to compare the differences in spread before and after modification of the models, the
groups are examined more closely.

As shown in table 5.2 the backtracked positions of the events in group A have a minimum
spread when the field strengths of the HMR ASS-A, HMR BSS-S and TT-BSS-A models are mod-
ified by a factor 2.3, 2.5, and 9, respectively. The corresponding minimum spreads, σ, have the
values 3.2◦, 3.1◦, and 3.2◦, respectively (see table 5.3). Figure 5.22 shows group A backtracked in
the HMR ASS-A model when its field strength is modified by a factor 2.3, yielding a minimum
spread of the backtracked events.

Naturally, the backtracked events of group A in figure 5.22 are more focused compared to
backtracked events of the same group in figure 5.14 where the original HMR ASS-A model is
used. But the backtracked events in the modified model HMR ASS-A model are also closer to the
sources than in figure 5.14.

However, the spread produced by the original HMR ASS-A model for group A, i.e. when
f = 1, is 3.7◦ while the spread produced in the modified model is 3.2◦. The difference in spread
when the original HMR ASS-A model is used and when its field strength is a factor f = 2.3
stronger, is thus minimal.

In comparison, a minimum spread of only 1.4◦ is produced when group B is backtracked in
the HMR ASS-A model that is modified with a factor f = −0.3. For f = 1 the spread is 4.0◦, that
is a 2.6◦ difference. The backtracked positions of the events in group B are shown in figure 5.23
where the field strength of the HMR ASS-A model is modified by a factor f = −0.3.

The negative sign of the minimum factor also ensures that the group B is backtracked towards
the sources rather than away from them as in figure 5.10 where the original HMR ASS-A model
is used.
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Figure 5.22: The events from group A backtracked in the modified HMR ASS-A model. The field
strength is modified by a factor f = 2.3. Blue dots show the evolution of the velocity vector.

Figure 5.23: The events from group B backtracked in the modified HMR ASS-A model. The field
strength is modified with a factor f = −0.3. Blue dots show the evolution of the velocity vector.

Group D is distinct from the others due to the low minimum factors in table 5.2. Here the
factors are zero or close to zero. Hence, none of the models are able to focus this group, and the
minimum spread is just the spread of the original Auger events.

The right panel in figure 5.21 shows the relation between the spreads as defined in equations
5.2 and 5.4.

For group A the minimum spreads are σ = 3.2◦ and σsou = 3.1◦. These are obtained by
backtracking the group events in the HMR ASS-A model that is modified by a factor 2.3 and 3.0,
respectively. However, the field strengths produced by the factors 2.3 and 3.0 are similar. Thus,
the barycenter of group A backtracked is equal to the barycenter of the sources. This indicates
that group A has a common source if the modified HMR ASS-A model is correct. This agreement
does not exist when group A is backtracked for the modified HMR BSS-S and TT BSS-A models
(see tables 5.3 and 5.5).

For group B the agreements are even better. The minima are in agreement with each other in
figure 5.21. This is also true for group C. The factors in table 5.2 and 5.4 for group B are identical.
This is again also true for group C. In addition, the factors have very low values, varying from
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Figure 5.24: The backtracked events from group B given by the field strength of HMR ASS-A
model with factor f = 9. Blue dots show the velocities of the group events.

−1.1 to 0.8. For group D the spread of the backtracked events with respect to the sources is not
reliable. Group D, consisting of the nine string-like Auger events, produces 44 sources scattered
along a part of the galactic disk. The source position of group D is thus most likely randomly
located.

5.5 Conclusion

In table 5.2 all the minimum factors are in the range [0.1, 2.5] except for the minimizing factor of
9 for group A backtracked in the TT BSS-A model. Hence, in order to obtain maximum focusing
of the groups, the original field strengths of the models need not to be substantially changed. But
precisely because of this proximity of the minimum yielding factors to f = 1, the reduction of
the spread is not large. From the models, the field in the vicinity of the Earth is approximately in
the range from 1.4 µG to 2 µG. Apparently, these values seem small even when multiplying them
with a factor of 2.5 or even 9. However, as seen in figure 5.21, even though f = 9 yields minimal
spread for group A when the TT BSS-A model is used, a factor f = 9 yields a much larger spread
for the same group when HMR ASS-A model is used. More strikingly, backtracking group B in
the HMR ASS-A model with factor f = 9 yields almost a maximum spread. This is demonstrated
in figure 5.24.

In figure 5.24 backtracked events are scattered in an extreme way. A factor f = 9 thus pro-
duces not only a minimum spread for group A when the TT model is used, but also a maximum
spread for group B when the HMR ASS-A model is used. In both cases, however, the field in the
vicinity of the Earth is almost the same.

Another striking feature is that all the values in table 5.2, except for group D, yield back-
tracked directions that converge towards the sources. For example, in figure 5.10 (HMR ASS-
A model) group B is tracking away from the sources. The tuning gave a minimizing factor of
f = −0.3. The negative sign implies field reversal. By multiplying the original field strength
with f = −0.3 group B is backtracked towards the sources, as seen in figure 5.23.

For the TT-model in figure 5.12 the direction of propagation is correct, and this direction is
kept after tuning since the minimizing factor is positive. The minimizing factors for group C
tell the same story. In figure 5.10 (HMR ASS-A model) group C is backtracked away from the
sources. The tuning yielded a negative factor, f = −0.7. When the field strength is multiplied by
this factor the group is backtracked towards the sources. In figure 5.11 the propagation is correct
and the tuning gives a positive factor, keeping the field direction invariant.
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For group A all the backtracked directions are towards the sources and thus the minimizing
factors are also positive. In addition, the minimum factors in tables 5.2 and 5.4 are approximately
equal for group B and C, respectively. Tables 5.3 and 5.5 also show that the minimum spreads
with respect to the barycenter of the backtracked group B are approximately equal to the mini-
mum spreads with respect to the source barycenter of group B. Similar results are produced for
group C. In addition, the minima are found in modified models that are produced with similar
factors f , as seen in figure 5.21. This implies that the source position of group B and C is given by
⇀nsou in equation 5.5, if the modified models are correct. Similar results are also found for group
A when the HMR ASS-A model is used.

5.6 Simulations

5.6.1 Introduction

Finding thread-like structures in data with the MST procedure does not prove that these struc-
tures are solely a result of magnetic bending of particles originating from a common source. They
might be a result of chance or coincidence. In the sections above several cuts on Auger energy
and minimal branch lengths of the MST were analyzed. Each of them yields different number of
clusters containing the arrival directions of Auger events. Arrival directions combine with each
other and threads are constituted.

In order to establish whether the threads found for a given set of cuts are genuine or not, a
large number of uniform arrival directions over the sky (isotropic) are generated with the same
energy cut Emin as used for Auger data. The cosmic-ray energy spectrum approximately follows
a power law. Here, the energies are thus generated according to a power law. These isotropically
generated arrival directions are denoted as background.

PAO is located in Argentina in the southern hemisphere. Part of the sky is thus unavailable
for cosmic ray detection. The relative exposure to arrival directions are given by a probability
function ω (see equation (D.1)).

The isotropic arrival directions are thus generated in accordance to both the relative exposure
of PAO and the energy spectrum (see appendix D) for details.

The MST procedure is applied to each simulated background, and fake threads from the back-
ground are obtained. All fake threads in the simulations that share one or more events are con-
sidered here as a single group. Accordingly, all threads in Auger data that share one or more
Auger events are considered as a single group originating from a common source. Thus, as in
the sections above, each group might contain several threads. The correlation coefficients mea-
suring the elongation of the fake threads in the groups from the simulations are compared with
the coefficients found in the threads in the data groups.

Harari, Mollerach, and Roulet [109] found in Auger data from January 2004 to October 2006
an octuplet with the chance probability of 8 · 10−4. The correlation coefficient of the octuplet was
found to be Coctuplet = 0.977. The chance probability was calculated by taking the fraction of all
octuplets from the simulations with correlation coefficients higher or equal to Coctuplet, and the
total number of simulations.

5.6.2 Cuts

Cuts used for the simulations are the same as in section 5.3.2, i.e. the cuts that yield the four
quintuplets near Centaurus A in figure 5.17 namely,

• Emin = 30 EeV.

• dmax = 〈d〉.

• Nmultiplicity ≥ 5
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Figure 5.25: The frequency of groups of different sizes, denoted as n-plets, appearing at least once
in the simulations.

An additional cut is imposed on the MST procedure in order to save time. After the tree is
cut, as described in Appendix C, clusters of different number of events are formed. In order to
find thread-like multiplets the events are combined in different ways with each other causing a
combinatorial explosion for large clusters. Here clusters larger than twenty events are cut so that
new clusters with fewer events than twenty are formed. This might cause loss of information.
However, the number of clusters containing more than twenty events are negligible and thus this
cut has minimal impact on the results. The cuts yield 349 events in data that sequently form the
four quintuplets in figure 5.7. Thus, 349 background events are simulated 10 000 times.

The four quintuplets in figure 5.17 are considered to be part of two groups. Group A has
already been defined and consists of six events above the galactic disk. The second group, group
E, has seven events that are below the disk.

5.6.3 Size of the groups

As mentioned earlier, in the data the cuts yield two groups of 6 and 7 events each. Figure 5.25
shows the frequency of groups of different sizes appearing in the simulations. Groups of six and
seven background events appear at least one time in around 150 and 100 simulations, respec-
tively. This corresponds to 1.5 and 1% of the total simulation, respectively. Thus, the actual sizes
of the groups found in data are not significant.

5.6.4 Correlation coefficients

In data, two groups in figure 5.7 contain two quintuplets each. The threads in group E have the
correlation coefficients of 0.956 and 0.967. For group A the numbers are 0.974 and 0.980. Thus, the
maximal correlation coefficient found in group A and E is 0.980 and 0.967, respectively. Figure
5.26 shows the distribution of maximal correlation coefficients of the threads from the simulated
backgrounds, regardless of their size, inside the groups simulated. The maximal coefficients
found in the data groups A and E are marked with blue and red arrows, respectively. The to-
tal number of coefficients is 866. In the 10 000 simulated backgrounds thus only 866 groups of
threads are found.

A total of 344 threads (3.4%) have coefficients equal or larger than the maximal coefficient
found in group A. The number for group E is 592 (5.9%).

Figure 5.27 compares the average coefficients found in group A and E to the averages found
in the simulated groups. Now 130 groups or only 1.3% have an average equal or higher than
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Figure 5.26: Maximal correlation coefficients of the threads inside the simulated groups compared
to maximal coefficients found in the data group A (blue) and E (red). Note that the simulations
containing groups with no threads are not shown.
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Figure 5.27: Average correlation coefficients found in the simulated groups compared to average
correlation coefficients found in group A (blue) and E (red). Note that the simulations containing
groups with no threads are not shown.

group A. The number for group E is 615 6.2%.

5.7 Conclusion

From the limited simulations conducted in this study the signal in the Centaurus A region is
most likely just a fluctuation. However, more extensive simulations of changing fractions of
mock signals and background are needed before any definitive conclusions can be drawn.
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Chapter 6

Conclusion and Outlook

In this study the consequences of the galactic magnetic field on the propagation of UHECR is
investigated in detail for different areas of research. The GMF models are studied and compared
to each other. The deflections and the extra-galactic exposure is established for the different
models.

The deflections of protons originating from the galactic center are calculated via constructing
a shooting procedure. The shooting procedure is a powerful tool that establishes the arrival
directions of cosmic rays of different energies originating exactly from the galactic center.

A shooting procedure is also constructed for the study of deflections of cosmic rays originat-
ing from AGNs. For different models the AGN images are compared to Auger data, and the
UHECR–AGN correlation found by the Pierre Auger collaboration [98, 99] is recalculated after
correcting the Auger events for deflections.

Thread-like multiplets are obtained via the MST method on Auger data. The multiplets ob-
tained with different cuts are studied.

Galactic Magnetic Field models
Although the local magnetic field strength is similar in all models their different symme-
tries, with regards to the field directions in the spiral arms and at the galactic disk, have a
huge impact on the propagation of the UHECRs. It is shown that for observers at Earth,
the extra-galactic exposure has relatively large blind regions even for 100 EeV protons orig-
inating from sources in these regions, if configurations with field reversal at the disk are
assumed.

The deflections for protons with energies of 10 EeV and larger are proportional to ∼ 1/E
which makes cosmic ray astronomy possible if the models are accurate.

Galactic Center
It is shown that 10 EeV protons are deflected 15◦ and 25◦ in the HMR BSS-S and HMR ASS-
A models, respectively. As the cosmic ray excesses from the galactic center are reported for
energies in the range of 1 EeV this indicates that the cosmic rays from this region might be
neutral particles, like neutrons. However, due to field reversals at disk crossing the HMR
ASS-A model produces a channel near the galactic disk where the field is negligible or
zero. If the GMF indeed changes sign at the galactic disk then even charged particles with
the lowest energies might reach Earth.

It is also shown that the magnetic field, as predicted by the models, has a dominating y-
component. This allows for rewriting and simplifying the equations of motion. There are
no disagreements between deflections produced by ordinary and simplified equations of
motion for protons with energies larger than 5 EeV.

Active Galactic Nuclei
It is established that the protons originating exactly from the original AGNs in references
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[98, 99] have an average deflection of around 3◦ which is comparable to the size of the
correlation circles Ψ = 3.2◦ found by the Pierre Auger collaboration. However, the AGN
images as predicted by the models match the directions of the Auger data very poorly. In
addition, by backtracking the Auger events in different models, only 11 to 15 Auger events
remain inside the limit of Ψ = 3.2◦ around their correlating AGNs.

After correcting Auger data for magnetic deflections the UHECR-AGN correlation is recal-
culated. It turns out that the correlation found, for all models, is weaker than the original
correlation in [98, 99]. This indicates that either the models are inaccurate (even for energies
above 57 EeV) or the Auger data correlates to other astronomical objects than AGNs.

Thread-like Multiplets
Groups of thread-like multiplets are found in data by using the MST procedure. Interesting
groups are handpicked and corrected for deflections in different models in order to check
if the backtracked groups focused towards the sources. Overall contradictory results are
obtained due to the complexity of the models. Backtracked groups focusing in one model
are spread apart in other models.

A group of thread-like multiplets is found in the Centaurus A region. Simulations are
used to verify if this group is genuine or not. The conclusion based on the simulations is
inconclusive. Additional and more extensive simulations are needed in order to clarify the
matter.

Outlook
The GMF is poorly understood due to some weaknesses in the observational methods and
insufficient amount of rotation and synchrotron measurements. In the near future the con-
struction of the Low Frequency Array (LOFAR) [60] and Square Kilometre Array (SKA)
[60, 113] telescopes would greatly improve the amount of rotation and synchrotron mea-
surements. With the SKA telescope it would be possible to measure 20 000 rotation mea-
sures from pulsars in the galaxy, yielding a full description of the regular galactic magnetic
field component [113]. The LOFAR telescope will provide complementary information by
measuring very weak rotation measures down to 5.7◦ [60]. In addition, LOFAR and SKA
will have capabilities to measure synchrotron emission [60].

With the LOFAR and SKA telescopes a radically improved understanding of the GMF is
indeed possible. As a result we will be one step closer to charged particle astronomy. In
addition, the PAO can also improve the understanding of the GMF by, for example, search-
ing for thread-like multiplets. The shooting procedures developed in this thesis can be
applied to establish the arrival directions of cosmic rays originating from different varieties
of sources, from the GC to AGNs, under different GMF configurations. If the GC excess
found by reference [93] and the AGN–UHECR correlation found by the PAO is real, then
it might be possible to infer the correct strength and the correct configuration of the GMF
by comparing the arrival directions of Auger data and the arrival directions given by the
shooting procedures.



Appendix A

The Lorentz force

The generalized Newton’s Second Law [114, 115] is given by

dPµ

dt
= q Fµ

νvν, (A.1)

where m is the mass of the particle, vν is the four-velocity, and Pµ is the four-momentum. Fµ
ν is

the electromagnetic tensor [114],

Fµ
ν =


0 Ex Ey Ez

Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 (A.2)

The Lorentz force is derived by writing equation (A.1) in vector form. Right hand side of equation
(A.1) yields

q Fµ
νvν = q Fj

iv
i = q εi j kBkvi = q ⇀v×

⇀

B, (A.3)

where εi j k is the Levi-Civita density [114, 116] given by

εi j k =


0 for i = j, j = k, or k = i,

+1 for (i, j, k) ∈ {(1, 2, 3) , (2, 3, 1) , (3, 1, 2)},
−1 for (i, j, k) ∈ {(1, 3, 2) , (3, 2, 1) , (2, 1, 3)}.

(A.4)

Writing out the left hand side yields,

d⇀p
dt

=
d
dt

(m⇀vγ) = mγ
d⇀v
dt

+ m⇀v · d⇀v
dt

γ3/c2, (A.5)

where γ = (1− ⇀v 2/c2)−1/2. For the energy of a relativistic particle with mass m, momentum ⇀p
and energy E the following relation holds,

E2 = ⇀p 2c2 + m2c4. (A.6)

Isolating ⇀p 2 and deriving with respect to time yields,

d
dt

(
⇀p 2
)

= 2⇀p · d⇀p
dt

= 0. (A.7)

Equation (A.7) yields,

γ
⇀v

d⇀v
dt

+ v2 dγ

dt
= 0. (A.8)
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Since dγ/dt = −⇀v · (d⇀v/dt)γ3/c2, equation (A.8) is rewritten as,

⇀v · d⇀v
dt

(
γ− v2γ3/c2

)
= 0. (A.9)

Equation (A.9) yields ⇀v · (d⇀v/dt) = 0. With this relation equation (A.5) is reduced to,

d⇀p
dt

= mγ
d⇀v
dt

(A.10)

In the ultra-relativistic case (E� mc2) equation (A.6) is reduced to E ≈ pc = m|⇀v|γc. The velocity
is expressed as,

|⇀v| = E
mγc

(A.11)

By using the relation ⇀v/|⇀v| = n̂ where n̂ is the unit vector along the direction of flight and equa-
tion (A.11), equation (A.5) is now expressed as,

d⇀p
dt

=
E
c

dn̂
dt

. (A.12)

Writing the left hand side of equation (A.1) as equation (A.12), and the right hand side as equation
(A.3) yields,

E
c

dn̂
dt

= q ⇀v×
⇀

B, (A.13)

For ultra-relativistic particles (|⇀v| = c) the velocity is given by

⇀v = cn̂, (A.14)

Equation (A.13) is now transformed to

dn̂
dt

=
qc2

E

(
n̂×

⇀

B
)

. (A.15)

By dividing equation (A.15) with a factor c yields

dn̂
ds

=
qc
E

(
n̂×

⇀

B
)

. (A.16)

where s = ct is the path length [49].



Appendix B

Magnetic Deflections and Active
Galactic Nuclei

B.1 Magnetic deflection

The sky map in figure 4.6 in section 4.4 is divided into three regions given by red, blue and green
rectangles in order to study more carefully the details about the AGN images as observed on
Earth, the true positions of the AGNs, Auger events and backtracked Auger events.

Only figures showing the red region is used in section 4.6. The figures of blue and green
regions are given here.

Figure B.1: The second rectangle with blue boundaries taken from figure 4.6. Here the HMR
ASS-A model is used.
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Figure B.2: The third rectangle with green boundaries taken from figure 4.6. Here the HMR
ASS-A model is used.

Figure B.3: The second rectangle with blue boundaries taken from figure 4.6. Here the HMR
BSS-S model is used.
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Figure B.4: The third rectangle with green boundaries taken from figure 4.6. Here the HMR BSS-S
model is used.

Figure B.5: The second rectangle with blue boundaries taken from figure 4.6. Here the TT BSS-A
model is used.
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Figure B.6: The third rectangle with green boundaries taken from figure 4.6. Here the TT BSS-A
model is used.

Figure B.7: The second rectangle with blue boundaries taken from figure 4.6. Here the KST BSS-A
model is used.
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Figure B.8: The third rectangle with green boundaries taken from figure 4.6. Here the KST BSS-S
model is used.
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B.2 Search method

The method for establishing the correlation between the UHECR – AGNs is well described in the
references [98, 99, 100, 102]. The main points of this method are explained in this appendix.

Concentrating on vertical showers only, the zenith angles have a maximum of 60◦. This im-
plies [100, 117] that the relative SD exposure is given by,

ω (δ) ∝
∫ 2π

0
cos (θ (δ, l, α)) dα. (B.1)

Here cos (θ (δ, l, α)) is given by,

cos (θ (δ, l, α)) = sin δ sin l + cos δ cos l cos α, (B.2)

where δ is the declination and α the right ascension. l is −35.2◦, corresponding to the latitude of
the Southern Observatory.

The first task is to establish the chance probability for an isotropic event being separated by
a given angle from one or more AGNs. A large amount of arrival directions are simulated with
the declination given by the cos θ expression (B.2). The angular separation is calculated between
these random simulated arrival directions and the AGNs from the Véron catalogue [101]. Angu-
lar separations in the range 1◦ to 8◦ are kept. For the purpose of calculating the chance probability
an interval step of 0.1◦ is introduced, yielding 70 angular separation values, denoted by γ, in the
range 1◦ to 8◦. By integrating over the area of the sky spanned by circles of a given radius γ
around the AGN the chance probability is obtained [100],

p =
1
N

∫∫
A

ω (δ) dδ dα, (B.3)

where N is the total number of simulated events and A is the total area covered by the circles
with a given radius γ.

Assuming that the Auger events are isotropic the probability that k or more out of n Auger
events have an angular distance to an AGN less than a given γ is given by the binomial distribu-
tion,

P =
n

∑
j=k

(
n
j

)
pj (1− p)n−j , (B.4)

where n is the total number of events and p is given by B.3. However, the binomial probability P
given in equation (B.4) is not the real correlation probability from an isotropic distribution. It has
to be penalized for the scanning procedure.

It is clear that the arrival directions of the n Auger events are only one of many sets of arrival
directions possible if isotropy is assumed. Thus many sets of n generated events are simulated.
The angular distance to the AGNs is recalculated. The probability in equation (B.4) is calculated
for each simulated set. The correlation probability is then the fraction of the sets with values of P
equal or less to the one obtained with the Auger data set.
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Minimal Spanning Tree

The Minimal Spanning Tree (MST) is well known from graph theory and is described in abun-
dance of literature [107]. The MST as applied to the arrival directions of cosmic rays is explained
in detail in the references [108, 109, 110]. The main points of this method are explained here.

In this appendix, Auger data from the period January 2004 until the end of 2008 are used.
The points of arrival directions of the cosmic rays are connected in such a way so that the total

length between the first chosen point and the last is minimal. This forms a tree like structure with
no loops as seen in figure C.1. The red lines between the events constitute the branches of the
tree. The structure of the tree is unique, i.e. for a given set of points there exists only one MST.
The branch lengths are added up and an average is calculated. The tree is cut by setting a limit
dmax on the branch length. The appropriate value of this limit, however, is not obvious and has to
be determined manually, resulting in a somewhat arbitrary partition of the original MST. Figure
C.2 shows the tree cut for two different values, dmax = 0.5〈d〉 and dmax = 〈d〉, where 〈d〉 is the
average length of the connections in MST.

In the upper panel (dmax = 0.5〈d〉) the majority of the clusters are doublets of Auger events.
The lower panel is far richer in terms of large clusters. Applying larger cuts for dmax inevitably in-
creases the number of large clusters. Figure C.3 shows the frequency of different lengths between
the branches for two minimal spanning trees constructed with the energy cuts Emin = 15 EeV and
Emin = 20 EeV.

The frequency of low angular lengths are larger at 15 EeV cut due to the larger amount of
data. This energy cut yields 1799 data events. The average length for this cut is 2.4◦. Increasing
this cut to 20 EeV increases the average length of the tree as seen in the lower panel. Now the
number of data events is 956. To sum up, the clusters grow with lower cuts on the energy of the
particles and with larger cuts on the branch lengths of the tree. In the search for threadlike struc-
tures evaluating the probability of finding such structures by chance is crucial. Large threadlike
structures become a liability with respect to the computing time. In order to strike a balance be-
tween a sufficient number of potential structures and reasonable computing time suitable values
for energy cut and dmax are adopted in chapter 5.

It was shown in equation (2.4) that the deflections the high energetic primaries undergo are
proportional to 1/E. In the high energetic range the relation between the arrival directions,
θarrival, of the Auger events and the source position, θsource, is approximated with

θarrival ≈ θsource +
D
E

(C.1)

where D is the so-called deflection power in units of [◦EeV]. The search for such linear corre-
lations [109] requires that the clusters in figure C.2 are projected into a tangential plane on the
celestial sphere through the gnomonic projection. The coordinates of an event in a given cluster
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Figure C.1: Minimal spanning tree constructed by using Auger events with energy above 15 EeV,
from the period January 2004 to end of 2008. The events are plotted on a unit sphere.

in this plane [111] are given by,

x =
cos θ sin (φ− φ0)

cos c
,

y =
cos θ0 sin θ − sin θ0 cos θ cos (φ− φ0)

cos c
, (C.2)

where cos c is given by,

cos c = sin θ0 sin θ + cos θ0 cos θ cos(φ− φ0), (C.3)
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Figure C.2: The minimum spanning tree from figure C.1, cut with different maximal lengths dmax
as a function of the mean length 〈d〉 of the uncut tree.

and where θ and φ are the galactic latitude and longitude of the projected event. The unit vectors
of the events in each cluster are added up and normalized. These new unit vectors, n̂0, provide
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Figure C.3: The distribution of angular lengths between the branches of the full minimal span-
ning tree, for different energy cuts.

the mean directions of the clusters. θ0 and φ0 are given by n̂0.
After the gnomonic transformation of the clusters, the covariance between the event coordi-

nates as given by the equations (C.3) and 1/E, is calculated. In order to maximize this correlation
the coordinates are rotated by the angle,

α = arctan
(

Cov (y, 1/E)
Cov (x, 1/E)

)
. (C.4)

The new coordinates are given by,

z = x cos α + y sin α,
t = −x sin α + y cos α, (C.5)

where z is the longitudinal coordinate so that Cov (z, 1/E) is maximal, and t is the lateral coor-
dinate. As seen in figure C.2 not all of the clusters are thread-like. In order to filter out these
clusters following conditions are required to be satisfied,
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• The correlation coefficient, C (z, 1/E) = Cov(z,1/E)√
Var(z) Var(1/E)

, is larger than 0.95.

• The maximum lateral spread in 〈t〉 in any cluster is lower than 2◦.

The remaining clusters are called thread-like multiplets and are fitted [109] with the relation,

z = zsource +
D
E

. (C.6)

The source position is obtained from zsource. The deflection power D is a measure of the multiplet
deflection. For a large cluster several thread-like multiplets (or threads) might be found as the
events in the cluster satify the conditions above in different combinations. Thus, a cluster of seven
events might yield two threads of five events each. Additional cuts are made on the deflection
power and the location of the reconstructed source. An upper limit on deflection power is set to
1000◦EeV, and the source position must be less than 15◦ away from the event with the highest
energy in the cluster. Figures C.4 and C.5 show a septuplet and a nonuplet linearly fitted in the
z-1/E plane.
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Figure C.4: A septuplet obtained from the minimal spanning tree for E = 15 EeV and dmax = 〈d〉.
Here zsource = −6.7◦ ± 0.9◦, and D = 172◦ EeV± 21◦ EeV.
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Figure C.5: A nonuplet obtained from the minimal spanning tree for E = 15 EeV and dmax = 〈d〉.
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Appendix D

Simulation of Auger Exposure and
the Energy Spectrum

D.1 Auger exposure

The Pierre Auger Observatory currently has only one detection site. Located in Argentina it is
named the southern Site of the Pierre Auger Observatory. The detection area is thus constrained
mostly to the southern hemisphere. The current relative exposure of the Pierre Auger Observa-
tory [117] is given by

ω (δ) ∝ cos (a0) cos (δ) sin (αm) + αm sin (a0) sin (δ) , (D.1)

where δ is the declination, a0 = −35.2◦ is the latitude of the southern Site, and αm is

αm =


0 ; ξ > 1,
π ; ξ < −1,
arccos (ξ) ; otherwise

(D.2)

where ξ is given by,

ξ =
cos (θm)− sin (a0) sin (δ)

cos (a0) cos (δ)
, (D.3)

where θm = 60◦ is the maximal angle chosen for the “vertical” data set.

D.2 Energy spectrum

The cosmic ray energy spectrum is approximately described by a power law function,

dN
dE

∝ E−γ, (D.4)

where γ is determined experimentally. The distribution of number of cosmic rays N over energy
interval dE can be described as,

f (E) =
dN
dE

= k E−γ, (D.5)

where the normalization k over the energy range [Emin, ∞] is obtained from,∫ ∞

Emin

f (E) dE = 1. (D.6)
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Equations (D.5) and (D.6) yield,

k =
γ− 1
E−γ+1 . (D.7)

The cumulative distribution function is obtained by integration,

g (E) =
∫ ∞

Emin

f (E) dE = 1−
(

E
Emin

)−γ+1
. (D.8)

Random energies E distributed according to f (E) are generated as,

E = g−1 (ξ) (D.9)

where ξ is a random variable between zero and one. Using equation (D.8), the energies that are
simulated are consequently given by,

E = Emin (1− ξ)
1

−γ+1 , (D.10)

where Emin is the lowest energy allowed in the simulations. In section 5.6 Emin is set to 30 EeV.
The Pierre Auger Collaboration estimates [31] γ to be on average −4.2 for energies above 40 EeV.
Here this value is used in the simulations.
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