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Modelling of Continuous Casting

of Steel under the Influence of Elec-

tromagnetic Field with Meshless

Method

Abstract

The purpose of this dissertation is to extend and explore the behaviour of a novel
meshless method, namely the Local Radial Basis Function Collocation Method
(LRBFCM) [Šarler and Vertnik, 2006], in the solution of a steady, laminar, and
turbulent thermal fluid flow influenced by the magnetic field. The technological
problem under consideration is focused on the influence of the magnetic field in
the continuous casting of steel. The problem is defined by coupled mass, momen-
tum, energy, turbulent kinetic energy, dissipation rate and induction equations,
that are solved in two dimensions (2D) by local collocation with multiquadric
radial basis functions on five nodded overlapping sub-domains and explicit time-
stepping. The problem includes liquid-solid phase change phenomena and is char-
acterized by three regions: the pure solid, the pure liquid and the mushy region
between. Whereas the treatment of the pure solid and the pure liquid regions is
straightforward, the treatment of the mushy region is much more complex since
it combines both phases. The liquid-solid phase transformation is modelled by
the mixture continuum model [Bennon and Incropera, 1987b]. The alloy solidifi-
cation region, which might be divided into the slurry zone and the porous zone,
is in this dissertation treated as a porous zone solely. As only the porous zone
with stationary porous state is considered in this dissertation, it is modelled by
the Darcy’s law and the Kozeny-Carman [Carman, 1948] relation which supposes
a constant value for the morphology of the porous media. The Reynolds time
averaging [Reynolds, 1895] is used to devise a low-Reynolds k-ε turbulence model
for the incompressible turbulent fluid flow. The Abe-Kondoh-Nagano [Abe et al.,
1995] model is used to set the turbulence closures in the additional turbulent
kinetic energy and dissipation rate equations. The velocity-pressure coupling is
solved by the fractional step method [Chorin, 1967]. The Maxwell’s equations
are applied to calculate the effect of the externally applied magnetic field. The
governing equations are discretized in their strong formulation and the adaptive
upwind technique [Lin and Atluri, 2000; Gu and Liu, 2006] is used to approximate



the convection terms.

The accuracy of the method has been tested on several well known bench-
mark test cases both with and without the magnetic field. These verifications
additionally serve as means to asses and set the free numerical parameters of the
method used. The LRBFCM has been tested for a wide range of dimensionless
parameters such as Prandtl (Pr), Hartmann (Ha), Reynolds (Re), Grasshof (Gr)
and Rayleigh (Ra) numbers. The lid-driven cavity benchmark test case [Mramor
et al., 2013a] is used to asses the performance of different radial basis functions
(RBFs) and pressure-velocity coupling schemes. Numerical predictions are calcu-
lated for Re ranging from 100 to 3200. The natural convection in a square cavity
under the influence of externally applied magnetic field [Mramor et al., 2013b] is
used to determine the accuracy of the addition of magnetic field equations and
corresponding boundary and initial conditions to the fully coupled problem of
heat and fluid flow. The results are calculated for Ra ranging from 103 to 106,
Pr 0.14 and 0.71, Gr ranging from 104 to 106 and Ha ranging from 0 to 100. The
reference Hartmann flow case is chosen to test the in- and out-flow boundary
conditions in the presence of the externally applied magnetic field against the
analytical solution. The calculations were performed for Pr 0.71, Re 100, and Ha
ranging from 0 to 1000. The backward facing step with magnetic field problem is
selected to test the precision of the separation and reattachment positions. The
analysis for the backward facing step problem under the influence of the exter-
nally applied magnetic field [Mramor et al., 2014a] is implemented for Pr 0.71,
Re ranging from 300 to 800 and Ha ranging from 0 to 100. The results in all of
the above mentioned examples have been verified against either the previously
published results or by comparison with results calculated with the commercial
fluid dynamics software (Fluent [ANSYS, 2013]) and are in good agreement.

The numerical model for continuous casting of steel [Vertnik and Šarler, 2006]
is upgraded for the application of the magnetic field for magnetic breaking. The
initial and boundary conditions are described and set to the values obtained from
the Štore Steel billet continuous caster. The geometry and the material proper-
ties of steel are simplified for verification purposes. The results for the simplified
model are verified by comparison with the Fluent code. The realistic magnetic
field is calculated for various coil arrangements and the parametric study is per-
formed for both the simplified and the realistic magnetic field. The sensitivity of
magnetic field strength, position, and range is investigated for velocity, tempera-
ture and concentration fields. The tests show, that the upgraded numerical model
is applicable on a wide range of laminar and turbulent fluid flow with including
solidification, both with and without the presence of the magnetic field.

It is shown that the novel LRBFCM is able to successfully, accurately and re-
liably solve the equations of coupled magnetic and thermo-fluid problems for uni-
form and non-uniform node arrangements. Advantages of the LRBFCM method
are its simplicity, accuracy, and straightforward implementation of the algorithm
on non-uniform node arrangements as well as for involved physics. In the future,
the discussion will be extended to the three dimensional (3D) problems with
different magnetic field configurations, such as Electromagnetic Stirring (EMS)
in order to simulate a wider range of continuous casting processes of steel with



externally applied magnetic fields.
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Modeliranje kontinuirnega ulivanja

jekla pod vplivom elektromagne-

tnega polja z brezmrežno metodo

Povzetek

Namen te disertacije je razširiti in raziskati obnašanje nove brezmrežne me-
tode, imenovane lokalna kolokacijska metoda radialnih baznih funkcij (LRBFCM)
[Šarler and Vertnik, 2006], pri reševanju ustaljenega, laminarnega in turbulen-
tnega termičnega toka tekočine pod vplivom magnetnega polja. Obravnavani
tehnološki problem je osredotočen na vpliv magnetnega polja pri procesu kon-
tinuiranega ulivanja jekla. Problem določajo sklopljene ohranitvene enačbe za
maso, gibalno količino, energijo, turbulentno kinetično energijo, hitrost disipacije
ter indukcijo, ki jih rešujemo v dveh dimenzijah z lokalno kolokacijo in uporabo
multikvadričnih radialnih baznih funkcij na pet točkovnih prekrivajočih se pod-
domenah z eksplicitno časovno shemo. Problem vključuje kaplevito-trdne fazne
spremembe in je določen s tremi regijami: popolnoma trdno področje, popolnoma
kapljevito področje ter kašasto področje med obema. Medtem ko je obravnava
popolnoma trdnega ter popolnoma kapljevitega področja neposredna, je obrav-
nava kašastega področja mnogo bolj zapletena, saj le-to obsega tako trdno kot
tudi kapljevito fazo. Kapljevito-trdni fazni prehod je modeliran z modelom kon-
tinuumske mešanice [Bennon and Incropera, 1987b]. Območje strjevanja zlitine,
ki ga lahko razdelimo na kašasti in porozni del, je v tej disertaciji obravnavano
kot zgolj porozen medij. Ker je v tej disertaciji obravnavano le porozno območje
s stacionarnim poroznim stanjem, je le-to modelirano z Darcyjevim zakonom ter
Kozeny-Carmanovo [Carman, 1948] relacijo, ki predvideva konstantno vrednost
morfologije poroznega materiala. Reynoldsovo časovno povprečenje [Reynolds,
1895] je uporabljeno za izdelavo k − ε turbulentnega modela za nizka Re števila
za tok nestisljive turbulentne tekočine. Abe-Kondoh-Nagano [Abe et al., 1995]
model je uporabljen za nastavitev turbulentnih parametrov v zaključnih enačbah
za turbulentno kinetično energijo in hitrost disipacije. Hitrostno-tlačna sklopitev
je rešena z metodo delnih korakov [Chorin, 1967]. Za izračun vpliva zunanjega
magnetnega polja so uporabljene Maxwellove enačbe. Ohranitvene enačbe so bile
diskretizirane v močni obliki, za približek konvekcijskih členov pa je uporabljena
adaptivna privetrna tehnika [Lin and Atluri, 2000; Gu and Liu, 2006].

Točnost metode je bila preverjena na več dobro znanih referenčnih testnih



primerih, tako z kot tudi brez magnetnega polja. Ta preverjanja so dodatno
služila za oceno in nastavitev prostih numeričnih parametrov uporabljane metode.
LRBFCM je bila preverjena na širokem spektru brezdimenzijskih parametrov, kot
so Prandtlovo (Pr), Hartmanovo (Ha), Reynoldsovo (Re), Grashofovo (Gr), in
Rayleighovo (Ra) število. Referenčni testni primer za gnani tok v kotanji [Mramor
et al., 2013a] je uporabljen za oceno obnašanja različnih radialnih baznih funkcij
ter sklopitvene sheme za hitrost in tlak. Numerične napovedi so bile izračunane za
Re v razponu od 100 do 3200. Referenčni test za naravno konvekcijo v kotanji pod
vplivom zunanjega magnetnega polja [Mramor et al., 2013b] je bil uporabljen za
določitev točnosti pri vključitvi enačb magnetnega polja v že obstoječi model ter
preverjanju ustreznosti robnih ter začetnih pogojev pri popolnoma sklopljenem
modelu temperaturnega in hitrostnega polja. Rezultati so bili izračunani za Ra
v razponu od 103 do 106, Pr števili 0.14 in 0.71, Gr v razponu od 104 do 106 ter
Ha v razponu od 0 do 100. Referenčni primer Hartmanovega toka je bil izbran za
testiranje robnih ter začetnih pogojev za dotok in odtok v prisotnosti zunanjega
magnetnega polja ter primerjavo z analitično rešitvijo. Izračuni so bili narejeni za
Pr 0.71 in Re 100, za Ha v razponu od 0 do 1000. Tok tekočine čez nazaj obrnjeno
stopnico z magnetnim poljem je bil izbran za ugotavljanje točnosti položaja točk,
kjer se tok odlepi in nazaj prilepi. Analiza toka preko nazaj obrnjene stopnice pod
vplivom zunanjega magnetnega polja [Mramor et al., 2014a] je bila izdelana za Pr
0.71 in Re v razponu od 300 do 800 ter Ha v razponu od 0 do 100. Rezultati vseh
zgoraj omenjenih primerov so bili preverjeni ali s poprej objavljenimi rezultati ali
z rezultati izračunanimi s komercialnim programom (Fluent[ANSYS, 2013]) in se
dobro ujemajo.

Numerični model za kontinuirano ulivanje jekla [Vertnik and Šarler, 2006] je
bil nadgrajen z aplikacijo magnetnega polja za magnetno zaviranje. Začetni in
robni pogoji so opisani in nastavljeni glede na vrednosti naprave za kontinuirano
ulivanje gredic v podjetju Štore Steel. Geometrija in snovne lastnosti jekla so po-
enostavljene zaradi preverjanja. Rezultati primera s poenostavljenim magnetnim
poljem so preverjeni z izračuni narejenimi s programom Fluent. Realistično ma-
gnetno polje je izračunano za različne položaje tuljave, parametrična študija pa je
narejena tako za poenostavljeno magnetno polje kot tudi za realistično magnetno
polje. Občutljivost moči, položaja in dosega magnetnega polja je preverjena za
hitrostno, temperaturno in koncentracijsko polje. Testi kažejo, da je dopolnjen
numerični model primeren za uporabo na širokem naboru problemov za lamina-
ren in turbulenten tok s strjevanjem tako z kot tudi brez prisotnosti magnetnega
polja.

Pokazano je, da lahko z novo LRBFCM uspešno, točno in zanesljivo rešujemo
sklopljene enačbe magnetnega in termo-tekočinskega polja za enakomerne in ne-
enakomerne porazdelitve računskih točk. Prednosti LRBFCM metode so njena
preprostost, točnost, in enostavna izvedba tako za algoritem na neenakomerno
porazdeljenih točkah kot tudi za vpleteno fiziko. V prihodnosti nameravamo raz-
pravo razširiti na obravnavo tri dimenzionalnih problemov za različne postavitve
magnetnega polja, kot je na primer elektromagnetno mešanje z namenom simuli-
rati širši spekter procesov kontinuiranega ulivanja jekla z zunanjimi magnetnimi
polji.



Ključne besede

laminarni tok, turbulentni tok, naravna konvekcija, prisilna konvekcija, strjeva-
nje, magnetno polje, sklopljeni sistemi, večfizikalni problemi, brezmrežne metode,
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1 Introduction

Steel is a material, that, since the iron age, presents a key driver to the world’s
economy. It presents one of the major components in construction (bridges,
buildings), power, transport (infrastructure), automotive (cars, planes, ships),
health and machine goods industries. It is found in products that vary from
appliances, tools, computers, steel cans, and weapons, to surgical and safety
equipment. As the demand for such products increases so does the production of
steel. The amount of crude steel produced has risen from 28.3 million tons in 1900
to 848.9 million tons in 2000 [WSA, 2013]. The growth of production has been
especially quick in the past decade as the quantity of product has nearly doubled
in the past dozen years (848.9 Mt in 2000, 1511 Mt in 2012 [WSA, 2013]). Steel
is also a material that can easily be recycled and thus presents another advantage
especially in recent years when the ecological awareness is gaining importance.

The most efficient process to solidify molten metal into solid semi-finished
products is the Continuous Casting (CC) process. Currently, over 95% [WSA,
2013] of all steel grades are obtained with this technique. The process enables
mass production of a high quality material at low cost and energy consumption.
The growth of steel production and the amount of steel produced by the contin-
uous casting process is presented in Fig. 1.1. To further improve the process, a
magnetic field is applied during the phase of solidification. It serves to refine the
grain structure and to reduce the amount of impurities as well as the amount of
trapped gas bubbles in the metal.

Very high temperatures (∼ 1500◦C) of liquid steel and inaccessibility of the
mold region during the casting process make the measurements of the tempera-
ture and the velocity fields inside the mould extremely difficult. In order to better
understand the behaviour of the melt and to further optimize the influence of mag-
netic field in the CC process of steel, a mathematical model has been devised in
the present dissertation. The model enables us to consider the changes in geom-
etry of the casting machine, various physical phenomena and process parameters
at low cost and reasonable time efficiency. Due to the complexity of the geometry
and physics, and due to the presence of the moving and deforming boundaries,
a novel Local Radial Basis Function Collocation Method (LRBFCM) [Šarler and
Vertnik, 2006], is used to solve the mathematical model. The LRBFCM performs
well in complicated geometries as it eliminates the problem of mesh generation.
To ensure the confident usage of the developed computational models, a rigours
validation against measurements or benchmark test cases is required. In this dis-
sertation, the designed computational model and the chosen numerical method
are assessed against the results obtained with Computational Fluid Dynamics

1



2 Introduction

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1
90

0

 1
92

0

 1
94

0

 1
96

0

 1
98

0

 2
00

0

P
ro

du
ct

io
n 

[M
t]

Time [years]

crude
continuous casting

Figure 1.1: The amount of produced crude steel since 1900 and the amount of con-
tinuously cast steel. Data from [WSA, 2013].

(CFD) software Fluent [ANSYS, 2013] for four benchmark test cases: the lid
driven cavity, the free convection in a rectangular cavity under the influence of
magnetic field, the Hartman flow, and the free convection in a backward facing
step under the influence of magnetic field, and for CC process model.

1.1 Continuous Casting of Steel

CC [Irving, 1993] is the most common process [WSA, 2013] and the most effective
technique to produce steel. Among different types of CC units such as vertical,
vertical with bending, radial, curved, etc. [Pass, 2013] (Fig. 1.2), a curved CC
device, depicted in the Fig. 1.3, is considered in present computational model.

In the CC process (Fig. 1.3), the molten metal is transformed into simple semi-
finished solid shapes such as slabs, billets and blooms for subsequent processing.
The process begins by pouring the molten steel from a ladle into a tundish,
which holds enough material for the flow to be continuous even when the ladle
is exchanged. The liquid steel than flows from the tundish through a Submerged
Entry Nozzle (SEN) into a copper mould. The walls of the mould are cooled with
water and the outer layers of steel solidify. The solid shell, when thick enough,
acts as a container for liquid steel. It is continuously withdrawn from the bottom
of the mould. The material is transferred from the vertical to the horizontal
position by the support rollers and is further cooled by water sprays, radiation,
natural convection and heat transfer from the material to the support rolls. The
solidified shell grows in thickness throughout the cooling process until the whole
strand is solidified, which happens at the metallurgical length. The process is
fully continuous as the material is transferred from the vertical to the horizontal
position without the need to stop the caster.

The completely solidified strand is cut either into slabs, billets or blooms (Fig
1.4). These semi-finished materials differ from one to another in the shape of the
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Figure 1.2: Types of CC of steel devices. R1, R2, R3, and R stand for casting device
radius. Figure based on [Pass, 2013]

strand cross section [OutoKumpu, 2013]. Slabs are rectangular, with a width up
to 3 m, a height up to 32 cm and length up to 15 m. The cross-section of billets
is either circular or square, with typical dimension up to 50 cm and length up to
12 m. The blooms have rectangular shape with width and height up to 50 cm
and length up to 12 m.

A tundish is a tank that contains the supply of steel which is then poured
through a nozzle into the CC mould [Thomas, 2001]. The tundish is repeatedly
fed from the ladle to ensure that the flow to the mould is continuous. The speed
of the molten steel flow through the nozzle is controlled with a stopper rod.

The mould (Fig. 1.5) is the most important part of the casting machine as
the most crucial physical phenomena occur here. The molten steel enters the
mould at high velocities through the nozzle ports. The high velocities cause the
turbulent flow behaviour. The turbulent jet thus formed, proceeds across the
mould towards the solidifying shell, where it impinges against its walls. The jet,
carrying the superheated material, erodes the solidifying shell and can cause a
breakout if it hits the shell at its weaker regions. Typically, two recirculation
zones are formed as the flow is further separated by the jet. Consequently, the
flow moves in two directions: upwards toward the top surface and downwards
toward the interior of the strand. The recirculating zones influence the motion of
the inclusion particles and bubbles, as well as the entrapment of the liquid flux
into the steel.

A mould powder is added to the top free surface to prevent chemical reactions
between the steel surface and the surrounding area. The mould powder also
provides effective thermal insulation. The high temperature of the steel melts
the powder into a liquid flux, which floats on the top surface of the molten steel.
The part of the liquid flux that comes into contact with the cold mould walls
re-solidifies and forms a solid flux rim, which restricts the heat transfer at the
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Figure 1.3: A scheme of the curved CC process.

Figure 1.4: Semi-finished steel products. Left: blooms (courtesy of Accolade Pho-
tography [Accolade-Photography, 2013]). Right: billets (courtesy of Štore Steel d.o.o.
[Štore Steel, d. o. o., 2013]).

meniscus. The rest of the liquid flux is absorbed into the gap between the mould
wall and the solidified strand. Here it supports the uniform heat transfer and
together with the periodic oscillating motion of the mould, prevents the material
from sticking to the mould walls. As a result of the mould oscillation, the so
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called oscillation marks are created. These periodic indentations affect the heat
transfer and can cause the material to crack.

The liquid flow along the top surface of the mould is an important parameter
that can greatly influence the quality of the steel. If the horizontal velocity along
the interface is too low, it can generate inadequate liquid flux coverage which leads
to various surface defects. On the other hand, when the horizontal surface velocity
is too large, the shear flow and the vortices that may occur as a consequence, may
entrain the flow into the liquid steel. The entrapped liquid then moves along with
the steel flow, and can later, assuming that it is captured in the solid shell, cause
problems in the final product. The liquid flux layer tends to be thinner at the
places where the vertical jet impinges the top free surface. The time variations
that are caused by the transient fluctuations in the flow can at the detrimental
spots result in mould powder entrapment. The impurities that enter the steel
flow through the SEN exit present another problem. These impurities consist of
particles of various shapes and sizes. They either move with the fluid flow up
towards the surface or become entrapped inside the solidifying shell. When the
later happens, the impurities can form defects in the final product.
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Figure 1.5: A detail of tundish and mould.

Variations in the composition during the solidification, called macrosegrega-
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tion, are one of the major reasons for internal defects. This phenomenon occurs
in the mushy solidification zone and can range in scale from a couple of millime-
tres to several meters. It is caused by forced, natural and solute convection and
refers to a transport of the liquid and the solid phases on a scale much larger
than a dendrite arm. The variation of composition within the dendrite structure,
especially the redistribution of the solute during solidification on micro level, is
called microsegregation. It occurs, because the solubility of the alloying elements
is different in the solid and the liquid phases [Dantzig and Rappaz, 2009]. Usu-
ally, the solute has a higher solubility in the liquid phase than in the solid phase.
The solute is therefore repelled back into the liquid phase, where consequently
the concentration of the solute increases. The continuous growth of the solid
phase leads to higher concentrations of the solute in the liquid steel and depleted
concentrations of the solute in the solidified steel. The respective macrosegre-
gation, results in non-uniform mechanical properties of the cast products. To
further improve the CC process of steel and to avoid defects in the final product,
Electromagnetic (EM) field is introduced to the process.

1.2 Magnetohydrodynamic Processes in Contin-

uous Casting of Steel

Although the CC process of steel is cost efficient, with high yield and productiv-
ity, as well as good quality of the material, the process is further optimized by
introducing the EM field. The EM field affects the turbulent flow field, the heat
transfer and the solidification. The outcome of the EM field is the EM force,
which causes the stirring of the molten steel flow or the breaking of the ensuing
solid structure. By varying the EM field, and consequently the EM force, the
amount of defects in the material is reduced. The EM field is usually applied in
the mould, where the solidification takes place. This is the most critical area of
the process, since the liquid and the solid coexist together and can be easily in-
fluenced by the magnetic field. In general, the methods of applying the EM field
to the CC process are divided into two major groups [ABB, 2013; Cukierski and
Thomas, 2008]: Electromagnetic Stirrers (EMS) and Electromagnetic Brakers
(EMBR) as the EM field either stirs or brakes the flow.

Electromagnetic Stirrers

The EMS systems utilize the Alternating Current (AC) to generate a continu-
ously changing EM field [Cukierski and Thomas, 2008]. The EMS systems can
be divided by the position of their placement into three categories: the Mould
Electromagnetic Stirrers (MEMS), the Strand Electromagnetic Stirrers (SEMS),
and the Final Electromagnetic Stirrers (FEMS) (Fig. 1.6).

The MEMS is placed, as its’ name suggests, in the mould. In general there
are two types of MEMS: the Slab Mould Electromagnetic Stirrers (SMEMS) and
the Multi-Mode Electromagnetic Stirrers (MMEMS). The SMEMS employ two
magnets on each side of the mould near the meniscus in order to activate and
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uphold the circulation of the flow around the mould perimeter. The circulation
of the flow homogenizes temperature in the meniscus and thus improves the
quality of the finished slab. The MMEMS use two stirrers placed near the SEN
outlets. This EMS system has three modes of operation: the Electromagnetic
Level Stabilizer (EMLS), the Electromagnetic Level Accelerator (EMLA), and the
Electromagnetic Rotary Stirrer (EMRS). The low frequency alternating magnetic
field is applied in the case of the EMLS mode [Kubo et al., 2004]. It has been
developed to stabilize the molten steel flow as the velocity at the surface is reduced
and the meniscus profile is flattened due to the flow opposing forces. The direction
of the flow is strongly dependent on the intensity of the imposed field. If the
enforced magnetic field is strong, the current flows towards the mould walls,
whereas if the enforced magnetic field is weak, the current flows towards the
nozzle. The EMLA mode [Kubo et al., 2007] employs the alternating magnetic
field with a low frequency, which stimulates the flow to move from the nozzle to the
side of the mould. The purpose of this type of the EMS is to accelerate the molten
steel flow, particularly when the mould is wide or the casting speed is low. The
EMRS mode [Pardeshi et al., 2008] employs the rotating magnetic field, which
generates a swirling flow. The swirling flow encourages mixing and the liquid
phase consequently becomes more homogeneous. The benefits of the MEMS are
increased equiaxed zone, equalized crust, and reduced air holes, pinholes, and
inclusions in the surface and the subsurface [Kemeida Electric Co., 2013].

The SEMS is placed in the strand. A high placement on the strand reduces
the possibility of the brake-outs whereas a lower placement improves the V seg-
regation [Ergolines, 2013]. The SEMS changes the initial coarse columnar grains
to a more fine grained structure, which means that the centreline segregation, the
center porosity and the internal cracks are reduced [ABB, 2013], and the equiaxed
zone is increased [Kemeida Electric Co., 2013].

The FEMS employs a rotating magnetic field and is placed at the end of the
strand, just before the metallurgical length. It is usually employed in billet and
bloom casting. The metallurgical effects of the FEMS are the reduced central
segregation, central porosity and shrinkage, as well as refinement of the equiaxed
zone [Kemeida Electric Co., 2013].

Electromagnetic Brakers

The EMBR systems employ coils to generate the Direct Current (DC). Thus gen-
erated static magnetic field can be effectively used to control the liquid steel flow
and to slow down the mainstream flow. The EMBR ensures uniform temperature
and casting speed over the entire strand width [ABB, 2013]. The most common
configurations of the EMBR are the conventional or level EMBR, the EMBR
ruler and the Flow Control Mould (FCM) (Fig. 1.7) [ABB, 2013; Cukierski and
Thomas, 2008; Timmel et al., 2010].

The level EMBR consists of two thin magnets placed on the opposite sides of
the mould that act locally across the strand width and create finite, rectangular
regions of transverse EM field below the SEN ports. This arrangement is used to
stabilize the jet exiting the nozzle ports in order to decrease the velocity in the
meniscus and the fluctuations in the meniscus profile.
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The EMBR ruler uses two magnets on the opposite sides of the mould that
span the entire width of the mould and create one magnetic field just below the
SEN ports. As in the case of the conventional EMBR, the aim of this configuration
is to slow, diffuse and suppress the penetration depth of the jet exiting the SEN
ports and to stabilize the meniscus velocity and the fluctuations of the profile.

The FCM configuration consists of two parallel magnets that span the entire
width of the mould [ABB, 2013]. The magnetic fields thus created affect the
flow in the meniscus and below the SEN ports. The purpose of this system is
to control the fluid flow exiting the nozzle as well as at the meniscus. The FCM
configuration is most commonly applied to decrease the overall velocities in the
mould.

1.2.1 Literature Review of Electromagnetic Field Mod-

elling

The EM field affects turbulent flow, as well as the heat transfer and the solidifi-
cation and therefore has to be carefully considered when constructing a mathe-
matical model. In the mathematical model, Maxwell equations that describe EM
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I II III

Figure 1.7: Types of the EMBR configurations (Figure based on [ABB, 2013]). I.
Conventional EMBR, II. EMBR ruler, III. FCM.

field are coupled with the conservation equations of mass, momentum, energy,
turbulent kinetic energy and dissipation rate for the fluid flow. The attempts
that have been made to describe the fluid flow influenced by the magnetic field
are listed below in a chronological order.

The research in the EMS in CC began as early as 1983, when Birat and Chone
[Birat and Chone, 1982] provided the initial guidelines for tailoring the stirring
systems by stating that the EMS reduces the centreline macrosegregation.

In 1986, Spitzer and co-workers [Spitzer et al., 1986] calculated the 3D flow
field with a rotational EMS of round steel strands and examined the influence of
the stirrer position, the stirring length and the EM parameters on the flow field.
In their model, Maxwell equations were coupled with Navier-Stokes equations
and k-ε turbulence model. Davidson and Boysan [Davidson and Boysan, 1987]
considered the EMRS flow and gave a review on the One Dimensional (1D) models
of stirring in which the axial variation in stirring force is ignored. They considered
the secondary flow, which sweeps the momentum into the unforced region, where
it diffuses and dissipates the angular momentum.

In 1989, Ilegbusi and Szekely [Ilegbusi and Szekely, 1989] modelled fluid flow
in a Newtonian and a non-Newtonian system subjected to the rotational EMS.
In their model the k-ε turbulence model was used to model the effective viscosity
in Newtonian fluids and the constitutive relations were used to connect the shear
stress to the rate of the strain in the non-Newtonian fluids.

In 1992, Yao [Yao et al., 1992] performed a first computational study of a
Three Dimensional (3D) EMBR system.

In 1994, Takeuchi and co-workers [Takeuchi et al., 1994] presented flow con-
trol techniques of the EMBR and the EMS in Nippon Steel and explained the
interference between the fluid flow and the EM field. Choudhary and Mazumdar
[Choudhary and Mazumdar, 1994] developed a Two Dimensional (2D) mathe-
matical model of CC of steel. The Partial Differential Equations (PDE) with
appropriate boundary conditions were solved with a control volume based Finite
Difference Method (FDM) by incorporating a Semi-Implicit Method for Pressure
Linked Equations (SIMPLE) [Patankar and Spalding, 1972] algorithm.
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In 1996, Gardin with his associates [Gardin et al., 1996], studied the influence
of the EMBR on liquid steel flow in a curved CC process and discovered that the
brake suppresses the movement of the fluid and decreases the enthalpy exchange
between the various fluid layers. Ishii and his colleagues [Ishii et al., 1996] numer-
ically studied the AC magnetic field and found that this kind of magnetic field
suppresses the velocity of the molten steel below the meniscus. It was demon-
strated that the flexibility and effectiveness of the EMLS are better than those
of the EMBR.

In 1997, Hwang and co-workers [Hwang et al., 1997] modeled the influence of
the EMBR on the fluid flow, the induced current, the argon gas fraction in the
molten steel flow, and the meniscus shape. To numerically solve the mathematical
model, the Finite Volume Method (FVM) was used.

In 1998, Yang and co-workers [Yang et al., 1998] developed a 3D model to
describe the fluid flow, the solute redistribution, the heat transfer and the solid-
ification in the CC process, in which the blockage of fluid flow by the columnar
dendrites in the mushy zone, the change in liquidus temperature with liquid con-
centration and the double diffusive convection are considered. The same year,
Harada [Harada et al., 1998] developed a novel application of the EM, where two
steels with different chemical compositions are poured into the mould through
two nozzles with different submergences.

The following year, El-Kaddah and Natarajan [El-Kaddah and Natarajan,
1999] examined the effect of the frequency and current of the stirrer on the fluid
flow in a horizontal EMS arrangement. The devised 3D model shows that the
frequency and the current of the stirrer affect the primary horizontal flow in the
EMS range and the upward flow in the region above the EMS.

In 2000, Li and associates [Li et al., 2000] reported that the application of a
static EM field can significantly suppress the buoyancy. The k-ε model was used
to describe the turbulent flow and the EM force was incorporated in the Navier-
Stokes equations to account for the effect of the FCM. Kim and co-workers [Kim
et al., 2000] investigated the effect of the EMBR on the turbulent melt flow,
the temperature fields, and the macroscopic segregation by incorporating a low-
Reynolds k-ε turbulence model to account for the the turbulence effects, and
employing the enthalpy porosity relation to suppress the velocity in the mushy
region. They found that the temperature in the free-surface region and the tem-
perature gradients near the solidifying shell were increased and that the transfer
of superheat to the narrow face was decreased.

In 2002, Trindade and co-workers [Trindade et al., 2002] introduced a Finite
Element Method (FEM) based method to simulate the EMRS.

In the following year, Ha and his associates [Ha et al., 2003] simulated the 3D
flow, the heat transfer, and the solidification of steel in the CC process with the
EMBR and found out, that the EMBR effectively damps and controls the local
flows.

In 2004, Kubo and colleagues [Kubo et al., 2004] used a 2D model to simulate
the EMLS to evaluate the surface velocity and its connection to the entrapment
of surface powder and to track the argon gas bubbles injected through the SEN.
The same year, Natarajan and El-Kaddah [Natarajan and El-Kaddah, 2004] used



Magnetohydrodynamic Processes in Continuous Casting of Steel 11

the segregated FEM to simulate the sub-mould EM stirring in CC of steel. They
have shown, that the EM force generates a strong rotational flow within the stirrer
and a strong secondary flow beyond the stirrer, which promotes mixing past the
area of stirrers. They concluded that the frequency of the applied magnetic field
controls the range of stirring. Wang and co-workers [Wang et al., 2004], calculated
the influence of the EMBR in the CC of steel with the FDM and the SIMPLER
(SIMPLE Revised) [Patankar, 1980] algorithm. They proposed a staggered grid
arrangement to discretisize the governing equations for the fluid flow and the EM
field and confirmed that the EMBR reduces the flow velocities, relives the shear
stress at the mould face and represses the fluctuations on the free surface.

In 2006, Li and co-workers [Li et al., 2006] determined the optimal position
of the FEMS, by calculating the thickness of the solidifying shell in a bloom.
They concluded that the inner porosity and composition of the segregation can
be influenced with the EMS.

In 2007, Kubo with his associates [Kubo et al., 2007], carried out a simulation
to investigate the effect of the EMLA on the molten steel flow and measured
the velocities of the steel flow. It was discovered that the EMLA reduces the
number of inclusions in the solidifying shell and decreases the temperature drop
at the meniscus. Na and co-workers [Na et al., 2007] investigated the deformation
of initial shell in CC mould under the influence of a high frequency EM field
using a numerical model. The results showed, that the thickness of the initial
solidification shell, the temperature of strand surface and the temperature of the
copper mould increase, whereas the viscosity decreases, because of the internal
heating.

In 2008, Cukierski and Thomas [Cukierski and Thomas, 2008] used a 3D
steady state, k-ε model of fluid flow under the influence of the local EMBR
to investigate the influence of the EMBR on the SEN submergence depth. Haiqi
and associates [Haiqi et al., 2008] used a 3D FVM to investigate the metallurgical
effects of the EMBR. The results of the numerical simulation confirmed that the
EMBR can effectively control the molten steel flow. Javurek and his co-workers
[Javurek et al., 2008] modelled the MEMS and confirmed that the rotary effect
of the MEMS impacts the number of inclusions in the steel, decreases the size of
the dendritic structures and increases the number of the equiaxed grains.

In 2010, Timmel and colleagues [Timmel et al., 2010], investigated the flow
structures under the influence of a DC magnetic field. The experiments, per-
formed for this purpose in a cold metal laboratory, provide a substantial database
for the validation of the numerical results.

The next year, Chaudhary and co-workers [Chaudhary et al., 2011] investi-
gated both the transient and the turbulent features of the fluid flow by combining
two steady Reynolds-Averaged Navier-Stokes (RANS) models, a filtered unsteady
RANS model and two Large Eddy Simulation (LES) models with the Ultrasonic
Doppler Velocimetry (UDV) measurements.

In 2012, Chaudhary and his associates [Chaudhary et al., 2012] applied LES
for different configurations of the EMBR ruler applied to the transient turbulent
flow. Miao and colleagues [Miao et al., 2012], performed numerical and experi-
mental investigation of fluid flow in the CC mould under the effect of the EMBR.
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In order to numerically model the turbulence, the RANS Shear Stress transport
(RANS-SST) turbulence model was used. Liu and co-workers [Liu et al., 2012]
calculated a 3D model of the EM flow in a round bloom mould under the influence
of a low frequency in-mould EMRS.

In 2013, Zhu and colleagues [Zhu et al., 2013] investigated the effect of EMBR
and argon gas blowing on the CC process and clarified the relationship between
wavy fluctuation height near meniscus and the situation of mould flux entrap-
ment. Ji and co-workers [Ji et al., 2013] used LES to simulate the turbulent flow
in a liquid metal model of CC and compared the results with measurements using
UDV.

In 2014, Schwarz and Fröhlich [Schwarz and Fröhlich, 2014] performed a sim-
ulation of the rise of a bubble in liquid metal with and without magnetic field.
Their results showed that the vorticity is significantly damped in the bubble wake.

1.3 Meshless Numerical Methods

Various numerical methods can be used to numerically evaluate a mathemati-
cal model. At the moment, the most widely used among them are the FDM
[Özişik, 1994], the FEM [Zienkiewicz and Taylor, 1977], the FVM [Versteeg and
Malalasekera, 2007], and the Boundary Element Method (BEM) [Hall, 1994]. In
case of the CC of steel, the geometry is complex and the problem requires mov-
ing and/or deforming boundaries, which can present substantial difficulties for
the above mentioned methods. To circumvent the problem of mesh generation,
a meshless numerical method, which performs well in complicated geometries, is
used and further developed in the present dissertation.

A variety of different meshless methods [Liu, 2010] have been developed in
recent years to avoid the problem of polygonisation. Among the most com-
mon ones are the Meshless Local Petrov-Galerkin Method (MLPGM) [Atluri
and Zhu, 1998], the point interpolation method [Liu and Gu, 2001], the element
free Galerkin method [Belytschko et al., 1994], the point assembly method [Liu,
1998], the smoothed particle hydrodynamics [Gingold and Monaghan, 1977; Liu
and Liu, 2003], the discrete least square meshless method [Arzani and Afshar,
2006], the Method of Fundamental Solutions (MFS) [Ko lodziej, 2001; Golberg
and Chen, 1998; Fairweather and Karageorghis, 1998], the Smoothed Point Inter-
polation Method (SPIM) [Liu and Zhang, 2008], the Meshfree Local Radial Point
Interpolation Method (MLRPIM) [Liu et al., 2002], the Radial Basis Function
Collocation Method (RBFCM) [Kansa, 1990a,b], LRBFCM [Šarler and Vertnik,
2006], and others. Although each of these methods has advantages for a specific
class of problems, the easiest to implement seem to be the methods based on the
Radial Basis Functions (RBFs) [Buhmann, 2000] collocation.

1.3.1 Radial Basis Function Collocation Method

The RBF collocation method or Kansa method was developed in 1991 [Kansa,
1990a,b]. In his method a given problem is solved by constructing a global ap-
proximation by a set of global approximation functions, most often Multiquadric
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(MQ) RBFs. The application of the method to the PDEs leads to a formation
of a global stiff dense matrix. The recently developed alternative, which uses
the approximation that is constructed locally on a smaller sub-domain, uses local
approximation. In highly demanding and complex problems with a huge amount
of nodes, the solution of the sparse matrix is simpler and faster than the solution
of the global matrix. The accuracy of both methods is similar [Lee et al., 2003],
however, the local version is more robust in terms of choosing the RBF shape
and the node distribution.

The global RBFM, has been applied to a great variety of problems, including
the heat transport [Zerroukat et al., 1998], diffusion [Zerroukat et al., 2000],
advection-diffusion, natural convection [Šarler et al., 2001], solid-liquid phase
change [Kovacevic et al., 2003] and electromagnetic field [Young et al., 2005].

Lately, the RBFs have been combined with several other numerical methods,
such as the FVM based methods (the C2-continuous control-volume technique
[An-Vo et al., 2011a,b; Bustamante et al., 2011], and alternating direction implicit
method [An-Vo et al., 2013]), FDM concepts [Wright and Fornberg, 2006; Bayona
et al., 2010, 2011] and BEM formulations (e.g. the dual reciprocity method
[Chen et al., 1999; Wrobel and Brebbia, 1987], method of fundamental solutions
[Golberg and Chen, 1998; Johnston and Fairweather, 1984] and RBF boundary
knot method [Hon and Chen, 2003]).

The method has been successfully applied to various scientific and engineering
problems. The RBF method [Kansa, 1990a,b] was first used in 1991 to solve the
fluid dynamics problems. The fluid flow problems were later expanded [Mai-Duy
and Tran-Cong, 2001, 2002; Divo and Kassab, 2007; Mai-Duy et al., 2007b; Mai-
Duy and Tanner, 2007; Zhang et al., 2006], and several other types of problems
such as heat transport [Ho-Minh et al., 2009] and conduction [Ostrowski et al.,
2008; Soleimani et al., 2010], convection [Stevens et al., 2009; Divo and Kassab,
2008] - diffusion problems [Fan et al., 2013; La Rocca et al., 2005], solid mechanics
[Mai-Duy et al., 2007a] and electromagnetic problems [Zhang et al., 2007; Karimi
and Babazadeh, 2005; Yang et al., 2009], have been tackled.

Literature Review of the Local Radial Basis Function Collocation Method

In this dissertation, the emphasis is on the in-house developed LRBFCM. A short,
chronological review of the problems presently calculated with this method, is
given below.

The meshfree LRBFCM was first developed for diffusion problem [Šarler and
Vertnik, 2006] in 2006. The first application of the method was demonstrated
for NAFEMS boundary value problem with the steady temperature field and the
Dirichlet, Neumann and Robin boundary conditions on a rectangular cavity, and
the initial value problem with the Dirichlet jump on a square cavity. In the same
year the method was applied to the convective-diffusive solid-liquid phase change
problems on a relatively simple 1D steady state class of problems with a uniform
velocity field, and a simplified 2D steady state model of the Direct-Chill Casting
(DCC) process [Vertnik and Šarler, 2006]. The solution of the DCC of aluminium
alloys problem was subsequently extended for coping with simultaneously moving
material and inter-phase boundaries [Vertnik et al., 2006].
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A demonstration on how the LRBFCM was developed from the Global Radial
Basis Function Collocation Method (GRBFCM) was given in 2007 [Šarler, 2007].

In 2008, several articles were published on the solution of coupled heat transfer
and fluid flow problems. The method was tested on the classical 2D de Vahl Davis
[de Vahl Davis, 1983] steady natural convection benchmark [Kosec and Šarler,
2008b,c]. The method was also verified on the Darcy porous media problem
[Kosec and Šarler, 2008a]. In these tests, the Pressure-Velocity (PV) coupling is
calculated iteratively, with entirely local pressure correction, which is predicted
from the violation of the local continuity equation.

The following year, a solution of the incompressible turbulent flow [Vertnik
and Šarler, 2009b] was presented in a channel and backward facing step problems.
The turbulent flow equations were described by the low-Re (Reynolds number)
k-ε model with Jones and Launder [Jones and Launder, 1972] closure coefficients,
the PV coupling is calculated iteratively, with the Fractional Step Method (FSM)
[Chorin, 1967], and the adaptive upwind technique [Lin and Atluri, 2000] is used
due to the convection dominated situation. The same year, the LRBFCM was
used to calculate the solution of the transient convective–diffusive heat transport
in the CC of steel [Vertnik and Šarler, 2009a]. The solution was based on the
mixture continuum model and the test case was solved in 2D. Next, the solution
of phase change problems was demonstrated [Kosec and Šarler, 2009a,b, 2010] on
the example of melting/freezing of a pure substance [Benard et al., 1986]. The
numerical procedure is verified on the classical rectangular 2D cavity melting
benchmark test [Gobin and Le Quere, 2000].

In 2010, a comparison between the GRBFCM and the LRBFCM on a 2D ini-
tial boundary value diffusion-reaction problem with the Dirichlet and Neumann
boundary conditions [Yao et al., 2010], and a solution of multiscale solidifica-
tion modelling of coupled heat, mass, momentum and species transfer problems
on macroscopic level was presented along with the phase-field concepts of grain
evolution [Šarler et al., 2010] .

In 2011, three different explicit meshless methods using the RBFs were com-
pared [Yao et al., 2011]. Among the Local Method of Approximate Particular
Solutions (LMAPS), the LRBFCM, and the Local Indirect Radial Basis Func-
tion Collocation Method (LIRBFCM), that were examined on the simple dif-
fusion equation with a Dirichlet jump boundary condition. The LMAPS and
the LDRBFCM perform better than the LIDRBFCM on a non-uniform node ar-
rangement, whereas the results for all three methods are similar for uniform node
arrangement. The same year, a 2D steady state solution of a coupled turbulent
flow and heat transfer in the CC of steel billets in a curved mould geometry
[Vertnik and Šarler, 2011] is solved with the LRBFCM. The turbulence is con-
sidered by the low-Re k-ε model and the solidification effects on the fluid flow in
the mushy region are modelled through the Darcy assumption. The PV coupling
is performed by the FSM method. The LRBFCM was later upgraded with the
H-adaptive technique [Kosec and Šarler, 2011], which includes the refinement/de-
refinement of the node arrangement in vicinity of the reference node. The number
of the nodes added or removed depends on the topology of the area around the
reference node. The upgraded method was tested on the 2D Burgers’ equation
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[Burgers, 1948].
The same year, the simulation of the macrosegregation phenomena which

occurred as a consequence of the solidification of a binary alloy [Kosec et al., 2011]
was investigated. A binary Al 4.5% Cu alloy was tackled in a 2D rectangular
cavity by incorporating the local PV coupling scheme. The properties of the
phases were considered by applying the Lever solidification rule. The mushy
zone was modelled by the Darcy law and the assumption of an incompressible
Newtonian fluid was made for the liquid phase. Double diffusive effects in the
melt were taken into account by incorporating the thermal and solutal Boussinesq
hypothesis.

In 2012, the LRBFCM was tested on the 2D transient non-linear coupled
Burgers’ equations [Burgers, 1948] for large Re [ul Islam et al., 2012]. In the case
of mixed boundary conditions, the application of the adaptive upwind technique
[Atluri and Shen, 2002; Gu and Liu, 2006] is necessary for stabilization of the
method.

In 2013, the LRBFCM method was assessed for hyperbolic partial differen-
tial equations [ul Islam et al., 2013]. 1D and 2D benchmark problems with the
discontinuities, shock pattern and periodic initial conditions were calculated on a
uniform node arrangement. An adaptive upwind technique was used for the stabi-
lization of the method and the scaling technique was used to control the sensitivity
of the shape parameter. At the same time, a solution of a low Prandtl number
(Pr) natural convection benchmark [Kosec and Šarler, 2013] was calculated as a
response to the Call for contributions to a numerical benchmark problem for a
2D columnar solidification of binary alloys [Bellet et al., 2009]. The performance
of the method was tested on the natural convection in a rectangular enclosure
filled with a low Pr fluid. It was shown that both cases considered, the one with
the steady state and the other with the oscillatory solution, can be successively
handled with this method.

In 2014, the LRBFCM was extended to the macrosegregation with macroseg-
regates in binary metallic casts [Kosec and Šarler, 2014]. At the same time,
Vertnik and Šarler [Vertnik and Šarler, 2014] solved the recently proposed bench-
mark problem for CC of steel [Šarler et al., 2012].

1.4 Objectives of the Dissertation

1.4.1 Performed Work

Since 2006 developing meshless numerical method is upgraded to account for
the effects of the externally applied EM field. This is achieved by inserting the
Lorentz force term into the momentum equation. The EM (Lorentz) force is
obtained by first solving the Poisson’s equation for the electric potential, and
then applying the Maxwell equations in order to get the current density. The
simplified geometry of the mould and the SEN of the caster was considered as
well as the process parameters such as the casting velocity, casting temperature,
mould cooling, magnetic field strength, etc. The following quantities: temper-
ature, velocity, turbulent kinetic energy, dissipation rate, species concentration,
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and current density, were calculated as function of the process parameters. The
upgraded method is tested first for a benchmark test case for a lid-driven cavity,
then for a rectangular cavity in the presence of magnetic field and for a benchmark
test for a rectangular cavity with in- and outflow. The method is also tested for
the flow over a backward facing step. Finally, the CC problem is addressed with
this method. A sensitivity analysis is performed in order to find out the optimal
position at which the solenoid should be placed and the optimal magnitude of the
magnetic field that should be applied to produce a steel of even better quality.

The research presented in the present work, has so far been published in the
following scientific papers [Mramor et al., 2013a,b, 2014a,b] and was presented at
the following conferences [Šarler et al., 2012; Mramor et al., 2012; Šarler et al.,
2013].

1.4.2 Originality and Advantages

For the first time, the LRBFCM is used for solving the equations of the EM field
in the CC process of steel. Further, the LRBFCM is applied for the first time
to model the solidification under the influence of the externally applied magnetic
field in the CC process of steel.

The use of LRBFCM for the solution of the velocity, temperature and EM
fields, along with the species concentration has many advantages. The most
notable are:

• There is no need for the domain or surface polygonisation as the mesh
generation is not required. The approximation with RBFs is based on
computational nodes, only. The calculations can be performed on non-
equally distributed nodes that do not need to be geometrically connected,
explicitly, mesh is not needed.

• There is no need for numerical integration, as the governing equations are
solved in their strong formulation.

• As the value of the RBFs depends only on the distance between the central
and (typically four) neighbouring nodes, the method is almost independent
of the problem dimension; the same RBFs can be implemented to solve two,
three or higher dimensional problems.

• The ability to solve complex problems due to the local nature of the method.

• The method is relatively simple and easy to program.

The contents of the dissertation are important from the scientific and techno-
logical points of view. The developments are foreseen to be applied among others,
in modelling of the casting process in Štore Steel d.o.o. company.
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1.5 Overview of the Dissertation

• In Chap. 2, the main physical phenomena in the CC process are introduced
along with the mathematical background for the turbulent fluid flow, seg-
regation and magnetohydrodynamics.

• The meshless numerical method is defined and presented in Chap. 3.

• In Chap. 4, the solution procedure is described in detail and explained.

• In Chap. 5, the numerical method is verified for various benchmark test
cases. Among them are the lid driven cavity test, the convection in a cavity
under the influence of a magnetic field test, the Hartman flow test, and the
backward facing step under the influence of a magnetic field test.

• The simplified model of continuous casting process under the influence of
externally applied static magnetic field is presented in Chap. 6. The first
part of the chapter describes the computational model with the boundary
and the initial conditions, and the computational domain, whereas the sec-
ond part covers the results obtained for various layouts and the strength of
the applied magnetic field, and for two carbon concentrations.

• Finally, Chap. 7 offers the summary of the achievements and the future
directions in which the model can be evolved. It also presents possible
improvements of the developed numerical models.
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2 Physical Model

In this chapter, the fundamental principles and governing equations of the phe-
nomena present in the CC process are explained. The chapter is focused on the
formulation of the physical model that at least qualitatively accurately describes
the multicomponent fluid flow with solidification under the influence of an exter-
nally applied magnetic field. The model has to be detailed enough to account for
all the physical phenomena occurring in the CC process and, at the same time,
simple enough to be effectively solved numerically.

First, the basic concepts of the mathematical modelling of the fluid flow are
described. The solidification process is then reviewed and the macroscopic mix-
ture continuum model is chosen to describe the flow in the porous region. Further,
the microscopic species concentration modelling is described and the Lever rule
is selected to account for the local concentrations of the individual species in
the liquid and solid phases. Next, the fundamentals of turbulence modelling are
discussed. The Reynolds time averaging is applied to the equations and the low-
Re k-ε model is used to implement the turbulence effects. The description of
the magnetic field is then recounted and its influence on the turbulent fluid flow
is incorporated by the Maxwell’s equations. Lastly, an overview of a complete
physical model is given together with the general initial and boundary conditions.

The development of the model presented in this dissertation essentially cor-
relates to the previous work of [Vertnik, 2010], who devised a model for the CC
of steel without EM effects. The magnetic field implementation correlates to the
work of [Ha et al., 2003; Aboutalebi et al., 2007] and segregation implementation
is based on the works of [Bennon and Incropera, 1987a,b; Založnik and Šarler,
2005].

2.1 Fluid Dynamics

The main governing equations for fluid dynamics are the Navier-Stokes (N-S)
equations, which are based on the principles of mass and momentum conserva-
tion. An energy conservation equation is added to account for the temperature
variations in the fluid. In this dissertation, the N-S equations together with the
energy equation are presented first for a general and than for an incompressible
fluid flow. The state of fluid is completely determined by the fluid velocity v(r, t),
its pressure p(r, t), and density ρ(r, t), all of which are functions of space r = xi ii
(i = 1, 2, 3) or r = x ix + y iy + z iz and time t.

19
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2.1.1 Mass Conservation Equation

The continuity or mass conservation equation in its differential form is written as

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.1)

In the index notation the continuity equation takes the following form

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0. (2.2)

If the fluid is incompressible, the density ρ is constant, and Eq. 2.1 becomes

∇ · v = 0, (2.3)

or in the index notation
∂vi
∂xi

= 0. (2.4)

The Eq. 2.3 is known as the divergence-free or solenoidal condition of the vector
field v.

2.1.2 Momentum Conservation Equation

The conservation of momentum is derived from the Newton’s second law

d(mv)

dt
= F, (2.5)

where F, and m represent the force and the mass respectively. By taking into
account that the force acts on a volume element of the flow and dividing Eq. 2.5
by ∆x∆y∆z the momentum equation is obtained

∂(ρv)

∂t
+ ∇ · (ρvv) = ∇ · fs + fb, (2.6)

where f = F/V (V = ∆x∆y∆z), and is divided into the body forces fb, and the
surface forces fs. In the index notation, it is written as

∂(ρvi)

∂t
+
∂(ρvjvi)

∂xj
=
∂fsi
∂xj

+ fbi. (2.7)

Body Force

The body force fb is the sum of all the volumetric forces that act on the volume
element of the fluid, e.g. gravitational force fg, buoyancy force fbu, phase inter-
action force fpi, Lorentz force fEM , etc. The gravitational force is fg = ρg, where
g is the gravitational acceleration. The buoyancy force is defined as fbu = ρrefg,
where ρref is the reference fluid density. By taking into account the density differ-
ence due to the temperature and solute variation, and assuming the Boussinesq
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approximation ρref = ρ(1 − βT (T − Tref) − βC(C − Cref)), which essentially
states that the density changes are the result of the temperature and concentra-
tion differences. They may be neglected except when coupled with gravitational
acceleration in the buoyancy force. The following relation is obtained

fgbu = fg − fbu = ρg − ρrefg = ρ
(

βT (T − Tref ) + βC(C − Cref)
)

g, (2.8)

where fgbu, βT , T , Tref , βC , C, and Cref are the buoyancy force, thermal expan-
sion coefficient of the fluid, temperature, reference temperature, solute expansion
coefficient, concentration, and reference concentration, respectively. The phase
interaction force and the Lorentz body force are considered separately and are
described in detail in Sects. 2.2.3 and 2.4.

Surface Forces

As the name suggests, the surface forces fs are the total sum of the forces acting on
the surface of the volume element of the fluid, i.e. the pressure p (fp) and viscous
friction τ (fτ ). The net pressure can be, with the help of the Gauss’s theorem,
rewritten into the volumetric term. As a result, the pressure term is written as
−∇p. The same can be done for the viscous friction, where the obtained variable
is the deviatoric stress tensor ∇ · τ . Often, the two are combined into the stress
tensor σij = −pδij + τij. The constitutive relation between the velocity field and
the deviatoric stress tensor is for an incompressible Newtonian fluid prescribed
as [Bredberg, 1999]

τ = µ

(

(∇v) + (∇v)T − 2

3
∇ · v

)

+ κ∇ · v, (2.9)

or in the index notation

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij
∑

k

∂vk
∂xk

)

+ κδij
∑

k

∂vk
∂xk

, (2.10)

where µ is the fluid viscosity, and κ is the second viscosity coefficient or bulk
viscosity. If the fluid is incompressible, the deviatoric stress tensor is reduced to

τ = µ

(

(∇v) + (∇v)T
)

, (2.11)

or in the index notation

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)

. (2.12)

The N-S equation is acquired by inserting the body forces and the surface
forces into the momentum equation (Eq. 2.6) and can be written as

∂(ρv)

∂t
+ ∇ · (ρvv) = −∇p+ ∇ ·

(

µ
(
(∇v) + (∇v)T − 2

3
∇ · v

)
+ κ∇ · v

)

+ ρg
(

βT (T − Tref) + βC(C − Cref)
)

. (2.13)
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For an incompressible flow the momentum equation is reduced to

ρ

(
∂(v)

∂t
+ ∇ · (vv)

)

= −∇p+ ∇ · µ
(

(∇v) + (∇v)T
)

(2.14)

+ ρg
(

βT (T − Tref) + βC(C − Cref)
)

.

In the index notations Eqs. 2.13 and 2.15 are rewritten as

∂(ρvi)

∂t
+

∂

∂xi
(ρvivj) = − ∂p

∂xi
+

∂

∂xi

(

µ

(
∂vi
∂xj

+
∂vj
∂xj

− 2

3
δij∇ · v

)

+ κδij∇ · v
)

+ ρg
(

βT (T − Tref) + βC(C − Cref)
)

(2.15)

and

ρ

(
∂vi
∂t

+
∂

∂xi
(vivj)

)

= − ∂p

∂xi
+

∂

∂xi

(

µ

(
∂vi
∂xj

+
∂vj
∂xi

))

+ ρg
(

βT (T − Tref) + βC(C − Cref)
)

. (2.16)

2.1.3 Energy Conservation Equation

The first law of thermodynamics, also known as the conservation of energy princi-
ple, is used to account for the heat transfer and the temperature differences. The
law states that the total energy of the system equals the heat transferred to and
generated in the system minus the work done by the system on the surroundings.
In this dissertation, the alternative formulation of the energy equation in terms
of enthalpy is used

∂

∂t

(
ρh
)

+ ∇ ·
(
ρvh

)
= −∇ · q + hST , (2.17)

where q is the heat flux, and hST is the enthalpy source term, which accounts for
the electromagnetic heating, heating due to nuclear reactions, and work done by
deformation. The heat flux is described with the Fourier law of conduction and
is defined as

q = −λ∇T, (2.18)

where λ is the thermal conductivity. The enthalpy source term accounts for the
Joule heating effect and is described in detail in Sect. 2.4. Eq. 2.17 is in the
index notation written as

∂(ρh)

∂t
+

∂

∂xi
(ρvih) = − ∂qi

∂xi
+ hST . (2.19)

By inserting Eq. 2.18 into Eq. 2.17 the energy conservation equation becomes

∂

∂t

(
ρh
)

+ ∇ ·
(
ρvh

)
= ∇ ·

(
λ∇T

)
+ hST (2.20)

or in the index notation

∂(ρh)

∂t
+

∂

∂xi
(ρvih) =

∂

∂xi

(

λ
∂T

∂xi

)

+ hST . (2.21)
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For an incompressible flow, Eqs. 2.20 and 2.21 are reduced to

ρ

(
∂h

∂t
+ ∇ · (vh)

)

= ∇ · (λ∇T ) + hST (2.22)

and

ρ

(
∂h

∂t
+

∂

∂xi

(
vih
)
)

=
∂

∂xi

(

λ
∂T

∂xi

)

+ hST . (2.23)

In order to be able to calculate the temperature from the enthalpy, the fol-
lowing constitutive relation is used

h =

∫ T

Tref

cpdT, (2.24)

where cp is the specific heat at constant pressure.

2.1.4 Species Conservation Equation

The species conservation equation for the concentration field is written as

∂(ρC)

∂t
+ ∇ ·

(
ρCv

)
= −∇ · jC , (2.25)

where jC is the species flux. The jC , expressed in terms of concentration field, is
given with Fick’s law

jC = −D∇C, (2.26)

where D is the diffusion coefficient. Eq. 2.25 then becomes

∂(ρC)

∂t
+ ∇ ·

(
ρCv

)
= ∇ ·

(
D∇C). (2.27)

In the index notation, the Eq. 2.27 is rewritten as

∂(ρC)

∂t
+

∂

∂xi
(ρCvi) =

∂

∂xi

(

D
∂C

∂xi

)

. (2.28)

For the incompressible flow, Eqs. 2.27 and 2.28 become

∂C

∂t
+ ∇ ·

(
Cv
)

= ∇ ·
(
D∇C), (2.29)

and
∂C

∂t
+

∂

∂xi
(Cvi) =

∂

∂xi

(

D
∂C

∂xi

)

. (2.30)
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2.2 Solidification

Solidification [Kurz and Fischer, 1989; Dantzig and Rappaz, 2009] is a phase
transformation process during which a melt is transferred into a solid. During
the phase-change a latent heat is released and according to this classification,
the solidification of pure substances and the solidification of alloys can be dis-
tinguished. Pure substances or eutectic alloys freeze at constant temperature,
whereas alloys solidify over an extended temperature range. In this dissertation
the solidification of a binary mixture with three different macroscopic phase re-
gions (the liquid zone, the solid zone, and the mushy zone), is considered. The
mixture is completely liquid in the liquid zone, where temperature is above the
liquidus temperature TL, and completely solid in the solid zone, where the tem-
perature is below the solidus temperature TS. In the mushy zone, the mixture
is neither solid nor liquid, but a complex morphology of both phases exists. All
three zones coincide in the eutectic point, where the melting temperature reaches
its minimum, TE. This is also the place where the solidus line, which shows
the change of TS with the concentration, and the liquidus line, which shows the
change of TL with the concentration, collide. The TL is calculated as

TL = Tm + (TE − Tm)
C

CE
, (2.31)

where CE is solute concentration in eutectic alloy. The relation between the
concentration and the temperature is presented in a phase diagram shown in Fig.
2.1. In this case, a linearised simplification of the phase-change diagram is used
instead of one solid phase. Among several models available to describe the relation
between the solid fraction and the temperature [Hong, 2004], the linear model is
chosen to describe the eutectic alloy, whereas the equilibrium solidification model
or lever rule is chosen to describe the binary mixture.

2.2.1 Microsegregation

Microsegregation [Rappaz and Voller, 1990; Kraft and Chang, 1997] describes
the solidification of liquid phase on the microlevel. The solubility of the mixture
components is not the same for the liquid and for the solid components. The
formation of the solid, causes the excess solute to be rejected back into the liq-
uid. The liquid is therefore gradually enriched and consequently the solid layers
that are formed later consist of a higher concentration of solute. This results in
higher equilibrium concentration at the interface in comparison with the average
concentrations of each phase. The concentration gradients in both phases are
slightly balanced by the diffusion. The growth of the solid forms the columnar
dendrites.

Linear Model

The linear solidification model describes the behaviour of a pure metal or an
eutectic alloy during the phase-change process. If the latent heat is evenly dis-
tributed over the solidification range TS < T < TL, the solidus fraction fS is
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Figure 2.1: The linearised simplification of the concentration - temperature phase
diagram for a binary alloy.

given as

fS =
TL − T

TL − TS
. (2.32)

Lever Rule Model

The lever rule, also called the local equilibrium solidification model, assumes that
the solid and the liquid phases are in a thermodynamic equilibrium and that the
diffusion in solid and liquid is infinitely fast. In the mushy zone, the mixture
concentration C is thus

fS CS + fL CL = C, (2.33)

where the CS and CL are the concentrations of the solidus and the liquidus,
respectively, and fL is the liquid fraction of the alloy. The total mass fraction in
the mushy zone is

fS + fL = 1. (2.34)

CL is obtained by inserting Eq. 2.33 into Eq. 2.34 and is

CL =
C

1 + fS (kp − 1)
. (2.35)

In the liquid zone, the mass fractions are fL = 1 and fS = 0 and consequently
the concentration is C = CL. In the solid zone, the mass fractions are fL = 0
and fS = 1 and consequently the concentration is C = CS.

The solid fraction as a function of the temperature is given as

fS =
TL − T

(1 − kp)(Tm − T )
, (2.36)
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where TS ≤ T ≤ TL, Tm is melting temperature, and

kp =
CS

CL
(2.37)

is the partition coefficient. In a similar way, the fL can be obtained from Eqs.
2.34 and 2.36 and is

fL = 1 − TL − T

(1 − kp)(Tm − T )
. (2.38)

2.2.2 Macrosegregation

Macrosegregation [Rappaz and Voller, 1990; Beckermann, 2002; Kraft and Chang,
1997] is an inhomogeneous distribution of macroscopic alloy components in metal
casting. The variations in chemical composition of the cast material can signifi-
cantly deteriorate the quality of the material. In order to improve the mechanical
and processing characteristics of the product, the macrosegregation must be op-
timized.

The macrosegregation strongly depends on the microsegregation and on the
relative motion of liquid and solid phases. The rejection of solute into the liquid on
the microlevel, causes a macroscopic transport of solute. Macrosegregation in the
solidified material is thus a consequence of relative motion of solute-rich liquid and
solid-lean grains and can be caused either by shrinkage flow, forced flow, natural
convection, motion of solid grains or deformation of solid skeleton. Alloys do
not freeze at a fixed melting temperature, but solidify over a temperature range
and multiple phase compositions. This causes the formation of a mushy region,
where liquid and solid phases coexist. The mushy region is further divided into the
slurry and porous regions. The porous region consists of the coalesced columnar
dendrites, forming a solid porous skeleton. The interdenditic space is filled with
liquid, that is either trapped or flowing through the solidified matrix. The slurry
region consists of non-coalesced equiaxed dendrites that are floating freely in
the liquid flow. The equiaxed dendrites are formed either from heterogeneous
nucleation sites or by the brake-off of the columnar dendrites.

2.2.3 Mixture Continuum Model

Solidification is introduced into the mass, momentum, energy and species con-
servation equations with the mixture continuum model that was first utilized in
1987 [Bennon and Incropera, 1987b]. The model accounts for the interactions
between the solid and the liquid phases by including the additional source terms
in the conservation equations. The geometry of the phase change boundaries
and the solid structures as well as between the microscopic and the macroscopic
physical phenomena were not considered. Although the model is implemented by
a single-phase numerical procedure, it accounts for all phases that are considered
in the physical domain. The model assumes an equilibrium between the solid and
the liquid phases and a constant velocity of the solid phase. The continuum is
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composed of two distinct phases; the solid phase and the liquid phase, both of
which can occupy the same position. The mixture density is defined as

ρ = ρ∗S + ρ∗L, (2.39)

where the indexes S and L stand for the solid and the liquid. The partial density
ρ∗L,S of each phase is obtained as

ρ∗S = gSρS, ρ∗L = gLρL, (2.40)

where gS and gL are the volume fraction of the solid and of the liquid, respectively.
The mass fractions of the solid and liquid phases are

fS =
ρ∗S
ρ
, fL =

ρ∗L
ρ
. (2.41)

The average mixture velocity is then

v =
1

ρ

(
ρ∗SvS + ρ∗LvL

)
= fSvS + fLvL, (2.42)

where vS and vL are the velocity of the solid phase and the velocity of the
liquid phase, respectively. In a similar way, the mixture body force, the mixture
thermal conductivity, the mixture enthalpy, the mixture species concentration
and the mixture mass diffusion coefficient are written as

fb =
1

ρ

(
ρ∗SfbS + ρ∗LfbL

)
= fSfbS + fLfbL, (2.43)

λ = gSλS + gLλL, (2.44)

h =
1

ρ

(
ρ∗ShS + ρ∗LhL

)
= fShS + fLhL, (2.45)

C =
1

ρ

(
ρ∗SCS + ρ∗LCL

)
, (2.46)

and

D =
1

ρ

(
ρ∗SDS + ρ∗LDL

)
= fSDS + fLDL. (2.47)

By inserting these equations into the mass (Eq. 2.1), momentum (Eq. 2.6),
energy (Eq. 2.17) and species (Eq. 2.27) conservation equations the complete set
of mixture continuum model equations is obtained.

Phase Interaction Force

The interaction between phases in the mushy region is described with phase inter-
action force. In this dissertation, the mushy region is modelled with a permeable
solid matrix, which can either be stationary or moving with the velocity of the
system. Such morphology is analogous to the flow through porous media [Nield
and Bejan, 2006], which is described by Darcy’s law. The Darcy’s law for porous
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media states that the phase interaction force is proportional to the relative ve-
locity

fpi =
µL

K
gLvr, (2.48)

where µL, K, and vr are the viscosity of liquid, permeability, and relative velocity,
respectively. vr is defined as the difference between the velocity of the liquid and
the velocity of the porous solid

vr = (vL − vS). (2.49)

The permeability is modelled by the Kozeny-Carman model [Carman, 1948;
Viskanta, 1990; Dullien, 1991; Aboutalebi et al., 1995]

K =
f 3
L

K0

(
1 + fL

)2 , (2.50)

where K0 is the permeability constant. Identities fLvr = v − vS and gL =
(ρ/ρL)fL are applied to the Eq. 2.48, which, for a constant velocity of the solid
phase, such as in the case of the CC, and by further assuming that the phase
densities are constant, becomes [Bennon and Incropera, 1987b]

fpi = −µLK0

(
1 + fL

)2

f 3
L

ρ

ρL

(

v− vS

)

. (2.51)

The conservation equations of the unified incompressible mixture continuum
model are thus

∇ · v = 0, (2.52)

∂(ρv)

∂t
+ ∇ · (ρvv) = −∇p + ∇ ·

(

µL
ρ

ρL

(
(∇v) + (∇v)T

))

(2.53)

− µL
K0(1 + fL)2

f 3
L

ρ

ρL

(
v − vS

)

+ ρg
(
βT (T − Tref) + βC(C − Cref)

)
,

∂(ρh)

∂t
+ ∇ ·

(
ρvh

)
= ∇ · (λ∇T ) (2.54)

+ ∇
(

ρfS
(
hL − hS

)(
v − vS

))

,

and

∂(ρC)

∂t
+ ∇ ·

(
ρCv

)
= ∇ ·

(

ρ
(
fSDS∇CS + fLDL∇CL

))

(2.55)

+ ∇ ·
(

ρfL
(
v − vL

)(
CL − C

)
+ ρfS

(
v − vS

)(
CS − C

))

.
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The constitutive relation for the temperature - enthalpy (Eq. 2.24) is trans-
ferred into [Šarler and Kuhn, 1998; Šarler and Kuhn, 1998, 1999]

hS =

∫ T

Tref

cpSdT, (2.56)

and

hL =

∫ TS

Tref

cpSdT +

∫ T

TS

cpLdT + hm = hS(T ) +

∫ T

TS

(
cpL − cpS

)
dT + hm, (2.57)

where cpS, cpL, and hm are the specific heat at constant pressure for the solid, the
specific heat at constant pressure for the liquid, and melting enthalpy respectively.

2.3 Turbulence

The turbulence [Wilcox, 1998] describes random fluctuations of various flow prop-
erties, such as pressure and velocity, in space and time. Turbulent flow is charac-
terized by irregular, random and chaotic fluid motion which increases diffusivity.
It occurs at high Re and is always 3D. The largest eddies obtain their kinetic
energy from the mean flow and by breaking up transfer of the energy to slightly
smaller eddies. The transfer of kinetic energy is successively transferred to in-
creasingly smaller eddies until the viscous stresses are large enough to enable the
kinetic energy to dissipate into the internal energy. Even the smallest eddies how-
ever, are always large enough that the flow can still be treated as a continuum.
This transfer of energy from the largest to the smallest eddies is called an energy
cascade.

In general, turbulent models are divided into three groups, according to the
extent of modelling (Fig. 2.2) that is used in each approach: the Direct Numerical
Simulation (DNS), the LES, and the RANS based models. Apart from these
three major groups for turbulence modelling, several hybrid models, such as the
Detached Eddy Simulations (DES) model, also exist. These models attempt to
combine the best aspects of the RANS and the LES solution methodologies in a
single model. A detailed scheme of turbulence models is given in Appx. A.

Even though the turbulent flow is always 3D, it can be treated as 2D when the
equations are time averaged. In this dissertation, the Reynolds time averaging
[Reynolds, 1895]

ψ(t≀) = lim
t≀→∞

1

t≀

∫ t+t≀

t

ψ(r, t)dt, (2.58)

where ψ is the averaged quantity, and t≀ is a time interval much longer than the
longest time scale of the turbulent flow, is used to derive the governing equations.
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Figure 2.2: The extent of the modelling for different types of turbulence models.

The averaging operation (Eq. 2.58) allows the averaging quantity to be split into
the mean ψ and the fluctuating part ψq

ψ = ψ + ψq. (2.59)

Once the time averaging is applied to the conservation equations of the con-
tinuum mixture model (Eqs. 2.52 - 2.55), a new set of conservation equations is
obtained

∇ · v = 0, (2.60)

∂(ρv)

∂t
+ ∇ · (ρvv) = −∇p + ∇ ·

((
µL

ρ

ρL
+ µt

)(
(∇v) + (∇v)T

))

(2.61)

− 2

3
∇(ρk) − µL

K0(1 + fL)2

f 3
L

ρ

ρL

(
v − vS

)

+ ρg
(
βT (T − Tref ) + βC(C − Cref)

)
,

∂(ρh)

∂t
+ ∇ ·

(
ρvh

)
= ∇ · (λ∇T ) (2.62)

+ ∇ ·
(

ρfS
(
hL − hS

)(
v − vS

))

+ ∇ ·
(

fL
µt

σT
∇hL

)

,
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and

∂(ρC)

∂t
+ ∇ ·

(
ρCv

)
= ∇ ·

(

ρfSDS∇CS + ρfLDL∇CL

)

(2.63)

+ ∇ ·
(

ρ
(
v − vS

)(
CL − C

))

+ ∇ ·
(fLµt

σC
∇CL

)

,

where µt, k, σT and σC are the turbulent dynamic viscosity, turbulent kinetic
energy, closure coefficient for energy and closure coefficient for species concentra-
tion. Most of the terms in these equations are the same as those in the original
mixture continuum model (Eqs. 2.52 - 2.55); the only terms that do change are
the ones in which the dot product of fluctuating velocity appears vqvq. This
term is called the Reynolds stress tensor [Bredberg, 1999] and is a fundamental
problem in turbulence modelling. As the primary objective of this dissertation
is not a detailed turbulence modelling, only a short description of relevant quan-
tities (such as the turbulent kinetic energy) that are necessary to complete our
model are given.

In order to complete the set of governing equations, two additional trans-
port equations are added, one for the turbulent kinetic energy and one for the
dissipation rate.

Turbulent Kinetic Energy Equation

The turbulent kinetic energy k is defined as the trace tr(vqvq) of the Reynolds
stress tensor

k =
1

2
tr
(
vqvq

)
. (2.64)

The conservation equation for turbulent kinetic energy equation can be derived
from the Reynolds stress equation [Bredberg, 1999]

∂(ρk)

∂t
+ ∇ · (ρvk) = ∇ ·

((
µL

ρ

ρL
+
µt

σk

)
∇k
)

+ Pk +Gk − ρε (2.65)

+ ρDk−ε + µL
K0(1 + fL)2

f 3
L

ρ

ρL
k,

where σk, Pk, Gk, ε, and Dk−ε stand for the closure coefficient for turbulent kinetic
energy, the production term, the turbulent term due to the buoyancy force, the
dissipation rate and the additional source term. The production term is defined
as

Pk = µt∇v :
(
∇v + (∇v)T

)
, (2.66)

or in index notation

Pk = µt

(

2

(
∂vi
∂xj

)2

+

(
∂vi
∂xj

+
∂vj
∂xi

)2)

, (2.67)

where the turbulent dynamic viscosity µt is defined as

µt = ρcµfµ
k2

ε
, (2.68)
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and cµ and fµ represent the closure coefficient and the damping function. The Gk

describes the generation of turbulence due to the buoyancy force and is defined
as

Gk = −gβT
νt

Prt

∂T

∂y
, (2.69)

where νt and Prt are the turbulent dynamic viscosity and turbulent Prandtl num-
ber.

Dissipation Rate

The dissipation rate ε is defined as

ε = ν∇vq∇vq, (2.70)

or in the index notation

ε = ν
∂viq

∂xj

∂viq

∂xj
. (2.71)

The dissipation rate equation is

∂(ρε)

∂t
+ ∇ · (ρvε) = ∇

((
µL

ρ

ρL
+
µt

σε

)
∇ε
)

(2.72)

+
(
c1εf1(Pk + c3εGk) − c2εf2ρε

) ε

k

+ ρEk−ε + µL
K0(1 + fL)2

f 3
L

ρ

ρL
ε,

where σε, c1ε, c3ε, f1, c2ε, and f2 are the closure coefficients, while Ek−ε is the
additional source term. Coefficient c3ε is calculated from the following equation
[Henkes et al., 1991]

c3ε = tanh
∣
∣
∣
v‖

v⊥

∣
∣
∣, (2.73)

where v‖ and v⊥ are the parallel and the perpendicular velocity components.
A detailed derivation of the Reynolds stresses along with the description of

various turbulence models can be found in [Wilcox, 1998] and [Bredberg, 1999].
Among many different possible forms of the RANS based models, that can be
used to model this tensor, the two-equation Abe-Kondoh-Nagano (AKN) [Abe
et al., 1994, 1995] low-Re k-ε turbulence model is applied in this dissertation.

2.3.1 Low-Re k-ε Turbulence Model

In the k-ε turbulence model the additional relations are given for the unknowns in
the k and ε transport equations. The standard k-ε model was designed for a fully
turbulent flow with high turbulent Re numbers, and cannot accurately predict
the behaviour of the flow near the wall, where turbulence is low. In our case,
the behaviour of the flow near the wall (boundary) is important and thus the
low-Re turbulent model has to be applied. The high and the low Re models refer
to the local turbulent Reynolds number Ret, which varies through the domain.
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When the wall is approached the viscous diffusion becomes dominant, whereas
the turbulent diffusion can be neglected and thus the Ret is high in the fully
turbulent flow and low near the wall. Different low-Re models [Launder and
Sharma, 1974; Abe et al., 1994; Jones and Launder, 1972; Abid et al., 1995] use
different closure coefficients.

Abe-Kondoh-Nagano Turbulence Model

The closure coefficients for the AKN model are cµ = 0.09, cε1 = 1.40, cε2 = 1.40,
σk = 1.50, and σε = 1.90. The source terms Dk−ε and Ek−ε are equal to zero.
The damping functions fµ and f2 are defined with equations

fµ =

(

1 − e−
y+

14

)2(

1 +
5

Re0.75t

e−
(

Ret
200

)2)

, (2.74)

and

f2 =

(

1 − e

(
− y+

3.1

))2(

1 − 0.3e−
(

Ret
6.5

)2)

, (2.75)

and f1 is set to 1.0. The y+ is the non-dimensional distance to the wall and is
defined as

y+ =
ρvεny

µ
, (2.76)

where vε = (νε)1/4, and ny stand for the Kolmogorov velocity scale, and the
normal distance.

2.4 Magnetohydrodynamics

Magnetohydrodynamics (MHD) [Davidson, 2001; Cullity and Graham, 2011] is
an academic discipline, concerned with the motion of electrically conducting and
non-magnetic fluids under the influence of the magnetic field. The complete set
of the MHD equations includes the mass conservation equation, the momentum
conservation equation, the energy conservation equation, the Maxwell’s equations
and the Ohm’s law.

Maxwell’s Equations

The Maxwell’s equations are a set of PDEs that together with the Lorentz force
law and the conservation law, describe all of the electrodynamics. The four
Maxwell’s equations are

∇ ·E =
ρe
ε0
, (2.77)

∇ ·B = 0, (2.78)

∇× E = −∂B
∂t
, (2.79)

∇×B = µ0

(

J + ε0
∂E

∂t

)

, (2.80)
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with E, ρe, ε0, B, µ0, J standing for electric field density, charge density, permit-
tivity of free space, magnetic flux density, permeability of free space and electric
current density, respectively. The Maxwell’s equations consist of the Gauss’s law
(Eq. 2.77) the Gauss’s law for magnetism (Eq. 2.78), the Faraday’s induction
law (Eq. 2.79) and the Ampere’s law with the Maxwell’s correction (Eq. 2.80).
In index notation Eq. 2.77-2.80 are

3∑

i=1

∂Ei

∂xi
=
ρe
ε0
, (2.81)

3∑

i=1

∂Bi

∂xi
= 0, (2.82)

∂

∂xi
Ejǫijl = −∂Bi

∂t
, (2.83)

and
∂

∂xi
Bjǫijl = µ0

(

Ji + ε0
∂Ei

∂t

)

, (2.84)

where ǫijl is Levi-Civita symbol.

Ohm’s Law

The Ohm’s law is written as

J = σ(E + v ×B), or in index notation Ji = σ(Ei + ǫijl viBj), (2.85)

when the fluid is in motion and the external magnetic field is applied. σ stands
for the electric conductivity.

Charge Conservation Equation

In addition to the Maxwell’s equations and the Ohm’s law, the charge conserva-
tion equation

∇ · J = −∂ρe
∂t

, or in index notation
∂Ji
∂xi

= −∂ρe
∂t

(2.86)

and the Lorentz’s force

FEM = J×B, or in index notation FEMi = ǫijlJiBj (2.87)

are used to describe the total system of the electromagnetism in the MHD. As
the charge density is constant in the MHD, the charge conservation equation is
simplified to

∇ · J = 0, or in index notation
∂Ji
∂xi

= 0. (2.88)

In general, the magnetic flux density and the electric field density can be writ-
ten as functions of a vector potential A and a scalar potential φ. The potentials
are

B = ∇×A, or in index notation Bi = ǫijl
∂

∂xi
Bj (2.89)
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and

E = −∇φ − ∂A

∂t
, or in index notation Ei = − ∂φ

∂xi
− ∂Ai

∂t
. (2.90)

In this dissertation, the assumption is made that B and E are steady. Conse-
quently, the Faraday’s induction law (Eq. 2.79) and the Ampere’s law (Eq. 2.80)
become ∇ · E = 0 and ∇×B = µ0J. By inserting these two equations into the
conservation law (Eq. 2.88), the electric flux (Eq. 2.90) is reduced to

E = −∇φ, or in index notation Ei = − ∂φ

∂xi
. (2.91)

By further substituting Eq. 2.91 into Eq. 2.88, the Poisson’s equation for electric
potential φ is obtained

∇2φ = ∇ · (v ×B), or in index notation
∂2φ

∂x2i
=

3∑

i=1

∂ ǫijl viBj

∂xi
. (2.92)

This limits our discussion to EMBR.

Lorentz Force

In order to account for the magnetic field effect, the Lorentz body force term

fEM =
FEM

V
= j×B, (2.93)

where j = J/V , is added in the momentum equation (Eq. 2.62).

Joule Heating Term

In general, the additional enthalpy source term called the Joule heating term

hm =
|j|2
σ

(2.94)

needs to be added to the energy equation (Eq. 2.63), in order to account for the
heating caused by the externally applied magnetic field. However, in the case of
CC of steel this term is sufficiently small to be neglected.

2.4.1 Low Magnetic Reynolds Number

The coupling of the magnetic B and the velocity v fields is done through the
Lorentz force. The magnetic field affects the velocity field and vice versa, the
velocity field affects the magnetic field. The extent to which the fields are coupled
can be expressed by the magnetic Reynolds number Rem. In case of laboratory
experiments and industrial processes, particularly those including liquid metals,
Rem ≪ 1 [Davidson and Boysan, 1987]. This means that the effect of the B on
v is significant, whereas the effect of v on B can be neglected. In the MHD, the
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approximation of low Rem indicates that the induced currents are negligible in
comparison with the imposed magnetic field B.

Magnetic field can affect the velocity field in three different ways: it can
either suppress the bulk motion, excite the bulk motion or alter the structure
of the boundary layers. To ensure that the magnetic field is unaffected by the
velocity, the approximation of low Rem is applied.

2.4.2 External Magnetic Field

The external magnetic field can be either given with a fixed constant value or
calculated. The magnetic field is calculated from the Biot-Savart law

B(r) =
µ0

4π

∫
Idl× r̂

r2
= µ0H; r̂ =

r

r
, (2.95)

which states that the magnetic field at position r is generated by the electric
current I. dl stands for the integration length, and H is the magnetic field
strength. When the magnetic field is measured in the material, one has to account
for the specific properties of the medium. In that case, the magnetic field is

B = µMH = µ0

(
H + M), (2.96)

where µM represents the magnetic permeability of the material and M the mag-
netisation. The magnetisation is a function of the magnetic flux density

M = χH, (2.97)

where the susceptibility is defined as

χ = µr − 1 =
µM

µ0
− 1. (2.98)

χ depends on the relative permeability µr of the material.

2.5 Final Multiphysics Model

The physical model consists of the governing equations and the constitutive re-
lations, along with the initial and boundary conditions that enable us to solve
them. In this chapter, the equations are presented in their final form.

2.5.1 Final Set of Governing Equations

The governing equations that consider the turbulent fluid flow, the temperature
and the magnetic field, as well as the segregation and the species concentration
are, in their final form, presented below.

∇ · v = 0, (2.99)
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∂(ρv)

∂t
+ ∇ · (ρvv) = −∇p + ∇ ·

((
µL

ρ

ρL
+ µt

)(
(∇v) + (∇v)T

))

(2.100)

− 2

3
∇(ρk) − µL

K0(1 + fL)2

f 3
L

ρ

ρL

(
v − vS

)

+ ρg
(
βT (T − Tref) + βC(C − Cref)

)
+ j×B,

∂(ρh)

∂t
+ ∇ ·

(
ρvh

)
= ∇ · (λ∇T ) (2.101)

+ ∇ ·
(

ρfS
(
hL − hS

)(
v − vS

))

+ ∇ ·
(

fL
µt

σT
∇hL

)

+
|j|2
σ
,

∂(ρC)

∂t
+ ∇ ·

(
ρCv

)
= ∇ ·

(

ρfSDS∇CS + ρfLDL∇CL

)

(2.102)

+ ∇ ·
(

ρ
(
v − vS

)(
CL − C

))

+ ∇ ·
(fLµt

σC
∇CL

)

,

∂(ρk)

∂t
+ ∇ · (ρvk) = ∇ ·

((
µL

ρ

ρL
+
µt

σk

)
∇k
)

+ Pk +Gk − ρε (2.103)

+ ρDk−ε + µL
K0(1 + fL)2

f 3
L

ρ

ρL
k,

∂(ρε)

∂t
+ ∇ · (ρvε) = ∇ ·

((
µL

ρ

ρL
+
µt

σε

)
∇ε
)

(2.104)

+
(
c1εf1(Pk + c3εGk) − c2εf2ρ

) ε

k

+ ρEk−ε + µL
K0(1 + fL)2

f 3
L

ρ

ρL
ε.

2.5.2 Boundary Conditions

In the solution of the PDEs either Dirichlet, Neuman or Robin boundary condi-
tions (BC) can be used. The Dirichlet BC prescribe the value of the function on
the surface

f = f(r, t). (2.105)

The Neuman BC prescribe the value of the normal derivative of the function on
the surface:

∂f

∂n
= f(r, t). (2.106)

The Robin BC is the weighted sum of the Dirichlet and the Neuman BC

w1f + w2
∂f

∂n
= f(r, t), (2.107)
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where w1 and w2 represent the weights. Geometrically, five different boundaries:
inlet, outlet, wall, free surface and symmetry, are considered in the present disser-
tation. Which of the boundary conditions is prescribed on the specific boundary
for the velocity, temperature, turbulent kinetic energy, dissipation rate, species
concentration and current density is listed below. The schematic view of the
boundary conditions is shown in Fig. 2.3.

Velocity Field

Dirichlet BC are prescribed on the inlet and the wall for both velocity compo-
nents, and on the symmetry line for the velocity component perpendicular to
the boundary. The Neuman BC are prescribed and set to zero for both velocity
components on the outlet boundary, and on the symmetry line for the velocity
component parallel to the boundary.

Temperature Field

Dirichlet BC are set for temperature field on the inlet. Neuman BC are prescribed
and set to 0 for the temperature field on the symmetry line and on the outlet. On
the wall either of the three possible BC can be used to calculate the temperature.

Pressure

Neuman BC are prescribed for the pressure on the inlet, symmetry and wall

n · ∇p =
ρ

∆t
n(v⋆ − vw), (2.108)

where v⋆ is an intermediate velocity field and vw is the velocity of the wall. At
the outlet, Dirichlet BC is prescribed. The pressure on the outlet is equal to
ambivalent pressure and is set to 0.

Turbulent Kinetic Energy

Dirichlet BC are set for the turbulent kinetic energy at the inlet and at the wall,
where no-slip condition is applied. The Neuman BC are used on the symmetry
line and at the outlet and are set to 0.

Dissipation Rate

Dirichlet BC are set for the dissipation rate at the inlet and at the wall, where no-
slip condition implies that the value of the dissipation rate is 0. On the symmetry
line and at the outlet the Neuman BC are applied and set to 0.

Magnetic Field and Scalar Potential

The BC for the electric current density are determined by the electric conductivity
of the wall and of the fluid, the applied magnetic field and the velocity. The
Dirichlet BC are used for the values of magnetic field on all of the boundaries.
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The values are calculated with the Biot-Savart equation (Eq. 2.95). Either of
the BC types can be used to calculate the scalar potential. The boundaries can
be either insulating, conducting or perfectly conducting. The scalar potential is
determined with the Neuman BC, when the boundary is insulating

∂φ

∂n
= (v ×B)BC · n = 0, (2.109)

with the Dirichlet BC when the boundary is perfectly conducting, φ = 0, and
with the Robin BC, when the boundary is conducting.

Species Concentration

Dirichlet BC are prescribed for the species concentration on the walls. The Neu-
man BC are prescribed for species concentration and set to 0 on the inlet, outlet,
free surface and symmetry line.

inlet
wall

symmetry line

outlet

free surface

φ

∂φ
∂n

φ
φ

∂φ
∂n

Figure 2.3: Schematic representation of general boundary conditions for magnetic
field.

2.5.3 Initial Conditions

The initial conditions have to be either set or prescribed for each of the transport
variables.

Velocity

Initial values for the velocity field are calculated from

v = ∇φv, (2.110)

where the velocity potential φv is obtained by solving the Laplace equation

∇2φv = 0, (2.111)

and applying the boundary conditions defined in the previous section (Sect.
2.5.2).
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Temperature

Initial values for temperature are prescribed and set to a constant value T0.

Pressure

Initial values for pressure are set to ambivalent pressure which is in turn set to 0.

k and ε

Initial values for k and ε are prescribed and set to a constant uniform value.

Magnetic Field

Initial values for magnetic field B0 are calculated from the Biot-Savart equation
(Eq. 2.95). The values for the scalar potential are calculated from Poisson’s
equation (Eq. 2.92), by using boundary conditions defined in the previous section
(Sect. 2.5.2).

Species concentration

Initial value for species concentrations are set to a constant, predefined value.



3 Local Radial Basis Function Col-

location Method

Meshless methods are the numerical simulation algorithms that in general use a
set of arbitrarily distributed nodes, both in the domain Ω and on its boundary Γ,
to represent the solution of a physical phenomenon. One of the simplest among
them is the LRBFCM [Šarler and Vertnik, 2006]. The general idea behind this
meshless method is to construct the approximation function on the local group
of nodes, the so-called influence domain, where in collocation version the number
of points matches the number of basis functions. On the other hand, in the least
squares approximation version, the number of points exceeds the number of basis
functions. Once the approximation function is constructed, it can be applied to
the PDEs in the form of the strong formulation that describes the problem under
consideration. However, it can also serve as a basis for weak formulation. In
this chapter, the formulation of the LRBFCM is explained and presented. The
construction of node arrangement is presented along with the selection of the local
influence domain. The approximation function is given along with a selection of
commonly used RBFs. Further, the collocation and the application of the method
to the solution of the PDEs are explained.

3.1 Node Distribution and Influence Domain Se-

lection

For the purposes of this work three different node arrangements (Fig. 3.1) are
distinguished: the uniform node arrangement, where the nodes are equidistantly
spaced and coincide with coordinate directions, the totally random node arrange-
ment, where the distances and angles between the nodes are arbitrary, and the
non-uniform node arrangement, where the distances between the nodes are not
equal, but the angles are. The problem of the uniform node arrangement is the
huge amount of nodes that have to be added to the entire computational do-
main in order to refine the small part of the domain that requires a higher node
density. Such node arrangement can quickly become impractical, especially in
terms of computational efficiency. Truly meshless methods imply that the node
discretisation inside the computational domain can be arbitrary and that a back-
ground mesh is not needed. However, the randomly scattered nodes inside the
domain may not present the optimal coverage of the domain and might be either
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too scarce or too dense in certain parts of the domain. For this reason, a non-
uniform node arrangement is an appropriate alternative and is therefore chosen
for the purposes of this work.
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Figure 3.1: Node arrangement configurations. Left: uniform node arrangement.
Middle: non-uniform node arrangement. Right: random node arrangement.

The computational domain consists of N nodes, of which NΩ nodes lay in-
side the domain and NΓ on its boundary. The total number of nodes in the
computational domain is thus

N = NΩ +NΓ. (3.1)

The computational domain is divided into NΩ overlapping influence domains or
sub-domains. For an arbitrary node, chosen inside the computational domain,
the influence domain is defined as a local group of neighbouring nodes that are
used as a support for approximation to the chosen node. Each of the influence
domains consists of Ndomain in general non-equally spaced nodes lpi, where l =
1, . . . , NΩ stands for the influence domains and i for the influence domain nodes
(i = 1, . . . , Ndomain). The simplest five nodded influence domains consist of the
central node and the four neighbouring nodes that are used to calculate the
desired values in the central node. An example of such an influence domain is
depicted in Fig. 3.2. Throughout this dissertation, the five-nodded influence
domains are used.

In order to calculate the values in all of the domain nodes inside of the com-
putational domain, the influence domains have to overlap, which means that the
support node in one influence domain is the central or calculation node in the
neighbouring influence domain. The overlapping of the influence domains in pre-
sented in Fig. 3.3. By making an assumption that all of the influence domains
have to follow the same construction rules, it might not be possible to include
some of the boundary nodes into the influence domain (for example the corner
nodes as seen in Fig. 3.2). Such nodes are either defined as a BC or obtained by
interpolation.
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Figure 3.2: Five nodded influence domain. The calculation point is depicted with x,
the supporting nodes are depicted with o, and the corner nodes are depicted with *.
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Figure 3.3: Overlapping influence domains. Left: five nodded influence domain. Mid-
dle: two overlapping influence domains. Right: computational domain with overlapping
influence domains. o represents the support node. x represents the central node. ⊗
represents the overlapping of central and support nodes.

3.2 Approximation Function

The approximation function θ is constructed on a local influence domain l and is
represented as a linear combination of the weighted basis functions ψ

lθ(p) =

Nbasis∑

i=1

lψi(p) lαi, (3.2)

where lαi, Nbasis, lψi, and p = xix + yiy + ziz represent the expansion coefficient,
the number of basis functions, the shape function, and the support node in influ-
ence domain l, and l = 1, . . . , Ndomain. The distance between point and node j
(lpj = lxj ix + lyj iy + lzj iz) in influence domain l is defined as

lrj =
∣
∣
∣

∣
∣
∣lp− lpj

∣
∣
∣

∣
∣
∣ =

√

(x− lxj)2 + (y − lyj)2 + (z − lzj)2, (3.3)

where || · || is the Euclidian norm. The basis functions that can appear in the
formulation of the approximation function are the polynomials, the RBFs, the
Fourier basis functions and several others. In this dissertation, the RBFs are
chosen.
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3.2.1 Radial Basis Functions

In general, the RBFs [Buhmann, 2003] can be divided into two groups: the
infinitely smooth RBFs and the piecewise smooth RBFs. The most common RBF
types among the former are the MQ RBF [Hardy, 1971], the Inverse Quadric (IQ)
RBF, the Inverse Multiquadric (IMQ) RBF, and the Gaussian (GA) RBF. The
Conical (CON), Cubic (CU), and Thin Plane Spline (TPS) RBFs are the most
common RBF forms among the piecewise smooth RBFs. The most common of
the above mentioned RBF forms are described bellow, together with their first
and second derivatives.

Multiquadric Radial Basis Function

The MQ RBF is defined as

ψMQ(r) =
√
r2 + c2, (3.4)

where c stands for the shape parameter. The parameter c controls the shape of
the function. It is either predetermined to some fixed non-zero real value or set
as a part of the solution. The first derivatives of the MQ are calculated from

∂ψMQ

∂r
= r (r2 + c2)−

1

2 , (3.5)

and the second derivatives of MQ are

∂2ψMQ

∂r2
= (r2 + c2)−

1

2 − r2 (r2 + c2)−
3

2 . (3.6)

The MQ RBFs are presented in Fig. 3.4 as a function of a shape parameter.
Unless otherwise stated, the MQ RBFs are used in this dissertation.
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Figure 3.4: MQ RBF with the shape parameter c = 0.5.



Approximation Function 45

Inverse Quadric Radial Basis Function

The IQ RBF shown in Fig. 3.5 is defined as

ψIQ(r) =
1

r2 + c2
. (3.7)

The first derivatives of the IQ RBFs are

∂ψIQ

∂r
= −2 r (r2 + c2)−2, (3.8)

and the second derivatives of the IQ RBFs are

∂2ψIQ

∂r2
= −2(r2 + c2)−2 + 8 r2 (r2 + c2)−3. (3.9)

The IQ RBFs are depicted in Fig. 3.5.
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Figure 3.5: IQ RBF with the shape parameter c = 0.5.

Inverse Multiquadric Radial Basis Function

The IMQ RBF is defined as

ψIMQ(r) =
1√

r2 + c2
, (3.10)

with the first derivative
∂ψIMQ

∂r
= −r (r2 + c2)−

3

2 , (3.11)

and the second derivative

∂2ψIMQ

∂r2
= −(r2 + c2)−

3

2 + 3 r2(r2 + c2)−
5

2 . (3.12)

The IMQ RBF for c = 0.5 is plotted in Fig. 3.6.
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Figure 3.6: IMQ RBF with the shape parameter c = 0.5.

Gaussian Radial Basis Function

The GA RBF that are depicted in Fig. 3.7 are written as

ψGA(r) = e−(c r)2 . (3.13)

The first derivative of the GA RBF is

∂ψGA

∂r
= −2 c2 r e−(c r)2 , (3.14)

and the second derivative of the GA RBF is

∂2ψGA

∂r2
=
(
4 c4 r2 − 2 c2

)
e−(c r)2 . (3.15)
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Figure 3.7: GA RBF with the shape parameter c = 0.5.
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Conical Radial Basis Function

The CON RBF shown in Fig. 3.8 is defined as

ψCON(r) = r + c, (3.16)

with the first derivative
∂ψCON

∂r
= 1, (3.17)

and the second derivative
∂ψCON

∂r
= 0. (3.18)
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Figure 3.8: CON RBF with the shape parameter c = 0.5.

Cubic Radial Basis Function

The CU RBF is written as

ψCU (r) = (
√
r2 + c2)3. (3.19)

Its first derivative is
∂ψCU

∂r
= 3 r

√
r2 + c2, (3.20)

and its second derivative is

∂2ψCU

∂r2
= 3

√
r2 + c2 +

3r2

r2 + c2
. (3.21)

The CU RBF is plotted in Fig. 3.9 for shape parameter c = 0.5.

Thin Plane Spline Radial Basis Function

The TPS RBF is defined as

ψTPS(r) = (r2 + c2) ln

(√
r2 + c2

)

, (3.22)
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Figure 3.9: CU RBF with the shape parameter c = 0.5.

with the first derivative written as

∂ψTPS

∂r
=

1

2

(
r ln

(
r2 + c2

)
+ r
)
, (3.23)

and its second derivative written as

∂ψTPS

∂r2
=

1

2

(
ln
(
r2 + c2

)
+

2 r2

r2 + c2
+ 1
)
. (3.24)

The TPS RBF is presented in Fig. 3.10 for c = 0.5.
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Figure 3.10: TPS RBF with the shape parameter c = 0.5.

The value of the shape parameter c is determined by normalizing the distances
between the central and the support nodes in the influence domain region. The
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distance between two points lrj is scaled in x, y, and z direction, and is calculated
as

lrj =
∣
∣
∣

∣
∣
∣p− lpj

∣
∣
∣

∣
∣
∣ =

√
(
x− lxj

lxMAX

)2

+

(
y − lyj

lyMAX

)2

+

(
z − lzj

lzMAX

)2

, (3.25)

where lxMAX , lyMAX and lzMAX are the maximum distances between the central
node and the pertained support node in x, y, and z direction, respectively.

3.2.2 Collocation

The expansion coefficients α of the approximation function θ are determined by
collocation and depend on the number and shape of the basis functions, values
in node positions, and positions of the nodes1. The most straightforward way
to determine the coefficients is to set the number of the basis functions in such
a way, that it equals the number of the domain nodes (Nbasis = Ndomain). The
collocation condition

θ(lpj) = lθj , (3.26)

where lθj is the corresponding data value and j = 1, . . . , Ndomain has to be satisfied
for all of the points in the influence domain. By considering the collocation
condition, for each of the j calculation nodes in an influence domain l a linear
system of Ndomain equations is obtained

lΨ lα = lθ, (3.27)

or





Ψ11 · · · Ψ1Ndomain

...
. . .

...
ΨNdomain1 · · · ΨNdomainNdomain











α1
...

αNdomain




 =






θ1
...

θNdomain




 , (3.28)

where lΨ, lα, and lθ represent the matrix of the RBFs, the vector of the expansion
coefficients, and the vector of corresponding data values respectively. If the basis
matrix lΨ is non-singular [Hon and Schaback, 2001], the expansion coefficient of
each influence domain can be calculated by multiplying Eq. 3.27 by its inverse

lΨ
−1

lα = lΨ
−1

lθ. (3.29)

The approximation function of the influence domain can then be rewritten in the
following way

lθ(p) =

Ndomain∑

i=1

lψi(p)

Ndomain∑

j=1

lψ
−1
ij (p) lθj . (3.30)

1As the number of the influence domain nodes is constant and the same in all of the influence
domains, the number of nodes in a influence domain is denoted as Ndomain instead of lNdomain.
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3.3 Solving Partial Differential Equations with

Radial Basis Functions

In order to be able to solve the PDEs of the physical model, the first and the
second derivatives of the approximation function θ (Eq.3.30) must be calculated
in the influence domain. In general, the operator applied on the approximation
function is expressed as [Kansa, 1990a,b]

∂n

∂rni
lθ(p) =

Ndomain∑

j=1

∂n

∂rni
lψj(p) lαj, (3.31)

where the index n represents the order of the derivative. On the boundary,
either of the three commonly used BC (Dirichlet, Neuman or Robin BC) can be
applied. The implementation of the Dirichlet BC is straightforward as the value
of the function on the boundary is prescribed θ(p) = θBC . On the other hand,
collocation has to be used in order to satisfy the BC for the Neuman

∂

∂n
lθ(p) =

Ndomain∑

j=1

∂

∂n
lψj(p) lαj (3.32)

and the Robin

a
∂

∂n
lθ(p) + b lθ(p) =

Ndomain∑

j=1

(

a
∂

∂n
lψj(p) + b lψj(p)

)

lαj (3.33)

boundaries.



4 Solution Procedure

This chapter describes the solution procedure of the developed numerical method
for the incompressible turbulent flow with solidification and under the influence
of externally applied magnetic field. In general, the solution procedure consists of
three parts: the preprocessing, the main part, and the post-processing as shown
in Fig. 4.1. First, the preprocessing that covers the application of numerical
tools, such as construction of the computational node arrangement, determina-
tion of numerical implementation (RBF or PV coupling type), and time and
space discretization, that are required for implementation of the chosen numeri-
cal method to the physical model are addressed. The main part of the solution
procedure including the solution scheme for the general transport equation is pre-
sented next, along with the computational algorithm for the Poisson’s equation
and the PV coupling. Next, the solution procedure for the full set of governing
equations is presented along with the convergence criteria that is needed to de-
termine when the time-marching can be stopped. The last part of the solution
procedure, namely the post-processing, is not covered explicitly as the external
programs such as Gnuplot [Williams and Kelley, 2010] and ParaView [Henderson,
2007] are standardly used to analyse and process the obtained data. The results
of this part of the solution procedure are presented in Sect. 5 and Sect. 6.

4.1 Distribution of Computational Nodes

Each simulation starts with the construction of the discretization nodes. For the
purpose of this work, a non-uniform node distribution is built from the uniform
node arrangement in the following way. First, a uniform node distribution yuniform
is defined between points y1 and y2 as [Vertnik, 2010; Mramor et al., 2013b,a]

ys,uniform = y1 + (s− 1)
y2 − y1
N − 1

, (4.1)

where s = 1, . . . , Ns and Ns is the number of nodes between and points y1 and
y2. Distance between the edge nodes is then normalized to the interval [0, 1] as

ynorms,uniform =
ys,uniform − y1

y2 − y1
. (4.2)

Further, the refined normalized node distribution ynormrefined is calculated as

ynorms,refined = 1.0 − (1.0 − ynorms,uniform)u, (4.3)
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Figure 4.1: Flow chart of solution procedure.

where u stands for the refinement level. Finally, the refinement is rescaled to the
original interval [y1, y2]

ys,refined = y1 + ynorms,refined(y2 − y1). (4.4)

The procedure is depicted in Fig. 4.2 for the refinement parameter u = 2. The
same procedure is used to refine the node arrangement in the x direction.
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Figure 4.2: Refinement steps of the node refinement process in y direction.

When the geometry of the problem requires a more complex refinement pat-
tern, e.g. refinement in the middle of the interval, such as where the upper node
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part of the interval requires the u = 1.2 and the lower the u = 1.6, the interval is
divided into smaller parts. The desired refinement is applied separately on each
of the smaller intervals, which are then joined together.The schematics of this
process is shown in Fig. 4.3.
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Figure 4.3: A more complex refinement steps of the node refinement process in y
direction.

4.2 Time Discretization

The CC process is a transient problem and is as such both space and time depen-
dent and therefore requires both space and time discretization. The objective of
the discretization is to replace the derivatives with the difference expressions and
thus obtain the algebraic formulation of the equation. The most common time
discretization methods are the explicit, implicit, and semi-implicit procedures.

Explicit time discretization

The scheme is explicit when the dependent variables at a future time t0 + ∆t can
be computed directly from the known variables at current or actual time t0. In
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the obtained algebraic equation, only one unknown variable has to be calculated.
As the solution of such algebraic equations is straightforward, it is easy to imple-
ment and parallelize, and has low computational cost per time-step. The major
drawback of the explicit time discretization scheme is its conditional stability. As
the scheme is not necessarily stable, one has to be very careful when choosing the
time step, which can quickly become impractically small, especially when solving
stiff problems. In general, either the Courant-Friedrichs-Levy [Schär, 2014]

Cu =
v∆t

∆x
< 1 (4.5)

or the von-Neumann stability [Wright and Fornberg, 2006] criteria

G =
D∆t

∆x2
≤ 1

2
(4.6)

can be implemented to assure, that the explicit time scheme is stable. Here Cu
is the Courant number, and the G is diffusion number.

The representative explicit time discretization methods are the forward Euler
explicit method, the Leap-frog method and various predictor corrector methods
such as the Runge-Kutta or the Adams-Bashforth methods. The explicit time
discretization scheme is schematically represented in Fig. 4.5.
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Figure 4.4: Explicit time discretization scheme; ◦ - boundary nodes, + - nodes at
time t0, x - nodes at time t0 +∆t.

Implicit Time Disretization

The scheme is implicit when the variables at a future time t0 + ∆t cannot be ex-
pressed only with the known variables at current time t0. The algebraic equation,
that is thus obtained, consists of several unknown variables. The solution of the
implicit scheme therefore requires the solution of a system of linear equations in
each time step. The implicit time discretization scheme is more complex and more
difficult to implement and parallelize than the explicit time discretization scheme.
Consequently, the computational cost per time step is higher. However, the pro-
cedure is unconditionally stable, which means that the higher computational cost
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can be compensated with the larger time steps. The representative implicit time
discretization methods are the backward Euler method and the Adams-Moulton
method [Ferziger and Perić, 1996]. The implicit time discretization scheme is
schematically represented in Fig. 4.5.
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Figure 4.5: Implicit time discretization scheme; ◦ - boundary nodes, + - nodes at
time t0, x - nodes at time t0 +∆t0.

Semi-implicit Time Discretization

The semi-implicit time discretization schemes are a combination of implicit and
explicit time discretization schemes, using the former to calculate some of the
terms and the later to calculate the rest. The most widely used semi-implicit time
discretization methods are the Crank-Nicolson and the Euler-Cromer methods.
The semi-implicit time discretization scheme is schematically represented in Fig.
4.6.
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Figure 4.6: Semi-implicit time discretization scheme; ◦ - boundary nodes, + - nodes
at time t0, x - nodes at time t0 +∆t.

Among the above described types of time discretization procedures the explicit
scheme is used in the present work, due to its simplicity and straightforward
numerical implementation. In this instance, another advantage of explicit time
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discretization is the option of applying the method locally, as all of the required
variable values are known for current time. As opposed to the explicit approach,
the implicit and semi-implicit schemes require the solution of a global system for
all unknowns at t0 + ∆t.

4.3 Solution Procedure for the General Trans-

port Equation

The governing equations of the physical model are space and time dependent
and are as such described by infinite degrees of freedom. In numerical solution,
the continuous equations have to be replaced with a discrete approximation, and
hence the continuous functions are matched by formulas with finite degrees of
freedom. The problem under consideration is thus reduced to the solution of
algebraic equations. In this work, the time discretization is performed with the
explicit first-order approximation (explicit Euler) scheme while the space dis-
cretization is done with collocation with RBFs.

All of the governing equations follow the conservation principle and can be
described with a general transport equation, which consists of four terms: the
transient term, the convection term, the diffusion term and the source term

∂(ρΦ)

∂t
︸ ︷︷ ︸

Transient term

+ ∇ · (ρvΦ)
︸ ︷︷ ︸

Convection term

= ∇ · (D∇Φ)
︸ ︷︷ ︸

Diffusion term

+ SΦ,
︸︷︷︸

Source term

(4.7)

where Φ stands for the dependent variable and SΦ for the source term. The terms
of the general transport equations are given in Tab. 4.1.

The explicit Euler time discretization of the general transport equation (Eq.
4.7) at time t0 is

ρ0

(

Φ(t0 + ∆t) − Φ(t0)
)

∆t
= −∇ ·

(
ρ0vΦ(t0)

)
+ ∇ ·

(
D∇Φ(t0)

)
+ SΦ(t0), (4.8)

where Φ(t0 + ∆t) and Φ(t0) represent the value of the sought for variable at
time t0 + ∆t0 and at time t0, and ρ0 represents the value of density at time t0.
Consequently, the value of sought for variable at the new time step Φ(t0 + ∆t) is
expressed as

Φ(t0 + ∆t) = Φ(t0) +
∆t

ρ0

(

−∇ ·
(
ρ0vΦ(t0)

)
+ ∇ ·

(
D∇Φ(t0)

)
+ SΦ(t0)

)

. (4.9)

The individual terms on the right side of the equation are rewritten in an extended
form as

∇ ·
(

ρ0vΦ
)

= Φ∇ ·
(
ρ0v
)

+ ρ0v∇ · Φ (4.10)

and

∇ ·
(

D∇Φ
)

= ∇D · ∇Φ +D∇2Φ (4.11)
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Table 4.1: Terms in general transport equation.

Φ Diffusion SΦ

mass 1 0 0

momentum v
−∇p− 2

3
∇(ρk)

+ ∇ ·
((
µL

ρ

ρL
+ µt

)(
(∇v) + (∇v)T

))

− µL
K0(1 + fL)2

fL3

ρ

ρL

(
v− vS

)

+ ρg
(

βT
(
T − Tref

)
+ βC

(
C − Cref

))

+ j×B

energy h
∇ ·
(
λ∇T

)
+ ∇ ·

(

fL
µt

σt
∇hL

)

+ ∇ ·
(

ρfS
(
hL − hS

)(
v − vS

))

|j|2
σ

species C
∇ ·
(

ρfSDS∇CS + ρfLDL∇CL

)

+ ∇ ·
(fLµt

σC
∇CL

)

+ ∇ ·
(

ρfL
(
v − vS

)(
CL − C

))
0

turbulent kinetic energy k ∇ ·
((
µL

ρ

ρL
+
µt

σk

)
∇k
)

Pk +Gk − ρε+ ρDk−ε + µL

K0

(
1 + fL

)2

f 3
L

ρ

ρL
k

dissipation rate ε ∇ ·
((
µL

ρ

ρL
+
µt

σε

)
∇ε
)

(
c1εf1(Pk + c3εGk) − c2εf2ρε

) ε

k

+ ρEk−ε + µL
K0(1 + fL)2

f 3
L

ρ

ρL
ε
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in order to be able to apply the spatial disretization in a more straightforward
way. The first term in Eq. 4.10 takes the following form after the implementation
of spatial discretization

∇ ·
(
ρ0v
)

l
=

Ndomain∑

i=1

∂

∂xj
lψi

Ndomain∑

n=1

lψ
−1
in l

(
ρ0v
)

n
(4.12)

and the second term in Eq. 4.10 is rewritten as

∇ · Φl =

Ndomain∑

i=1

∂

∂xj
lψi

Ndomain∑

n=1

lψ
−1
in lΦn. (4.13)

Similarly, the first term in Eq. 4.11 is rephrased as

∇Dl ·∇Φl =

Ndomain∑

i=1

∂

∂xj
lψi

Ndomain∑

n=1

lψ
−1
in lDn ·

Ndomain∑

i=1

∂

∂xj
lψi

Ndomain∑

n=1

lψ
−1
in lΦn, (4.14)

and the second term as

Dl∇2Φl = Dl

Ndomain∑

i=1

∂2

∂x2j
lψi

Ndomain∑

n=1

lψ
−1
in lΦn. (4.15)

By using the above described procedure for time (Sect. 4.2) and space discretiza-
tion (Sect. 3) Eq. 4.8 becomes

Φ(t0 + ∆t)l = Φ(t0)l +
∆t

ρ0

(

Φl

Ndomain∑

i=1

∂

∂xj
lψi

Ndomain∑

n=1

lψ
−1
in l

(
ρv
)

n
(4.16)

−
(
ρ0 v

)

l

Ndomain∑

i=1

∂

∂xj
lψi

Ndomain∑

n=1

lψ
−1
in lΦn

+

Ndomain∑

i=1

∂

∂xj
lψi

Ndomain∑

n=1

lψ
−1
in lDn ·

Ndomain∑

i=1

∂

∂xj
lψi

Ndomain∑

n=1

lψ
−1
in lΦn

+ Dl

Ndomain∑

i=1

∂2

∂x2j
lψi

Ndomain∑

n=1

lψ
−1
in lΦn + lSΦ

)

0
.

The solution of the discretized general transport equation by setting the val-
ues of the domain and boundary nodes to the initial values and calculating the
derivatives at time t = t0. The value of Φ is then calculated from Eq. 4.16. Once
the values for all of the interior nodes are calculated from Eq. 4.17, the domain
boundary is considered by implementing the BCs. While the application of the
Dirichlet BC is straightforward

ΦDirichlet = Φ, (4.17)

the Neuman and Robin BC are calculated from Eqs. 2.106 as

ΦNeuman =

N∑

i=1

∂

∂n
ψi αi (4.18)
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and

ΦRobin =

N∑

i=1

(

w1
∂

∂n
ψi + w2ψi

)

αi. (4.19)

Next, the coefficients αi are calculated from the system of linear equations (Eq.
3.29) and the procedure is ready for the next step. The time stepping is stopped,
when the solution reaches the steady state or when the calculation reaches a
predetermined time. The criteria for steady state is described in Sect. 4.7.

In this dissertation, the above described procedure is used for mass, energy,
species, turbulent kinetic energy and dissipation rate conservation equations. The
solution procedure for momentum equation is slightly different and is described
in Sec. 4.4.

4.4 Pressure - Velocity Coupling

Although the solution procedure of all of the transport equations is similar, the
momentum equation requires special treatment when the problem under con-
sideration describes the incompressible flow. In the case of compressible flow,
the pressure is a function of both density and temperature, and the momentum
equation is solved as described above (Sect. 4.3). However, when the flow is
incompressible, the pressure is not explicitly linked to density. Hence, additional
constraints linking pressure and velocity have to be included into the solution.
This problem is referred to as the PV coupling. The most widely used algo-
rithm for solving the pressure velocity coupled problems is the SIMPLE [Ferziger
and Perić, 1996; Patankar, 1980] algorithm and its various modifications, like the
SIMPLE Consistent (SIMPLEC) [van Doormaal and Raithby, 1984; Latimer and
Pollard, 1985], the SIMPLER [van Doormaal and Raithby, 1984], and the Pres-
sure Implicit with Splitting of Operators (PISO) [Jang et al., 1986; Chow and
Cheung, 1997]. Another option is to use the the local PV coupling algorithm
[Kosec, 2011; Kosec and Šarler, 2009b], that is based on the SIMPLE algorithm,
but is calculated on the local instead of on the global domain.

Alternative options are the so called projection methods, in which the Helmholtz-
Hodge decomposition [Petronetto et al., 2010] is used to decouple the pressure and
the velocity. The projection methods can be split into three groups: the pressure-
correction, the velocity correction, and the consistent split methods [Guermond
et al., 2006]. In the pressure-correction scheme, two intermediate time sub-steps
are performed in each time iteration. In the first sub-step the pressure term is
ignored and the velocity is calculated without the pressure term. In the sec-
ond sub-step the velocity term is corrected by the separately calculated pressure
gradient. The most commonly used among the pressure-correction projection
methods is the FSM [Chorin, 1967]. Another similar approach is the Artificial
Compressibility Method (ACM) [Chorin, 1968] with Characteristic Base Split
(CBS) [Zienkiewicz and Codina, 1995; Zienkiewicz et al., 1995]. Analogously
to the pressure-correction schemes, in the velocity-correction scheme [Guermond
and Shen, 2003b] the viscous term is ignored in the first time sub-step. In the
second time sub-step the velocity is corrected by the independently calculated vis-
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cous term. The consistent splitting scheme [Guermond and Shen, 2003a] requires
the solution of the velocity equation by the explicit treatment of the pressure
in the first time sub-step. In the second time sub-step, the velocity is updated
by testing the pressure field against the gradients. Unless otherwise stated, the
FSM method [Chorin, 1967] is used to solve the pressure velocity coupling in this
dissertation.

Fractional Step Method

The FSM [Chorin, 1967] was first developed in 1967. The idea behind this method
is to first calculate the intermediate velocity field v⋆ at a new time t0+∆t without
the pressure gradient

v⋆(t0 + ∆t) = v(t0) +

(

∆t

ρ

(

−∇ · (ρvv) − 2

3
∇(ρk) (4.20)

+ ∇ ·
((
µL

ρ

ρL
+ µt

)(
∇v + (∇v)T

))

− µL
K0(1 + fL)2

fL3

ρ

ρL

(
v − vS

)

+ ρg
(

βT
(
T − Tref

)
+ βC

(
C − Cref

))

+ j×B
)
)

0

.

Next, the pressure Poisson equation

∇2p =
ρ

∆t
∇ · v⋆ (4.21)

is solved in order to calculate the pressure, which is then used to update the
velocity

v(t0 + ∆t) = v⋆(t0 + ∆t) − ∆t

ρ
∇p. (4.22)

The pressure Poisson equation (Eq. 4.21) is solved by using the boundary con-
ditions for pressure specified in Sec. 2.5.2. The flow chart is presented in Fig.
4.7.

Artificial Compressibility Method with Characteristic Base Split

The procedure behind the ACM [Chorin, 1968] is similar to the one behind the
FSM. First, the intermediate velocity (Eq. 4.21) is calculated without the pressure
gradient. The pressure field is obtained from the following equation

p(t0 + ∆t) = p(t0) − β2∆t
(
ρ∇ · v⋆(t0 + ∆t) − ∆t∇2p(t0)

)
, (4.23)

where −∆t∇2p(t0) is CBS stabilization term, and β is the compressibility coeffi-
cient. Eq. 4.23 is solved by using the boundary conditions for pressure specified
in Sec. 2.5.2 and The initial conditions for pressure specified in Sec. 2.5.3. Next,
the pressure is inserted into Eq. 4.22 to calculate the velocity at new time step.
The selection of β depends on the problem under consideration. For the CC
process β is usually between 0.5 to 1.5. The flowchart is presented in Fig. 4.7.
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Figure 4.7: Flow chart for solving velocity and pressure.

4.5 Solution of Electromagnetic Field Equations

The electromagnetic field is coupled with the velocity field through the Lorentz
force. Due to the Rem ≪ 1, the coupling is done only in one direction. This means
that the magnetic field affects the velocity field, but the velocity field does not
affect the magnetic field. The procedure starts by solving the Poisson’s equation
for electric potential (Eq. 2.92). The solution yields ∇φ, which is inserted into

j = σ
(
−∇φ+ v ×B

)
(4.24)

in order to calculate electric current density j. The Lorentz force is then calculated
from Eq. 2.93 and inserted into the momentum equation.

Although the CC case does not require the coupling between the temperature
and magnetic field, this can be done through the Joule source term, which can
be added to the energy equation. The procedure for calculating the Joule source
term is analogous to the procedure of calculating the Lorentz force up to the point
when the electric current density is calculated. This is then inserted into the
Joule source term and if necessary added to the energy equation. The flowchart
is presented in Fig. 4.8.

4.6 Description of the Multiphysics Solution Pro-

cedure

In this dissertation, the original solution procedure [Vertnik, 2010] that was de-
signed for the incompressible turbulent flow with solidification is upgraded for
the application of the externally applied static magnetic field. The magnetic field
is modelled by the Maxwell’s equations (Eq. 2.77-2.80) through the application
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Figure 4.8: Flow chart for solving electromagnetic effects.

of the Lorentz force (Eq. 2.87) in the momentum equation (Eq. 2.101) and if
necessary in the Joule source term in the energy equation (Eq. 2.102).

The solution procedure begins at the time t = t0 by implementing the ini-
tial values for the velocity v0, temperature T0, magnetic field B0, concentration
C0, turbulent kinetic energy k0, dissipation rate ε0, and turbulent viscosity µt0.
Throughout this dissertation B0 is considered constant. Then, the electric po-
tential equation (Eq. 2.92) has to be solved. The result of this equation is ∇φ,
which is used to compute the electric current density from Eq. 2.85. The j is
inserted in Eq. 2.93 to compute the Lorentz force fEM and if necessary in Eq.
2.94, to calculate the Joule source term.

The intermediate velocity field is calculated from the momentum equation
2.101 first without the pressure term −∇p (Eq. 4.21). Subsequently, the pres-
sure Poisson’s equation (Eq. 4.21) is solved. The procedure for solving the
pressure Poisson’s equation is similar to the procedure of solving the electric po-
tential Poisson’s equation and is in detail described in Sect. 4.8.1. The velocity
components are then corrected by the pressure gradient as shown in Eq. 4.22.
Following is the solution of the energy conservation equation

h = h0 +
∆t

ρ

(

−∇ · (ρvh) + ∇ ·
(
λ∇T

)
+ ∇ ·

(

fL
µt

σt
∇hL

)

(4.25)

+ ∇ ·
(

ρfS
(
hL − hS

)(
v − vS

))

+
|j|2
σ

)

0

,
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and the solute concentration equation

C = C0 +
∆t

ρ

(

−∇ · (ρvC) + ∇ ·
(

ρfSDS∇CS + ρfLDL∇CL

)

(4.26)

+ ∇ ·
(fLµt

σC
∇CL

)

+ ∇ ·
(

ρfL
(
v − vS

)(
CL − C

))
)

0

.

Next, the temperature is calculated from the enthalpy with the help of the
temperature-enthalpy relations (Eq. 2.56 and Eq. 2.57). Further, the transport
equations for k and ε are solved

k = k0 +
∆t

ρ

(

−∇ · (ρvk) + ∇ ·
(
(
µL
ρL
ρ

+
µt

σk

)
∇k
)

(4.27)

+ Pk +Gk − ρε+ ρD − µL
K0(1 + fL)2

f 3
L

ρ

ρL
k

)

0

,

and

ε = ε0 +
∆t

ρ

(

−∇ · (ρvε) + ∇ ·
((
µL

ρ

ρL
+
µt

σε

)
∇ε
)

(4.28)

+
(
c1εf1(Pk + csεGk) − c2εf2ρε

) ε

k
+ ρEk−ε + µL

K0(1 + fL)2

f 3
L

ρ

ρL
ε

)

0

.

In the next step, the turbulent viscosity µt, the liquid fraction fL, the concentra-
tion of solute in liquid phase CL, the partition ratio kp and the liquidus tempera-
ture TL are determined from the microsegragation model. Finally, the calculated
values are reset to initial values

v0 = v, T0 = T, k0 = k, ε0 = ε, C0 = C, p0 = p (4.29)

and the whole procedure is repeated until the system reaches the steady state.
The solution in sought for the steady state and the time stepping is only imple-
mented due to the requirements of the method. The criteria for the steady state
are discussed in Sect. 4.7.

The procedure of advancing from time t0 to time t0 + ∆t is schematically
presented in Fig. 4.9.

4.7 Convergence Criteria

The solution procedure is an iterative process, in which the steps are repeated
until the difference between two consecutive variable values is sufficiently small,
that the solution can be considered converged. In this dissertation, the steady
state is sought for and it is therefore considered that the convergence is reached
when steady state is achieved. The time iterations must thus be repeated until
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Figure 4.9: Block diagram of the entire solution procedure.

the discrete governing equations for the mass, momentum, species concentration,
energy, dissipation rate and turbulent kinetic energy are obeyed in all of the do-
main nodes in such a way, that the balance is achieved for the mass, momentum,
species, energy, dissipation rate and turbulent kinetic energy, and when the solu-
tion no longer changes with additional iterations. The iteration process requires
convergence criteria, that are used to determine whether the solution has reached
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the steady state. The condition for steady state is satisfied, when the following
criteria are reached for each of the N computational nodes

|v − v0| < εv, |T − T0| < εT , |C − C0| < εC , (4.30)

|p− p0| < εp, |k − k0| < εk, |ε− ε0| < εε,

where εv, εT , εC , εp, εk and εε are the iteration criteria for the velocity, tempera-
ture, solute concentration, turbulent kinetic energy, dissipation rate and pressure,
respectively. The values for iteration criteria are case dependent and are therefore
stated for each case separately.

4.8 Numerical Implementation

The numerical implementation of the developed solution procedure is written in
the Compaq Visual Fortran (CVF) [Fortran, 2011]. The majority of the solver
uses the standard Fortran libraries to solve the mathematical and the system
operations. However, when needed, the additional libraries, listed below, are
used. The Linear Algebra Package (LAPACK) routines are used to solve the
linear systems of equations and the LU decomposition. The sparse matrix is
solved with the Parallel Direct Sparse Solver (PARDISO) interface [Schenk and
K., 2004] from the Intel Math Kernel Library (MKL). Most of the solver code is
parallelized with the Open Multiprocessing (OpenMP) [OpenMP, 2013] library.
All line graphs for the velocity, temperature, pressure, and magnetic field are
plotted in GNUPLOT 4.4 [Williams and Kelley, 2010]. The streamlines, that
are calculated by integrating the velocity field with the 4-th order Runge-Kutta
method, are plotted in ParaView [Henderson, 2007] and CVF with PGPLOT
Graphics Subroutine Library Pearson [2001]. The contour plots are plotted in
ParaView [Henderson, 2007].

The main code is based on the MeshlessLib library developed in [Vertnik,
2010] and upgraded in the course of present dissertation..

The simulations presented in this work were performed on the following com-
puters

• HP EliteBook 8740w Mobile Workstation with two Intel Core i7 2.8 GHz
processors,

• HP Z 400 Workstation with two Intel Xeon 3.3 GHz processors,

• Intel S5000VSA with two Xeon 2.83 GHz processors,

• HP ProLiant DL380 G7 with two Xeon 3.47 GHz processors, and

• HP Prodiant DL360p G8 with two Intel Xeon e5-2650 2.0 GHz processors.

4.8.1 Solution of Poisson’s Equation

As the same formulation is used to solve the Poisson’s equation for the scalar
potential (Eq. 2.92) and for the pressure (Eq. 4.21), a formulation for a general
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variable Φ is presented here. The global pn and the local (influence domain) lpi

nodes coincide and are connected with the relation pn(l,i) = lpi. The Poisson’s
equation is solved by constructing and solving the sparse matrix [Lee et al., 2003].
The general variable is represented on each of the influence domains as a linear
combination of RBFs and their coefficients

Φ(p) =

Ndomain∑

i=1

ψn(l,i)(p)lα. (4.31)

The expansion coefficients αi are determined by a collocation as shown in Eq.
3.29 and the general variable Φ is thus

Φn(l,m) =

Ndomain∑

i=1

lΨjnlαi; j = 1, . . . , Ndomain. (4.32)

In each of the influence domains, the Φ is determined as

Φ(p) =

Ndomain∑

i=1

Ndomain∑

j=1

lψn(l,i)(p)lΨ
−1
ij Φn,(l,j). (4.33)

The discretized general Poisson equation s a result of collocation and application
of the Laplace operator in global node pk

N∑

k=1

ΨklΦl = Sk, (4.34)

where Ψkl is the sparse matrix element, and Sk is a function of Φ. For pressure,
Sk = ρ

∆t
∇ · v⋆

k and pressure Poisson equation (Eq. 4.21) is discretized to

N∑

k=1

Ψklpl =
ρ

∆t
∇ · v⋆

k. (4.35)

For scalar potential, Sk = ∇ · (v ×B)k and Eq. 2.92 is discretized to

N∑

k=1

Ψklφl = ∇ · (v ×B)k. (4.36)



5 Benchmark Test Cases for Fluid

Flow and Magnetic Field

The aim of this chapter is to verify the numerical code, to set the free parameters
(β, c) and to test the parameter range (ν, αT ) of for liquid metals, especially the
molten steel. For this purpose, several benchmark test cases are chosen and the
obtained results are assessed against the reference results. When possible, the
reference results are obtained by analytical solution or from the already published
works of other authors. If the case is too complex to be solved analytically,
and there is no previously published reference, the results are compared to the
commercial software Fluent [ANSYS, 2013]. It should be noted here that the
results obtained with Fluent are not considered entirely exact and that the aim
of the author is not to determine the accuracy of the Fluent code, but rather
to explore the agreement of the newly developed LRBFCM with the already
established and extensively verified FVM approach.

The evaluation begins by first considering the lid driven cavity test case in
order to asses the performance of two different RBFs and two different pressure-
velocity coupling schemes. In the second test case, the free convection in a rect-
angular enclosure under the influence of an externally applied magnetic field is
investigated. The goal of this test case is to ascertain the accuracy of the addi-
tion of the magnetic field equations and the corresponding boundary and initial
conditions to the fully coupled momentum and energy equations. The inlet and
the outlet boundary conditions are tested in both the Hartmann flow and the
free convection over a backward facing step under the influence of the magnetic
field. The objective of the former is to test the behaviour of the additional mag-
netic field components for an in- and out-flow, against the analytical solutions.
The aim of the latter test case is to establish the accuracy of the separation
and the reattachment positions and is tested both against the published data as
well as against the data calculated with Fluent. To describe the turbulent flow
and the species conservation, three supplementary equations are required; the
turbulent kinetic energy k and the dissipation rate ε equations to describe the
turbulence and the species conservation equation to account for the binary alloy
species transport. As all of these equations have already been verified [Vertnik,
2010; Šarler et al., 2012, 2013] and no MHD terms are added in this equations,
no additional test cases are performed to check the accuracy of the listed three
equations.

The results of the benchmark tests have been published in several interna-
tional journals [Mramor et al., 2013a,b, 2014b] and presented at international
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conferences [Mramor et al., 2012].

5.1 Dimensionless Form of Governing Equations

To simplify and generalize the comparisons of present results with the results of
other authors and those obtained with the Fluent code, the governing equations
have to be written in their dimensionless form. Several dimensionless numbers
have to be defined, respectively.

Prandtl Number

Prandtl number (Pr) is a dimensionless number that represents the ratio between
the kinematic viscosity and the thermal diffusion

Pr =
viscous diffusion rate

thermal diffusion rate
. (5.1)

It is expressed as

Pr =
ν

αT
=
cp µ

λ
, (5.2)

where αT is thermal diffusivity. Pr is high if the kinematic viscosity is dominant
and low if the thermal diffusivity is dominant. A typical value of Pr for steel is
0.14.

Schmidt Number

Schmidt number (Sc) is a dimensionless number that represents ratio between
momentum or viscous diffusivity and mass diffusivity

Sc =
viscous diffusion rate

mass diffusion rate
. (5.3)

It is expressed as

Sc =
ν

D
=

µ

ρ D
. (5.4)

Rayleigh Number

Rayleigh number (Ra) is a dimensionless number defined as

Ra =
|g |βT (TH − TC) ℓ3

νλ
, (5.5)

where ℓ is the characteristic length that depends on the geometry of the problem,
TC is the cold temperature and TH is the hot temperature.
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Grashof Number

Grashof number (Gr) is a dimensionless number that represents the ratio between
the buoyancy and the viscous forces

Gr =
bouyancy force

viscous force
. (5.6)

It can be rewritten as a ratio between the Ra and Pr number

Gr =
Ra

Pr
. (5.7)

Reynolds Number

Re is a dimensionless number that represents the a ratio of the inertial and the
viscous forces

Re =
inertial forces

viscous forces
≃ |(v · ∇)v|

|ν ∇2v| . (5.8)

It is defined as

Re =
vc ℓ

ν
, (5.9)

where vc is the characteristic velocity.

Interaction Parameter or Stuart Number

Interaction parameter (N ), also called Stuart number (St), is a dimensionless
number, which is defined as the ratio between the Lorentz force and the inertial
forces of the fluid

St ≡ N =
electromagnetic forces

inertial forces
≃ |j×B|
ρ |(v · ∇)v| . (5.10)

It can be written as

St ≡ N =
σ ℓ B2

0

ρvc
=

Ha2

Re
. (5.11)

Hartmann Number

Hartmann number (Ha) is a dimensionless number that is defined as the ration
between the electromagnetic and the viscous forces

Ha2 =
electromagnetic force

viscous force
≃ |j×B|

|ν∇2v| (5.12)

or in the mathematical notation

Ha = ℓB0

√
σ

ρν
=

√
NRe. (5.13)
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Magnetic Reynolds Number

Magnetic Reynolds number (ReM) is a dimensionless number that represents the
ratio of the magnetic advection and the magnetic diffusion

ReM =
advection of magnetic field

diffusion of magnetic field
≃ |(v · ∇)B|

|χ∇2B| . (5.14)

It can be written as

ReM = µ0 σ vc ℓ =
vc ℓ

χ
. (5.15)

Batchlor Number or Magnetic Prandtl number

Batchlor number (Bt), also called the magnetic Prandtl number (PrM), represents
the ratio of the viscous diffusivity and the electromagnetic diffusivity

Bt = PrM =
viscous diffusion

electromagnetic diffusion
= µσν. (5.16)

The effect of the external magnetic field is stabilizing for small PrM .

Turbulent Prandtl Number

Prt represents the ratio between viscous eddy diffusivity and thermal eddy diffu-
sivity

Prt =
viscous eddy diffusivity

thermal eddy diffusivity
(5.17)

or equivalently

Prt =
νt
αTt

, (5.18)

where αTt is thermal eddy diffusivity.

Local Turbulent Reynolds Number

Local turbulent Reynolds number (Ret) represents the ratio between the turbulent
fluctuation and the turbulent length scale

Ret =
turbulent fluctuation

turbulent length scale
(5.19)

or equivalently

Ret =
k2

νε
. (5.20)
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5.2 Lid Driven Cavity Problem

5.2.1 Problem Description

A two-dimensional lid driven cavity flow problem describes the motion of a lam-
inar incompressible Newtonian flow in a square cavity with a moving top wall
and fixed side and bottom walls. The moving upper wall sets the fluid in the
cavity into motion and when moving in the left to the right direction, the clock-
wise rotating vortex is formed. The primary eddy develops at approximately the
geometric center of the cavity. The higher order eddies, which develop when Re
is increased, are positioned at the bottom left and right corners of the cavity.
This eddies are smaller in size and rotate in the opposite direction of the primary
vortex.

Literature Review for Lid Driven Cavity Problem

The lid-driven cavity problem was first proposed in 1982 [Ghia et al., 1982] and
has since become one of the standard benchmark test cases used to asses the
performance of a chosen numerical method used to calculate the fluid flow. A
wide variety of different numerical methods that have so far been applied to this
problem include the FDM [Bruneau and Jouron, 1990; Bruneau and Saad, 2006],
the FEM [Barragy and Carey, 1997], different variations of BEM [Liao, 1992;
Liao and Zhu, 1996; Grigoriev and Dargush, 1999; Aydin and Fenner, 2001], the
Chebyshev Collocation Method (CCM) [Botella and Peyret, 1998], the Multi Grid
Method (MGM) [Ghia et al., 1982], the Lattice Boltzman Method (LBM) [Hou
et al., 1995], and many others. Among the meshless methods, the MLPG [Lin
and Atluri, 2000], the MFS [Young et al., 2006], the MPCM [Kim et al., 2007]
and the LRBFCM [Divo and Kassab, 2007].

The purpose of this test case is to asses the performance of two different PV
coupling schemes (FSM and ACM with CBS term), of two different RBFs (MQ
and IMQ) and to extend the work of [Divo and Kassab, 2007] to intermediate
Re numbers range. The results of this test case have already been published in
[Mramor et al., 2013a].

5.2.2 Governing Equations and Numerical Parameters

The Newtonian incompressible flow is described in a fixed domain Ω = (0, 1) ×
(0, 1) with boundary Γ = ([0, 1]×[0, 1])∩((0, 1)×(0, 1)) by the following equations

∇ · v = 0, (5.21)

and

ρ

(
∂v

∂t
+ ∇ ·

(
vv
)
)

= −∇p + µ∇2v. (5.22)

The dimensionless equivalents of these equations are

∇ · v′ = 0, (5.23)
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and
∂v′

∂t′
+ ∇ · (v′v′) = −∇p′ +

1

Re
∇2v′, (5.24)

where the variables denoted by the prime stand for the dimensionless variables.
The derivation of the dimensionless equation along with the definition of the
pertained dimensionless variables is elaborated in Appx. B.1.

Initial Conditions

The solution is sought at the following initial conditions

v′ = 0, and p′ = 0. (5.25)

Boundary Conditions

Dirichlet BC are used on all boundaries Γ. On the top part of Γ the dimensionless
velocities have the following values

v′x = 1, v′y = 0, (5.26)

and on the rest of the Γ the velocity values are

v′x = 0, v′y = 0. (5.27)

A scheme of the computational domain is depicted in Fig. 5.1.

x′

y′

v′y = 0 v′y = 0
v′x = 0 v′x = 0

v′x = v′y = 0

v′x = 1, v′y = 0

Figure 5.1: Computational scheme of a 2D cavity with boundary conditions.

5.2.3 Results and Discussions

The refinement parameter u = 1.2 is used to improve the node arrangement along
the walls. A scheme of the node arrangement for a computational domain of a
2D cavity is depicted in Fig. 5.2. All of the calculations are done for a shape
parameter c = 32 with the time step ∆t′ = 10−3 and the following convergence
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criteria for pressure εp = 10−5 and for velocity εv = 10−5. Unless otherwise
stated, the calculations are done with the MQ RBFs and the FSM PV coupling
scheme.

Figure 5.2: Scheme of the node arrangement (41x41, u = 1.2) for the computational
domain of a 2D cavity. Circles represent the boundary nodes whereas dots represent
the domain nodes.

The numerical examples are organized as follows. First, the convergence of
the method is tested on several different node arrangements. The results are then
compared with the reference results of other authors. Further, the behaviour of
different RBF forms, namely MQ and IMQ RBFs, is investigated, and lastly,
the comparison between two different types of PV couplings, namely the FSM
and ACM with CBS term, is performed. The dimensionless velocities in x and
y direction are assessed for a horizontal and a vertical line through the center of
the cavity as depicted in Fig. 5.3.
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Figure 5.3: Positions of vertical and horizontal lines through the geometric center of
a square cavity.



74 Benchmark Test Cases for Fluid Flow and Magnetic Field

Convergence of the Method

The convergence of the method is investigated for four different node arrange-
ments, with the number of nodes varying from 1677 nodes (41x41 without 4 corner
nodes)1 to 16637 (129x129) nodes. The dimensionless velocities (v′x and v′y) are
compared for Re=1000, on horizontal and vertical lines through the geometric
center of the cavity as depicted on Fig. 5.3. The comparison is presented in
Fig. 5.4 and confirms the assumption that the poorest agreement appears for the
smallest number of the nodes. The velocity profiles of the denser node arrange-
ments are in accordance with the expected results and do not exhibit noticeable
differences with respect to minimal node arrangement. The smallest of the node
arrangements with 81x81 nodes, that appears to be reasonably node independent
is chosen for further calculations unless otherwise stated.
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Figure 5.4: Comparison of dimensionless velocities at different node densities for the
Re=1000. Left: the v′x component of velocity along the horizontal line through the
center of the cavity. Right: the v′y component of the velocity along the vertical line
through the center of the cavity.

Comparison with Reference Results

The flow in the lid driven cavity is calculated for the low and the intermediate Re,
ranging from 100 to 3200 on a 81x81 node arrangement as shown in Figs. 5.5-5.8.
The results are compared to a wide spectra of reference results, given by [Ghia
et al., 1982; Bruneau and Saad, 2006; Erturk, 2009; Botella and Peyret, 1998;
Erturk et al., 2005; Erturk and Gökçöl, 2006]. As predicted, the best agreement
between the velocity profiles of the calculated and the previously published results
is achieved for the small Re such as 100 and 400 (Figs. 5.5 and 5.6). A comparison
between the data and the calculations exhibits a slightly poorer correlation for
the intermediate Re such as 1000 and 3200 (Figs. 5.7 and 5.8). An odd data point
in the right graph in Fig. 5.6 is probably a wrongly entered data point in the
reference table [Ghia et al., 1982]. Additionally, for Re=400, the velocity profiles

1In none of the calculations with LRBFCM in this dissertation, the node arrangements have
corner nodes. The notation of the node arrangement will from now on be denoted as a x b
instead of a x b without 4 corner nodes. In practice this means, that the node arrangement
denoted as 41x41 has 41x41-4 nodes, that is 1677 instead of 1681.
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are compared to Fluent. The results from Fluent are calculated on 129x129 mesh.
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Figure 5.5: Comparison of dimensionless velocities for Re=100, calculated with
LRBFCM with the results of [Ghia et al., 1982]. Left: v′x component of the veloc-
ity along the horizontal line through the center of the cavity. Right: v′y component of
the velocity along the vertical line through the center of the cavity.
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Figure 5.6: Comparison of dimensionless velocities for Re=400, calculated with
LRBFCM and Fluent, and the results of [Ghia et al., 1982]. Left: v′x component of
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Figure 5.7: Comparison of dimensionless velocities for Re=1000, calculated with
LRBFCM and the results of [Ghia et al., 1982]. Left: v′x component of the velocity
along the horizontal line through the center of the cavity. Right: v′y component of the
velocity along the vertical line through the center of the cavity.
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Figure 5.8: Comparison of dimensionless velocities for Re=3200, calculated with
LRBFCM and the results of Ghia et al. [1982]. Left: v′x component of the velocity
along the horizontal line through the center of the cavity. Right: v′y component of the
velocity along the vertical line through the center of the cavity.

The minimum (for v′x and v′y) and the maximum (for v′y) values of the velocities
along the horizontal and the vertical lines that pass through the geometric center
of the cavity are given in Tab. 5.1 for 129x129 node arrangement for a variety of
different Re.

Comparison of Different RBF Types

Next, results with MQ and IMQ trial functions are compared for Re=1000 and
129x129 nodes. The results for both types of the RBF forms are almost the same:
the minimum velocities in the x direction are - 0.3713 in the case of the MQ RBFs
and -0.3674 in the case of the IMQ RBFs, whereas the minimum velocities in the
y direction are -0.5082 in the case of MQ RBFs and -0.5035 in the case of the
IMQ RBFs. The difference in the case of minimum velocities is 1.0%, whereas the
difference in the case of maximum velocities is 0.9%. In both cases the number of
iterations required to achieve the steady state is 20900. The results are depicted
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Table 5.1: Minimum and maximum velocities along the horizontal line (y′=0.5) and
the vertical line (x′=0.5) that pass through the geometric center of the cavity. 1:
present, 2: [Ghia et al., 1982], 3: [Erturk et al., 2005], 4: [Botella and Peyret, 1998], 5:
[Sahin and Owens, 2003a,b], 6: [Bruneau and Jouron, 1990].

Re v′x(min) y′ v′y(min) x′ v′y(max) x′ Ref.

100

-0.21325 0.4542 -0.25296 0.8102 0.17884 0.2379 1
-0.21090 0.4531 -0.24533 0.8047 0.17527 0.2344 2
-0.21392 0.4598 -0.25660 0.8127 0.18089 0.2354 5
-0.2106 0.4531 -0.2521 0.8125 0.1786 0.2344 6

400
-0.32276 0.2876 -0.44523 0.86374 0.29453 0.2379 1
-0.32726 0.2813 -0.44993 0.8594 0.30203 0.2266 2
-0.32838 0.2815 -0.45632 0.8621 0.30445 0.2253 5

1000

-0.37126 0.1820 -0.50821 0.90701 0.35603 0.1665 1
-0.38289 0.1719 -0.51550 0.9063 0.37095 0.1563 2
-0.3869 0.180 -0.5263 0.910 0.3756 0.150 3
-0.38866 0.1719 -0.52644 0.9063 0.37692 0.1563 4
-0.38810 0.1727 -0.52845 0.9087 0.37691 0.1573 5
-0.3764 0.1602 -0.5208 0.9102 0.3665 0.1523 6

3200
-0.39664 0.0930 -0.52900 0.94710 0.38611 0.1000 1
-0.41933 0.1016 -0.54053 0.9453 0.42768 0.0938 2
-0.43540 0.0921 -0.56915 0.9491 0.43245 0.0972 5

in Fig. 5.9.
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Figure 5.9: Comparison of the results with two different RBF types (MQ and IMQ).
Left: v′x velocity along the horizontal line through the center of the cavity. Right: v′y
velocity along the vertical line through the center of the cavity.
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Comparison of Different Pressure Velocity Coupling Schemes

Two different PV coupling schemes are compared for 129x129 node arrangement
and Re=1000. The first method is FSM [Chorin, 1968] and the second method is
ACM [Chorin, 1967] with CBS term [Zienkiewicz and Codina, 1995; Zienkiewicz
et al., 1995, 1999]. The selection of the compressibility coefficient β in the ACM
method is not trivial, as it is a free parameter. A reasonable range of β for
lid-driven cavity problem is from 0.5 to 1.5. For the purposes of this study β
is fixed and set to 1. The pressure in the ACM method with the CBS term is
calculated directly in each of the domain nodes. On the other hand, the FSM
method, requires calculation of a sparse matrix obtained from pressure Poisson’s
equation. Although, the calculation of sparse matrix is a more complex operation
than the point wise calculation of pressure, it turns out that the FSM method
is faster and needs less iterations than the ACM method with the CBS term to
reach the steady state, especially in case of larger node arrangements. In our
case, both of the methods give similar results, as is evident from Fig. 5.10. The
number of iterations required to reach the steady state is 20900 with the FSM
method and 31400 with the ACM with the CBS term. The minimum values of
the velocities in the x direction are - 0.3713 when employing of the FSM method
and -0.3780 when employing of the ACM with the CBS, whereas the minimum
velocity values in the y direction are -0.5082 for the FSM and -0.5080 for the ACM
with the CBS. The difference in minimum velocities is 1.8% and the difference in
maximum velocities is 0.02%.
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Figure 5.10: Comparison of dimensionless velocities for different PV coupling
schemes. Left: v′x velocity along the horizontal line through the center of the cav-
ity. Right: v′y component of velocity along the vertical line through the center of the
cavity.

Additionally, a sensitivity to β is tested for three different values: 0.5, 1.0, and
1.5. The results of comparison are presented in Fig. 5.11, where the velocities
for different parameter values appear almost the same. The number of iterations
required to reach the steady state is the smallest for the largest parameter value
and the largest for the smallest parameter value. The corresponding minimum
velocities are listed along with the iteration time in Tab. 5.2.
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Figure 5.11: Comparison of dimensionless velocities for different β. Left: v′x compo-
nent of velocity along the horizontal line through the center of the cavity. Right: v′y
component of velocity along the vertical line through the center of the cavity.

Table 5.2: Iteration times with the values of minimum velocities in the x and y
direction for different values of β.

β iterations v′x(min) v′y(min)

0.5 72700 -0.3809 -0.5116
1.0 31400 -0.3780 -0.5080
1.5 26400 -0.3702 -0.5019

5.2.4 Summary and Conclusions

The results, calculated with LRBFCM, are in a good agreement with reference
results. Both of the RBF trial functions give similar results. The difference be-
tween the velocity values of the extremes is 1.0% or smaller. The results obtained
with IMQ RBFs differ from reference slightly more than the results calculated
with MQ RBFs. respectively, MQ RBFs are chosen for subsequent calculations.
Sinilarly, both PV coupling methods give comparable results. The FSM method,
however, is more efficient as it requires a lower number of iterations and was
therefore chosen for the following calculations. On the other hand FSM method
is more complex from the coding point of view since it requires solution of a
sparse matrix.

5.3 Natural Convection in a Rectangular Enclo-

sure with Magnetic Field

5.3.1 Problem Description

A laminar natural convection flow under the influence of a transversal magnetic
field is considered in a square cavity, with fixed domain Ω = (0, 1) × (0, 1) and a
boundary Γ = ([0, 1] × [0, 1]) ∩ ((0, 1) × (0, 1)). The top and bottom walls of the
cavity are adiabatic, whereas the left and right walls are kept at constant, albeit
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different, temperatures. The influence of magnetic field is incorporated through
a body force fb, which in present case points in x direction.

Literature Review of Natural Convection in a Rectangular Enclosure

with a Magnetic Field

The natural convection in a rectangular cavity test with and without the presence
of a magnetic field is one of the most widely used test cases. The problem without
the presence of magnetic field was first proposed by [de Vahl Davis, 1983], and has
since been used to verify a number of different numerical methods, such as FVM
[Hortmann et al., 1990], FDM [de Vahl Davis, 1983], GRBFCM [Šarler, 2005],
LRBFCM [Kosec and Šarler, 2008c] and several others. The standard de Vahl
Davis test case and its variations have lately been extended for the application
of the magnetic field. Among the various numerical methods, that have already
been used to solve the problem are the FEM [Salah et al., 2001; Sathiyamoorthy
and Chamkha, 2010, 2012], the FDM [Rudraiah et al., 1995], the FVM [Di Piazza
and Ciofalo, 2002a,b; Sarris et al., 2005], the MLPGM [Arefmanesh et al., 2010],
the GRBFCM [Colaço et al., 2009], and MDAM [Sadat and Couturier, 2000].

The purpose of this test case is to asses the performance of the method for
the application of magnetic field. The results have already been published in
[Mramor et al., 2013b].

5.3.2 Governing Equations

The governing equation of mass has the same form as in the case of the lid driven
cavity test problem (Eq. 5.21)

∇ · v = 0. (5.28)

In the momentum equation (Eq. 5.22), an additional body force term fb, is added

ρ

(
∂v

∂t
+ ∇ ·

(
vv
)
)

= −∇p + µ∇2v + fb. (5.29)

The body force term fb = ftbu + fEM in this particular case consists of the thermal
buoyancy force ftbu = gρβT (T − Tref) and the Lorentz force (Eq. 2.93) fEM =
j×B. Energy equation is needed to account for the temperature gradient

∂T

∂t
+ ∇ ·

(
vT
)

= αT∇2T. (5.30)

The dimensionless equivalents of mass conservation equation for this problem is
the same as in the case of lid-driven cavity (Eq. 5.23)

∇ · v′ = 0. (5.31)

The momentum equation in its dimensionless form is rewritten as

∂v′

∂t′
+ ∇ · (v′v′) = −∇p′ +

1

Re
∇2v′ +

Ha2

Re
v′ − g′ β ′

T Θ, (5.32)
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where Ha2

Re
v′ represents dimensionless fEM and g′ β ′

T Θ represents the dimension-
less ftbu. The energy conservation equation is rewritten as

∂Θ

∂t′
+ ∇ · (v′Θ) =

Pr

Re
∇2Θ. (5.33)

The derivation of dimensionless equations along with the definition of the per-
tained dimensionless variables is given in Appx. B.2.

Initial Conditions

The initial conditions for velocity and pressure are

v = 0, p = 0. (5.34)

The values for the temperature and the predefined magnetic field are given as

Tref =
TH + TC

2
, (5.35)

and

Bx = 1T, By = 0. (5.36)

Boundary Conditions

The velocity BC on all the walls are non-permeable and non-slip

vx = 0, vy = 0. (5.37)

The temperature BC on the top and bottom walls are of the Neuman insulation
type

∂T

∂n
= 0, (5.38)

as the walls are adiabatic. The temperature on the left wall is TH and is consid-
ered higher than the temperature on the right wall TC . The BC for the electric
potential is obtained from Eq. 2.109 for an insulating boundary. The electric
potential BC is

∂φ

∂n
= 0, (5.39)

as all the walls are electrically insulated and the velocities are 0 on the boundary.
The Dirichlet BC are set for magnetic field and are Bx = 1 T and By = 0 on all
boundaries. The BC for pressure is obtained from Eq. 2.108. The vw = 0 and
the v∗ is calculated as

v∗ = v +
∆t

ρ

(
− ρ∇ · (vv) + µ∇2v + fb

)
. (5.40)

The scheme of the computational domain with the initial and boundary con-
ditions is depicted in Fig. 5.12.
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Figure 5.12: Scheme of a 2D differentially heated cavity with initial and boundary
conditions.

5.3.3 Results and Discussions

Three different tests are performed to validate the numerical method. The first
test case (Case 1) describes the standard de Vahl Davis natural convection bench-
mark test [de Vahl Davis, 1983] without the presence of the magnetic field. The
second test case (Case 2) describes a stable, laminar fluid flow in a square cav-
ity under the influence of the magnetic field. The most common reference pa-
pers for the defined problem, use Pr=0.71 [Colaço et al., 2009; Rudraiah et al.,
1995; Salah et al., 2001; Sathiyamoorthy and Chamkha, 2010, 2012], which is a
Prandtl number typical for air. In the third test case (Case 3) the MHD flow
with Pr=0.14, (typical for steel), is used. Each of the three cases is compared to
the results obtained from the Fluent code or the results obtained from reference
papers [de Vahl Davis, 1983; Kosec and Šarler, 2008c; Šarler, 2005; Colaço et al.,
2009].

The node arrangement is refined near the walls. A non-uniform node arrange-
ment with a refinement parameter u = 1.2 is used in all of the cases. A scheme of
a non-uniform node arrangement with 1677 nodes is depicted in Fig. 5.2. All of
the examples are calculated with MQ RBFs, with shape parameter c = 32 and a
FSM PV scheme. The time step ∆t′ = 10−4 is used and a following convergence
criteria is applied: εp = 10−6, εv = 10−6 and εT = 10−6.

All of the results are presented in their dimensionless form. The MHD flow
in a square cavity of dimension L is characterized by Ra (Eq. 5.9), Pr (Eq. 5.2),
Ha (Eq. 5.13), Gr (Eq. 5.7), and Rem (Eq. 5.15) dimensionless parameters,
where the characteristic length ℓ is equal to the dimension L of the cavity. The
derivation of the dimensionless equation is presented in Appx. B.2. The Nusselt
number (Nu), defined as

Nu =

∫ L

0

∂T

∂x

∣
∣
∣
∣
x=0

dy, (5.41)

is used to compare the results obtained with the developed LRBFCM, the pub-
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lished reference results [Colaço et al., 2009] and the results calculated with Fluent.
The stream function Ψ is calculated by integrating the velocity

Ψ(x, y) =

∫ y

0

vx(x, ỹ)dỹ. (5.42)

Case 1

Case 1 is the well known de Vahl Davis benchmark test [de Vahl Davis, 1983],
which is presented here only as a basic test of the accuracy of the method, since
the purpose of this test is to investigate the behaviour of the MHD flow charac-
terised by small Pr numbers. The results are calculated for a node arrangement
with 101x101 nodes and are compared to the reference results [de Vahl Davis,
1983; Kosec and Šarler, 2008c; Šarler, 2005] presented in Tab. 5.3. Values of Nu
in the present application of the LRBFCM method are slightly larger than those
obtained with the LRBFCM and the local pressure correction [Kosec and Šarler,
2008c], and slightly smaller than those obtained with the FVM [de Vahl Davis,
1983]. The difference between the present results and the results obtained by
[Kosec and Šarler, 2008c] might arise due to a different approach in node ar-
rangement; in the present case the nodes are refined near the wall, whereas in
[Kosec and Šarler, 2008c], a uniform node arrangement is used. The results are
also compared to the results obtained with the global RBFCM [Šarler, 2005],
where 30x30 nodes were employed. A slight difference in Nu between the present
results and those obtained with the global method is mainly due to the differ-
ence in the node density. It should be noted that it is impossible to apply the
101x101 node arrangement in the global method due to the ill conditioning of the
collocation matrix.

Table 5.3: Case 1. Comparison of LRBFCM predictions with previous solutions for
Pr=0.71 and various Ra numbers. 1: [de Vahl Davis, 1983], 2: [Kosec and Šarler,
2008c], 3: [Šarler, 2005].

Ra Nu (present case) Nu [1] Nu [2] Nu [3]
103 1.108 1.116 1.089 1.114
104 2.223 2.234 2.258 2.246
105 4.497 4.510 4.511 4.523
106 8.779 8.798 8.970 8.834

Case 2

Case 2 deals with a laminar fluid flow in a square cavity, characterized by a
relatively high Pr=0.71, which is typical for air. The results in this case are
compared to the reference results obtained in [Colaço et al., 2009] as well as those
calculated with Fluent. Ha number that characterises the flows in the presence
of the magnetic field is varied between 0 and 100 (Ha=0, 10, 50, 100) whereas
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the behaviour of the flow is investigated for Gr variations that range from 104 to
106.

A summary of the results is presented in Tab. 5.4, where it is clearly shown
that Nu decreases with increasing Ha. The values of Nu obtained with the present
method are slightly lower than those obtained with the FVM and slightly higher
than those obtained with the RBF method used in [Colaço et al., 2009].

Table 5.4: Case 2. Comparison of present predictions with previous works in terms
of Nu for Pr=0.71 and various Ha and Gr numbers. 1: [Colaço et al., 2009], 2: Fluent.

Ha Nu (present method) Nu [1] Nu [2]
Gr = 104

0 2.03 2.02 2.06
10 1.71 1.70 1.84
50 1.01 0.97 1.06

Gr = 106

0 8.15 9.21 7.98
10 7.99 9.04 7.88
100 3.33 3.54 4.27

Next, Nu is compared for an increasingly dense node arrangements; with
41x41, 61x61, 81x81 and 101x101 nodes respectively. As can be seen in Fig.
5.13, Nu is slightly higher for the coarsest node arrangement (41x41). For 61x61,
81x81 and 101x101, the value of Nu is approximately the same. The calculations
are considered reasonably independent, since Nu does not change significantly for
node arrangements with larger number of nodes. All the subsequent calculations
are therefore done on the 81x81 node arrangement. For comparison, the 15x15
and 25x25 node arrangement is used in [Colaço et al., 2009].
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Figure 5.13: Case 2. Nu as function of four different node arrangements (41x41,
61x61, 81x81 and 101x101) at Gr = 104 and Pr=0.71.

Finally, the dimensionless velocity and temperature profiles are drawn along
the horizontal and vertical lines through the center of the cavity as presented in
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Fig. 5.3. A comparison is made between the results from [Colaço et al., 2009],
Fluent and those calculated with the LRBFCM, which are all calculated on a
near-the-wall refined node arrangement with u = 1.2. As can be seen in Figs.
5.14 and 5.15 the results are in good agreement. In the work of [Colaço et al.,
2009], the non-dimensional velocity is calculated as

v′ =
v

√

gβT (TH − TC)L
, (5.43)

whereas in this dissertation the dimensionless velocity for the square cavity is
calculated as

v′ =
v

vc
. (5.44)

The difference in definition does not reflect in the results.
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Figure 5.14: Case 2. Comparison of dimensionless velocities v′x for Gr = 104 (left)
and Gr = 106 (right) along the horizontal line through the center of the cavity.
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Figure 5.15: Case 2. Comparison of dimensionless temperatures Θ for Gr = 104 (left)
and Gr = 106 (right) along the horizontal line through the center of the cavity.

Case 3

Case 3 tackles a MHD flow test case with a stable, laminar flow with low Pr
number Pr=0.14, typical for steel. Due to the lack of relevant published data,
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this test case is compared only to the results obtained with the FVM. The results
are calculated for a variety of Ha numbers, ranging from 0 to 200 (0, 10, 50, 100,
200) and Gr values ranging from Gr = 104 and Gr = 106 (Gr = 104, Gr = 105,
Gr = 106). The results calculated with the in-house LRBFCM method are in a
very good agreement with the results calculated with Fluent, as is shown in Figs.
5.16 - 5.20.

The dimensionless temperature profiles along the horizontal line through the
center of the cavity, depicted in Figs. 5.16 and 5.17, show that the temperature
profiles change with the increasing Gr number. The temperature gradients at
both sides of the cavity increase, while the temperature gradient at the middle of
the cavity decreases, thus causing a thicker boundary layer. In other words, the
increase in Ha number causes the convection to quench. As a result the isotherms
are straightened and parallel with the vertical wall.

The dimensionless velocities v′x and v′y along the horizontal and along the
vertical lines through the center of the cavity are depicted in Figs. 5.18, 5.19,
and 5.20. The quench due to the externally applied magnetic field is evident
in both of the velocity components. By increasing the Gr number, the external
magnetic field has to be amplified in order to annihilate the fluid flow. The values
for the dimensionless velocities v′x and v′y are for a representative example with
Ha=0 and Ha=50, and Gr = 106 given in Tab. 5.5.
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Figure 5.16: Case 3. Comparison of dimensionless temperatures Θ for Gr = 104 (left)
and Gr = 105 (right) along the horizontal line through the center of the cavity.
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Figure 5.17: Case 3. Comparison of dimensionless temperatures Θ for Gr = 106 along
the horizontal line through the center of the cavity.
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Figure 5.18: Case 3. Comparison of v′x along the horizontal (left) and v′y along the
vertical (right) lines through the center of the cavity for Gr = 104 as a function of
different Ha.
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Figure 5.19: Case 3. Comparison of v′x along the horizontal (left) and v′y along the
vertical (right) lines through the center of the cavity for Gr = 105 as a function of
different Ha.
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Figure 5.20: Case 3. Comparison of v′x along the horizontal (left) and v′y along the
vertical (right) lines through the center of the cavity for Gr = 106 as a function of
different Ha.

Table 5.5: Case 3. Tabulated dimensionless velocities for Gr = 106, Ha = 0 and 50,
obtained with LRBFCM.

x (in actual nodal points) v′x, Ha=0 v′y, Ha=0 v′x, Ha=50 v′y, Ha=50

0.0000 0.0000 0.0000 0.0000 0.0000
0.0513 -2118.4 3230.0 -762.79 1092.6
0.1179 -2480.2 1865.8 -861.00 841.29
0.1665 -1695.4 957.14 -717.00 615.38
0.2176 -821.50 332.76 -548.51 430.96
0.2708 -194.71 20.478 -397.38 291.58
0.3259 144.73 -102.16 -271.57 188.84
0.3825 244.16 -93.843 -168.14 112.34
0.4406 168.41 -50.000 -80.286 52.309
0.5000 -0.1860 0.0128 0.1889 0.1202

The streamlines and isotherms are depicted in Figs. 5.21 - 5.24 for Ha = 0,
10, 50, 100 and 200, and Gr = 104, 105 and 106. The profile of streamlines in
the presence of a weak magnetic field is similar to the profile of streamlines with
no magnetic field. As the strength of the magnetic field is increased, the profile
of streamlines changes and becomes tilted and elongated in y direction. In the
presence of a strong magnetic field, the convection is completely quenched, due
to the suppressing effect of the Lorentz force. The isotherms (Fig. 5.23 and Fig.
5.24) act in a similar way; in the presence of the weak magnetic field the profiles
are similar to the ones without the magnetic field, whereas in the presence of
the strong magnetic fields the convection is suppressed and the isotherms become
parallel to the vertical wall.
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Figure 5.21: Case 3. Comparison of streamlines at various Gr (Gr = 104,Gr = 105)
and Ha (0, 10, 50). The streamlines are equidistantly spaced.
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Figure 5.22: Case 3. Comparison of streamlines at various Gr (Gr = 105, Gr = 106)
and Ha (0, 10, 50, 100, 200). The streamlines are equidistantly spaced.
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Figure 5.23: Isotherms at various Gr (Gr = 104, Gr = 105) and Ha (0, 10, 50)
at Pr=0.14. The isotherms are equidistantly spaced, the minimum is at TC (right
boundary) and the maximum is at TH (left boundary).
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Figure 5.24: Isotherms at various Gr (Gr = 105, Gr = 106) and Ha (0, 10, 50, 100,
200) at Pr=0.14. The isotherms are equidistantly spaced, the minimum is at TC (right
boundary) and the maximum is at TH (left boundary).

5.3.4 Summary and Conclusions

The aim of this test case is to asses the behaviour of the LRBFCM method on
a natural convection in the presence of magnetic field for a Pr number that is
consistent with Pr for steel. The results in all of the cases match the previously
published reference results [de Vahl Davis, 1983; Kosec and Šarler, 2008c; Šarler,
2005; Colaço et al., 2009] as well as those calculated with Fluent. It is shown,
that the method produces accurate results both in the case with and without the
presence of magnetic field as well as for the low Pr typical for steel.

5.4 Hartmann Flow

5.4.1 Problem Description

A laminar, conducting fluid, confined between two parallel plates with insulat-
ing walls is investigated. The magnetic field orientation is perpendicular to the
direction of the flow, that is driven by the constant pressure gradient. This mag-
netic Poisseuille flow was first investigated by Hartmann in 1937 [Hartmann and
Lazarus, 1937] and is thus called Hartmann flow. In this instance, the Hartmann
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flow is important as an analytical reference against which the numerical calcula-
tion of the flow in the presence of a magnetic field can be verified. The laminar,
incompressible flow is considered in a rectangular domain.

The purpose of this test case is to asses the LRBFCM against analytical
results.

5.4.2 Governing Equations

The Hartmann flow is described by the mass (Eq. 5.21)

∇ · v = 0 (5.45)

and momentum equations (Eq. 5.29)

ρ

(
∂v

∂t
+ ∇ ·

(
vv
)
)

= −∇p + µ∇2v + j×B. (5.46)

As the plates are parallel, the velocities in y direction are equal to 0. The velocities
are time invariant, and thus the velocity profile does not change in the x direction.
By applying these assumption to Eq. 5.29 it is simplified into

0 = −∇p + µ∇2v + j×B. (5.47)

The dimensionless forms of the mass equation (Eq. 5.23) is

∇ · v′ = 0 (5.48)

and the dimensionless form of momentum equation is

0 = −∇p′ + ∇2v′ + Ha2v′. (5.49)

The derivation of dimensionless equation is together with the definition of dimen-
sionless variables elaborated in Appx. B.3.

Initial Conditions

The solution is sought for the following initial conditions for velocity

v = 0, (5.50)

magnetic field

Bx = 0, By = 1T, (5.51)

and pressure

p = 0. (5.52)
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Boundary Conditions

The BC for velocity, electric potential and pressure on the top and bottom walls
are

vx = 0, vy = 0,
∂φ

∂n
= 0,

∂p

∂n
= 0. (5.53)

The prescribed BC on the inlet are

vx = 1m/s, vy = 0,
∂φ

∂n
= 0, p = 0, (5.54)

and at the outlet

vx, vy,
∂φ

∂n
= 0, p = 0. (5.55)

A scheme of the computational domain with the initial and boundary conditions
is shown in Fig. 5.25.

L

H

inflow outflow

vx = vy = 0, ∂φ
∂n

= 0, ∂p
∂n

= 0

vx = vy = 0, ∂φ
∂n

= 0, ∂p
∂n

= 0

Figure 5.25: Scheme with initial and boundary conditions.

5.4.3 Results and Discussions

The result are calculated first for the classical channel flow and then for the flow of
a conducting liquid through the channel in the presence of an externally applied
magnetic field. The analytical solution for the Hartmann flow [Hartmann and
Lazarus, 1937] is stated as

v(x)

vx(MAX)

=
Ha

Ha − tanh (Ha)

(

1 − cosh(LHa)

cosh(Ha)

)

, (5.56)

where vx(MAX) is the center-line velocity. If Ha= 0, the flow is reduced to the
standard flow in the channel. The analytical solution for the channel flow is
written as

v(x) =
3

2
vx(MAX)

(

1 −
(

2x

L

)2)

. (5.57)

The results are drawn at the outlet of the channel that has 39x99 node ar-
rangement. The node arrangement is refined only in the x direction, with the
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refinement parameter u = 1.2 as shown in Fig. 5.26. The shape parameter is
c = 32. The calculations were done for Pr = 0.71 and Re = 100 for various
Ha (0, 1, 5, 10, 20, 50, 100, 200, 500, 1000) numbers. The time step used for
this particular case is ∆t = 10−4 s and the calculations were stopped when the
convergence criteria for the velocity εv = 10−8 is reached.

Figure 5.26: Node arrangement with 39x99 nodes. The H/L ratio is 30. Left:
beginning of the channel. Right: end of the channel.

First, the dimensionless center-line velocity is compared for several different
Ha numbers ranging from 0 to 1000 (0, 5, 10, 20, 50, 100, 200, 500, 1000). By
increasing the Ha number the velocity is decreased, as can be seen in the left graph
in Fig. 5.27. The graph presents both the logarithmic scale, which is depicted
with blue markings, and the regular scale which is denoted with red markings.
The right graph in Fig. 5.27 shows the dependence of the Lorentz force on the
Ha number. The Lorentz force is depicted for Ha values 5, 10, and 20. By
increasing the Ha, the magnitude of the Lorentz force increases and consequently
the velocity profiles become more and more flattened.
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Figure 5.27: Comparison of dimensionless velocities for different node arrangements
for Re = 800. Left: v′x along the vertical line at the end of the channel. Right: Lorentz
force (dimensionless) along the vertical line at the end of the channel.

The effect of Ha number on the velocity profile is shown in Fig. 5.28. The
left graph depicts the normalized velocity for various Ha numbers (0, 5, 10, 20
and 100). The dimensionless velocity profiles are shown in the right graph. It
is apparent from both graphs that the larger the Ha is, the more the velocity
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profile is flattened. This phenomenon is called the Hartmann effect and the area
in which the velocity changes from 0 to vx(MAX) is called the Hartmann layer.
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Figure 5.28: Comparison of velocity profiles for different Ha. Left: normalized veloc-
ity (vx/vx(MAX)) along the vertical line at the end of the channel. Right: dimensionless
velocity (v′x) along the vertical line at the end of the channel.

5.4.4 Summary and Conclusions

The analysis is performed for the laminar fluid flow under the influence of trans-
verse magnetic field. It is shown that the Lorentz force increases (in opposite
direction of the flow) with increasing Ha. The drop in the velocity is approxi-
mately logarithmic. The results calculated with LRBFCM match the analytical
results for a wide range of Ha numbers (0, 5, 10, 20, 100).

5.5 Forced Convection in a Backward Facing Step

Channel with Magnetic Field

5.5.1 Problem Description

The backward facing step problem represents one of the standard benchmark test
cases in fluid dynamics. A Newtonian, incompressible fluid flow in the presence
of a static magnetic field is considered in a domain Ω with a boundary Γ. The
behaviour of the flow over the backward facing step depends on Re number,
especially when the magnetic field is not present. Without the presence of the
magnetic field, typically two re-circulation zones are formed downstream. By
increasing Re number, the recirculation zones become more pronounced. The
opposite is true when the magnetic field is applied; by increasing Ha number,
the recirculation zones are diminished. The governing equations and the precise
boundary conditions used to solve these equations are described in the following
chapters.
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Literature Review of Numerical Modelling of Backward Facing Step

Channel with Magnetic Field

As a standard benchmark test case, the backward facing step problem has already
been used to asses several different numerical methods, such as FEM [Gartling,
1990; Ravindran, 2000; Kozel et al., 2004], FVM [Kozel et al., 2004], DRBEM
[Bozkaya and Tezer-Sezgin, 2011], MLPGM [Wu et al., 2010], LRBFCM [Vertnik
and Šarler, 2009b], finite point method based on incremental calculus [Oñate
et al., 2000], local boundary integral method [Sellountos and Sequeira, 2008], local
RBF method [Sanyasiraju and Chandhini, 2008], RBFCM [Chinchapatnam et al.,
2007], LBM [Yang et al., 2013], and several others. Lately, various configurations
of magnetic field were applied to the backward facing problem and solved with
a number of different numerical methods, such as FEM [Codina and Hernández-
Silva, 2006], generalized integral transform technique [Lima and Rêgo, 2013]2,
FDM [Hsu et al., 2010], modified version of control volume FEM [Abbassi and
Ben Nassrallah, 2007], and many others.

In this dissertation, the backward facing test is used to asses the accuracy of
the method, when calculating the separation and the reattachment positions of
the flow. The results of this test case have already been published in [Mramor
et al., 2014b].

5.5.2 Governing Equations

The governing equations that describe the problem are the mass conservation
equation (Eg. 5.21)

∇ · v = 0 (5.58)

and the momentum equations (Eq. 5.46)

ρ

(
∂v

∂t
+ ∇ ·

(
vv
)
)

= −∇p + µ∇2v + j×B. (5.59)

The dimensionless form of the mass conservation equation (Eq. 5.23) is

∇ · v′ = 0 (5.60)

and the dimensionless form of the momentum conservation equation is

∂v′

∂t′
+ ∇(v′v′) = −∇p′ +

1

Re
∇2v′ +

Ha2

Re
v′. (5.61)

The dimensionless variables along with the derivation of dimensionless equation
is elaborated in Appx. B.4.

Initial Conditions

The initial conditions are predetermined and are given as

vx = 0, vy = 0, (5.62)

2Generalized integral transform technique is a hybrid numerical/analytical method.
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for the velocity, as
Bx = 0, By = By0, (5.63)

for the magnetic field, and as
p = 0 (5.64)

for the pressure.

Boundary Conditions

The velocity BC on all the walls are non-slip and non-permeable (Dirichlet)

vx = 0, vy = 0. (5.65)

The Neuman BC are applied for the pressure and the electric potential on the
solid walls as well as on the left boundary with the inlet flow and are written as

∂p

∂n
= 0,

∂φ

∂n
= 0. (5.66)

The velocities on the left boundary with the inlet flow are prescribed with the
Gartling velocity profile for a fully developed flow and are 0 on the wall bel-
low. The velocity in x direction is on the left side of the computational domain
prescribed as

vx =

{
0 if 0 ≤ x ≤ 0.5
vx = 12(x− 1)(1 − 2x) if 0.5 ≤ x ≤ 1

The velocity in y direction is on the left side of the computational domain given
with the Dirichlet BC as

vy = 0. (5.67)

At the right boundary with the outlet flow, the Neuman BC are used for the
velocities and the electric potential

∂vx
∂x

= 0,
∂vy
∂y

= 0,
∂φ

∂n
= 0, (5.68)

and the Dirichlet BC is used for the pressure

p = 0. (5.69)

The geometry of the backward facing step problem is presented in Fig. 5.29 and
the computational domain with the initial and boundary conditions are presented
in Fig. 5.30.

5.5.3 Results and Discussions

To validate the method, two different tests are considered. The first test case
(Case 1) features a standard backward facing step problem [Gartling, 1990],
whereas the second test case (Case 2) presents a fluid flow over a backward facing
step under the influence of an externally applied magnetic field. The results of
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Figure 5.29: Geometry of the backward facing step problem. The H/L ratio is 15.
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Figure 5.30: Scheme of the backward facing step problem with initial and boundary
conditions.

each test case are compared either to the results from the pertained reference
papers or to those calculated with Fluent. The MQ trial functions and FSM PV
coupling method are used in calculations. The convergence criteria εv and εp are
set to 10−6.

The test cases are validated on a non-uniform node arrangement as shown in
Fig. 5.31. The refinement is calculated as stated in Sect. 4.1 with the refinement
parameter u = 1.4. A scheme of the node arrangement can be seen in Fig. 5.31.

Case 1

Case 1 features the standard backward facing step benchmark problem without
the magnetic field [Gartling, 1990]. The grid independency is tested on the non-
uniform 201x51, 301x101, 401x151, and 501x201 node arrangements for Re = 800
and Ha = 0 and the results are presented in Fig. 5.32. The 301x101 node ar-
rangement is adopted for all the subsequent calculations as the difference between
the results for 301x101, 401x151, and 501x201 node arrangements is insignificant.
A comparison of extreme values of the v′x and the v′y at the outlet are given in
Tab. 5.6 for different node arrangements.

The results calculated with LRBFCM were first compared with the results
from [Gartling, 1990] that were calculated with the FEM at two different hori-
zontal positions (x′ = 7 and x′ = 15). The results of the comparison are shown in
Fig. 5.33, where only a slight difference between the reference results [Gartling,
1990] and present results in the vertical profile for x′ = 7 is evident. The results
differ less then 0.02%, except for v′y(x

′ = 7), where the difference is 3.5 %.
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Figure 5.31: Scheme of 301x101 node arrangement. Due to the size of the domain
only a section of the flow inlet (left) and flow outlet (right) parts of the channel are
presented. The circles represent the boundary nodes and the dots represent the domain
nodes.
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Figure 5.32: Comparison of dimensionless outlet velocities for different node arrange-
ments for Re = 800 and Ha = 0. Left: x component of the velocity (v′x) along the
vertical line at the end of the channel. Right: y component of the velocity (v′y) along
the vertical line at the end of the channel.

Table 5.6: Comparison of extreme velocity values at the outlet for Re = 800 and
Ha = 0 for 201x51, 301x101, 401x151, and 501x201 node arrangements.

nodes v′x(max) v′y(min)(y′) v′y(max)(y′)

201x51 0.85689 -0.0018882(0.26389) 0.0028217(0.68292)
301x101 0.85501 -0.0018313(0.26389) 0.0028237(0.68292)
401x151 0.85467 -0.0018057(0.26389) 0.0028043(0.68292)
501x201 0.85467 -0.0018057(0.26389) 0.0028043(0.68292)

Next, the dimensionless velocity profiles v′x and v′y were examined for various
Re numbers ranging from 300 to 800 (300, 400, 500, 600, 700 and 800). As ex-
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Figure 5.33: Comparison of v′x (left) and v′y (right) at two different positions (x′ = 7
and x′ = 15) for Re = 800 and Ha = 0, and 301x101 node arrangement.

pected, the velocity profiles demonstrate (Fig. 5.34) the increase in the extremes
in both directions as Re is increased. The extreme values of velocities v′x and v′y
are given in Tab. 5.7.
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Figure 5.34: Comparison of outlet velocities for Re = 300, 400, 500, 600, 700, and
800 and Ha = 0 for 301x101 node arrangement.

Table 5.7: Extreme velocity values for the outlet velocity profiles for Re 300 to 800
(step 100) and Ha = 0.

Re v′x(max) v′y(min)(y′) v′y(max)(y′)

300 0.75167 -1.1861·10−5(0.19585) 1.3445·10−4(0.63384)
400 0.75751 -1.4333·10−4(0.25000) 4.7601·10−4(0.65784)
500 0.77141 -4.2275·10−4(0.26389) 1.0443·10−3(0.65784)
600 0.79370 -8.0308·10−4(0.26389) 1.7292·10−3(0.67025)
700 0.82242 -1.2644·10−3(0.26389) 2.3681·10−3(0.67025)
800 0.85501 -1.8313·10−3(0.26389) 2.8237·10−3(0.68292)

The wall shear stress τw, defined as

τw = µ
∂vx
∂y

, (5.70)
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is calculated for Re ranging from 300 to 800 (step 100) on both the upper and the
lower channel walls. The LRBFCM results are compared to the reference results
[Gartling, 1990] for Re = 800 and Ha = 0. A comparison presented in Fig. 5.35
shows an excellent agreement with the reference results. The wall shear stresses
are compared for different Re numbers (300 to 800 with step 100) for the upper
and the lower walls of a backward facing configuration. The results are depicted
in Fig. 5.36 and confirm that the recirculation zones are more pronounced for
larger Re.
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Figure 5.35: Comparison of wall shear stresses for the upper (N) and the lower (S)
walls with reference results (G N) and (G S) [Gartling, 1990]) at Re = 800.
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Figure 5.36: Comparison of wall shear stresses and reattachment positions for 301x101
node arrangement, Ha = 0 and Re ranging from 300 to 800 (step 100). Left: the wall
shear stress profile at the upper wall. Right: the wall shear stress profile at the lower
wall.

Finally, a comparison between the reattachment positions is made in Tab.
5.8. The results calculated with present method are compared to the reference
results [Gartling, 1990; Gresho et al., 1993; Chiang et al., 1999; Keskar and Lyn,
1999; Barton, 1995; Barton and Kirby, 2000] and are in good agreement.

Case 2

Case 2 presents a backward facing step in the presence of an externally applied
magnetic field in the vertical direction. The result calculated with LRBFCM
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Table 5.8: Reattachment positions for Ha = 0 and various Re numbers.

Re method x′(y′ = 0) x′(y′ = 1) x′(y′ = 1)

300
[Barton, 1995] 3.55 / /

present 3.57 / /

400
[Barton, 1995] 4.30 4.10 5.15

present 4.33 4.00 5.20

500
[Barton, 1995] 4.95 4.22 6.68

present 4.92 4.15 6.78

600
[Barton, 1995] 5.36 4.36 8.12

present 5.38 4.39 8.11

700
[Barton, 1995] / / /

present 5.76 4.62 9.32

800

[Barton, 1995] 6.08 4.81 11.03
[Gartling, 1990] 6.10 4.85 10.48

[Gresho et al., 1993] 6.10 4.86 10.48
[Chiang et al., 1999] 6.16 4.82 10.63

[Keskar and Lyn, 1999] 6.09 4.85 10.48
[Barton and Kirby, 2000] 6.01 5.02 9.90

present 6.10 4.87 10.48

are compared with the results calculated with Fluent. The calculations are done
for Re ranging from 300 to 800 (step 100) and Ha varied from 0 to 100 (0, 5,
10, 50, and 100). The node arrangement is the same as in the Case 1 and is
compared to the 301x101 mesh in Fluent. First, a comparison of streamlines for
Re (300, 600 and 800) and Ha (0, 5, 10, 50, and 100) is made. The streamlines
are drawn by implementing the 4-th order Runge-Kutta integration method. The
representative initial points, from which the streamlines are drawn, are chosen in
such a way that the motion of the fluid in the vicinity of the step and the vortices
is presented as clearly as possible.

As already proven in the previous section (Sect. 5.3), the application of a
magnetic field dampens the fluid flow, which can initially be seen as the decrease
in the lower recirculation zone. By further increasing the magnetic field strength,
the recirculation zone is further damped, until it totally diminishes (at Ha = 50
and Ha = 100). As can be seen in Fig. 5.37 top picture, at Re = 300 only
the lower recirculation zone exists. By applying the magnetic field, this zone is
decreased (Fig. 5.37).

For higher Re numbers (Re>400) another recirculation zone appears at the
upper wall. By increasing Re both the upper and the lower recirculation zones
grow. This can be seen in Fig. 5.38 and in Fig. 5.39 for Re = 600 and Re = 800.
Similarly, as in the case for Re = 300, the recirculation zones, both the upper
and the lower, are damped and vanish by increasing the Ha number.
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Figure 5.37: Streamlines for Re = 300 and Ha = 0, 5, 10, 50, and 100 (from the top
to the bottom) for 301x101 node arrangement. The recirculation zones are dampened
as a consequence of the application of the magnetic field.

A comparison of v′x and v′y for different vertical cross sections is made in Fig.
5.40. The values at the outlet (x′ = 15) and at the intermediate cross section (x′ =
7) have the same value at higher Ha. To ensure that the method is sufficiently
accurate for the whole length of the backward facing channel, additional cross
section is added at x′ = 2. Fig. 5.40 shows excellent agreement between the
results computed with LRBFCM and those computed with Fluent.

Dimensionless velocities v′x and v′y are represented in Figs. 5.41-5.43 for Re =
300, 600 and 800, and Ha = 0, 5, 10, 50 and 100. The velocity at the outlet is in
all of the cases decreasing with increasing Ha. The values of the extremes for the
final velocities at the outlet are given in Tabs. 5.9-5.11.

Table 5.9: Extreme values of v′x and v′y for 301x101 node arrangement, Re = 300, and
Ha = 0, 5, 10, 50, and 100.

Ha v′x(max) v′y(min)(y′) v′y(max)(y′)

0 0.75167 -1.1861·10−5(0.19585) 1.3445·10−4(0.63384)
5 0.69183 / 6.9623·10−5(0.54207)
10 0.61695 -6.2651·10−8(0.17025) 7.8349·10−8(0.80415)
50 0.52127 -4.2862·10−7(0.05981) 4.3003·10−7(0.94019)
100 0.51132 -7.6154·10−7(0.04207) 7.6478·10−7(0.95793)
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Figure 5.38: Streamlines for Re = 600 and Ha = 0, 5, 10, 50, and 100 (from the top
to the bottom) for 301x101 node arrangement. The recirculation zones are dampened
as a consequence of the application of the magnetic field.

Figure 5.39: Streamlines for Re = 800 and Ha = 0, 5, 10, 50, and 100 (from the top
to the bottom) for 301x101 node arrangement. The recirculation zones are dampened
as a consequence of the application of the magnetic field.
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Re = 800 and Ha = 10. The cross sections are placed at the channel outlet (x′ = 15),
and two intermediate positions (x′ = 7 and x′ = 2).

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8

y’

vx’

Ha=0
Ha=5

Ha=10
Ha=50

Ha=100

 0.2

 0.4

 0.6

 0.8

 1

-1⋅10-4  0⋅100  1⋅10-4  2⋅10-4

y’

vy’

Ha=0
Ha=5

Ha=10
Ha=50

Ha=100

Figure 5.41: Comparison of the final velocities at the outlet for Re = 300, and
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the application of the magnetic field.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

y’

vx’

Ha=0
Ha=5

Ha=10
Ha=50

Ha=100

 0

 0.2

 0.4

 0.6

 0.8

 1

-1⋅10-3  0⋅100  1⋅10-3  2⋅10-3

y’

vy’

Ha=0
Ha=5

Ha=10
Ha=50

Ha=100
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the application of the magnetic field.
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Table 5.10: Extreme values of v′x and v′y for 301x101 node arrangement, Re = 600,
and Ha = 0, 5, 10, 50, and 100.

Ha v′x(max) v′y(min)(y′) v′y(max)(y′)

0 0.79370 -8.0308·10−4(0.26389) 1.7292·10−3(0.67025)
5 0.70406 -4.0713·10−4(0.29097) 5.4234·10−4(0.68292)
10 0.61728 -2.6220·10−5(0.32975) 1.8808·10−5(0.69585)
50 0.52113 -3.5885·10−7(0.050717) 3.5974·10−7(0.94928)
100 0.51079 -7.1038·10−7(0.042069) 7.1170·10−7(0.96610)
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Figure 5.43: Comparison of the final velocities at the outlet for Re = 800, and
Ha = 0, 5, 10, 50, and 100. The recirculation zones are dampened as a consequence of
the application of the magnetic field.

Table 5.11: Extreme values of v′x and v′y for 301x101 node arrangement, Re = 800,
and Ha = 0, 5, 10, 50, and 100.

Ha v′x(max) v′y(min)(y′) v′y(max)(y′)

0 0.85501 -0.0018313(0.26389) 0.0028237(0.68292)
5 0.73286 -1.0295·10−3(0.29097) 1.3810·10−3(0.68292)
10 0.61980 -1.5415·10−4(0.31708) 1.3274·10−4(0.69585)
50 0.52110 -3.2575·10−7(0.050717) 3.2825·10−7(0.94928)
100 0.51065 -6.7597·10−7(0.033903) 6.8086·10−7(0.96610)

The maximum outlet velocities in the vertical direction are presented in Fig.
5.44 for various Ha and Re numbers. The effect of Re number is for large Ha
almost negligible.
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Finally, the wall shear stresses are examined. The accuracy of the method is
first tested against the reference results calculated with Fluent for Re = 800 and
Ha = 10. The results are presented in Fig. 5.45 and are in good agreement.
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Figure 5.45: Comparison of the wall shear stresses calculated with the LRBFCM and
reference results calculated with Fluent for Re = 800 and Ha = 10 for the upper (N)
and the lower (S) walls.

Next, the wall shear stresses are compared for Re = 300, 600 and 800, and
Ha = 0, 5, 10, 50 and 100. The results are presented in Figs. 5.46-5.48, where
the disappearance of the recirculation zones for higher Ha is confirmed. The
reattachment positions are given in Tab. 5.12.
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Figure 5.46: Wall shear stress for Re = 300 and Ha = 0, 5, 10, 50 and 100. Left:
lower wall. Right: upper wall.
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Figure 5.47: Wall shear stress for Re = 600 and Ha = 0, 5, 10, 50 and 100. Left:
lower wall. Right: upper wall.
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Figure 5.48: Wall shear stress for Re = 800 and Ha = 0, 5, 10, 50 and 100. Left:
lower wall. Right: upper wall.

5.5.4 Summary and Conclusions

The results calculated with LRBFCM are first compared for a classical backward
facing benchmark case without the presence of magnetic field. The results are
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Table 5.12: Reattachment positions for various Re and Ha numbers.

Re Ha x′(y′ = 0)

300

0 3.57
5 2.55
10 1.28
50 0.02
100 0.01

600

0 5.38
5 4.41
10 2.29
50 0.04
100 0.01

800

0 6.10
5 5.48
10 2.93
50 0.07
100 0.01

compared to the reference FEM solutions [Gartling, 1990; Gresho et al., 1993;
Chiang et al., 1999; Keskar and Lyn, 1999] and FDM [Barton and Kirby, 2000;
Barton, 1995]. Afterwards, the externally applied magnetic field is added in
vertical direction. The results of these calculations are compared to the results
calculated with Fluent. The results differ less then 2.5%.
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6 Continuous Casting of Steel

In this chapter, the model assumptions and characteristics for a simplified con-
tinuous casting model are presented. The model has been defined in [Šarler et al.,
2012]. The geometry of the casting machine is introduced and adjusted to fit the
simplified numerical model. Next, assumptions of a simplified numerical model
are implemented for the magnetic field source. The magnetic field is calculated for
different configurations, among which the most appropriate with respect to the
real caster conditions is then chosen. Although the parameter values are taken
from the Štore Steel [Štore Steel, d. o. o., 2013] casting machine, the magnetic
field of the current model does not represent the magnetic field of the real caster.
The magnetic field in the current model is designed for EMBR system and thus
requires a DC current, whereas the EMS system working on the AC current is
employed in the real caster. However, the current model is a first step towards
the model for EMS.

The influence of the temperature field is taken into account and the mag-
netic field strength is adjusted accordingly. Further, the boundary and the initial
conditions for velocity, temperature, concentration, magnetic field, turbulent vis-
cosity, turbulent kinetic energy and dissipation rate are specified for the given
model assumptions. The node arrangement is then presented for the simplified
model and the chosen magnetic field specifications. Next, the model is verified
and validated with Fluent, which is based on the FVM. Finally, the effects of the
process and geometry parameters are investigated.

6.1 Model Assumptions

The model in the present dissertation represents a simplified 2D model of a CC
machine. Some of the assumptions for the present model are taken from [Vertnik,
2010]. In present dissertation, the following assumptions are adopted in the
formulation of the computational model.

• Although the CC process is a transient process, we seek the solution of a
steady state problem.

• The molten steel is considered as an incompressible Newtonian fluid.

• The curvature of the strand is not taken into account. An assumption of a
straight vertical strand is considered as a computational domain.

111
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• A simplified 2D geometry of the casting machine is considered. Although
the simplification is not a realistic approximation of a 3D curved casting
machine, it serves a sufficiently good layout for checking the accuracy of
the numerical model.

• The assumption of small Rem (Rem ≪ 1) is adopted. Such approximation
is suitable for liquid metal flows and means that the induced magnetic field
is negligible in comparison with the imposed magnetic field. Furthermore,
the Joule heating effect is sufficiently small to be neglected.

• Thermophysical properties, such as density, dynamic viscosity, specific heat,
liquid fraction, thermal conductivity and thermal expansion coefficient, are
considered to be constant and independent of temperature. The values of
this thermophysical quantities, except viscosity, are taken from the JMatPro
database at the value of solidus temperature of steel (51CrV4). Density,
dynamic viscosity, specific heat, thermal conductivity, thermal expansion
coefficient, and enthalpy, are equal for both phases.

• The heat release as a result of the solid-solid transformation is not consid-
ered.

• The solidification of the slurry region of the mushy zone is not considered
and the assumption is made that no equiaxed dendrites float in the molten
steel. Instead, it is assumed, that the mushy zone consists only of a porous
medium composed of columnar dendrites and interdendritic liquid. The
velocity of the solid phase is constant and equal to the casting speed.

• Local thermodynamic equilibrium is assumed during solidification.

• The model is based on the mixture continuum model that is used to describe
the macrosegregation. The model assumes the thermodynamic equilibrium
of the liquid and the solid phases in the mushy zone, with the assumption
that each location in this zone is simultaneously occupied by both phases
and all components.

• The microsegregation is modelled either with the linear distribution of latent
heat or with the Lever rule.

• The boundary and initial conditions for velocity, temperature and pressure
fields are taken from the benchmark test case for CC [Šarler et al., 2012].

• The low-Re k-ε turbulence model is applied to account for the turbulence
effects. The AKN model is used [Abe et al., 1994] to define the closure
relations.

• Magnetic field is modelled as a consequence of two solenoids, each placed on
one side of the strand. The solenoids are turned in the same direction and
thus form the magnetic field in a transverse direction. This magnetic field is
not a realistic representation of a 3D magnetic field in a real casting machine
that is generated by four perpendicular solenoids. As the main objective of
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such placement of solenoids is to achieve a homogeneous field in the middle
of the strand, the above described simplification is appropriate.

• The chosen placement of the two solenoids is consistent with ruler EMBR.

• The winding of the coils is assumed to be smooth and even.

6.2 Geometry

A simplified 2D model is used to represent the CC machine. A billet with a square
cross-section is considered. The geometry of the simplified model is shown in Fig.
6.1. Due to the mirror symmetry, only right half of the simplified model domain
is chosen as a computational domain. The layout of the computational domain is
shown in Fig. 6.2. The values of the computational domain dimensions are listed
in Tab. 6.1. The variables ab, d2, lm, lEM , and l, stand for the diameter of SEN,
billet width, mould height, electromagnet height and domain height, respectively.
In general, the source of the magnetic field is placed at lmEM . However, in the
basic case, the end of the mould coincides with the placement of the EM field
source and thus lm = lmEM . The values of all of the geometry parameters can
be varies at the model. The coordinate system origins x and y are set at the
top left corner of the model, transverse to and along the direction of the flow,
respectively.

Table 6.1: Geometry parameters of the simplified CC process.

parameter description unit value
billet width d2 [m] 0.14

diameter of SEN ab [m] 0.07
mould height lm [m] 0.8

EM height lmEM [m] 0.8
domain height l [m] 1.8

EM width lEM [m] 0.1

6.3 Magnetic Field

The magnetic field in the industrial mould is 3D and is produced by four square
coils perpendicularly facing each other as is shown in Fig. 6.3. The objective of
this dissertation is to form a 2D model of electromagnetic breaking. 2D geometry
of simplified model is obtained from 3D geometry of a realistic coil arrangement
by first removing the coils facing the x-y plane from each direction. The remaining
two coils (6.3 right) are then used to assure the uniformity of the magnetic field.
The 2D model is then obtained from the 3D model of two coils by assuming that
one of the coordinates (z in this instance) is infinite. This is done by assuming
that the z sides of the coils are much larger than the coils’ dimensions in either x
or y direction. The x-y plane cross-section of the magnetic field around the coil
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wires is thus approximately the same as the magnetic field around an equivalent
arrangement of infinite wires (Fig. 6.4). However, in the realistic configuration,
the coils encircle the iron core and consequently, the magnetic field is enhanced.
As the iron core electromagnets are a common occurrence in the physics of the



Magnetic Field 115

EM field, further simplification into the wire arrangement is not adopted here.
The magnetic field is calculated with Biot-Savart law for all the configurations
and additional equations are used to account for the magnetisation effect of the
iron core.

x

y

z

x

y

Figure 6.3: Square coils layout. Left: realistic 3D layout. Right: simplified 2D layout
used in computation.

y

x

Figure 6.4: A 2D approximation of the wire arrangement for a simplified model of
CC process.
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6.3.1 Magnetic Field due to Rectangular Coils

In the present dissertation, it is assumed that the magnetic field inside the casting
machine is produced by two rectangular solenoid coils. Each of the solenoids is
made out of NN×NM windings or loops, where NN and NM stand for the number
of coils in x and y directions, respectively. In order to be able to calculate the
magnetic field produced by the rectangular solenoid coil, first the magnetic field
of a single rectangular loop is calculated. As each of the windings is made of
four finite straight wires, the magnetic field can be calculated as the sum of the
magnetic fields of each of these wires. The procedure of how the magnetic field
of the finite rectangular solenoid arrangement is calculated, is elaborated below.

Magnetic Field due to a Finite Straight Wire

The current (I) carrying finite straight wire of length b is considered. The wire
is positioned along the z axis as shown in Fig. 6.5.

z

y

x

P(x,y,z)
I

− b
2

b
2

Figure 6.5: Finite, straight, current
carrying wire with length b.
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Figure 6.6: Magnetic field (ln(B)) of
a finite straight wire with length b.

To begin with, the value of the magnetic field at a field point P is examined.
According to the Biot-Savart law

dB =
µ0I

4π

ds× r̂

r2
=
µ0I

4π

ds× r

r3
; r̂ =

r

r
, (6.1)

each of the infinitesimally small segments of wire ds contributes a small part to
the magnetic field. By adding up all of the contributions dB, the strength of
the magnetic field due to the current in the wire can be calculated

B =

∫

dB =
µ0I

4π

∫ b
2

− b
2

(xiy − yix)dz̃
(√

x2 + y2 + (z − z̃)2
)3 . (6.2)

The solution of the integral in Eq. 6.2 yields

Bx =
µ0I

4π

( y
(
z − b

2

)

(x2 + y2)
√

x2 + y2 +
(
z − b

2

)2
− y

(
z + b

2

)

(x2 + y2)
√

x2 + y2 +
(
z + b

2

)2

)

,

(6.3)
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By =
µ0I

4π

( x
(
z + b

2

)

(x2 + y2)
√

x2 + y2 +
(
z + b

2

)2
− x

(
z − b

2

)

(x2 + y2)
√

x2 + y2 +
(
z − b

2

)2

)

(6.4)
and

Bz = 0. (6.5)

The strength of magnetic field B =
√
B2

x +B2
y +B2

z is depicted in Fig. 6.6.

Magnetic Field of a Rectangular Loop

As already mentioned, the magnetic field of a rectangular loop with sides a and
b 1, shown in Fig. 6.8, is obtained by adding up the field contributions of each of
its sides. The present derivation of the magnetic field in a square loop is based
on the previously published works of [Li, 2004; Herceg et al., 2009; Misakian,
2000]. The magnetic field of a single side is equal to the magnetic field of a finite
straight wire (Fig. 6.6). In order to get the magnetic fields of each of the sides,
the coordinate system is shifted in the y direction first for −a

2
(B0x, B0y, B0z)

x → x (6.6)

y → y − a

2
z → z.

The original coordinate system is than rotated for 180◦ around the y axis and
shifted for +a

2
(B180x, B180y, B180z)

x → −x (6.7)

y → y +
a

2
z → −z.

The original coordinate system is than rotated for 90◦ around the x axis, so that
the wire is parallel to the y axis, and shifted for b

2
along z axis (B90x, B90y, B90z)

x → x (6.8)

y → z

z → y +
b

2
.

Finally, the original coordinate system is rotated for 270◦ around the x and then
shifted for − b

2
(B270x, B270y, B270z)

x → x (6.9)

y → −z
z → y − b

2
.

1The actual loop considered is square, i.e. a = b. However, to be more general and to be able
to separate the shifts of coordinate systems in the y and z direction, a rectangle is considered
and its dimensions are in y direction denoted as a and in z direction as b.
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The schematics of coordinate rotations are depicted in Fig. 6.7. The correspond-
ing rotations and shifts (Eqs. 6.7, 6.8, 6.9, and 6.10) are inserted into Eq. 6.2 to
obtain the magnetic field of each individual wire segment.
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Figure 6.7: Finite, straight, current carrying wire with length b. Rotations from the
left to the right: 0◦, 180◦, 90◦ and 270◦.

The magnetic field components of a rectangular coil are calculated by adding
the magnetic field components of finite wire segments

Bx = B0x +B90x + B180x +B270x, (6.10)

By = B0y +B90y +B180y +B270y,

Bz = B0z +B90z +B180z +B270z .

The equations for each of the components B0x, B90x, . . . , B180z , B270z are pre-
sented in Appx. C. The components of the magnetic flux density of a rectangular
coil are therefore

Bx =
µ0I

4π

4∑

i=1

( (−1)izi
ri(ri + (−1)i+1yi)

− yi
ri(ri + zi)

)

, (6.11)

By =
µ0I

4π

4∑

i=1

( (−1)i+1x

ri(ri + zi)

)

, (6.12)

and

Bz =
µ0I

4π

4∑

i=1

( (−1)i+1x

ri(ri + (−1)i+1yi)

)

, (6.13)

where

z1 = z +
b

2
, y1 = y +

a

2
, r1 =

√

x2 + y21 + z21 (6.14)

z2 = z +
b

2
, y2 = y − a

2
, r2 =

√

x2 + y22 + z22

z3 = z − b

2
, y3 = y +

a

2
, r3 =

√

x2 + y23 + z23

z4 = z − b

2
, y4 = y − a

2
, r4 =

√

x2 + y24 + z24

The resulting magnetic field is shown in Fig. 6.9.
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Figure 6.8: Square loop with sides
a = b.
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Figure 6.9: Magnetic field of a square
loop.

Parallel Square Loops

If the loops in a square solenoid are tightly-wound, it can be assumed that the
square solenoid is made out of several parallel square loops (Fig. 6.10). The loops
are placed tightly next to each other in the x direction, with the assumption that
the distance between two neighbouring loops is equal to the diameter of the wire.
Substituting

x→ x + n · φw, (6.15)

where n = 1, . . . , NN and φw is the diameter of the wire in equations 6.11, 6.12,
6.13, and 6.15, provides the magnetic field Bn of an individual loop at position
n · φw. Again, the total magnetic field of a square solenoid is the sum of all the
singular field contributions and can be written as

B = B1 + · · · + BNN
=

NN∑

n

Bn. (6.16)

The magnetic field of square solenoid with NN loops is shown in Fig. 6.11.
A similar procedure is repeated for wires winded around each other in y and

z directions by enforcing the following substitutions

y → y +m · φw, (6.17)

and

z → (z +m · φw), (6.18)

where m = 1, . . . , NM . A schematic representation of the loop arrangement is
shown in Fig. 6.12. The total magnetic field is the sum of all the partial field
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Figure 6.10: Schematic picture of parallel square loops. Left: scheme. Right: side
view.
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Figure 6.11: Magnetic field of NN square parallel loops.

contributions

B = B1 + · · · + BNM
=

NM∑

m

Bm. (6.19)

Two Square Solenoids

Next, two such arrangements are placed along the x direction at a distance d
2

from the axis as shown in Fig. 6.13. It should be noted here, that the direction of
the electric current is very important as it affects the orientation of the magnetic
field. In the realistic 3D coil arrangement, the coils are placed perpendicular to
each other and the magnetic field of each coil points towards the center of the
strand. The configuration of the realistic coil arrangement and the corresponding
magnetic field strength are depicted in Fig. 6.14.

In the case of two coils, each placed on the same axis at one side of the strand,
the magnetic field strength vectors can either point in the same direction or in the



Magnetic Field 121

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc
bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc
bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc
bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

L

b

φw

NN

NM

Figure 6.12: Parallel square loops arrangement.
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Figure 6.13: Square solenoid 2D model arrangement.

opposite directions. The described coil configuration is schematically presented
in Fig. 6.15. The magnetic fields for both coil configurations are presented in
Fig. 6.16. As the objective of the chosen coil configuration is to obtain the
homogeneous field in the center of the strand, the parallel configuration is chosen
for the purposes of this dissertation. The coil parameters inclusive the orientation
of the coil can be varied.
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Figure 6.14: Orientation of magnetic field in a realistic coil arrangement with four
coils.
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Figure 6.15: Orientation of magnetic field in two coil arrangement. Left: opposite
coil configuration. Right: parallel coil configuration.
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Figure 6.16: Magnetic field of NN × NM square loops placed at a distance d. Left:
opposite coil configuration. Right: parallel coil configuration.

As already mentioned, the parallel coil configuration shown in Fig. 6.13 is
chosen in this dissertation. Similarly to the previous transformations, the x co-
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ordinate is substituted by

x→ x+
d

2
, (6.20)

to obtain the magnetic field of the left coil and by

x→ x− d

2
, (6.21)

to obtain the magnetic field of the right coil. The transformations (Eq. 6.20 and
Eq. 6.21) are inserted into Eq. 6.19. Both of the magnetic field components are
then added

B = B− d
2

+ B d
2

(6.22)

to obtain the total magnetic field. The result is shown on the right in Fig. 6.16.

Magnetic Field in 2D

As the computational model is 2D the 3D magnetic field of two coils has to be
reduced to 2D. This is achieved by

z → ∞. (6.23)

The magnetic field of the 2D approximation is shown in Fig. 6.17.
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Figure 6.17: Magnetic field of NM ×NN infinite square coils.

The above stated descriptions and equations are valid for paramagnetic ma-
terial and do not take into account neither the iron core of realistic solenoids
nor the molten steel flow in the strand. First the influence of external magnetic
field on the magnetization of the molten steel flow is investigated and further,
the magnetization due to the iron core inserted into the coils is considered and
calculated in subsequent chapters.
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6.3.2 Influence of Temperature on Magnetic Behaviour of

Molten Steel

Steel is an iron alloy and is thus ferromagnetic, which means that it exhibits
strong magnetic effects [Vollhardt et al., 2001; Moffatt, 1978]. The atomic spin
in ferromagnetic materials have permanent magnetic moments and due to the
ferromagnetic coupling between them, tend to align with adjacent neighbours.
This regions of mutual spin alignment are called domains. The magnetic fields
of the domains are in an absence of an external magnetic field aligned randomly.
However, when exposed to an externally applied magnetic field, even a small one,
the domains realign in the direction of the applied magnetic field, which is con-
sequently strongly amplified. The material tends to stay magnetized even when
the external magnetic field is removed. The magnetic field inside the material is

B = B0 + µ0M = µ0(H + M) = µ0µrH. (6.24)

Magnetization is proportional to the magnetic field strength

M = χH = (µr − 1)H =

(
µsteel

µ0
− 1

)

H, (6.25)

where χ indicates the degree to which the applied magnetic field has magnetized
the material. µsteel is the magnetic permeability of steel.

Temperature influences the magnetic behaviour of the ferromagnetic materi-
als. By increasing the temperature, the thermal motion of the atoms becomes
large enough to neutralize the coupling forces between the magnetic dipole mo-
ments. This results in random orientation of the magnetic moments, and the
material therefore becomes paramagnetic. This phenomena happens, when the
temperature exceeds Curie temperature (TCurrie), the temperature at which the
magnetization M drops to zero.

Fig. 6.18 shows the temperature dependence of permeability of steel for four
different cooling rates (0.1 K/s, 1 K/s, 10 K/s and 100 K/s). TCurrie slightly de-
pends on the cooling rate. However, in all of the cases, permeability of steel drops
to µ0 as the temperature exceeds TCurrie. As the temperature in our model never
falls below TCurrie, magnetic permeability is constant throughout the calculation.
The value of µsteel is calculated with the JMatPro and is µ0 for T ≫ TCurrie.
According to Eq. 6.25 the magnetization above TCurrie is M = 0, which means
that the magnetisation can be neglected and B = B0.

6.3.3 Magnetization due to the Iron Core in Solenoids

In the real solenoid arrangement, the core, made of soft iron, is inserted inside
each of the solenoids. The susceptibility of the material inside the solenoid is
therefore no longer µ0 but µiron and consequently the magnetic field is

B = µironH (6.26)

instead of
B0 = µ0H. (6.27)
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Figure 6.18: Temperature dependence of permeability of 51CrV4 steel for four differ-
ent cooling rates taken from JMatPro database.

The material outside of the solenoid still has the permeability µ0 but is influenced
by the magnetized material inside the solenoid. The magnetic field outside of the
solenoids is hence corrected to account for the additional magnetization of the
iron core and is

B = B0 + Bcorr, (6.28)

where Bcorr is the magnetic flux correction. In order to be able to calculate the
latter, the material inside the solenoid is considered first. The soft iron core
is ferromagnetic, which means that by inserting the material into the solenoid,
the magnetic field inside the solenoid is strongly enhanced. This is due to the
realignment of the magnetic dipole moments in the direction of the externally
applied magnetic field. The magnetization is proportional to the net magnetic
dipole moments m per volume V

M =
dm

dV
. (6.29)

The total magnetic dipole momentum inside the solenoid can be obtained by
integrating over the volume of the solenoid. The correction factor is obtained by
calculating the magnetic field of the magnetic dipoles

Bcorr =

∫

V

dBcorr =

∫

V

µ0

4π

(
3r(M · r)

r5
− M

r3

)

dV, (6.30)

where M is obtained from Eq. 6.25. The influence of the iron core is depicted in
Fig. 6.19.
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Figure 6.19: Magnetic field of two parallel iron core solenoids, each with NN × NM

infinite square coils.

6.4 Magnetic Field in the Continuous Casting

Problem

In terms of the magnetic field two different cases are considered in this disser-
tation. In the first case the constant magnetic field with a predefined value B0

is considered. The value is set either to 3.5 mT or 2.6 mT. The first value is
obtained from literature, whereas the second value has been measured in Štore
Steel.

The calculations for the former test case are performed at different vertical
positions and influence ranges of the magnetic field sources. A detailed description
of the pertained positions and ranges is given in Sect. 6.7.1. In the second
case, the magnetic field is calculated according to the above described procedure.
The values stated below are consistent with the realistic dimensions of the coil
arrangement. The parameters are stated in Tab. 6.2.

Table 6.2: Parameters for magnetic field.

Parameter Description Unit Value

current |I| [A] 50
number of windings in x direction NN 25

number of windings y direction NM 11
span ad [m] 0.1

coil dimension in y direction a [m] 0.035
coil dimension in z direction b [m] 0.045

wire diameter φw [m] 0.00275

The parameters in Tab. 6.2 are valid for the 3D problem and concur with the
measured value of the magnetic field in the real caster. However, in this instance,
the problem is 2D and as the objective of the problem is to have a realistic value
for the magnetic field (260 G), one of the parameters has to be adjusted, in order
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to obtain the desired value for the magnetic field. The parameters, needed for
calculation, are therefore set in such a way, that the value of the magnetic field
density in the middle of the strand is 260 G. In the basic case, the adjusted
parameters are the span between the strand and the electromagnets ad, and the
dimension of the coil in z direction (b), which is set to ∞ in order to reduce the
problem to 2D. The rest of the parameters in the basic case are kept at the values
stated in Tab. 6.2. In the following chapters (Sect. 6.7.2), the parameter analysis
is made in order to check the influence of each of the parameters on the magnetic
field strength. All of the parameters can be adjusted to the desired values.

6.5 Node Arrangement

The computational domain is divided into four parts: the SEN part (bellow the
SEN), the mould part (the mould region not including the SEN part) the inner
spray region (the spray region below the SEN part) and the outer spray region
(the spray region below the mould part) as shown in Fig. 6.20. The parts differ
by levels of node refinement. Figs. 6.21, 6.22, and 6.23 depict the details of
the node arrangement for a simplified computational domain scheme with 20200
nodes.
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Figure 6.20: Levels of the refinement in the computational domain.

6.6 Initial and Boundary Conditions

The initial and boundary conditions for the simplified CC model are described
in the following subsections. The Dirichlet, Neuman and Robin BC are used to
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Figure 6.21: Node arrangement at the top of the computational domain. See TOP
section in Fig. 6.20.

Figure 6.22: Node arrangement detail at the end of the mould. See MIDDLE section
in Fig. 6.20.

define the model.

6.6.1 Initial Conditions

The values of velocity, temperature, pressure, magnetic field and species concen-
tration at t = t0 are prescribed by initial conditions described below.
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Figure 6.23: Node arrangement at the bottom of the computational domain. See
BOTTOM section in Fig. 6.20.

Velocity

The initial value for velocity is calculated by solving the potential field equation
as shown in Sect. 2.5.3, Eq. 2.110.

Temperature

The initial value for temperature is set to a constant value and is equal to the
casting temperature (T0 = Tcast).

Pressure

The initial value for pressure is constant and set to zero, i.e. p0 = 0.

k and ε

The initial values for the turbulent kinetic energy k and the dissipation rate ε are
set to constant values k0 = 10−3 m2/s2 and ε0 = 10−3 m2/s3.

Magnetic Field

The initial value for the magnetic field is either set to a predefined value B0 = B

or calculated as shown in Sect. 6.3.

Species Concentration

The initial value of solute concentration is set to a predefined constant value
(C = C0).



Initial and Boundary Conditions 131

6.6.2 Boundary Conditions

BC have to be set on five different surfaces: inlet, free surface, moving wall, outlet
and symmetry line as shown in Fig. 6.2.

Velocity

• Dirichlet BC are adopted for the velocity at the inlet. The value of the
velocity in x direction is set to vx = 0, whereas the value of the velocity in
y direction is calculated from the casting velocity as

vy =
abvcast
d2

. (6.31)

• Neuman BC are used at the outlet, where an assumption of fully developed
flow is made. The velocity gradient is set to zero ( ∂v

∂n
= 0).

• On the free surface, the velocity in y direction is set zero vy = 0, whereas
the Neuman BC is used to define the velocity in x direction ∂vx

∂n
= 0.

• No-slip BC is used for the velocity at the moving walls. The walls move in
the direction of casting with the velocity v = vcast.

• Neuman BC are used on the symmetry line, i.e. ∂vx
∂n

= ∂vy
∂n

= 0.

Temperature

• Dirichlet BC is used to describe the temperature at the inlet. The value is
constant and set to Tcast.

• Neuman BC are set to describe the temperature at the outlet, free surface
and symmetry line (∂T

∂n
= 0).

• The temperature at the moving walls is prescribed with the Robin BC by
considering the heat fluxes. The moving walls are divided into two parts;
the mould region and the spray cooling region. In the mould region, the
heat transfer coefficient hmc is 2000 W/(m2K), whereas in the spray cooling
region the heat transfer coefficient hsc is 800 W/(m2K). In the mould region,
heat flux is calculated as

qmould = hmc(T − Tsc), (6.32)

where Tsc is the temperature of the cooling water, set to 293 K. The heat
flux in spray cooling region is obtained from

qsc = hsc(T − Tsc). (6.33)
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Pressure

• Neuman boundary condition is used to calculate the pressure at the inlet,
free surface, moving walls and symmetry line.

• Dirichlet boundary condition is prescribed for pressure at the outlet. The
pressure is constant and set to gauge pressure, i.e. p = 0 for ambient
pressure.

k and ε

• Dirichlet boundary conditions are prescribed for k and ε at the inlet.

• Neuman boundary conditions are used at the outlet, free surface, symmetry
line and moving walls. As the flow is assumed to be fully developed, the
∂k
∂n

= 0 and ∂ε
∂n

= 0.

Magnetic Field

• Neuman boundary condition is prescribed at the input, free surface, outlet
and symmetry line, ∂j

∂n
= 0.

• Dirichlet boundary condition is prescribed for magnetic field at the mov-
ing walls, i.e. j = 0. The ”wall” is insulated, so that the σw = 0 and
consequently, the ∂φ

∂n
= 0.

Species Concentration

• Dirichlet boundary conditions are prescribed for species concentration at
the inlet. The value is set to a constant, predetermined value C = C0.

• Neuman boundary conditions are used at the outlet, free surface, symmetry
line and moving walls, i.e. ∂C

∂n
= 0.

6.7 Numerical Examples

Three different numerical examples are considered: a simple, predetermined mag-
netic field (A), a magnetic field calculated from the coil model (B) and a magnetic
field calculated from the coil model with consideration of species transfer (C). As
can be deduced from the example titles, the first example describes the classical,
simplified CC process with a predefined magnetic field. The results of the devel-
oped numerical model are verified by comparison with the results acquired with
FVM. In the second case, the magnetic field is calculated as described in Sec.
6.3. In the third case, species transfer is added to the example B.

The thermophysical properties are given in Tab. 6.3. If the specific numer-
ical parameter is required in any of the three numerical examples, it is stated
separately at the corresponding section.
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Table 6.3: Thermophysical properties of steel used in the computation.

Parameter Description Unit Value

Density ρ [kg/m3] 7200
Dynamic viscosity of liquid µL [kg/(ms2)] 0.006
Thermal conductivity λ [W/(mK)] 30
Specific heat cp [J/(kg K)] 700
Heat transfer coefficient in the
mould

hmc [W/(m2K)] 2000

Heat transfer coefficient in the
spray cooling region

hsc [W/(m2K)] 800

Melting enthalpy hm [J/kg] 250000
Diffusion coefficient of solid DS [m2/s] 1.6 ·10−11

Diffusion coefficient of liquid DL [m2/s] 1.0 ·10−8

Solidus temperature TS [K] 1680
Liquids temperature TL [K] 1760
Casting temperature Tcast [K] 1800
Melting temperature Tm [K] 1812
Eutectic temperature TE [K] 1420
Spray cooling temperature Tsc [K] 293
Casting velocity vcast [m/s] 0.0292
Permeability constant K0 [m−1] 6.25 ·10−9

Gravitational acceleration gy [m/s2] 9.81
Electric conductivity σ [(Ω m)−1] 0.59·106

Permeability of free space µ0 [H/m] 4π · 10−7

Permeability of soft iron µiron [H/m] 6.28·10−3

Permittivity of free space ε0 [F/m] 8.85·10−12

Thermal expansion coefficient βT [K−1] 1·10−4

Solute expansion coefficient βC [/] 4·10−3

Partition coefficient kp [/] 0.48
Reference concentration Cref [/] 0.008
Eutectic concentration of solid CES [/] 2.06
Eutectic concentration of liquid CEL [/] 4.3

The results are compared for several different cross-sections; two of which are
in the vertical direction (one at the center of the billet or symmetry line, the
other at the surface of the billet) and three at different positions in the horizontal
direction (one at the outlet, and two before and after the application of magnetic
field). A scheme of the plotting cross-section positions is shown in Figs. 6.24
and 6.25. The positions of the horizontal (Fig. 6.25) plotting cross-sections are
adjusted in such a way, that they correspond to the area of interest. Unless
otherwise stated, the vertical positions are placed at 0.07 m (vI) and 0.14 m (vII)
and the horizontal positions are placed at -0.8 m (hI), -0.9 m (hII) and -1.8 m
(hIII).
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Figure 6.24: Positions of plotting
cross-sections. The dashed line rep-
resents plotting cross-section along y
axis.
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Figure 6.25: Positions of plotting
cross-sections. The dashed line rep-
resents plotting cross-sections along x
axis.
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6.7.1 A: Simple Predetermined Magnetic Field

The numerical example A with a simple predetermined magnetic field describes a
case with completely homogeneous magnetic field with magnitude B = B0 inside
the interval [−lm,−lm − lEM ] and B = 0 T for y < −lm − lEM and y > −lm.
The cross-section of such magnetic field is depicted in Fig. 6.26 at x = 0.07 m.
The default magnetic field is placed at lmEM = −0.8 m, has the range of 0.1 m
(lEM = 0.1 m), is oriented in x direction and has either magnitude B = 0.026 T
or B = 0.035 T.
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Figure 6.26: An example of a simple magnetic field with lm = −0.8 m and lEM = 0.1
m.

First, the results calculated with the developed numerical model are com-
pared for several different node arrangements in order to determine the node
independent solution which is then compared with Fluent. The objective of the
comparison is to show that the results obtained with the in-house developed code
are in good agreement with reference results and not to comment on which of the
compared codes is authentic.

Next, a sensitivity study is performed for several different parameters, namely
the magnitude of the magnetic field B, the position of the magnetic field lmEM ,
and the effective interval range lEM .

Mesh Convergence and Comparison with Reference Results

The node independence is tested on a non-uniform node arrangements with 20220,
50951, 73940, 100089, 131452 and 165426 nodes. In FVM, mesh with 169169
quadrilateral cells generated in the Gambit software [ANSYS, 2013], is used for
the calculations. The mesh refinement near the walls is similar to the one used
in LRBFCM code. Based on the comparison with the Fluent and the following
results, a node arrangement with 73940 nodes is chosen. The study was made
for the temperature and velocity fields at the following cross-sections: x = 0.07
m (symmetry line) and x = 0.14 m (surface) in the horizontal direction and
y = −1.8 m (outlet), y = −0.9 m and y = −0.8 m in the vertical direction for
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the magnetic field Bx = 3.5 · 10−2 T placed at the end of the mold lm = 0.8 m.
The width of the magnetic field interval is lEM = 0.1 m.

Temperature is shown in Figs. 6.27, 6.27, and 6.27. All of the comparisons,
both at vertical and at horizontal cross-sections, are in a very good agreement,
even for node arrangements with the smallest number of nodes. The values
obtained with FVM are in a very good agreement with the in-house developed
method.
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Figure 6.27: Temperature at simplified magnetic field. Left: −0.8 m. Right: −0.9
m.
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Figure 6.28: Temperature at simplified magnetic field at cross-section −1.8 m.

The absolute velocity magnitude is shown in Figs. 6.30, 6.31, and 6.32. The
velocity magnitudes for horizontal cross-sections (Figs. 6.30 and 6.31) in the ex-
amples with 20220 and 50951 nodes have slightly lower values in the extremes,
compared to the examples with 73940, 100089, 131452 and 165426. In the cases
with denser node arrangements, the difference is negligible and cannot be vi-
sually perceived. The FVM results give slightly larger values at the extremes,
especially at the cross-sections at the higher part of the strand (−0.8 m and
−0.9 m in Fig. 6.30). In all of the calculations, the range to which the material
has solidified appears to be the same. Like-wise could be said for the velocity
at which the solidified material is moving. The agreement between the results
for velocity magnitude calculated with LRBFCM and with FVM is much better
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Figure 6.29: Temperature at simplified magnetic field. Left: cross-section at 0.07 m.
Right: cross-section at 0.14 m.

for the cross-section at the end of the calculation domain (at −1.8 m as shown
in Fig. 6.32) where the observed difference is very small. A comparison of the
velocity magnitudes for different node arrangements for the vertical cross-section
at the horizontal positions of 0.07 m (the center of the strand) and of 0.14 m
(the outer edge of the strand) gives a very good agreement between all of the
examples, no matter how dense the node arrangement is. A comparison with the
FVM presents a very good agreement at the outer edge, where the velocity of
the solidified material equals the casting velocity. In the center of the strand,
the velocity magnitude calculated with the FVM gives slightly different values,
especially at the part of the strand where the change in the velocity magnitude
is the fastest.
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Figure 6.30: Absolute velocity field at simplified magnetic field. Left: cross-section
at −0.8 m. Right: cross-section at −0.9 m.
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Figure 6.31: Absolute velocity at simplified magnetic field at cross-section −1.8 m.
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Figure 6.32: Absolute velocity at simplified magnetic field. Left: 0.07 m. Right: 0.14
m.

As the velocity magnitudes for different node arrangement calculated with
LRBFCM, exhibit a slight discrepancy with the results from Fluent, another
comparison was made. In this case, the agreement between the results calculated
with LRBFCM on the 73940 node arrangement with and without the presence
of magnetic field is compared to the results obtained with the FVM both with
and without the presence of the magnetic field. This test is performed to check
if the difference between the results calculated with the LRBFCM and FVM is
the same if there is no magnetic field. The comparison is done only for the veloc-
ities, as the discrepancy of the results appears only for the velocity magnitudes.
The comparison of velocity magnitudes for the magnetic field and without the
magnetic field is presented in Figs. 6.33, 6.35 and 6.34. In this case the magnetic
field with a magnitude of 350 G is used. As can be seen in Figs. 6.33, 6.35
and 6.34 the difference between the cases with and without the magnetic field is
comparable. The figures also show, that the weak magnetic field of 350 G only
slightly influences the velocity field.
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Figure 6.33: Comparison of absolute velocity magnitudes for the cases with and
without magnetic field. Left: cross-section at 0.07 m. Right: cross-section at 0.14 m.
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Figure 6.34: Comparison of absolute velocity magnitudes for the cases with and
without magnetic field. Left: cross-section at −0.8 m. Right: cross-section at −0.9 m.
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Figure 6.35: Comparison of absolute velocity magnitudes for the cases with and
without magnetic field at cross-section −1.8 m.

The comparison of streamlines and contour plots for T and v fields for the
cases with and without the magnetic field is given in Figs. 6.36, 6.37 and 6.38.
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Figure 6.36: Comparison of streamlines between FVM and LRBFCM simulations
with and without magnetic field. I: Fluent Bx = 0 T. II: Bx = 0 T. III: Fluent
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Figure 6.38: Comparison of velocity field between FVM and LRBFCM simulations
with and without magnetic field. I: Fluent Bx = 0 T. II: Bx = 0 T. III: Fluent
Bx = 3.5 · 10−2 T. IV: Bx = 3.5 · 10−2 T.
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The Strand Length Sensitivity Study

The study of the influence of the strand length is made for strand lengths l = 1.8
m and l = 2.6 m. The objective of this test is to ascertain, that the length of
the computational domain does not affect the velocity and temperature profiles
in upper parts of the strand. As the length of the computational domain is
most likely to affect the velocity and the temperature profiles at the end of the
computational domain, Fig. 6.39 shows the vertical cross-section at the horizontal
position of 0.14 m and the horizontal cross-section at the end of the shorter
computational domain, that is at −1.8 m. As can be seen in the Fig. 6.39 the
velocity and temperature profiles on both graphs are visually identical.
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Figure 6.39: Comparison of profiles for strand length of l = 1.8 m and l = 2.6 m.
Left: temperature profile at 0.14 m. Right: velocity profile at −1.8 m.

Graphs in Fig. 6.40 show contour plots for velocity and temperature fields for
shorter and longer configuration of the computational domain. The contour plots
confirm that the 1.8 m long computational domain is long enough. Extending
the computational domain to 2.6 m does not affect neither the velocity field nor
the temperature field. The metallurgical length, at which the entire cross-section
of the billet is solidified, is at approximately 10 m.
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Figure 6.40: Comparison of temperature and velocity fields as a function of compu-
tational domain length. Left: temperature field. Right: velocity field.
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Influence of the Magnetic Field Magnitude

The influence of the magnetic field magnitude is tested for several magnetic field
magnitudes, ranging from 0.0 T to 2.6 T. The changes in the temperature profiles
due to the changes in the magnetic field magnitude are negligible as can be seen
in Figs. 6.41 and 6.42.
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Figure 6.41: Comparison of temperature profiles along x direction. Left: −0.9 m.
Right: −1.8 m.
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Figure 6.42: Comparison of temperature profiles along y direction. Left: 0.07 m.
Right: 0.14 m.

The contour plots of the temperature field for different magnetic field magni-
tudes are nearly identical and are presented in Appx. D. Since the influence of
magnetic field on temperature is very small, related plots are arranged in such a
way that the difference between the the case with magnetic field and reference
case without magnetic field is shown (T (B) − T (B = 0)). As expected, the tem-
perature does not change significantly, especially in the cases with small magnetic
fields (Bx = 2.6 ·10−3 T and Bx = 2.6 ·10−2 T), where the temperature difference
is smaller than one degree. The change in temperature is more pronounced in
cases with stronger magnetic fields (Bx = 0.26 T and Bx = 2.6 T), especially at
the solidified shell.
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Next, the velocity profiles are examined for three different horizontal cross-
sections at vertical positions −0.8 m, −0.9 m and −1.8 m. The influence of
the magnetic field magnitude is the most apparent for the strongest magnetic
fields (0.26 T and 2.6 T). As expected, the increase in the magnetic field causes
the decrease in the velocity magnitude, as can be seen in Figs. 6.44 and 6.45.
Whereas, the trends in the velocity magnitudes are similar for small and inter-
mediate magnitudes of the magnetic fields, the velocity trend of the strongest
calculated example is different at the place of application of magnetic field. The
difference in the velocity magnitude is the most apparent at position −0.9 m (Fig.
6.44 right), where the velocity magnitude of the strongest magnetic field changes
direction. Although such behaviour could be expected for the strong magnetic
fields, the results might not be completely correct because the current numerical
model is not adapted to include the strong magnetic fields, as one of its major
approximations was that the Rem ≪ 1. As the objective of this dissertation was
to research the influence of the magnetic field in the industrial example of con-
tinuous casting of steel, the behaviour of molten steel at the very high magnetic
fields that are currently out of reach to be applied industrially, is not considered.
The cross-section of the velocity magnitudes at −1.8 m again shows only a slight
difference between the velocity profiles influenced by magnetic fields with differ-
ent magnitudes, even in the case of a very strong magnetic field. This is to be
expected, as the range of the applied simple magnetic fields does not reach this
low in the casting direction.
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Figure 6.44: Comparison of velocity profiles along x direction. Left: −0.8 m. Right:
−0.9 m.
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Figure 6.45: Comparison of velocity profiles along x direction at cross-section −1.8
m.

Fig. 6.46 presents the contour plots of the velocity field. Since the influence
of magnetic field on the velocity is very small, related plots are arranged in such a
way that the difference between the cases with magnetic field and reference case
without magnetic field is shown (v(B)−v(B = 0)). The change in velocity is the
most pronounced at the place of application of magnetic field, that is between
−0.8 m and -0.9 m.
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The Influence of the Magnetic Field Position

Regarding the position of the magnetic field, the vertical positioning lmEM of the
magnetic field is varied between −0.6 m and −0.9 m. First, temperature field and
then the velocity field are examined and compared for the default magnetic field
B0 of 0.026 T. The influence of the magnetic field position on the temperature
field is presented in Fig. 6.47 for the horizontal cross-sections at the vertical
positions 0.07 m and 0.14 m. The magnetic field is to weak too cause significant
observable change.
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Figure 6.47: Comparison of temperature profiles along x direction. Left: 0.07 m.
Right: 0.14 m.

The velocity field for different positions of the magnetic field is depicted in
Figs. 6.48 and 6.49. Similarly as in the case of the temperature field, the differ-
ence in the velocity is very small. Shifting of the position of the magnetic field
influences the extreme values of the velocity as seen in Figs. 6.48 and 6.49. The
reason for this might be a more turbulent behaviour of the flow in the higher
regions of the strand.
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Figure 6.48: Comparison of velocity profiles along y direction. Left: −0.8 m. Right:
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Figure 6.49: Comparison of velocity profiles along y direction at −1.8 m.

Analogously to the temperature cross-sections, the contour plots of the tem-
perature fields are very similar, and not able to be observed visually. Therefore,
each of the graphs in Fig. 6.50 presents the difference between the default mag-
netic field configuration and the configuration of the related case (T (B)−T (B0)).

The contour plots of the velocity field are very similar, thus the differences
cannot be visually observed. Therefore, each of the graphs presented in Fig.
6.51 shows the difference between the example with the default magnetic field
configuration and the related case (v(B) − v(B0)).
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Figure 6.50: Temperature field (T (B)− T (B0)) as a function of magnetic field posi-
tion. I: lmEM = −0.6 m. II: lmEM = −0.7 m. III: lmEM = −0.9 m.
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Figure 6.51: Velocity field (v(B)− v(B0)) as a function of EM positions. I: lmEM =
−0.6 m. II: lmEM = −0.7 m. III: lmEM = −0.9 m.
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The Influence of the Magnetic Field Height

The influence of the magnetic field range is examined for four different heights:
lEM = 0.05 m, lEM = 0.1 m, lEM = 0.15 and lEM = 0.2 m. In all of the cases,
the magnetic field is placed at the end of the strand, that is at −0.8 m. The
temperature profiles for different heights of the magnetic field are presented in
Fig. 6.52. There are no significant observable differences.
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Figure 6.52: Comparison of temperature profiles along x direction. Left: 0.07 m.
Right: 0.14 m.

The velocity fields for different magnetic field heights are presented in Figs.
6.53 and 6.54 and are very similar.
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Figure 6.53: Comparison of velocity profiles along y direction. Left: −0.8 m. Right:
−0.9 m.
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Figure 6.54: Comparison of velocity profiles along y direction at −1.8 m.

The contour plots for temperature fields are very similar and differences can-
not be observed visually. Instead, the contour plot of the difference between the
temperature of the default arrangement and the temperature of the related ex-
ample (T (B)− T (B0)) are displayed in Fig. 6.55. The differences in the contour
plots of the velocity fields cannot be observed visually. Therefore, the difference
of the velocity field of the default example and the velocity field of the related
examples (v(B) − v(B0)) are shown in Fig. 6.56.
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Figure 6.55: Temperature field (T (B) − T (B0)) as a function of magnetic field po-
sition. I: −0.8 m < lEM < −1.0 m. II: −0.8 m < lEM < −0.95 m. III: −0.8 m
< lmEM < −0.85 m.
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Figure 6.56: Velocity field (v(B) − v(B0)) as a function of magnetic field range. I:
−0.8 m < lEM < −1.0 m. II: −0.8 m < lEM < −0.95 m. III: −0.8 m < lmEM < −0.85
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6.7.2 B: Coil Magnetic Field - Temperature, Velocity

The second numerical example B tackles a magnetic field that is calculated from
the coil model described in the previous section (Sect. 6.4) by using the param-
eters described in Tab. 6.2.

First, a comparison between the case without the magnetic field and the
default magnetic field configuration (I = 50 A, NN = 25, NM = 11 and ad = 0.05
m) is made. Next, the parametric study is performed for the following parameters:
the electric current, the span, and the number of windings in x and y direction.
The results are presented on vertical and horizontal cross-sections. The position
of certain cross-section is chosen in such a way that it represents the profile that
is the most interesting.

Comparison between Configuration with and without Magnetic Field

To better understand the influence of the magnetic field on the velocity and
temperature fields in the continuous casting process of steel the vertical and
horizontal cross-sections and the contour plot of the realistic magnetic field of
the default coil configuration are presented in Figs. 6.57 and 6.58.
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Temperature profile at the vertical and horizontal cross-sections is depicted
in Fig. 6.59. The temperature profiles are depicted at the vertical cross-sections
0.07 m, 0.125 m and 0.14 m and at the horizontal cross-sections −0.8 m, −0.9 m
and −1.8 m with and without the presence of the magnetic field. The trend of
the temperature profiles is similar for both examples, however, the temperature
magnitudes are slightly lower in the example with the magnetic field.
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Figure 6.59: Temperature fields. Left: vertical cross-sections. Right: horizontal
cross-sections.

The velocity magnitude profiles are presented for several vertical (0.07 m,
0.125 m and 0.14 m) and horizontal (−0.8 m, −0.9 m and −1.8 m) cross-sections.
The comparisons can be seen in Fig. 6.60. The results confirm that the velocity
magnitude is diminished in the presence of the magnetic field. The segregation
width is approximately the same in both cases.
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Figure 6.60: Velocity fields. Left: vertical cross-sections. Right: horizontal cross-
sections.
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The liquid fraction for the horizontal and vertical cross-sections is depicted in
Fig. 6.61. It confirms the assumption that the magnetic field influences solidifi-
cation.
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Figure 6.61: Liquid fraction. Left: horizontal cross-sections. Right: vertical cross-
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A comparison of the temperature and the velocity fields contour plots for
examples with and without magnetic field is shown in Figs. 6.62 and 6.63.
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The Influence of ad

The magnitude of the magnetic field in the strand depends on the distance be-
tween the coils and the edge of the strand ad. To investigate how the span affects
the velocity and the temperature fields, the fields were calculated for three dif-
ferent span distances: 0.0 m, 0.05 m and 0.075 m. First, the magnetic field for
all three examples is calculated. As expected, the magnetic field in the strand is
the strongest for the shortest span distance and the weakest for the longest span
distance. The change in the magnetic field magnitude due to the change in the
span distance is shown in Fig. 6.64.

Next, the temperature profiles are compared for different vertical and hor-
izontal cross-sections. Due to their similarity, the horizontal cross-sections for
temperature field were taken only at −0.9 m and −1.8 m. As can be seen in Fig.
6.65, the effect of the span change is not significant. The vertical cross-section
of the temperature fields are shown in Fig. 6.66. The effect of the span distance
on the temperature magnitude at the edge of the strand is negligible (Fig. 6.66
right). On the other hand, by reducing the span, the temperature magnitude in
the center of the strand changes. As apparent from the results depicted at the
left side in Fig. 6.66, the temperature falls at higher vertical positions for shorter
spans. As the magnetic field in the strand is stronger when the coils are placed
closer to the strand, the effect of the magnetic field is also stronger thus causing
the temperature to fall at higher vertical positions. This effect is clearly appar-
ent in the contour plots depicted in Fig. 6.67, where the zone with the highest
temperature is diminished for the increased span distance.

The velocity magnitude profiles are depicted for four vertical cross-sections:
−0.4 m, −0.8 m, −0.9 m and −1.8 m. As apparent in Fig. 6.68, the decrease
in the span distance decreases the velocity in all of the examples. This is to
be expected, because the shorter span distance produces the strongest magnetic
field, which in turn causes the highest decrease of the velocity magnitude. The
velocity profiles in the horizontal cross-section at 0.07 m (Fig. 6.69 left) are
shifted to slightly lower vertical positions as the span is increased. Again, this is
the expected behaviour due to the effect of the magnetic field magnitude. The
velocity profiles at the cross-section at 0.14 m (Fig. 6.69 right) coincide. The
linear velocity profile in all of the cases confirms, that the velocity of the solidified
steel moves in the vertical direction with the speed of casting. The overall velocity
magnitude profile is presented in the contour plot in Fig. 6.70 and confirms the
above mentioned observations.
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Figure 6.68: Velocity profiles at y = −0.4 m, −0.8 m, −0.9 m, and −1.8 m.
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Figure 6.69: Velocity profiles at x = 0.07 m and 0.14 m.
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The Influence of the Electric Current

The behaviour of temperature and velocity fields is investigated for several dif-
ferent electric current magnitudes. The range of the electric current varies from
12.5 A to 50 A. First, the magnetic field is presented as a function of the electric
current. The related contour plots are depicted in Fig. 6.71. The magnetic field
is directly proportional to the electric current. This means that by increasing the
electric current, the magnitude of the magnetic field is increased. The contour
plots depicted in Fig. 6.71 reflect this behaviour.

The temperature field profiles at vertical cross-sections at position −0.4 m,
−0.8 m, −0.9 m and −1.8 m have similar profiles. The temperature magnitude
is slightly lower for the example with the highest electric current (50 A). The
difference, however, is very small. The vertical cross-sections are depicted in Fig.
6.72. The horizontal cross-sections were taken at the center of the strand (0.07
m) and at its edge (0.14 m). The effect of the electrical current, and consequently
the changes in the magnetic field, are clearly visible at the left side in Fig. 6.73.
It is again observed that the temperature drops at higher vertical positions if
the magnetic field is stronger. As already explained in the case of the span
distance, the higher vertical positions of the temperature drop are due to the
stronger magnetic field, the range of which is much broader then the range of
the weaker magnetic fields. In the right graph in Fig. 6.76 the temperature
profiles are nearly the same. However, at closer inspection it can be seen, that
the temperature magnitude is sightly smaller for the largest electric current. The
contour plots in Fig. 6.74 confirm these observations.

Next, the velocity profiles are examined for vertical and horizontal cross-
sections. The vertical velocity profile cross-sections are drawn at −0.4 m, −0.8
m, −0.9 m and −1.8 m and are presented in Fig. 6.75. Comparable to the
example with different span distances, the velocity profiles for different values of
the electrical current are diminished as the magnetic field increases. The same
is apparent at the left side in Fig. 6.76, where the horizontal cross-sections at
0.07 m are drawn. The velocity profiles at the horizontal cross-section at 0.14 m
(Fig. 6.76 right) are linear and have the same value, which is due to the fact,
that the solidified material moves with the casting velocity. The contour plots of
the velocity profiles as a function of electrical current are depicted in Fig. 6.77.
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Figure 6.71: Magnetic field as a function of electric current. Left: I = 12.5 A. Middle:
I = 25.0 A. Right: I = 50.0 A.
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Figure 6.72: Temperature profiles. Top left: −0.4 m. Top right: −0.8 m. Bottom
left: −0.9 m. Bottom right: −1.8 m.
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Figure 6.73: Temperature profiles. Left: x = 0.07 m. Right: x = 0.14 m.
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Figure 6.74: Temperature field electric current. Left: I = 12.5 A. Middle: I = 25.0
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Figure 6.75: Velocity profiles. Top left: −0.4 m. Top right: −0.8 m. Bottom left:
−0.9 m. Bottom right: −1.8 m.
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Figure 6.76: Velocity profiles. Left: x = 0.07 m. Right: x = 0.14 m.
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Figure 6.77: Velocity field as a function of electric current. Left: I = 12.5 A. Middle:
I = 25.0 A. Right: I = 50.0 A.
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The Influence of NN

Apart from the electrical current and span distance, the magnetic field also de-
pends on the number of windings. The number of the windings can change in
x (NN) as well as in y (NM) direction. In this subsection, the influence of the
number of windings in x direction is explored. For this purpose, three different
examples with 20, 25 and 30 windings are considered.

By considering Eq. 6.16 for the magnetic field, it is clear that by increasing
the number of windings, the magnetic field is increased. This is confirmed in the
contour plots of the magnetic fields as functions of the number of windings, which
are presented in Fig.6.78. An example with the largest number of windings (30)
has the strongest magnetic field.

The temperature profiles are depicted in the horizontal and vertical direction.
The temperature profiles in horizontal direction do not change much when the
number of windings is increased. The temperature difference in the vertical cross-
sections (−0.4 m, −0.8 m, −0.9 m and −1.8 m) shown in Fig. 6.79 are not very
discernible. The vertical cross-sections (Fig. 6.80 left) of temperature fields
show that the temperature of the liquid drops sooner when the magnetic field
is stronger, which is when the coils have more windings. As is apparent from
Fig. 6.80 the temperature of the solid shell is approximately the same for all
three winding arrangements. In Fig. 6.81, the contour plots of temperature fields
that are affected by the magnetic fields generated by coils that consist of 20,
25 and 30 windings in x direction are presented. The coil arrangement with 30
windings has the smallest area of high temperature (Fig. 6.81 left) and the coil
arrangement with 20 windings has the largest area of high temperature ( Fig.
6.80 right). The strongest magnetic field has the highest range and consequently
causes the temperature drop at higher vertical positions. Considering this, the
above described behaviour is to be expected.

The velocity profiles in Figs. 6.82 and 6.83 confirm that the velocity magni-
tude is reduced by the strengthening the magnetic field. At the lower vertical
profiles (−0.8 m, −0.9 m and −1.8 m) that can be seen in top right, bottom
left and bottom right graphs in Fig. 6.82, the profile changes in such a way that
the maximum velocity value is notably diminished, the minimum value, however,
stays approximately the same and the turning point is moved towards the edge
of the strand. This can be explained by taking a closer look at the magnetic field
magnitude (Fig. 6.78). A realistic coil configuration produces a magnetic field
that is the strongest at its edge. Therefore, the effect of the opposing Lorentz
force is much more pronounced at the outer layers of the flow than at its center.
The contour plots presented in Fig. 6.84 confirm, that the stronger magnetic field
with the larger number of windings slows down the fluid flow.
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Figure 6.78: Magnetic field as a function of NN . Left: NN = 20. Middle: NN = 25.
Right: NN = 30.
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Figure 6.79: Temperature profiles. Top left: −0.4 m. Top right: −0.8 m. Bottom
left: −0.9 m. Bottom right: −1.8 m.
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Figure 6.80: Temperature profiles. Left: x = 0.07 m. Right: x = 0.14 m.
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Figure 6.82: Velocity profiles. Top left: −0.4 m. Top right: −0.8 m. Bottom left:
−0.9 m. Bottom right: −1.8 m.
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Figure 6.83: Velocity profiles. Left: x = 0.07 m. Right: x = 0.14 m.
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Figure 6.84: Velocity field as a function of NN . Left: NN = 20. Middle: NN = 25.
Right: NN = 30.
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The Influence of the NM

Last but not least, the influence of the number of windings in y direction on the
strength of magnetic field and its influence on the temperature and velocity fields
is investigated. For each winding in x direction, NM windings in y direction are
added to the coil. The change in magnetic field due to the change in the coil
configuration is tested for 9, 10 and 11 windings. In a like manner as in the case
of expanding the coils in x direction, the expansion of coils in y direction amplifies
the magnetic field. The proof of this can be seen in Fig. 6.85, where the contour
plots for NM = 9, 10 and 11 are presented.

The temperature profiles are depicted in Figs. 6.86 and 6.87 for the vertical
and horizontal cross-sections respectively. Analogous to the sensitivity study of
the number of windings in x direction, the temperature field does not change
much. The changes are the most apparent in the vertical cross-section at the
center of the strand, where the coil configuration with the largest number of
windings (11) exhibits the fastest drop in temperature. Temperature contour
plots are depicted in Fig. 6.88 and reconfirm that the largest number of windings
produces the largest magnetic field which in turn exhibits the largest effect on
the temperature field.

The number of windings in y direction affects the velocity profiles in a similar
way as the number of windings in x direction. The velocity profiles for this
parametric study are presented in Fig. 6.89 and Fig. 6.90. Again, the statement
that the strongest magnetic field slows down the velocity the most is confirmed.
This is especially apparent in Fig. 6.89, where the horzontal cross-sections are
presented. The values of the velocity magnitudes are much more diminished at
the edge of the strand then at the center, as the magnetic field is much stronger
at the edge. The change in the velocity magnitudes in the horizontal cross-
sections (Fig. 6.90) is not pronounced. However, the profiles still confirm that
the increase in the magnetic field causes the velocity to slow down. The velocity
of the solidified steel shell moves along with a constant casting velocity for all of
the coil arrangements. The velocity contour plots are presented in Fig. 6.91.
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Figure 6.85: Magnetic field as a function of NM . Left: NM = 9. Middle: NM = 10.
Right: NM = 11.
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Figure 6.86: Temperature profiles. Top left: −0.4 m. Top right: −0.8 m. Bottom
left: −0.9 m. Bottom right: −1.8 m.
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Figure 6.87: Temperature profiles. Left: x = 0.07 m. Right: x = 0.14 m.
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Figure 6.89: Velocity profiles. Top left: −0.4 m. Top right: −0.8 m. Bottom left:
−0.9 m. Bottom right: −1.8 m.
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Figure 6.90: Velocity profiles. Left: x = 0.07 m. Right: x = 0.14 m.
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The changes of the electrical current, the span distance, the number of wind-
ings in x direction and the number of windings in y direction influence the mag-
netic field magnitude. By keeping constant the rest of the variables and increasing
either the electric current in the loops of the coil, the number of coils in either x
or y direction, or the span distance between the coils and the strand, the mag-
netic field is increased according to Eqs. 6.19 and 6.16. The Lorentz force which
effectively couples the velocity and the magnetic field opposes the flow and cor-
respondingly, the velocity of the molten steel flow is diminished. The change
in the magnetic field also causes the change in the temperature field, as the ve-
locity influences the temperature. Although the decrease in the velocity can be
significant, the decrease in the temperature is not so pronounced.

6.7.3 C: Coil Magnetic Field - Temperature, Velocity, Con-

centration

The third numerical example C deals with the binary alloy under the influence
of the magnetic field. The steel consists of 99.2 wt% pure iron and of 0.8 wt%
carbon. The coils configuration is the same as the default coils configuration in
the numerical example B, and thus the magnetic field stems from the following
parameters: NN = 25, NM = 11, I = 50 A and ad = 0.05 m. The temperature,
velocity and concentration fields are compared for the case with and the case
without magnetic field for several different vertical and horizontal cross-sections.
Then the streamlines and contour plots for the velocity, temperature, and con-
centration are presented for both cases.

Comparison between Configuration with and without the Magnetic

Field

First the temperature profiles are compared for three different vertical cross-
sections at the horizontal positions of 0.07 m (the center of the strand), 0.125
m and 0.14 m (the edge of the strand), and for three different horizontal cross-
sections at the vertical positions of −0.8 m (the end of the mould), −0.9 m, and
−1.8 m (the end of the calculation domain). The comparisons are shown in Fig.
6.92. In all of the cases, the temperature is slightly lower in the case with the
magnetic field.

Next, the vertical and horizontal cross-sections of the velocity magnitude are
presented in Fig. 6.93 for vertical cross-sections at the horizontal positions of
0.07 m (the center of the strand), 0.125 m and 0.14 m (the edge of the strand),
and for horizontal cross-sections at the vertical positions of −0.8 m (the end of
the mould), −0.9 m, and −1.8 m (the end of the calculation domain). The trend
of the velocity magnitude for vertical cross-sections (Fig. 6.93 left) is similar for
both of the cases, however the velocity magnitude in the case with the magnetic
field is shifted to the right and has lower values then in the case without the
magnetic field. The horizontal cross-section profiles show (Fig. 6.93 right) that
the velocity of the liquid part is indeed diminished. The velocity of the solid part
is in both cases the same and equals the casting speed. The amount of solidified
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Figure 6.92: Temperature fields. Left: vertical cross-sections of the temperature field.
Right: horizontal cross-sections of the temperature field.

material is slightly larger in the case with the magnetic field. To confirm this
observation, the vertical and the horizontal cross-sections for liquid fractions are
explored. As can be seen in Fig. 6.94, the magnetic field decreases the depth of
the liquid part.
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Figure 6.93: Velocity fields. Left: vertical cross-sections of the velocity field. Right:
horizontal cross-sections of the velocity field.
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Figure 6.94: Liquid fraction. Left: vertical cross-sections of the liquid fraction. Right:
horizontal cross-sections of the liquid fraction.

The normalized concentration of carbon is depicted in Fig. 6.95 for horizontal
and vertical cross-sections. The value of C0 = 0.8 wt%. Along the strand the
concentration of carbon varies. The application of the magnetic field causes
the concentration of carbon in the middle of the strand to increase at a higher
vertical position and to a larger values (Fig. 6.95 left). The concentration of the
carbon near the liquid-solid interface (0.125 m) exhibits approximately the same
trend, however, the values of carbon concentration in the case with the magnetic
field are higher for about 0.05 wt%. At the solid edge, the concentration of the
carbon is lowered when the magnetic field is applied. The horizontal cross-sections
(Fig. 6.95) confirm the above mentioned observation that the solid fraction is
slightly increased by applying the magnetic field. In the higher vertical positions,
the carbon concentration is increased in the liquid part of the mixture when in
presence of the magnetic field. The decrease of the carbon concentration in the
solid phase at higher vertical positions of the strand is not so prominent. At the
end of the computational domain, the situation is similar but not as significant.
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Figure 6.95: Concentration fields. Left: vertical cross-sections of the concentration
fields. Right: horizontal cross-sections of the concentration fields.

The streamlines are depicted in Fig. 6.96. The application of the magnetic
field moves the vortex to a higher vertical position and the upper recirculation
zone is less pronounced.
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Temperature-wise the application of the magnetic field in the binary mixture
decreases the temperature, especially in the mould, where the zone of the highest
temperature values is noticeably decreased. The contour plots of temperature
fields are depicted in Fig. 6.97. The trend is similar as in the case with real
magnetic field (Sec. 6.7.2).

The velocity magnitude contour plots are presented in Fig. 6.98. In the
presence of the magnetic field, the velocity slows down throughout the calculation
domain.

The contour plot of the concentration of carbon is depicted in Fig. 6.99. As
already mentioned, the concentration of carbon is increased at the center of the
strand in the presence of the magnetic field. The concentrations of carbon in
the solidified part of the strand are slightly decreased, but the difference between
the cases with and without magnetic field is not so pronounced. The overall
concentration of the carbon in the strand remains the same.
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Figure 6.96: Streamlines. Left: without magnetic field. Right: with magnetic field.
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Figure 6.97: Temperature field. Left: without magnetic field. Right: with magnetic
field.
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Figure 6.98: Velocity field. Left: without magnetic field. Right: with magnetic field.
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Heat flux in the mould and in the spray cooling region is calculated from
Eqs. 6.32 and 6.33. As in the case of temperature field, the magnetic field lowers
the heat flux in the spray cooling region. The step between the mould and the
spray cooling region is due to the difference in heat transfer coefficient for mould
cooling hmc and for spray cooling hsc. The influence of the magnetic field is
slightly stronger in the spray cooling region, which can be seen in Fig. 6.100.
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Figure 6.100: Heat flux.
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6.8 Overview of Calculated Examples

An overview of the calculated CC cases along with the influence of the parameters
is given in Tab. 6.4.

Table 6.4: Overview of calculated examples.

Case Changed pa-

rameter

Influence on

magnetic field

Influence of the changed pa-

rameter

A

magnetic field
magnitude

increase in mag-
nitude

The increased magnitude of B

causes the decrease in the veloc-
ity. The changes in temperature
are negligible.

position change in ver-
tical position,
magnitude re-
mains constant

Velocity extremes are increased
at higher vertical positions. The
changes in temperature are negli-
gible.

height change in B

range, vertical
position and
magnitude are
constant

The extreme values of velocity are
increased over a wider range of
vertical positions. The changes in
temperature are negligible.

B

span (distance
between mould
and coils)

increased span
causes smaller B

Increased span causes smaller
magnetic field. Consequently the
velocity in the extremes is di-
minished. Temperature drops
at higher vertical position for
stronger B.

electric current higher I causes
stronger B

Velocity in the extremes is dimin-
ished for stronger B. Tempera-
ture drops at higher vertical posi-
tions for stronger I.

NN (number of
coils in x direc-
tion)

larger NN causes
stronger B

Velocity in the extremes is dimin-
ished for larger NN . Temperature
drops at higher vertical positions
for largerNN .

NM (number of
coils in y direc-
tion)

larger NM

causes stronger
B

Velocity in the extremes is dimin-
ished for larger NN . Temperature
drops at higher vertical positions
for larger NN .

Continued on next page
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Table 6.4 – continued from previous page

Case Changed pa-

rameter

Influence on

magnetic field

Influence of the changed pa-

rameter

C

magnetic field
magnitude

increase in mag-
nitude

Velocity in the extremes, temper-
ature and liquid fraction are de-
creased at higher vertical posi-
tions. Concentration is increased
in the middle of the strand and
decreased at the edge of the
strand at higher vertical posi-
tions.



7 Summary and Conclusions

This dissertation presents the application of the LRBFCM to the problem of
CC of steel in the presence of an externally applied magnetic field. The main
contribution of this work is the extension of the LRBFCM to the problems in-
volving magnetic field. The developed approach is evaluated on several different
numerical benchmark test cases and thus successfully proves that the method is
applicable to the discussed multi-physics problem.

The first part of the thesis describes the CC process together with various
possible electromagnetic field configurations. It also gives an overview of the
physical models and the numerical method used to solve them. In the next
chapters, first the physical model is explained in detail and then the numerical
method is presented along with the numerical implementation. The model, as
well as the method, are assessed first for the various benchmark test cases and
then for the CC of steel under the influence of the magnetic field.

7.1 Performed Work

The work performed in the scope of this dissertation can be summarized in the
following principal contributions:

• The physical model has been extended for the application of the static exter-
nal magnetic field. An additional source term, accounting for the influence
of the magnetic field, was added to the momentum and energy equations.

• The general upgraded transport equations have been dicretisized according
to the proposed numerical procedure.

• The below numerical examples have been chosen as benchmark test cases
in order to verify the accuracy of the meshless numerical method:

– the lid-driven cavity [Mramor et al., 2013a]

– the de Vahl Davis test case (natural convection in a cavity without the
magnetic field) [Mramor et al., 2012, 2013b]

– the natural convection in the presence of the magnetic field [Mramor
et al., 2012, 2013b]

– the Hartmann flow

– the backward facing step [Mramor et al., 2014b]
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– the backward facing step under the influence of static externally ap-
plied magnetic field [Mramor et al., 2014b].

• The above mentioned benchmark test cases served as an elaboration and
verification for the following numerical model considerations:

– the type of the basis function,

– the pressure-velocity coupling scheme,

– the boundary conditions for the magnetic field,

– the boundary conditions for in- and outflow,

– the initial conditions for magnetic field,

– the initial conditions for in- and outflow, and

– the accuracy of the separation and the reattachment positions in chan-
nel flow.

• The magnetic field was calculated for multiple different arrangements of
square coil systems, both with and without the iron core. Among several
different solenoid arrangements that were considered, the configuration with
two coils with parallel orientation was chosen.

• The static magnetic field was applied to the simplified geometry and thermo-
physical quantities of the CC of steel [Mramor et al., 2014a].

• The sensitivity analysis was performed for the simplified magnetic field.
The parameters under consideration in this analysis were the magnitude,
the position and the range of the magnetic field.

• The realistic magnetic field configuration for EMBR ruler was applied to the
simplified geometry and thermo-physical parameters of the CC problem.

• The parametric study of the magnetic field and consequently the influence
on the velocity and temperature fields was simulated. The parameters that
were used in this study were the magnitude of the electric current, the
number of windings in x and in y direction, and the distance between the
placement of the coils and the strand.

• The influence of the magnetic field on the species concentration (macroseg-
regation) was examined for several different magnitudes of the realistic mag-
netic field.

7.2 Conclusions

Numerous conclusions can be drawn from the results obtained in this work:

• The placement of the magnetic field coils determines the magnitude and
the orientation of the magnetic field.
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• The magnetic field affects the velocity of the fluid flow as well as the tem-
perature and the species concentration.

• The larger the magnitude of the magnetic field, the stronger the effects on
the velocity, temperature and species concentration fields.

• The present configuration of the coils produces the magnetic field that suc-
cessfully slows the velocity of the flow and decreases the temperature.

• The application of magnetic field affects the pattern of the segregation.

7.2.1 Industrial Relevance

It is shown that the placement, range and magnitude of the magnetic field affect
the velocity, temperature and concentration fields in the CC of steel. Even though
the present model is 2D, it gives a rough idea as to where the coils should be
placed and what the appropriate magnitude of the magnetic field should be in
order to enhance the influence of the magnetic field and thus obtain a steel with
the desired characteristics. By implementing the realistic boundary and initial
conditions, the model can serve as a useful tool in the optimization of the position,
range and magnitude of the magnetic field. It thus enables further optimization
of the process parameters which in turn enable a better quality of the steel. In the
broader context, the present work presents a next step in the process of modelling
the entire production chain, from initial casting operations to the final finished
product.

7.3 Suggestions for Future Work

Although this thesis covers the most important aspects in the modelling and
simulation of the CC process in the presence of the static magnetic field, a lot of
work remains to be done, in order to obtain a reasonably predictive and accurate
model. The recommendations for further work are divided into two segments: the
development of the numerical model and the development of the physical model.

7.3.1 Numerical Modelling Upgrades

As shown in this thesis, as well as in several other related works [Vertnik, 2010],
the LRBFCM is not only suitable for the solution of PDEs but performs well even
for the solution of more complex physical examples described by coupled PDEs.
Despite the good agreement with the reference results, both, those obtained from
relevant reference papers and those calculated with other numerical methods,
there is still room for further improvement and advancement of the method,
especially in the terms of more thorough mathematical definition.

Although the LRBFCM has already been rigorously tested and verified on
numerous fluid flow and solidification benchmark test cases as well as reference
results, so far not much has been done in the field of segregation and deforma-
tion. As the later stages in the process of CC of steel include these phenomena,
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additional tests would certainly be advisable. The additional verification and
comparison of different PV coupling schemes, as well as the turbulence models
would enable further development and understanding of the numerical model.
In future, a coupling of other variables such as velocity and magnetic field, and
temperature and magnetic field would enable the method to evolve and to be
applied to an even more complex problems, such as plasma reactors.

In terms of the numerical development of the method, several numerical pa-
rameters, such as the shape parameter, the time step and the distance between
the neighbouring nodes, require further in-depth investigation. So far, the corre-
lations between these parameters have been granted only a superficial attention.

Next, the more extensive examination of the influence domain selection would
be appropriate. In this regard some initial tests have already been performed
[Vertnik et al., 2006]. However, this tests were not very broad as only five and
nine nodded sub-domains were considered. By increasing the number of the sub-
domain nodes, the number of RBFs has to be increased. The LRBFCM can only
solve the problem effectively when the number of the domain nodes corresponds
to the number of the basis functions in collocation nodes. If the number of nodes
exceeds the number of basis functions the system is predetermined and another
procedure, such as weighted least square approximation, has to be used. Many
work in this direction has already been made [Nayroles et al., 1992; Sadat et al.,
2006].

Another aspect that needs to be addressed and investigated in present numer-
ical model is the domain node adaptation. In this dissertation, the adaptation of
the nodes in different parts of the domain has been pre-implemented and fixed.
Nonetheless, current implementation does not enable the adaptation of the nodes
during the calculation. The effective change in node arrangement density might
be beneficial in reducing the calculation time and improve the accuracy.

7.3.2 Physical Modelling Upgrades

Several of the physical phenomena have yet to be completely explained, thus
leaving ample space for further development of the physical model. Examples of
such phenomena are turbulence and segregation. Although several models exist,
none of them can with absolute certainty completely describe the physics behind
the phenomena. In order to attempt this type of improvement a large number of
very precise experiments would be necessary.

The model should be extended to the application of a time varying magnetic
field. Such an extension would enable a broader application of the model, enabling
it to include the simulation of the AC current problems. An example of such a
problem are the EMS, which can be used in the CC of steel.

Another step in the development of the physical model is the expansion of the
model into 3D. As the formulation of the magnetic field module already includes
the magnetic field in 3D, such an extension should be straightforward. The initial
tests and calculations on the 3D model are currently under way.

Next, the temperature dependence of the thermo-physical quantities such as
density, specific heat, and thermal conductivity should be taken into account and
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implemented in the model.
The steel consists of several different components. The amount of which is

varied according to the desired properties of the finished product. In the present
model, steel is considered first as an unary metal and then as a binary alloy
of iron and carbon. In order to achieve a more precise realistic composition, a
multiple-component steel will be considered.

The solidification in the mushy region should also be addressed more thor-
oughly. Currently, the mushy region is modelled as a completely porous medium
as the floating dendrites in the slurry region are not considered. In the next
stage of the physical model development, the slurry region should be considered
separately and the movement of floating dendrites should be taken into account.

Last but not least, the present physical model should be extended to include
different mushy zones morphologies and segregation models in order to account
for the growth of the dendrites on the liquid-solid boundary as well as those
floating in the slurry region. This extension is all but straightforward, as it
incorporates physical phenomena on two different scales and assumes coupling
between models on micro and macro levels. Although the columnar and equiaxed
dendrites follow the same macrosegregation model, the solidification on microlevel
can be described by several different rules. The simplest linear and lever rules give
sufficient results. However, for a more precise results, Scheil and Brody-Flemings
models should also be considered.

7.4 Publications

The following articles, scientific conference contributions and studieshave been
published or performed during the course of the present dissertation.

Original scientific article

1. MRAMOR, Katarina, VERTNIK, Robert, ŠARLER, Božidar. Simulation of
laminar backward facing step flow under magnetic field with explicit local radial
basis function collocation method. Engineering analysis with boundary elements,
ISSN 0955-7997. [Print ed.], 2014, str. 1-11, doi: 10.1016/j.enganabound.2014.04.013.
[COBISS.SI-ID 3349243]

2. MRAMOR, Katarina, VERTNIK, Robert, ŠARLER, Božidar. Simulation of
continuous casting of steel under the influence of magnetic field using the local-
radial basis-function collocation method = Simulacija kontinuirnega ulivanja jekla
pod vplivom magnetnega polja na podlagi metode kolokacije z radialnimi bazn-
imi funkcijami. Materiali in tehnologije, ISSN 1580-2949, mar.-apr. 2014, letn.
48, št. 2, str. 281-288, ilustr. http://mit.imt.si/Revija/. [COBISS.SI-ID
1043114]

3. MRAMOR, Katarina, VERTNIK, Robert, ŠARLER, Božidar. Simulation
of natural convection influenced by magnetic field with explicit local radial ba-
sis function collocation method. Computer modeling in engineering & sciences.
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CMES, ISSN 1526-1492. Tiskana izd., 2013, vol. 92, no. 4, str. 327-352.
[COBISS.SI-ID 2827003]

4. MRAMOR, Katarina, VERTNIK, Robert, ŠARLER, Božidar. Low and in-
termediate Re solution of lid driven cavity problem by local radial basis function
collocation method. Computers, materials & continua, ISSN 1546-2218, 2013,
vol. 36, no. 1, str. 1-21. [COBISS.SI-ID 2865659]

Published scientific conference contribution

5. MRAMOR, Katarina, VERTNIK, Robert, ŠARLER, Božidar. Simulation of
macrosegregation influenced by magnetic field in continuous casting of steel. V:
ŠARLER, Božidar (ur.), MASSAROTTI, Nicola (ur.), NITHIARASU, Perumal
(ur.). ThermaComp2014. 3rd ed. Napoli: Giannini Editore, 2014, str. 283-286.
[COBISS.SI-ID 3380987]

6. ŠARLER, Božidar, VERTNIK, Robert, MRAMOR, Katarina. A numerical
benchmark test for continuous casting of steel. V: MCWASP XIII, International
Conference on Modeling of Casting, Welding and Advanced Solidification Pro-
cesses, 17-22 June 2012, Schladming, Austria, (IOP Conference Series, ISSN
1757-8981, Materials Science and Engineering, vol. 33). Bristol: IOP Publishing,
2012, vol. 33, str. 1-10, doi: 10.1088/1757-899X/33/1/012012. [COBISS.SI-ID
2417403]

Published scientific conference contribution abstract

7. MRAMOR, Katarina, VERTNIK, Robert, ŠARLER, Božidar. Simulation of
continuous casting of steel under the influence of external magnetic field by using
local radial basis function collocation method. V: 21. Mednarodna konferenca o
materialih in tehnologijah, 13.-15. november 2013, Portorož = 21st International
Conference on Materials and Technology, 13-15 November 2013, Portorož, Slove-
nia. GODEC, Matjaž (ur.), et al. Program in knjiga povzetkov = Program and
book of abstracts. Ljubljana: Inštitut za kovinske materiale in tehnologije, 2013,
str. 132. [COBISS.SI-ID 3067899]

8. ŠARLER, Božidar, VERTNIK, Robert, MRAMOR, Katarina. A benchmark
test for continuous casting of steel, II. V: Sixth International Conference on Solidi-
fication and Gravity, Miskolc-Lillafüred, Hungary, September 2-5, 2013. Miskolc-
Lillafüred: [s. n.], 2013, str. 55. [COBISS.SI-ID 2878715]

9. MRAMOR, Katarina, VERTNIK, Robert, ŠARLER, Božidar. Simulation of
natural convection under the influence of magnetic field by Explicit Local Ra-
dial Basis Function Collocation Method. V: 8th ICCES Special Symposium on
Meshless & Other Novel Computational Methods, September 2-6, 2012, Maestral
Hotel, Budva, Montenegro. ATLURI, Satya N. (ur.), VUŠANOVIĆ, Igor (ur.),
ŠARLER, Božidar (ur.). Book of abstracts. Podgorica: University of Montenegro
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Press, 2012, str. 27. [COBISS.SI-ID 2535163]

Treatise, preliminary study, study

10. MRAMOR, Katarina, VERTNIK, Robert, ŠARLER, Božidar. Review of
mathematical modelling of magneto-hydrodynamic processes in continuous cast-
ing of steel. V Novi Gorici: Univerza, 2011. [4], 35 str., ilustr. [COBISS.SI-ID
1991931]
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A Turbulence Modelling Classifi-

cation

In the chart A.1 a classification of turbulence modelling is shown. The abbre-
viations used in the chart are: Reynolds Averaged Navier-Stokes (RANS) mod-
els, Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), Linear
Eddy Viscosity Model (LEVM), Non-Linear Eddy Viscosity Model (NLEVM),
Reynolds Stress Model (RSM), Re-Normalisation Group Large Eddy Simula-
tion (RNG-LES), Wall-Adapting Local Eddy-viscosity (WALE) model, Explicit
Non-Linear Constitutive Relation (ENLCR), Explicit Algebraic Reynolds Stress
Models (EARSM), Re-Normalisation Group (RNG), and Shear Stress Transport
(SST). A short description of each group of turbulence modelling is given below.

Direct Numerical Simulation

In DNS [Fox and Lilly, 1972; Baritaud et al., 1996] N-S equations are solved
directly, without any kind of turbulence modelling. This means that all the scales
of the turbulence are solved by adjusting the density of computational mesh. DNS
is computationally very expensive, since the problem is 3D and time-dependent.
Although, several basic flow problems with simple geometries and low-to-medium
Re numbers [Kim et al., 1987; Kasagi et al., 1992; Kasagi and Nishimura, 1997;
Le et al., 1997] have been successfully implemented with this method, the DNS
cannot be used to solve engineering problems [Moin and Mahesh, 1998], where a
range of scales required is too wide to be directly computed.

Large-Eddy Simulation

LES [Smagorinsky, 1963; Deardorff, 1970] is a simulation technique in which the
large energy carrying eddies are solved explicitly, whereas the effects of smaller
eddies are modelled. The technique was designed to overcome difficulties with
DNS and RANS and is their intermediate computationally wise. The LES re-
quires 3D transient modelling, however the number of computational nodes is
decreased as the smaller eddies are removed and modelled by a Sub-Grid Scale
(SGS) model. Perhaps the most important process in LES is the filtering. In
this operation, the velocity and pressure are divided into the resolvable scale part
and into the SGS part. The decomposed varieties are used to develop the filtered
N-S equations; one set describing the resolved field and the other set, which con-
tains the SGS stress term, describing the SGS part. A detailed description of
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the procedure can be found in [Pope, 2000]. Several different SGS models are
commonly used to solve the filtered N-S equations: Kinetic energy sub-grid scale
model, WALE model, Dynamic sub-grid model, Smagorinsky-Lilly model, and
Re-Normalisation Group (RNG)-LES model. The LES models’ biggest advan-
tage is an improved accuracy compared to the Reynolds stress models especially
in cases where the instability of large-scale eddies is substantial.

Reynolds-Averaged Navier-Stokes Based Models

RANS based turbulence models:

• Linear Eddy-Viscosity Model (EVM)

– algebraic models or zero-equation turbulence models are calculated di-
rectly from the flow variables and do not require any additional equa-
tions.

– one-equation models require the solution of one turbulent transport
equation, typically the turbulent kinetic energy equation.

– two-equation models include two additional equations to account for
the turbulent properties of the flow (k-ε, k-ω, k-τ)

• Non-Linear Eddy-Viscosity Model (NLEVM)

– Explicit non-linear constitutive relation

– v2-f models

• Differential Stress Model (DSM)
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Figure A.1: Classification of turbulence modelling.
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B Dimensionless Governing Equa-

tions

As the parameter values and dimensions of the computational domain differ from
author to author, the easiest way to compare the results is to present them in
their dimensionless form.

B.1 Dimensionless Governing Equations for Lid

Driven Cavity

The dimensionless variables are defined as follows

x′ =
x

L
, y′ =

y

L
, v′ =

v

vc
, t′ =

t vc
L
, p′ =

p

ρ v2c
. (B.1)

By inserting these variables into momentum equation

ρ

(
∂v

∂t
+ ∇ ·

(
v v
)
)

= −∇p + µ∇2 v, (B.2)

the following dimensionless equation is obtained

∂v′

∂t′
+ ∇ · (v′ v′) = −∇p′ +

1

Re
∇2 v′. (B.3)

The mass continuity equation
∇ · v = 0, (B.4)

becomes
∇ · v′ = 0. (B.5)
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B.2 Dimensionless Governing Equations for Nat-

ural Convection in Cavity under the Influ-

ence of External Magnetic Field

The dimensionless variables are defined as follows

x′ =
x

L
, y′ =

y

L
, v′ =

v

vc
, t′ =

t vc
L
, p′ =

p

ρ v2c
, Θ =

T − TC
TH − TC

, (B.6)

g′ =
gL

v2c
, and β ′

T = β (TH − TC). (B.7)

These variables are inserted into momentum conservation equation

ρ

(
∂v

∂t
+ ∇ ·

(
v v
)
)

= −∇p + µ∇2 v + fEM − ρg βT (T − Tref), (B.8)

and the following dimensionless equation is obtained

∂v′

∂t′
+ ∇ · (v′ v′) = −∇p′ +

1

Re
∇2 v′ +

Ha2

Re
v′ − g′ β ′

T Θ. (B.9)

The mass conservation equation

∇ · v = 0, (B.10)

becomes
∇ · v′ = 0. (B.11)

By inserting the dimensionless variables in

∂T

∂t
+ ∇ ·

(
v T
)

= αT∇2 T, (B.12)

the non-dimensional governing equation for temperature is obtained

∂Θ

∂t′
+ ∇ · (v′ Θ) =

Pr

Re
∇2 Θ. (B.13)

B.3 Dimensionless Governing Equations for Hart-

mann Flow

The dimensionless variables are defined as

x′ =
x

L
, y′ =

y

L
, v′ =

v

vc
, t′ =

t vc
L
, p′ =

pL

vc µ
. (B.14)

The momentum conservation equation for the Hartmann flow is written as

0 = −∇p + µ∇2 v + fEM . (B.15)
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By inserting the dimensionless variables into the momentum equation, the fol-
lowing dimensionless momentum equation is obtained

0 = −∇p′ + ∇2 v′ + Ha2 v′. (B.16)

The mass conservation equation

∇ · v = 0, (B.17)

becomes
∇ · v′ = 0. (B.18)

B.4 Dimensionless Governing Equations for Back-

ward Facing Step

The dimensionless variables are defined as

x′ =
x

L
, y′ =

y

L
, v′ =

v

vc
, t′ =

t vc
L
, p′ =

p

ρ v2c
. (B.19)

The momentum conservation equation for the backward facing step is written as

ρ

(
∂v

∂t
+ ∇ · (v v)

)

= −∇p + µ∇2 v + fEM . (B.20)

By inserting the dimensionless variables into the momentum equation, the fol-
lowing dimensionless momentum equation is obtained

∂v′

∂t′
+ ∇ · (v′ v′) = −∇p′ +

1

Re
∇2 v′ +

Ha2

Re
v′. (B.21)

The mass conservation equation

∇ · v = 0, (B.22)

becomes
∇ · v′ = 0. (B.23)
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C Magnetic Field Square Loop

The magnetic field of a square loop can be calculated as a sum of magnetic fields
of individual sides. The components for each of the sides are presented below.
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D Sensitivity Study for Simple Mag-

netic Field

The sensitivity study of temperature and velocity fields are presented in the
contour plots below. Fig. D.1 presents the temperature field for different values
of magnetic field magnitudes, Fig. D.2 presents the velocity field for different
values of magnetic field magnitudes, Fig. D.3 presents the temperature field
for different positions of magnetic field, Fig. D.4 presents the velocity field for
different positions of magnetic field, Fig. D.5 presents the temperature field for
different ranges of magnetic field, and Fig. D.6 presents the temperature field for
different ranges of magnetic field.
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Figure D.1: Temperature field at different EM field magnitudes. I: Bx = 2.6 · 10−3

T. II: Bx = 2.6 · 10−2 T. III: Bx = 2.6 · 10−1 T. IV: Bx = 2.6 T.
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Figure D.2: Velocity field at different EM field magnitudes. I: Bx = 2.6 · 10−3 T. II:
Bx = 2.6 · 10−2 T. III: Bx = 2.6 · 10−1 T. IV: Bx = 2.6 T.
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Figure D.3: Temperature field at different EM field positions. I: lmEM = −0.6 m. II:
lmEM = −0.7 m. III: lmEM = −0.8 m. IV: lmEM = −0.9 m.
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Figure D.4: Velocity field at different EM field positions. I: lmEM = −0.6 m. II:
lmEM = −0.7 m. III: lmEM = −0.8 m. IV: lmEM = −0.9 m.
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Figure D.5: Temperature field at different EM field ranges. I: −0.8 m < lEM < −1.0
m. II: −0.8 m < lEM < −0.95 m. III: −0.8 m < lmEM < −0.9 m. IV: −0.8 m
< lmEM < −0.85 m.
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Figure D.6: Velocity field at different EM field ranges. I: −0.8 m < lEM < −1.0
m. II: −0.8 m < lEM < −0.95 m. III: −0.8 m < lmEM < −0.9 m. IV: −0.8 m
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Erturk, E. and Gökçöl, C. (2006). Fourth-order compact formulation of Navier–
Stokes equations and driven cavity flow at high Reynolds numbers. International
Journal for Numerical Methods in Fluids, 50:421–436.

Fairweather, G. and Karageorghis, A. (1998). The method of fundamental solu-
tions for elliptic boundary value problems. Advances in Computational Mathe-
matics, 9:69–95.

Fan, C. M., Chien, C. S., Chan, H. F., and Chiu, C. L. (2013). The local
RBF collocation method for solving the double-diffusive natural convection in
fluid-saturated porous media. International Journal of Heat and Mass Transfer,
57:500–503.
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Kosec, G. and Šarler, B. (2009b). Solution of phase change problems by colloca-
tion with local pressure correction. CMES: Computer Modeling in Engineering
& Sciences, 47:191–216.
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Mramor, K., Vertnik, R., and Šarler, B. (2014b). Simulation of laminar backward
facing step flow under magnetic field with explicit local radial basis function
collocation method. Engineering Analysis with Boundary Elements, in press:1–
11.

Na, X. Z., Xue, M., Zhang, X. Z., and Gan, Y. (2007). Numerical simulation
of heat transfer and deformation of initial shell in soft contact continuous cast-
ing mold under high frequency electromagnetic field. Journal of Iron and Steel
Research, International, 14:14–21.

Natarajan, T. T. and El-Kaddah, N. (2004). Finite element analysis of electro-
magnetic and fluid flow phenomena in rotary electromagnetic stirring of steel.
Applied Mathematical Modelling, 28:47–61.

Nayroles, B., Touzot, G., and Villon, P. (1992). Generalizing the finite element
method: diffuse approximation and diffuse elements. Computational Mechanics,
10:307–318.

Nield, D. and Bejan, A. (2006). Convection in Porous Media. Springer-Verlag,
Berlin, Germany.
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Šarler, B. (2005). A radial basis function collocation approach in computational
fluid dynamics. CMES: Computer Modeling in Engineering & Sciences, 7:185–
193.
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Šarler, B., Vertnik, R., and Mramor, K. (2012). A numerical benchmark test for
continuous casting of steel. In IOP Conference Series: Materials Science and
Engineering, volume 33, page 012012. IOP Publishing.
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Štore Steel, d. o. o. (2013). Steel billets. http://www.store−steel.si/html. Last
accessed: October, 2013.

Takeuchi, E., Toh, T., Harada, H., Zeze, M., Tanaka, H., Hojo, M., Ishii, T.,
and Shigematsu, K. (1994). Advances of applied MHD technology for continuous
casting process. Nippon Steel Technical Report, 61.

Thomas, B. G. (2001). Continuous casting of steel. In Modeling for Casting and
Solidification Processing, chapter 15, pages 499–540. Marcel Dekker, Inc., New
York, (NY) USA.

Timmel, K., Miao, X., Eckert, S., Lucas, D., and Gerbeth, G. (2010). Experi-
mental and numerical modeling of the steel flow in a continuous mould under the
influence of a transverse DC magnetic field. Magnetohydrodynamics, 46:337–448.

Trindade, L. B., Vilela, A. C. F., Vilhena, M. T. M. B., Soares, R. B., et al. (2002).
Numerical model of electromagnetic stirring for continuous casting billets. IEEE
Transactions on Magnetics, 38:3658–3660.

de Vahl Davis, G. (1983). Natural convection of air in a square cavity: a bench
mark numerical solution. International Journal for Numerical Methods in Fluids,
3:249–264.



242 BIBLIOGRAPHY

Versteeg, H. K. and Malalasekera, W. (2007). An Introduction to Computational
Fluid Dynamics: the Finite Volume Method. Prentice Hall, Upper Saddle River,
(NJ) USA.

Vertnik, R. (2010). Heat and Fluid Flow Simulation of the Continuous Casting of
Steel by a Meshless Method: Dissertation. PhD thesis, University of Nova Gorica.

Vertnik, R. and Šarler, B. (2006). Meshless local radial basis function collocation
method for convective-diffusive solid–liquid phase change problems. International
Journal for Numerical Methods for Heat and Fluid Flow, 16:617–640.
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Yao, G., Šarler, B., and Chen, C. S. (2011). A comparison of three explicit
local meshless methods using radial basis functions. Engineering Analysis with
Boundary Elements, 35:600–609.
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