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Modelling of Solid-Solid Phase Transformations
in Aluminium Alloys

M.Sc. I. Kovačević

Abstract

The solid-solid phase transformations during the homogenisation of aluminium
alloys are modelled and simulated by the phase-field model. The two-domain ap-
proach and the phase-field approach, two distinct physical models, are derived
for the simulation of phase transformations in heat treatment processes. A com-
parison of the phase-field model with the two-domain approach for the validation
of both models is performed in one-dimensional geometry. Special attention is
paid to the connection of the physical models with thermodynamic database.
Thermodynamic conditions on the interphase interface between a stoichiometric
or a nonstoichiometric phase and aluminium matrix for physical models are anal-
ysed. Isothermal diffusion-controlled dissolutions of the Al3Mg2, θ, Al2CuMg and
Mg2Si phase in the aluminium phase for Al-Mg, Al-Cu, Al-Cu-Mg and Al-Mg-
Si systems are computed, respectively. The spheroidisation kinetics of elongated
Si-particle is estimated by the phase-field model. The influences of the homogeni-
sation temperature and the interface energy on the spheroidisation kinetics are
analysed. The model is applied on the dissolution kinetics of the interdendritic,
artificial eutectic phase in the aluminium matrix in Al-Cu alloy. The Gibbs free
energy of homogenous eutectic phase is calculated as the heterogeneous mixture
of eutectic phases present. The dissolution kinetics of the eutectic phase under
the industrial condition of the heating step of homogenisation is estimated. The
strong-form local meshfree method is implemented for the solution of governing
equations of the phase-field model. The solution procedure based on the local
collocation with radial basis functions on the r-adaptive node arrangement for
the solution to the involved moving boundary problems is derived.

Keywords:

solid-solid phase transformations, homogenisation, aluminium alloys, physical
models, phase-field model, meshfree methods, r-adaptivity



Modeliranje trdno-trdnih faznih sprememb v
aluminijevih zlitinah

Mag. I. Kovačević

Povzetek

Z metodo faznega polja modeliramo in simuliramo trdno-trdne fazne spre-
membe med homogenizacijo aluminijevih zlitin. Razvili smo dvoobmočno metodo
in metodo faznega polja za simulacijo faznih sprememb pri toplotni obdelavi.
Izdelali smo primerjavo med metodo faznega polja in dvoobmočno metodo za
validacijo obeh metod v enodimenzionalni geometriji. Posebno pozornost smo
posvetili povezavam fizikalnih modelov z bazo termodinamičnih podatkov. Po-
drobno smo analizirali termodinamične pogoje na medfaznem robu med stehiome-
trično ali nestehiometrično fazo in aluminijevo matriko pri obeh metodah. Izra-
čunali smo izotermno difuzijsko kontrolirano raztapljanje Al3Mg2, θ, Al2CuMg
in Mg2Si faz v aluminijevo matriko za Al-Mg, Al-Cu, Al-Cu-Mg in Al-Mg-Si
sisteme. Obravnavali smo sferoidizacijo palice čistega silicija z metodo faznega
polja. Analizirali smo vpliv temperature homogenizacije in površinske energije
na kinetiko sferoidizacije podalǰsanega silicijevega delca. Uporabili smo model
faznega polja za modeliranje raztapljanja interdendritske, umetne evtektične faze
v aluminijevo matriko za zlitino Al-Cu. Gibbsovo prosto energijo evtektične faze
smo izračunali kot heterogeno mešanico faz v evtektiku. Izračunali smo raztapl-
janje evtektične faze pri industrijskih pogojih med časom segrevanja v homoge-
nizacijski peči. Uporabili smo lokalno brezmrežno metodo z močno formulacijo za
reševanje vodilnih enačb metode faznega polja. Razvili smo numerični postopek,
ki temelji na lokalni kolokaciji z radialnimi baznimi funkcijami za reševanje prob-
lemov premičnih robov na podlagi r-prilagodljive porazdelitve točk.

Ključne besede:

trdno-trdno fazne spremembe, homogenizacija, aluminijeve zlitine, fizikalni
modeli, model faznega polja, brezmrežne metode, r-prilagodljivost.
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1 Introduction

Investigations of phase transformations in materials science and engineering are
of great importance for the quality of final metal products. Most metals used for
technical applications are alloys, mixtures composed of several chemical compo-
nents. Aluminium alloys, a spectrum of alloys based on aluminium, have had an
increasingly wide application in recent times. Phase transformations take place
at various points throughout the materials processing of aluminium alloys. If the
magnitude of phase change occurs at the micrometer scale, we are talking about a
micro level; consequently, the structure is called microstructure. The microstruc-
ture has a big influence on mechanical properties of alloys. During the alloy
casting, various particles grow in a very complex morphology and in non-uniform
concentrations, in a phenomenon named microsegregation. Particles have varied
crystal lattices; therefore their metallurgical and mechanical properties are dif-
ferent. In the present context, a phase represents a segment of a system with the
same crystal lattice.

After casting, solution heat treatment is often necessary to optimize the me-
chanical properties of aluminium alloys for the following mechanical treatment
processes. The main goal of this heat treatment is to homogenize the alloy ele-
ments (components) into aluminium grains, therefore the process is referred to as
Homogenisation. Under the heat treatment, the metallurgical state of the alloys
changes. This change either involves the creation of phases and/or the morphol-
ogy of the various phases. The maximum temperature at which the annealing
should take place can be determined from a thermodynamic analysis of the phases
present. Another important process parameter is the minimum annealing time.
The homogenisation time is not constant, and depends on the composition of the
alloy, the characteristics of the phases present, the size and morphology of the
particles, etc. Whereas the equilibrium phases can often be predicted quite ac-
curately from computational thermodynamic models, presently, there are neither
general models for microstructural changes nor general models for the kinetics of
these transformations.

The basic goal of this presented thesis is to model the solid-solid phase trans-
formations during heat treatment processes, especially during the homogenisation
of aluminium alloys. These phase transformations, or in mathematical terminol-
ogy, phase-change problems, belong to a wide spectrum of moving boundary
problems. Many different physical models have been derived to solve moving
boundary problems. In the context of simultaneously solving the phase transfor-
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mations for a complex morphology, a phase-field model has been derived. The
main advantage of the phase-field model is its excellent ability to mathemati-
cally describe complex problems such as those usually seen for microstructure
topology. In general, the phase-field model belongs to the group of one-domain
approaches, where the same governing equations hold over the whole domain.
A great advantage of the one-domain approaches is the possibility of using the
fixed mesh numerical schemes throughout computation. The major drawback of
the phase-field model is the current lack of knowledge of the physical parameters
involved. In two-domain approaches, the governing equations are solved sepa-
rately in every domain occupied by a phase. Due to the capture of the moving
boundary position, the moving grid or the front-tracking numerical schemes have
to be used. These numerical procedures are difficult to implement in a complex
multidimensional geometry.

Phase transformation modelling is closely related to thermodynamic data.
Several thermodynamic quantities must be incorporated into physical models.
The thermodynamic data for a specific alloy are obtained from software which
calculates phase diagrams, and the data are then collected in a thermodynamic
database.

Mathematical models of physical phenomena are described by a set of partial
differential equations. In most cases, the solution needs to be found by a nu-
merical computation. Partial differential equations can be solved using the finite
difference, finite element, finite volume or boundary element methods, to name
a few. These methods belong to the spectrum of classical numerical methods,
and they require the definition of a mesh (domain and boundary discretization)
where the functions are approximated locally. A number of meshfree methods
have been developed to circumvent the problem of polygonisation encountered
in the classical numerical methods. In meshfree methods, the discretization is
constructed on a set of nodes only.

The local collocation with radial basis functions, a representative of mesh-
free strong-form methods, was derived several years ago. This method is truly
meshfree, very simple and easy to implement for solving various differential equa-
tions. The method introduces the local support of each domain and boundary
node. The field approximation and its partial derivatives in the domain and on
the boundary are obtained by using a small set of the radial basis functions with
centres in the local support of the reference node where the solution needs to be
found.

Searching for an appropriate numerical procedure for the mathematical mod-
elling of phase-change problems is very important. Solving the partial differen-
tial equations obtained from the phase-field model by the meshfree methods is
an interesting, challenging task. In particular, the possibility of using meshfree
methods for numerical computations of adaptive node arrangements is closely
related to the moving boundary problems.
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1.1 Heat Treatment Processes in the Produc-

tion of Aluminium Alloys

The basic idea of heat treatment processes is the formation of a non-equilibrium
microstructure at room temperature. This condition is established by holding the
alloy for some time at an increased temperature, followed by rapid cooling. The
phase distribution of an alloy depends on temperature. The annealed temperature
can be determined from thermodynamic analysis of the phases present [Ragone,
1992]. Kinetics of materials [Ballufi et al., 2005], a rapidly growing branch of
materials science and engineering, tries to answer the question of how much time
the heat treatment process must last to establish a desired microstructure. The
computational description of phase transformation kinetics is an important step
towards a better understanding of microstructure changes during heat treatment.

Two basic heat treatment processes are well established in heat-treatable
aluminium alloy production: homogenisation and age-hardening [aluMATTER,
2007]. The primary particles formed during casting are attempted to be dissolved
into the aluminium phase during homogenisation, because the pure aluminium
phase with a Face-Centred Cubic (FCC) crystal lattice has very high ductility and
formability. Such a heat-treated semi-product is well-prepared for subsequent me-
chanical treatment. The homogenisation occurs at approximately 500 ◦C or even
higher temperatures and thus is a high-temperature treatment. When the final
shape of the product is formed, its strength is adapted to the required applica-
tion by the age-hardening treatment. The age-hardening treatment propagates
precipitation in order to significantly increase the final product strength. This
heat treatment occurs at approximately 200 ◦C, and is a low-temperature treat-
ment. The temperature profile during the production of the extruded aluminium
products is presented in Fig.(1.1).

Figure 1.1: Time-temperature diagram of the processing of aluminium alloys [Pérez, 2006].
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1.1.1 Homogenisation

The homogenisation follows the casting process. During casting, several primary
particles are solidified in the interdendritic region between the aluminium grains.
The industrial solidification is so fast that there is little time for the diffusion
of alloying elements in the aluminium phase, because the solid solution of the
aluminium phase is strongly supersaturated at room temperature after casting.
The purpose of homogenisation is to [Dons, 2001]:

• dissolve Cu,Mg, Si - bearing particles,

• obtain a uniform distribution of alloying elements in the aluminium phase,

• remove particles and segregation gradients that will lead to areas with low
melting temperatures,

• spheroidisate undissolvable particles and

• nucleate the secondary particles.

The secondary particles nucleate during the homogenisation [Li and Arnberg,
2003]. The secondary particles or dispersoids usually nucleate on the grain bound-
aries, because of the heterogeneous nucleation. They control the grain size during
further mechanical treatment, for example extrusion or rolling.

Homogenisation of aluminium alloys is a three-step process consisting of heat-
ing, holding at the homogenisation temperature and subsequent cooling. When
the heating starts at the room temperature, the solid solution is supersaturated.
The major phase transformations during the heating step are nucleation and
precipitation of secondary particles. During the holding time, the major phase
transformation is the dissolution of primary Cu,Mg, Si - bearing particles. Other
important reactions are the coarsening of dispersoids, spheroidisation of undis-
solvable primary particles, transformation of Mn,Fe - bearing particles from one
phase to another, and the smoothing of the concentration gradients in aluminium
grains. The cooling after the holding time occurs as quickly as possible in order
to prevent the nucleation and precipitation of Mn,Fe, Si - bearing particles. For
the fast cooling step, the term quenching is usually preferred [Kammer, 1999].

The as-cast and as-homogenised micrographs of Al-5 wt%Cu alloy, obtained
from the Slovenian aluminium company IMPOL, d.d., are presented in Fig.(1.2).
The interdendritic eutectic network in the as-cast micrograph is represented by
the darker colour (left in Fig.(1.2)). This network has a strong negative influ-
ence on the ductility, and the basic purpose of homogenisation of this alloy is
the dissolution of this phase [Mondolfo, 1976]. The copper-rich phase is evenly
distributed in the form of particles in the as-homogenised micrograph (right in
Fig.(1.2)).

The most important homogenisation parameters are the homogenisation tem-
perature and time. For economic reasons, industrial heat treatments should be as
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short as possible and occur at the lowest possible temperature. The homogenisa-
tion is extremely time and energy consuming, and there is a substantial potential
for its optimisation. The estimation of the phase transformation kinetics provides
a better insight for controlling and optimizing this process.

50 mm 50 mm

Figure 1.2: The as-cast and as-homogenised micrograph of Al-5wt%Cu alloy at billet centre
obtained from the Slovenian aluminium company IMPOL, d.d..

1.2 Literature Review

The literature review focuses on the modelling of phase transformations in the
solid phase during heat treatment processes. In particular, the phase-field model
is analysed in more detail as a tool for the modelling of solid-solid phase trans-
formations in complex geometries. A numerical procedure based on the meshfree
methods for solution of the phase-field model is developed. This thesis is founded
on the following literature, separated into three research areas: modelling of phase
transformations, the phase-field model and the meshfree methods.

1.2.1 Modelling of Phase Transformations

A basic literature survey on the subject of heat treatment processes in alloys can
be found in the textbook [Callister, 2003]. The influence of alloying elements
on the microstructure morphology and its influence on the properties of alu-
minium alloys are described in [Mondolfo, 1976]. The influence of the homogeni-
sation of various aluminium alloys on microstructure is elaborated in [Sheppard,
1999]. [Mondolfo, 1976; Sheppard, 1999] can be a good starting literature for
understanding what is the purpose of the homogenisation of aluminium alloys.
[Kostorz, 2001; Jackson, 2004] focus on phase transformations in materials. A
specialized study of phase transformations in metals and alloys are available in
[Porter and Easterling, 1990]. The comprehensive textbook [Porter and Easter-
ling, 1990] is a basic tool for understanding phase transformations in general. The
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microstructural phenomena in metallic systems are explained in [Matrin et al.,
1997]. The basic thermodynamics and kinetics of solid-solid interfaces are de-
scribed in [Howe, 1997]. The theory of structural transformations in solids is
described in [Khachaturyan, 1983]. Principles of diffusion in solids are described
in [Glicksman, 2000]. A mathematical description of diffusion is available in
[Crank, 1995].

Phase transformations are closely related to phase equilibria and phase di-
agrams [Hillert, 1998], which are related to the thermodynamics of materials
[Ragone, 1992; DeHoff, 1993]. Today, thermodynamic data are obtainable from
specific calculation phase diagrams (CALPHAD) software. The most well known
and frequently used thermodynamic databases are Thermocalc [Thermocalc, 2007]
and MTDATA [MTDATA, 2007]. The thermodynamic data in this thesis are
obtained from the recently developed JMatPro software for aluminium alloys
[JMatPro, 2007].

The modelling of phase transformations in heat treatment process began ap-
proximately forty years ago. The process is very complex, and a general physi-
cal and mathematical description has still not been developed. A mathematical
description leads to the class of moving boundary problems. Many numerical
methods for the solution of moving boundary problems can be found in [Crank,
1984]. Dissolution of particles in binary Al-Cu alloys described by the two-domain
approach is found in [Aaron and Kotler, 1971]. The diffusion-controlled phase
transformation in ternary alloys is presented in [Vitek et al., 1995], in connec-
tion with a thermodynamic database, and solved by the moving grid method. A
front-tracking method for phase transformation is presented in [Jacot and Rap-
paz, 1997]. This model is used for the description of austenitisation, homogeni-
sation and grain growth in steels [Jacot and Rappaz, 1999], and solidification
microstructures in multicomponent alloys [Jacot and Rappaz, 2002].

The model for the dissolution of stoichiometric particles in ternary aluminium
systems during homogenisation based on the two-domain approach is presented
in [Vermolen et al., 1998a]. This model is implemented for dissolution kinetics
under industrial conditions in [Vermolen et al., 1998b]. The model [Vermolen
et al., 1998a] is extended for multicomponent systems in [Vermolen et al., 2002],
and the numerical procedures for solving the mathematical model are described
in [Vermolen and Vuik, 1998; Vermolen and Vuik, 2000]. Later, the one-domain
level set method was used to solve the same physical problem in [Javierre et al.,
2007; Vermolen et al., 2007].

Also, many scientific papers are available in the literature which give an ex-
perimental treatment of the homogenisation of aluminium alloys. A few of these
studies are listed here covering the dissolution kinetics of second particle in Al-Cu
alloy [Baty et al., 1970], the effect of solution heat treatment and quenching rates
on Mg2Si coarsening [Usta et al., 2004], and the mechanical properties of Al-
Si-Mg foundry alloys [Pedersen and Arnberg, 2001] and solid-solid intermetallic
phase transformation in Al-Mn-Fe [Alexander and Greer, 2002].
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1.2.2 Phase-Field Model

Today, one of the most frequently used models for describing phase transforma-
tions is the phase-field model. The applications of the phase-field model have
expanded very quickly, so a comprehensive literature review of the model is dif-
ficult. Solidification is the most attractive application of the phase-field model,
and it is used in solidification in binary alloys in [Boettinger et al., 2002]. The
concepts, applications, difficulties and perspectives of the model for multiphase
solidification in multicomponent alloys are summarized in [Hechta et al., 2004].

The phase-field model for isothermal phase transformation in binary alloys
is developed in [Wheeler et al., 1992]. The phase-field model is extended for
anisotropic interfaces in [McFadden et al., 1993]. The first numerical implemen-
tations of the model were the grain growth simulations [Warren and Boettinger,
1995; Karma and Rappel, 1998]. The influence of convection in liquid on the
dendrite shape is presented in [Beckermann et al., 1999]. In the model [Wheeler
et al., 1992], singe continuous concentration is defined in the diffuse-interface re-
gion, because the free energy density of the alloy is extrapolated as a mixture
of the free energies of the pure materials. This model has serious disadvantages
in applied numerical simulations, because interface contributions do not allow
scaling with the interface thickness independently of other parameters, which is
necessary for application at the thin interface limit.

The multiphase-field model is derived to model phase transformations in mul-
tiphase systems in [Steinbach et al., 1996; Steinbach and Pezzolla, 1999]. An
integrated concept of the multiphase-field model with solute diffusion is derived
in [Tiaden et al., 1998]. In this model, the interface region is assumed to be a
mixture of solid and liquid with different concentrations, but the phase fraction
is held constant. There is no limit on the interface thickness for numerical appli-
cation. This concept is applied for modelling eutectic and peritectic solidification
[Tiaden, 1999; Nestler and Wheeler, 2000], and the solid-solid phase transforma-
tions in steel [Pariser et al., 2001].

The different definition of free-energy density in the diffuse-interface region
in binary alloys is presented in [Kim et al., 1999]. The phase diffusion potentials
in both phases are locally equal in the diffuse-interface region. This model is
extended for multicomponent alloys in [Cha et al., 2001; Cha et al., 2005]. The
multiphase-field with this constraint in the diffuse-interface region was presented
recently in [Eiken et al., 2006].

Over the last few years, a major research focus has been the coupling of the
phase-field model with a thermodynamic database. The phase-field model is
integrated with the CALPHAD software Thermocalc in [Grafe et al., 2000] and
with MTDATA in [Qin and Wallach, 2003].

The incorporation of elastic strain energy in the phase-field model for solid-
solid phase transformations is another challenging task for phase-field research.
The two papers with incorporated elastic strain energy in the phase-field model
are listed here [Steinbach and Apel, 2006; Yeon et al., 2005].

Connection of the phase-field model with the JMatPro software for computa-
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tion of the dissolution of primary particles in binary Al-Cu alloys is demonstrated
in [Kovačević and Šarler, 2004]. Concentration in phases with a constant phase
fraction between them in the diffuse-interface region is implemented in the model.
Later, an effective way of computing the constraint that phase diffusion poten-
tials are equal was presented in [Kovačević and Šarler, 2006b]. The numerical
results for the isothermal diffusion-controlled dissolution of stoichiometric and
nonstoichiometric primary particles in binary and multicomponent aluminium
systems computed by the phase-field model and the two-domain approach are
compared in [Kovačević and Šarler, 2006b]. Dissolution of Mg2Si and Si particles
in the Al-Mg-Si system described by the multiphase-field model is demonstrated
in [Kovačević and Šarler, 2006c]. The dissolution of the artificial eutectic phase in
binary Al-Cu alloy during homogenisation is presented in [Kovačević and Šarler,
2006a].

1.2.3 Meshfree Methods

The spectrum of meshfree methods along with their application in different solid
and fluid dynamics problems are collected and demonstrated in [Liu, 2003]. Their
basic programming principles are described in [Liu and Gu, 2005]. A detailed
summary of research on meshless methods in solid and fluid mechanics, especially
for the weak-form meshfree methods, is presented in [Atluri, 2004].

A class of strong-form meshfree methods is based on collocation with radial
basis functions. Kansa used radial basis functions for a scattered data inter-
polation [Kansa, 1990a], and afterwards for a solution of the partial differential
equations [Kansa, 1990b]. The global radial basis function collocation method is
successfully applied in many scientific and engineering disciplines. It was initially
used in a heat-transport context for diffusion problems [Zerroukat et al., 1998],
and later for advection-diffusion problems in [Zerroukat et al., 2000]. The method
has been applied to the solution of Navier-Stokes equations [Mai-Duy and Tran-
Cong, 2001], the natural convection problem [Šarler et al., 2001], and the steady
natural convection problem with a free boundary associated with the solid-liquid
phase change [Perko et al., 2001]. The solutions of the Stefan problem and the
temperature field in direct-chill cast slabs and billets with the radial basis func-
tion collocation method are presented in [Kovačević et al., 2003] and [Kovačević
et al., 2004], respectively. A comparative analysis between unsymmetric and
symmetric radial basis function collocation methods for the numerical solution of
partial differential equations is presented in [Power and Barraco, 2002].

Local multiquadric collocation for solving boundary value problems is devel-
oped in [Lee et al., 2003]. The local radial basis function differential quadrature
method and its application to solve two-dimensional incompressible Navier-Stokes
equations is presented in [Shu et al., 2003]. The local radial basis function col-
location method is presented as a solution for diffusion problems in [Šarler and
Vertnik, 2006] and for convective-diffusive solid-liquid phase change problems in
[Vertnik and Šarler, 2006]. The solution of the phase-field model for the dissolu-
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tion of primary particles in binary aluminium alloys on an r-adaptive meshfree
method is presented in [Kovačević and Šarler, 2005]. Error estimation of the local
multiquadric collocation method throughout numerical experiments is presented
in [Ding et al., 2005].

1.3 Thermodynamic Background of Phase Trans-

formations

Basic thermodynamic knowledge is necessary to model phase transformations.
The Gibbs phase rule and the thermodynamic equilibrium state, essential for
phase transformation modelling, are briefly explained here. The influence of the
capillarity effect and the interface mobility on the interface condition obtained
from the thermodynamic equilibrium state are explained later.

1.3.1 The Gibbs Phase Rule

The number of degrees of freedom F in a thermodynamic system depends on the
number of components M and the number of phases P:

F = M − P + 2. (1.1)

The solid-solid phase transformations in the heat treatment processes usually
occur at constant pressure. If the pressure is maintained constant, then one
degree of freedom is lost and the Gibbs phase rule becomes

F = M − P + 1. (1.2)

If the two-phase system is considered (P = 2), the number of degrees of freedom
is

F = M − 1. (1.3)

Therefore, the number of degrees of freedom in isobaric two-phase systems is
F = 1 in a binary system (M = 2), F = 2 in a ternary system (M = 3), F = 3 in
a quaternary system (M = 4), etc.

When three phases in a binary system are in thermodynamic equilibrium,
there are no degrees of freedom and the compositions of the phases and the
temperature of the system are uniform. Three phases in binary alloys occur
during an eutectic or peritectic reaction where the liquid phase exists or during
an eutectoid or peritectoid reaction in the solid state.

1.3.2 Thermodynamic Equilibrium State

The Gibbs free energy of the phase ϕ in a multicomponent system with M com-
ponents is

gϕ =
M∑

m=1

Xm
ϕ µ

m
ϕ , (1.4)
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where Xm
ϕ and µm

ϕ represent the molar composition and chemical potential of
component m in the phase ϕ, respectively1.

The thermodynamic equilibrium state in a two-phase α-β system is established
when the chemical potentials of each component in the system are equal in both
phases [DeHoff, 1993], i.e.,

µm
α = µm

β ; m = 1, 2, . . . ,M. (1.5)

The number of conditions obtained from the thermodynamic equilibrium state is
equal to the number of the components in the system, M.

The chemical potential, expressed in terms of the activity am
ϕ , is

µm
ϕ = gm

0 +RT ln am
ϕ , (1.6)

where gm
0 , R and T represent the partial Gibbs free energy of the reference state

for component m, the universal gas constant and temperature, respectively. The
thermodynamic equilibrium state can also be written in terms of activities as

am
α = am

β ; m = 1, 2, . . . ,M. (1.7)

The thermodynamic equilibrium state of a binary A-B two-phase α-β system is
presented on a the molar free energy versus concentration diagram in Fig.(1.3).
In this figure, the equilibrium chemical potentials of components A and B in both
phases are denoted by µA

eq and µB
eq, respectively. The chemical potential of the

components in both phases are equal, i.e.,

µA
α = µA

β = µA
eq, µB

α = µB
β = µB

eq. (1.8)

Equilibrium component concentrations in both phases are obtained by the com-
mon tangent line construction.

1.3.3 Capillarity Effect

The interface condition obtained from the thermodynamic equilibrium state ne-
glects the interface shape. The interface curvature shifts the interface condition
from the thermodynamic equilibrium. The spherical particle β exerts an extra
local pressure in comparison with the phase α, because of the particle curvature.
If the interface energy and the mean curvature of the interface are denoted as
σ [J/m2] and κ [1/m], respectively, then the pressure difference is

∆p = 2σκ. (1.9)

The mean curvature of the interface is defined as

κ =
(κ1 + κ2)

2
, (1.10)

1The superscript and subscript denote a component and a phase, respectively.
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Figure 1.3: The thermodynamic equilibrium state for a binary two-phase α-β system.

where κ1 and κ2 are the principal interface curvatures. For two-dimensional
geometry, the mean curvature is inversely proportional to the curvature radius rκ

κ =
1

rκ

. (1.11)

The increase of local pressure causes an increase of the molar free energy of the
particle β by

∆gκ = 2σκVm, (1.12)

where Vm [m3/mol] is the molar volume of the phase β. Here, we assume that the
phase β is a pure, incompressible component. The curvature effect on the molar
free energy versus concentration diagram is depicted in Fig.(1.4). The free energy
increase due to the interface curvature is known as the capillarity effect or the
Gibbs-Thomson effect. The departure from the equilibrium chemical potential
because of the interface curvature is

∆µκ = µB
κ − µB

eq = RT ln
aB

κ

aB
eq

= 2σκVm. (1.13)

The solubility of component B in the phase α shifted by the interface curvature
is

Xακ = Xαeq exp

(
2σκVm

RT

)
, (1.14)
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Figure 1.4: The influence of the interface curvature on the thermodynamic equilibrium state
[Glicksman, 2000].

where it is assumed that the phase α is a dilute solution2. The solubility is shifted
by

Xακ ≈ Xαeq

(
1 +

2σVm

RTrκ

)
= Xαeq

(
1 +

d̄

rκ

)
; d̄ =

2σVm

RT
, (1.15)

where the capillary length d̄ is introduced.

The interphase interface is extremely important for the early stage of growth
when the phase β is in the form of fine precipitates embedded in the matrix α.
The solubility changes with curvature influence the precipitation interaction. The
enhanced solubility of fine particles leads to the growth of the larger particles at
the expense of the smaller in a process known as coarsening or Ostwald ripening.
The free energy of the two-phase system decreases with the decrease of the in-
terface area. Also, the enhancement of solubility by the curvature is the driving
force for the rounding of elongated (needle-shape) particles.

2In the binary A-B system, the superscript B on mass or molar concentration is omitted.
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1.3.4 Interface Mobility

The departure of chemical potential from the thermodynamic equilibrium state
influenced by the interface mobility is

∆µi = µB
i − µB

eq =
vnVm

µk

, (1.16)

where the interface-kinetic coefficient µk [m4/Js] is introduced, and vn [m/s] rep-
resents the velocity component normal to the interface. The magnitude of the
normal component velocity is positive in the example of the growth of the phase
β, and negative in the example of dissolution. The interface-kinetic coefficient
quantifies the interface mobility. The solubility in the phase α, including the
influence of interface mobility is

Xαi = Xαeq exp

(
∆µi

RT

)
≈ Xαeq

(
1 +

∆µi

RT

)
. (1.17)

If the interface mobility is very high, then the chemical potential departure ∆µi

is very small, and the solubility is approximately equal to the solubility in the
thermodynamic equilibrium state, Xαi ≈ Xαeq. Under these circumstances, the
interface moves as quickly as diffusion allows, and the phase transformation occurs
in the diffusion-controlled mode. When the interface mobility is lower, a greater
difference in chemical potential is required to drive the interface reaction, and the
phase transformation occurs in the mixed-controlled mode. At the limit of a very
low mobility, it is possible that the solubility is equal to the initial composition.
This phase transformation is said to be in the interface-controlled mode, and
a maximum possible driving force ∆µi exists across the interface [Porter and
Easterling, 1990].

The interphase interface type influences the interface mobility. If the interface
is incoherent, then atom transfer across the interface is easier. The presence of
good atomic fit across the interface (coherent interface) poses a significant growth
barrier for atom transfer across the interface.

1.4 Objectives of the Thesis

The following objectives are addressed in this thesis:

• Development of a general physical model to simulate solid-solid phase trans-
formations at the micro level during the homogenisation of aluminium al-
loys. Realization of the model using the phase-field model, and coupling
of the model with JMatPro software as a thermodynamic database for alu-
minium alloys. The model is to use at least three alloying elements.

• Validation of the model realized through the phase-field model by compar-
ison with the two-domain approach. Explanation of the difference in the
premises of the mentioned models through computed results. Analysis of
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the influence of the physical and model parameters on the accuracy and
stability of the results.

• Implementation of the local collocation with the radial basis function as a
numerical procedure for the solution of the phase-field model. Analysis of
the stability and applicability of using the meshfree method in the phase-
field model. Comparison of the results computed by the classical numerical
scheme and the meshfree method.

• Investigation of the influence of homogenisation parameters on the mi-
crostructure and phase behaviour.

1.5 Outline of the Thesis

Chapter 2 deals with the physical models for solid-solid phase transformations.
The two-domain approach and the phase-field approach for the description of
phase transformations in the solid state are explained, and advantages and draw-
backs of the models are pointed out.

Chapter 3 is devoted to the solution procedures used in this thesis. The front-
tracking method for the solution of the two-domain approach and the classical
finite difference method for the solution of the phase-field model are described.
Also, the local strong-form meshfree method on r-adaptive node arrangements
for the solution of moving boundary problems are explained. The procedure
for very accurate computation of the driving force for phase transformations in
multicomponent systems simulated by the phase-field model is demonstrated.

Chapter 4 focuses on the dissolution of primary particles in different alu-
minium systems. The numerical results computed by the two different physical
models are compared for validation of the models. The influence of model param-
eters used in the phase-field model on the results are analysed and commented.
The capability of the phase-field model for simulation of a complex topology is
demonstrated. The numerical results computed by the local collocation with
radial basis functions for the solution of the phase-field model are also provided.

Spheroidisation of the elongated Si-particle simulated by the phase-field model
is demonstrated in Chapter 5. The influences of the interface energy and tem-
perature on the rounding kinetics are simulated, and the influence of interface
energy anisotropy on the particle shape is provided at the end of this chapter.

Chapter 6 focuses on the application of the phase-field model for simulation of
the homogenisation of commercial Al-Cu alloys. This application concentrates on
the dissolution kinetics of the interdendritic eutectic phases into the aluminium
matrix.

Finally, Chapter 7 summarizes the conclusions of this thesis and further de-
velopments.

A list of the phase transformation examples computed in this thesis is pre-
sented in Tab.(1.1).
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Part I

Physical Models and Solution
Procedures
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2 Physical Models for
Solid-Solid Phase
Transformations

This chapter deals with the physical models, related to solid-solid phase trans-
formations. These physical models, in the mathematical terminology, belong to
the group of moving-boundary problems. Wide spectra of physical models exist,
along with numerical procedures for solving them [Crank, 1984]. The models are
divided into two major groups: the two-domain approaches and the one-domain
approaches.

The fields are solved separately in the domains occupied by the different phases
in the two-domain approaches, and the interface conditions are explicitly taken
into account. The major numerical problem is the boundary condition implemen-
tation at geometrically complex moving interphase interfaces.

The phase-field approach has been developed as a basis for powerful compu-
tational modelling of complex phase-change problems at the micro level. The
phase-field approach belongs to the group of one-domain approaches, where the
governing equations hold over the whole domain, and the interface conditions are
implicitly taken into account through a major non-linearity.

2.1 General Characteristics of the Physical Mod-

els

A domain Ω of volume V with exterior boundary Γ, filled with a multicomponent
alloy with M components and two different solid phases α and β is considered.
The phases have different crystal structures and/or compositions. The bound-
ary between the phases in the solid state is denoted in materials science as the
interface [Porter and Easterling, 1990]. The system is in thermal and mechani-
cal equilibrium. The scheme of the considered two-phase system is presented in
Fig.(2.1).

In heat treatment processes, the temperature changes influence changes of the
thermodynamic conditions in the system. The phase transformations between
phases in the system are consequences of these changes. The description of the
related phase transformation kinetics is the goal of the physical models.

19



20 PHYSICAL MODELS

Figure 2.1: Schematic presentation of the considered two-phase system.

The typical time scale of phase transformations in the solid state is much larger
than the time scale of the temperature changes. A time dependent but spatially
uniform temperature distribution in the observed system can be assumed. The
temperature changes in time are usually known from the macroscopic level

T = T (t) . (2.1)

Computation of the component concentration fields cmϕ (�p, t) [wt%] in the phase ϕ,
ϕ = α, β, and the interface position lβα as a function of temperature change
T = T (t) is the main purpose of the physical models. The vector position
and time are denoted as �p and t, respectively. Our consideration is confined
to the two-dimensional geometry, where the Cartesian coordinate system is used,
�p = �p (x, y). The schematic presentation of the purpose of the physical models
is drawn in Fig.(2.2). The M − 1 independent concentration fields have to be
computed in both phases, because the constitutive relation holds

M∑
m=1

cmϕ = 1. (2.2)

The major component of the system is component M, in our case aluminium (Al).

The concentration vector in the phase ϕ is denoted as cϕ =
[
c1ϕ c

2
ϕ . . . c

(M−1)
ϕ

]T
1.

The major component is explicitly not included due to the constraint Eq.(2.2).
Components are denoted with Sm, m = 1, 2, . . . ,M.

1The superscript T denotes the matrix transpose.
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Initial conditions at time t0 are prescribed: the concentration vectors in both
phases cϕ(�p, t0) and the interface position lβα(t0). All boundary conditions on the
exterior boundary Γ are assumed to be of the Neumann type, that is, no diffusion
across the system boundary (closed system)

∇cmϕ · �nΓ = 0 ; m = 1, 2, . . . ,M − 1, (2.3)

where �nΓ is the normal vector on the exterior boundary Γ.

Figure 2.2: Schematic presentation of the purpose of the physical models.

2.2 The Two-Domain Approach

The description of the Two-Domain Approach (TDA) for diffusion-controlled
solid-solid phase transformations is divided into three different segments: (i) the
mass diffusion equations in the bulk phases, (ii) the thermodynamic equilibrium
at the interface and (iii) the mass conservation at the interface. The departure
from the local thermodynamic equilibrium at the interface, influenced by the local
curvature as well as the local interface reaction, is described at the end of this
section.

2.2.1 Mass Diffusion Equations in the Bulk Phases

The mass diffusion equation of component m in the bulk phase ϕ is obtained from
Fick’s second law [Glicksman, 2000]

∂cmϕ
∂t

= −∇ · �Jm
ϕ ; m = 1, 2, . . . ,M − 1 , (2.4)
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where �Jm
ϕ is the mass flux2 of component m in the phase ϕ. The mass flux vector in

the phase ϕ is denoted as �Jϕ =
[
�J1
ϕ
�J2
ϕ . . .

�J
(M−1)
ϕ

]T

with size d×(M − 1), where

d represents the dimension of the problem. The mass flux vector represents a
product of the interdiffusion coefficient matrix and the concentration gradient
vector:

�Jϕ = −D̃ϕ∇cϕ , (2.5)

where the isotropic interdiffusion square coefficient matrix of the size (M−1) and
the concentration gradient vector are

D̃ϕ =

⎡
⎢⎢⎢⎣

D̃11
ϕ D̃12

ϕ ... D̃
1(M−1)
ϕ

D̃21
ϕ D̃22

ϕ ... D̃
2(M−1)
ϕ

... ... ... ...

D̃
(M−1)1
ϕ D̃

(M−1)2
ϕ ... D̃

(M−1)(M−1)
ϕ

⎤
⎥⎥⎥⎦ , ∇cϕ =

⎡
⎢⎢⎣

∇c1ϕ
∇c2ϕ
...

∇c(M−1)
ϕ

⎤
⎥⎥⎦ . (2.6)

The off-diagonal entries D̃nm
ϕ (n �= m) of the interdiffusion coefficient matrix, also

referred to as the cross-terms, are measures for the interaction between consec-
utive components in the phase ϕ. When D̃nm

ϕ < 0, component m deteriorates

diffusion of the element n in the phase ϕ, whereas D̃nm
ϕ > 0 implies that compo-

nent m facilitates the diffusion of element n in the phase ϕ.
The assumption that the diffusion of the component is independent of the

presence of the other component (D̃nm
ϕ ≡ 0, n �= m) is used in the reminder of

this thesis. There are two reasons for making this assumption: the first is that
the cross-diffusion coefficients D̃nm

ϕ are much lower than the diagonal diffusion

coefficients D̃mm
ϕ , and the second one is that the cross-diffusion coefficients of the

interdiffusion coefficient matrix in the solid phases cannot be easily obtained from
the available literature. The DICTRA software with different mobility databases
represents one of the ways to obtain the interdiffusion coefficient matrices for
various phases [DICTRA, 2007]. In the following, the interdiffusion diffusion
coefficients are denoted without tildes, and the superscript mm is replaced with
the superscript m, Dm

ϕ = D̃mm
ϕ .

If we take into account the above mentioned assumptions, the component mass
flux does not dependent on the concentration gradients of other components

�Jm
ϕ = −Dm

ϕ ∇cmϕ (2.7)

and the mass diffusion equation of component m becomes

∂cmϕ
∂t

= ∇ · (Dm
ϕ ∇cmϕ

)
. (2.8)

If we make the further simplification that diffusion coefficients do not depend on
concentration, then the mass diffusion equation of component m in the phase ϕ
is

∂cmϕ
∂t

= Dm
ϕ ∇2cmϕ . (2.9)

2Multidimensional vector fields in this thesis are denoted with an arrow above them. Vector
fields that correspond to concentration components are denoted in bold.
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Eq.(2.9) represents a classical parabolic Partial Differential Equation (PDE).

2.2.2 Thermodynamic Equilibrium at the Interface

In the diffusion-controlled transformation mode, the local thermodynamic vari-
ables at the interface are determined by thermodynamic equilibrium. The number
of degrees of freedom is determined in Section 1.3.1, and it determines the number
of conditions that can be obtained from thermodynamic analysis. The two-phase
isobaric system is considered, consequently the number of degrees of freedom is

F = M − 1 . (2.10)

The unknown thermodynamic variables at the interphase interface are

T , cmαI , c
m
βI ; m = 1, 2, . . . ,M − 1 .3 (2.11)

The number of unknown thermodynamic variables at the interface is 1+2(M−1).
The number of unknown thermodynamic variables 1 + 2 (M − 1) minus the

number of degrees of freedom M−1 is equal to the number of conditions that can
be obtained from thermodynamic analysis M. The general condition of the ther-
modynamic equilibrium [DeHoff, 1993] in a multicomponent two-phase system
(Eq.(1.5)) is

µm
α (T, cαI) = µm

β (T, cβI) ; m = 1, 2, . . . ,M. (2.12)

Eq.(2.12) holds for each component in the system. These equations represent
the conditions that have to be satisfied in order for any two phases to coexist in
thermodynamic equilibrium.

Also, different system of independent equations can be selected from ther-
modynamics. If we use a thermodynamic database, M equations can be chosen
as

gα (T, cαI) = 0,

gβ (T, cβI) = 0, (2.13)

Fj (T, cαI, cβI) = 0, j= 1, 2, . . . ,M − 2,

where gϕ is the mathematical description of the M-dimensional Gibbs free energy
surface of the phase ϕ. The mathematical description of tie-lines can be written
as independent M − 2 equations, Fj.

Stoichiometric Phase

An intermetallic compound with uniform concentration is known as a stoichiomet-
ric phase. Numerous stoichiometric phases are present in ferrous and nonferrous
alloys. Thermodynamic equilibrium interface conditions between the stoichio-
metric and the nonstoichiometric phases are different [Hillert, 1998], therefore
these are separately described.

3The subscript I denote local values on the interface.
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The stoichiometry compound of the particle is denoted as(
S1
)
n1

(
S2
)
n2
. . .

(
SM

)
nM

, (2.14)

where the numbers n1, n2 . . . nM are stoichiometric constants, for example Al2CuMg.
The number of degrees of freedom at the interface is equal to

F = M − 1 , (2.15)

the same as in the previous case.
The unknown thermodynamic variables at the interface are

T, cmαI ; m = 1, 2, ...,M − 1. (2.16)

The number of unknown thermodynamic variables is 1 + (M − 1), because the
composition of the stoichiometric β phase is known (cβ = cst

β ). The number of
unknown thermodynamic variables minus the number of degrees of freedom is one.
Only one condition or equation has to be satisfied in order for the stoichiometric
and the matrix phases to coexist in thermodynamic equilibrium. Hence, the
general thermodynamic condition for the physical model Eq.(2.13) in the present
case is

gα (T, cαI) = 0 , (2.17)

which guarantees that the interface concentrations are on the M-dimensional
Gibbs free energy surface of the phase α.

The other thermodynamic condition, solubility product, is introduced in [Ver-
molen et al., 2002]. The assumption that the matrix phase is a dilute solution is
used for the derivation of this condition.

Solubility Product. The Gibbs free energy of the phase β introduced in
Eq.(1.4) is

gβ =
M∑

m=1

Xm
β µ

m
β (2.18)

and the chemical potential of component m introduced in Eq.(1.6) is

µm
β = gm

0 +RT ln am
β . (2.19)

The interphase interface, where the thermodynamic equilibrium state (Eq.(2.12))
exists, can be obtained from Eqs.(2.18,2.19)

M∏
m=1

(am
α )Xm

β = exp

(
∆g

RT

)
; ∆g = gβ −

M∑
m=1

Xm
β gm

0 . (2.20)

From Henry’s law, valid for dilute solutions, the activity of the minor compo-
nent is approximately proportional to the molar composition, i.e.,

am
α = f̄m

α X
m
α ≈ Xm

α ; m = 1, 2, . . . ,M − 1, (2.21)
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where f̄m
α is the activity coefficient of component m in the phase α. From Raoult’s

law, the activity coefficient of the major component is approximately one, fM
α ≈ 1.

By using Eq.(2.21), Eq.(2.20) is

M∏
m=1

(Xm
αI)

Xm
β = exp

(
∆g

RT

)
/

M−1∏
m=1

(fm
α )Xm

β . (2.22)

The right-hand side of Eq.(2.22) is regarded as the solubility product and is
denoted by K. The solubility product depends on temperature according to an
Arrhenius relationship.

At the end, if we assume that the phase α is the dilute solution, the hyperbolic
relationship between the interface compositions is valid

M−1∏
m=1

(Xm
αI)

Xm
β = K (T ) . (2.23)

The Vermolen model [Vermolen et al., 1998b; Vermolen et al., 2002] for dis-
solution of the multicomponent stoichiometric phases in the aluminium matrix
during homogenisation of aluminium alloys is based on this kind of interface
condition.

The physical models are posed in specific mass quantities, and only the ther-
modynamic data are in specific molar quantities. The relation between them
is

cmϕ =
MSm

Mmix

Xm
ϕ ; Mmix =

M∑
m=1

MSmXm
ϕ , (2.24)

where MSm and Mmix are the molar mass of element Sm and the mass of the local
mixture, respectively.

2.2.3 Mass Conservation at the Interface

The mass conservation of component m at the interface is written as(
cmβI − cmαI

)
vn = �Jm

βI · �nβα − �Jm
αI · �nβα , vn = �v · �nβα. (2.25)

�Jm
ϕI is the interface mass flux of component m in phase ϕ, �nβα is the unit normal

vector on the interface pointing outward with respect to the phase β, and �v is
the interface velocity.

If phase β is stoichiometric, then the mass conservation of component m at
the interface Eq.(2.25) is reduced to(

cmβI − cmαI

)
vn = − �Jm

αI · �nβα. (2.26)

In binary alloys, this equation is known as the classical Stefan problem [Šarler,
1995]. In multicomponent alloys, the number of components to be conserved is
M − 1, and in the literature, this set of equations is known as a vector-valued
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Stefan problem. The one-phase classical or vector-valued Stefan problem can
be solved for binary or multicomponent alloys, respectively, if the phase β is
stoichiometric.

The number of mass conservation equations at the interface is the number
of independent components M − 1, and only one additional unknown variable is
introduced, the interface velocity �v.

The major drawback of the TDA is necessary tracking of the interface posi-
tion where the mass conservation (Eq.(2.25) or Eq.(2.26)) has to be computed.
Tracking of the interface position is very difficult in a complex multidimensional
topology, usually seen during heat treatment processes of commercial alloys at
the micro level.

In the one-dimensional geometry, Eq.(2.25) and Eq.(2.26) are

(
cmβI − cmαI

)
v = −Dm

β

∂cmβ
∂x

∣∣∣
I
+Dm

α

∂cmα
∂x

∣∣∣
I
, (2.27)

(
cmβI − cmαI

)
v = Dm

α

∂cmα
∂x

∣∣∣
I
, (2.28)

respectively. In the one-dimensional geometry, v ≡ dlβα/dt.

2.2.4 Capillarity Effect and Interface Reaction

In Section 2.2.2, the interface concentrations are determined from the thermody-
namic equilibrium. However, the interface concentrations in real systems are also
a function of the interface curvature and mobility.

The solubility of component m in the phase α at the interface is related to
the local interface curvature through the capillarity effect

Xm
ακ = Xm

αeq exp

(
2σκVm

RT

)
. (2.29)

The local interface conditions derived from the thermodynamic equilibrium do
not include the influence of the local curvature, and are only valid for the planar
interface. Regions with positive curvature have a higher interface concentration
than the regions with negative curvature. Therefore, regions of positive curvature
move faster in cases of dissolution and slower in cases of growth than the regions
of negative curvature.

The interface reaction also influences the interface condition. When the in-
terface mobility is lower, a higher driving force is required to drive the interface
reaction, and a departure from equilibrium appears at the interface. The solubil-
ity of component m is determined by

Xm
αi = Xm

αeq exp

(
vnVm

µkRT

)
. (2.30)

The interface concentrations in the phase α obtained from thermodynamic
equilibrium have to be corrected in order to include the capillarity effect or the
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interface mobility by Eq.(2.29) or Eq.(2.30), respectively. The capillarity effect
and the interface reaction effect on the interface conditions in the binary system
are explained in more detail in Sections 1.3.3 and 1.3.4, respectively.

The influence of the interface reaction on the dissolution kinetics in binary
aluminium alloys has already been implemented in [Aaron and Kotler, 1971]. The
implementation of the TDA in multidimensional geometry for the grain growth is
presented in [Juric, 1996]. Calculation of the curvature by the TDA is extremely
difficult for multidimensional geometries, because of which it is only implemented
for one-dimensional geometry. However, the results computed by the TDA are
used as reference solutions for the results computed by the phase-field approach.

2.2.5 Summary

The total number of unknowns at the interface between two phases in the thermo-
dynamic equilibrium state is 2(M−1)+1+1 = 2M, which are the thermodynamic
variables in Eq.(2.11) and the interface velocity in Eq.(2.25). Therefore, the un-
knowns in the TDA are:

T, cmαI, c
m
βI, �v ; m = 1, 2, . . . ,M − 1. (2.31)

Temperature evaluation during heat treatment processes is known

T = T (t). (2.32)

The physical model based on the TDA consists of the following system of equa-
tions:

• the concentration equation of each component in the bulk phases

∂cmϕ
∂t

= Dm
ϕ ∇2cmϕ , m = 1, 2, . . . ,M − 1, (2.33)

• the local thermodynamic equilibrium conditions at the interface

µm
α (T, cαI) = µm

β (T, cβI) ; m = 1, 2, . . . ,M, (2.34)

• the mass conservation equations at the interface(
cmβI − cmαI

)
vn = �Jm

βI · �nβα − �Jm
αI · �nβα; m = 1, 2, . . . ,M − 1. (2.35)

Stoichiometric phase

The total number of unknowns at the interface between a stoichiometric phase
and the matrix is (M−1)+1+1 = M+1, the thermodynamic values in Eq.(2.16)
and the interface velocity in Eq.(2.26). The unknowns are:

T, cmαI, �v ; m = 1, 2, . . . ,M − 1. (2.36)

The physical model based on the TDA for the phase transformations of the stoi-
chiometric phase consists of:
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• the concentration equations of each component in the matrix phase α

∂cmα
∂t

= Dm
α ∇2cmα , m = 1, 2, . . . ,M − 1 , (2.37)

• the local thermodynamic equilibrium condition at the interface

gα (T, cαI) = 0 or
M−1∏
m=1

(Xm
αI)

Xm
β = K (T ) , (2.38)

• the mass conservation equations at the interface(
cmβI − cmαI

)
vn = − �Jm

αI · �nβα ; m = 1, 2, . . . ,M − 1 . (2.39)

The general model based on the TDA is presented here. The numerical pro-
cedures for the computation of such models are very well developed, and the
implementation of the procedures is relatively simple and straightforward for
one-dimensional geometry.

2.3 The Phase-Field Approach

The phase-field approach is based on a nonconserved order parameter named
the Phase-Field Variable (PFV), which is continuous over in the computational
domain. The fixed values of PFV represent bulk phases, whereas highly localized
changes of this variable represent the interphase diffuse interface. The behavior
of this variable is governed by a particular phase-field equation that is coupled
to the heat and solute transport equations.

2.3.1 Diffuse-Interface Approach

Let ζ (�p) represent either a conserved or a nonconserved order parameter, such
as concentration c (�p) in a binary system or PFV φ (�p) [−]. The field f (�p) =
f (ζ (�p) ,∇ζ (�p)) [J/m3] can represent the free-energy density at position �p. The
homogeneous free-energy density fh (ζ,∇ζ = 0) is the free-energy density in the
absence of gradients, and is related to the Gibbs free energy. Expanding the free-
energy density about its homogenous value in powers of gradients in the general
coordinate system (x1, x2, x3), the free-energy is

f (ζ,∇ζ) = fh (ζ, 0) + �L · ∇ζ + ∇ζ · K∇ζ + . . . (2.40)

where
�L = [Lx1 , Lx2 , Lx3 ] , Lxi

=
∂f

∂ (∂ζ/∂xi)
(2.41)

is a vector at zero gradient, and K is a tensor property known as the gradient-
energy coefficient with the components

Kij =
1

2

∂2f

∂ (∂ζ/∂xi) ∂ (∂ζ/∂xj)
. (2.42)
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The free-energy density should not depend on the choice of coordinate system,
therefore �L = �0 and K is a symmetric tensor. Furthermore, if the homogeneous
material is isotropic or cubic, K is a diagonal tensor with an equal component
ε2

ζ/2 [J/m]. The free-energy density truncated up to the second order is

f (ζ,∇ζ) ≈ fh (ζ) + ∇ζ · ε
2
ζ

2
∇ζ = fh (ζ) +

ε2
ζ

2
|∇ζ|2. (2.43)

The free-energy density is approximated as the first two terms in a series
expansion in order-parameters gradients: the first term is related to homogeneous
free-energy density and the second is proportional to the squared order parameter
gradient [Ballufi et al., 2005].

Diffusion Potential for Transformation

The local diffusion potential for a transformation, Φ (�p), at time t = t0, can be
determined from the rate of change of total free energy, F [J], with respect to its
current order-parameter field, ζ (�p, t0). The total free energy at time t = t0 is

F (t0) =

∫
Ω

[
fh (ζ (�p, t0)) +

ε2
ζ

2
|∇ζ|2

]
dV , (2.44)

which defines the total free energy F as a functional of the order parameter
ζ (�p, t0). If the order parameter changes with local ”velocity” ∂ζ/∂t (i.e. such that
ζ (�p, t) = ζ (�p, t0) + t ∂ζ/∂t (�p, t0)), then the rate of change of F can be summed
from all the contributions of f (ζ,∇ζ) due to changes in the order-parameter field
and its gradient,

dF
dt

∣∣∣∣
t0

=

∫
Ω

(
∂fh

∂ζ

∂ζ

∂t
+ ε2

ζ∇ζ · ∇
∂ζ

∂t

)
dV . (2.45)

Using the relation

∇ζ · ∇∂ζ

∂t
= ∇ ·

(
∂ζ

∂t
∇ζ

)
− ∂ζ

∂t
∇2ζ, (2.46)

Eq.(2.45) can be written as

dF
dt

∣∣∣∣
t0

=

∫
Ω

(
∂fh

∂ζ
− ε2

ζ∇2ζ

)
∂ζ

∂t
dV + ε2

ζ

∫
Ω

∇ ·
(
∂ζ

∂t
∇ζ

)
dV . (2.47)

Applying the divergence theorem to the second integral in Eq.(2.47)

dF
dt

∣∣∣∣
t0

=

∫
Ω

(
∂fh

∂ζ
− ε2

ζ∇2ζ

)
∂ζ

∂t
dV + ε2

ζ

∫
Γ

(
∂ζ

∂t
∇ζ

)
· �nΓdA. (2.48)

The boundary integral on the right-hand side of Eq.(2.48) is zero, if
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• ζ (Γ) has constant boundary values (constant Dirichlet boundary condition)
or

• the projections of the gradients onto the boundary vanish (Neumann inso-
lation boundary condition).

Therefore, if the order parameter changes by a small amount δζ = (∂ζ/∂t) δt, the
change in total free energy is the sum of the local changes:

δF =

∫
Ω

(
∂fh

∂ζ
− ε2

ζ∇2ζ

)
δζdV . (2.49)

The quantity

Φ (�p) =
∂fh

∂ζ
− ε2

ζ∇2ζ (2.50)

is the localized density of free-energy change due to the variation in the order-
parameter field δζ, and is therefore the potential of change ζ. Eq.(2.50) is the
starting point for the development of kinetic equations for conserved and non-
conserved order-parameter fields [Ballufi et al., 2005].

Evolution Equations for Conserved and Non-Conserved Order Param-
eters

Cahn-Hilliard Equation. The Cahn-Hilliard equation [Cahn and Hilliard,
1958] applies to conserved order-parameter kinetics. For a binary A-B alloy,
the quantity Φ in Eq.(2.50) is the change in homogeneous and gradient energy
due to the change of the local concentration and is related to flux by

�J = −L∇δF
δc

= − D
∂2fh

∂c2

∇
(
∂fh

∂c
− ε2

c∇2c

)
, (2.51)

where L is the Onsager coefficient. The kinetic equation for concentration c (�p, t)
in a binary alloy is

∂c

∂t
= −∇ · �J = ∇ ·

[
D

∂2fh

∂c2

∇
(
∂fh

∂c
− ε2

c∇2c

)]
. (2.52)

Eq.(2.52) is the Cahn-Hilliard equation. The Cahn-Hiliard equation is often lin-
earized for concentration around the average value of the positive kinetic coeffi-
cient Mc = 〈D/ (∂2fh/∂c2

)〉 [m5/Js]

∂c

∂t
= Mc

(
∂2fh

∂c2
∇2c− ε2

c∇4c

)
. (2.53)

The first term on the right-hand side in Eq.(2.53) is the diffusion term. The second
term accounts for the interface energy potential for concentration gradients.
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Allen-Cahn Equation. The Allen-Cahn equation [Cahn and Allen, 1977] ap-
plies to the kinetics of a diffuse-interface model for a nonconserved order parame-
ter. The increase in local free-energy density Φ (�p), does not require any additional
macroscopic flux. In a linear model, the local rate of change is proportional to
its energy-density decrease,

∂φ

∂t
= −Mφ

δF
δφ

= −Mφ

(
∂fh

∂φ
− ε2

φ∇2φ

)
. (2.54)

where Mφ [m3/Js] is positive kinetic coefficient referred to as the phase-field mo-
bility, and is related to the microscopic rearrangement kinetics. According to the
Allen-Cahn equation, Eq.(2.54), the PFV φ will be attracted to the local minima
of the homogeneous free-energy density fh.

2.3.2 Phase-Field Model

Numerical models of conserved and nonconserved order-parameter kinetics pro-
duce simulations that might capture many aspects of microstructure evolution.
These equations, as derived from variational principles, constitute the Phase-Field
Model (PFM). In our example, the nonconserved and conserved order-parameters
are the PFV φ and the component concentration cm in the system, respectively.

The total free energy of such an observed system is

F (φ, c, T ) =

∫
V

(
f ch (φ, c, T ) +

ε2
φ

2
|∇φ|2

)
dV, (2.55)

where the energy-gradient coefficient related to concentrations is neglected (εc ≈
0).

In this thesis, the order parameter PFV represents the matrix phase α where
φ = 0 and the phase β where φ = 1. The strong gradient of the PFV between
these values represents the diffuse-interface region. The PFV versus the coordi-
nate normal to the interface is presented in Fig.(2.3(a)).

The PFMs for phase transformation are divided depending on the definition of
free-energy density in the diffuse-interface region. The PFM is derived for solidifi-
cation, and later on the model is implemented for different phase transformations
as well as for transformations in the solid state.

The PFM for the solidification of binary alloys is derived in [Wheeler et al.,
1992]. In the model, any point within the interface region is assumed to be a
mixture of solid and liquid phases with the same concentrations. A problem in
this model, especially in numerical simulations where a finite interface thickness is
assumed, is that the model parameters vary depending on the interface thickness.
Due to the chemical energy contribution to the interface energy, there is a certain
limit of the interface thickness, which is not only restricted by the interface energy,
but also by the difference between the equilibrium liquid and solid compositions.

A different definition of the free-energy density is used in [Tiaden et al., 1998].
In their model, the interface region is assumed to be a mixture of solid and liquid
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with different concentrations, but with a constant phase fraction. There is no
limit to the interface thickness for numerical implementations.

In this thesis, the interface region is defined as a mixture of two phases with
compositions different from each other, but with the same phase diffusion po-
tential [Kim et al., 1999]. In the model [Wheeler et al., 1992], on the contrary,
the interface region is defined as a mixture of solid and liquid with the same
composition, but with different phase diffusion potentials. It does not matter
which definition for the interface region is more physically reasonable, because
the interface region in the PFMs cannot be regarded as a physical entity, but
instead must be taken as a mathematical entity for technical convenience.

The thermodynamic condition in the interface region is that the phase diffu-
sion potential in the phase α is equal to the phase diffusion potential in the phase
β for each independent component, i.e.,

∂fα

∂cmα
=
∂fβ

∂cmβ
; m = 1, 2, , . . . ,M − 1 . (2.56)

The concentration in the interface region is defined as a mixture of concentrations
in the phase α and the phase β, as:

c = (1 − p (φ)) cα + p (φ) cβ, (2.57)

where an interpolation function p (φ) is introduced.
The concentrations in phases are different from each other, but they have

the same phase diffusion potential. The condition Eq.(2.56) does not imply that
the phase diffusion potential is constant throughout the interface region; it is
only constant across the interface region in thermodynamic equilibrium. The
schematic presentation of concentrations in phases in the interface region is de-
picted in Fig.(2.3(b)).

The concentrations of each component in the phases α and β have to be
computed from Eqs.(2.56,2.57). Solving the system of Eqs.(2.56,2.57) with tab-
ular data from an thermodynamic database is very time consuming, and special
attention is paid in the presented thesis to suitable solution.

If the phase β is an intermetallic compound with a constant concentration
cβ = cst

β , then the concentration in the phase α can be straightforwardly computed
by Eq.(2.57) through

cα =
c − p (φ) cst

β

1 − p (φ)
. (2.58)

Free-Energy Density

The chemical free-energy density f ch (φ, c, T ) of a two-phase system is postulated
as

f ch (φ, c, T ) = (1 − p (φ)) fα (cα, T ) + p (φ) fβ (cβ, T ) + wh (φ) , (2.59)



THE PHASE-FIELD APPROACH 33

Spatial Coordinate Normal to Interface Position

P
ha

se
-F

ie
ld

V
ar

ia
bl

e

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

Phase αPhase β

(a) The PFV. (b) Concentration Profiles.

Figure 2.3: Schematic presentation of the PFM.

where fϕ (cϕ, T ) is the free-energy density of the phase ϕ and wh (φ) is the energy
hump between them. The model parameter w [J/m3] is four times higher than the
height of the energy hump. The interpolation p (φ) and the double-well function
h (φ) are explained later in this section.

The chemical free-energy density can be divided into two parts: the bulk and
the interface part of chemical free energy

f ch (φ, c, T ) = f ch
bulk + f ch

int, (2.60)

where

f ch
bulk (φ, c, T ) = (1 − p (φ)) fα (cα, T )+p (φ) fβ (cβ, T ) , f ch

int (φ) = wh (φ) , (2.61)

respectively.
The derivative of the chemical free energy with respect to the PFV is

∂f ch

∂φ
= p′ (φ)

[
fβ − fα −

M−1∑
m=1

∂fα

∂cmα

(
cmβ − cmα

)]
+ wh′ (φ) . (2.62)

The last expression is derived by the following relationships

∂cmϕ
∂cm

=

∂2fϕ̄

∂cmϕ̄
2

(1 − p (φ))
∂2fβ

∂cmβ
2 + p (φ) ∂2fα

∂cmα
2

,
∂cmϕ
∂φ

= −
p′ (φ)

(
cmβ − cmα

) ∂2fϕ̄

∂cmϕ̄
2

(1 − p (φ))
∂2fβ

∂cmβ
2 + p (φ) ∂2fα

∂cmα
2

.

(2.63)
In the first case, ϕ = α, ϕ̄ = β and in the second, ϕ = β, ϕ̄ = α . p′ (φ) represents
the first derivative with respect to the PFV, dp/dφ. The derivative of the chemical
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free-energy density with respect to the mixture concentration of component m is

∂f ch

∂cm
=
∂f ch

α

∂cmα
=
∂f ch

β

∂cmβ
. (2.64)

For the evolution of the chemical contribution in conjunction with the thermo-
dynamic database, Gibbs-molar free energies are preferred. If we neglect volume
changes and assume that the molar volumes of phases are equal and independent
of composition (Vm), then the free-energy densities can be replaced by molar free
energies as

f ch
bulk (c, T ) =

1

Vm

[(1 − p (φ)) gα (Xα, T ) + p (φ) gβ (Xβ, T )] . (2.65)

Now, the derivative of the chemical free energy with respect to the PFV in
terms of the molar free energies is

∂f ch

∂φ
=
p′ (φ)

Vm

[
gβ − gα −

M−1∑
m=1

∂gα

∂Xm
α

(
Xm

β −Xm
α

)]
+ wh′ (φ) . (2.66)

By using the condition Eq.(2.56) and the assumption that molar volumes of
phases are equal, the derivatives of the molar free energies with respect to the
molar compositions of each component are equal

∂gα

∂Xm
α

=
∂gβ

∂Xm
β

, m = 1, 2, . . . ,M − 1 . (2.67)

The molar phase diffusion potential of a component can be expressed by chemical
potentials as

∂gϕ

∂Xm
ϕ

= µm
ϕ − µM

ϕ . (2.68)

The presentation of Eq.(2.68) in binary systems can be seen in Fig.(1.3).

Driving Force for Phase Transformations. The expression in brackets in
Eq.(2.66) is the driving force for the phase transformation of the phase β in the
phase α [Hillert, 1998]

∆gβα = gβ − gα −
M−1∑
m=1

∂gα

∂Xm
α

(
Xm

β −Xm
α

)
. (2.69)

The molar phase diffusion potential (∂gϕ/∂X
m
ϕ ) is the difference between the

chemical potentials (Eq.2.68), and the driving force can be expressed in terms of
thermodynamic variables as

∆gβα = gβ − gα −
M−1∑
m=1

(
µm

α − µM
α

) (
Xm

β −Xm
α

)
. (2.70)
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The molar free energy of the phase and the chemical potential of components
in phases can be obtained from a thermodynamic database. The schematic pre-
sentation of the driving force for the dissolution of the phase β in phase α is
presented for the binary system in Fig.(2.4). The departure from the thermody-
namic equilibrium state can be quantified by the molar driving force. If ∆gβα < 0,
then the phase β grows in phase α, and vice versa, i.e., if ∆gβα > 0, then the
phase β dissolves into the phase α. In the equilibrium state, the driving force is
equal to zero:

∆gβα = 0 . (2.71)

Figure 2.4: Thermodynamic driving force for phase transformation of β in α phase for binary
system.

Interpolation and Double-well Function. The free-energy density of the
system is defined by using the interpolation p (φ) and the double-well function
h (φ). These functions have to satisfy the following conditions:

p (φ = 0) = 0,
dp (0)

dφ
= 0, h (0) = 0,

dh (0)

dφ
= 0,

(2.72)

p (φ = 1) = 1,
dp (1)

dφ
= 0, h (1) = 0,

dh (1)

dφ
= 0.
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The interpolation function and its derivative with respect to the PFV are

p (φ) = φ3
(
6φ2 − 15φ+ 10

)
, p′ (φ) =

dp

dφ
= 30φ2 (1 − φ)2 (2.73)

and the double-well function and the derivative are

h (φ) = φ2 (1 − φ)2 , h′ (φ) =
dh

dφ
= 2φ (1 − φ) (1 − 2φ) . (2.74)

Also, other functions which satisfy conditions in Eq.(2.72) could be used. The
selection of these functions has no influence on the model. The double-well func-
tion in Eq.(2.74) is the most frequently used, whereas the interpolation function
is also frequently expressed as

p (φ) = φ2 (3 − 2φ) , p′ (φ) = 6φ (1 − φ) . (2.75)

Phase-Field Equation

The phase-field equation is derived by the Allen-Cahn equation Eq.(2.54), the
definition of the free-energy density Eq.(2.59) and its derivative with respect to
the PFV Eq.(2.66). The phase-field equation becomes

∂φ

∂t
= Mφ

(
ε2

φ∇2φ− wh′ (φ) − p′ (φ)
∆gβα

Vm

)
. (2.76)

By choosing the interpolation and the double-well function Eqs.(2.73,2.74), the
phase-field equation Eq.(2.76) becomes

∂φ

∂t
= Mφ

[
ε2

φ∇2φ− 2wφ (1 − φ) (1 − 2φ) − 30φ2 (1 − φ)2 ∆gβα

Vm

]
. (2.77)

The phase-field equation in Eq.(2.77) controls the evolution of the PFV.
From a mathematical point of view, the driving force is the function of con-

centrations in the phases,

∆gβα = ∆gβα (Xα,Xβ) (2.78)

and it is part of the source term in the phase-field equation.

Concentration Equations

Concentration equations are derived from two different physical approaches in the
literature. The first approach is the classical thermodynamic approach, derived
from the Cahn-Hilliard equation Eq.(2.52). The second approach is based on the
fact that the mixture concentration in a finite control volume can only change
by external flux over the volume boundary. This is named the control-volume
approach. Concentration equations derived from the Cahn-Hilliard equation are
explained first.
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Cahn-Hilliard Equation. The evolution equation for the concentration of
component m in the system with the total free energy in Eq.(2.55) is [Cha et al.,
2005]:

∂cm

∂t
= ∇ ·

M−1∑
n=1

Lmn∇δF
δcn

= ∇ ·
M−1∑
n=1

Lmn∇∂f ch

∂cn
=

(2.79)

∇ ·
M−1∑
n=1

M−1∑
l=1

Lmn ∂
2f ch

∂cn∂cl
∇cl + ∇ ·

M−1∑
n=1

Lmn ∂
2f ch

∂cn∂φ
∇φ.

If we use the assumption that coefficients of the Onsager tensor are only non-zero
on the main diagonal, which means that concentration of each component is in-
dependent of the presence of other components (∂2f ch/ (∂cm∂cn) ≈ 0), Eq.(2.79)
is reduced to

∂cm

∂t
= ∇ ·

(
Lmm∂

2f ch

∂cm2
∇cm

)
+ ∇ ·

(
Lmm ∂2f ch

∂cm∂φ
∇φ

)
=

(2.80)∇ · (Dm (φ)∇cm) −∇ · [Dm (φ) p′ (φ)
(
cmβ − cmα

)∇φ] .
Control-Volume Approach. This approach is based on the physical state-
ment that the mixture concentration in an infinitesimally small volume or the
finite control volume of the numerical model can only change by external fluxes
over the boundary of this volume. These fluxes are superimposed according to
the PFVs, which have to be evaluated at the boundary of the volume [Tiaden
et al., 1998].

The mass diffusion or concentration equation of the component m, valid over
the whole system, is

∂cm

∂t
= −∇ ·

[
(1 − φ) �Jm

α + φ �Jm
β

]
, (2.81)

where �Jm
ϕ represents the mass flux of component m in the phase ϕ (ϕ = α, β)

introduced in Section 2.2.1.

The final mass diffusion equation or the concentration equation of component
m in the system is

∂cm

∂t
= ∇ · [(1 − φ)Dm

α ∇cmα + φDm
β ∇cmβ

]
. (2.82)

The mixture concentration in the finite volume approach can be defined as

cm = (1 − φ) cmα + φcmβ . (2.83)

where the interpolation function is substituted by the PFV, p (φ) ≡ φ.
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Comparison of Concentration Equations. Concentration equations in Eq.(2.80)
and Eq.(2.82) are derived by different physical statements. The first equation is
derived from the classical thermodynamic approach and the second one from the
control-volume approach. Concentration equations derived by both concepts are
compared here. By using Eq.(2.63), the following relationship can be computed:

∇cmϕ =

∂2fϕ̄

∂cmϕ̄
2

[∇cm − p′ (φ)
(
cmβ − cmα

)∇φ]
(1 − p (φ))

∂2fβ

∂cmβ
2 + p (φ) ∂2fα

∂cmα
2

. (2.84)

The concentration equation derived by the control-volume approach (Eq.(2.82))
by using relationships in Eq.(2.84) can be rewritten as

∂cm

∂t
= ∇ · [(1 − φ)Dm

α ∇cmα + φDm
β ∇cmβ

]
=

(2.85)∇ · (Dm (φ)∇cm) −∇ · [Dm (φ) p′ (φ)
(
cmβ − cmα

)∇φ] ,
where the diffusion coefficient of component m in the diffusion-interface region
Dm (φ) is introduced as

Dm (φ) =
(1 − φ)Dm

α
∂2fβ

∂cmβ
2 + φDm

β
∂2fα

∂cmα
2

(1 − p (φ))
∂2fβ

∂cmβ
2 + p (φ) ∂2fα

∂cmα
2

. (2.86)

The concentration equation derived by the classical thermodynamic approach
Eq.(2.80) is identical to the concentration equation derived by the control-volume
approach Eq.(2.82), in case the diffusion coefficient in the diffuse-interface region
is defined through Eq.(2.86).

2.3.3 Derivation of PFM Parameters

Relations between the model parameters and the physical properties are estab-
lished here. The gradient-energy coefficient εφ, the height of the energy hump
w and the phase-field mobility Mφ are model parameters, whereas the interface
energy σ, the interface thickness δ, and the interface-kinetic coefficient µk are
physical properties. Relations of the observed PFM have been explained for bi-
nary systems [Kim et al., 1999]. Later, relations were derived for multicomponent
systems in [Cha et al., 2001; Cha et al., 2005]. The PFV and concentration pro-
file at the thermodynamic equilibrium state in the diffusion-interface region are
explained first.

Equilibrium Solution. The concentration field and the PFV are independent
of time at the equilibrium. The PFV and concentration profile at the equi-
librium are denoted by φeq (�p) and ceq (�p), respectively. The kinetic equations
Eqs.(2.76,2.79) for the binary system at the equilibrium for one-dimensional ge-
ometry are:

ε2
φ

d2φeq

dx2
− wh′ (φeq) − p′ (φeq)

∆gβα

Vm

= 0 , (2.87)
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d

dx

[
D (φ)
∂2fch

∂2ceq

d

dx

(
∂f ch

∂ceq

)]
= 0 . (2.88)

The phase diffusion potential is constant throughout the system, hence Eq.(2.88)
is equivalent to

∂f ch

∂ceq
= const . (2.89)

From Eqs.(2.64,2.89), one can get

∂f ch

∂ceq
=
∂fα

∂cα
=
∂fβ

∂cβ
. (2.90)

Therefore, cα and cβ are constant and equal to the equilibrium concentrations

cα = cαeq , cβ = cβeq . (2.91)

The concentration profile at the equilibrium is

ceq (x) = (1 − p (φ)) cαeq + p (φ) cβeq . (2.92)

Now, let us find solution φeq (x) in Eq.(2.87). The driving force for phase transfor-
mation is zero (Eq.(2.71)), so the phase field equation at the equilibrium becomes:

ε2
φ

d2φeq

d2x
= wh′ (φeq) . (2.93)

This equation can be transformed in

ε2
φ

2

(
dφeq

dx

)2

= wh (φeq) . (2.94)

By integration of Eq.(2.94) from x = −∞ to x = ∞ with the double-well function
h(φ) = φ2(1 − φ)2 and the following boundary conditions

x = −∞ , φ = 1 , h (1) = 0 ,
(2.95)

x = ∞ , φ = 0 , h (0) = 0 ,

we can get the PFV profile at the equilibrium

φeq =
1

2

[
1 − tanh

( √
w

εφ

√
2
x

)]
. (2.96)

Interface Energy

The interface energy for an equilibrium interface, with the concentration profile
ceq (x) Eq.(2.92) and the PFV φeq (x) Eq.(2.96), can be calculated by

σ =

∞∫
−∞

[
ε2

φ

2

(
dφeq

dx

)2

+ wh (φeq)

]
dx . (2.97)
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There are two interface energy contributions: (i) the first one is due to the
gradient-energy term; this contribution tends to spread the interface region and
thereby reduce the order parameter gradient between its stable values in adjacent
phases and (ii) the second one is due to the chemical free energy associated with
the energy hump; this contribution tends to narrow the interface region.

By using Eq.(2.94) the interface energy is

σ = ε2
φ

∞∫
−∞

(
dφeq

dx

)2

dx . (2.98)

For an interface at equilibrium, the gradient-energy term is half of the total
interface energy.

Analytical expressions for the interface energy in terms of the model param-
eters are only available for very simple cases when the analytical solution can be
derived at equilibrium, i.e., where the profiles are known. In our case, the analyt-
ical solution of the interface energy can be obtained with the PFV at equilibrium
Eq.(2.96) and the double-well function h (φ) = φ2 (1 − φ)2. From Eq.(2.94), we
can obtain

dx = −
√

ε2
φ

2wh (φeq)
dφ . (2.99)

Substituting Eqs.(2.94,2.99) into Eq.(2.98), and using the boundary conditions
in Eq.(2.95), the interface energy is

σ = −ε2
φ

0∫
1

2wh (φeq)

ε2
φ

√
ε2

φ

2wh (φeq)
dφeq =

(2.100)

−
√

2wε2
φ

0∫
1

φeq (1 − φeq) dφeq .

By integrating Eq.(2.100), the relationship between the interface energy and
model parameters can be obtained as

σ =
εφ

√
w

3
√

2
. (2.101)

Interface Thickness

The phase-field variable as a function of the one-dimensional coordinate at the
equilibrium is written in Eq.(2.96). The inverse function is

x =
εφ

√
2√
w

atanh (1 − 2φeq) . (2.102)

The measure of the interface thickness δ, using the condition that the PFV is in
the interval (λ, 1 − λ), can be written as

δ =
εφ

√
2√
w

{
atanh [1 − 2 (1 − λ)] − atanh (1 − 2λ)

}
. (2.103)
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The parameter λ determines the measure of the interface thickness. For example,

λ = 0.1 , δ = 2.197
εφ

√
2√
w

; λ = 0.05 , δ = 2.944
εφ

√
2√
w

. (2.104)

Usually, the measure of interface thickness is

δ = 3
√

2
εφ√
w
, (2.105)

which guaranties that the PFV in the diffusion-interface region at equilibrium is
in the interval (0.05, 0.95). The measure of the interface thickness is written in
the following text as the interface thickness only.

Phase-Field Mobility

The last model parameter explained in this section is the phase-field mobility. The
relationship between the phase-field mobility and the interface-kinetic coefficient
has to be found. The interface-kinetic coefficient is the proportional constant
between the driving force for phase transformation and the interface velocity
Eq.(1.16)

vn

µk

= −∆gβα

Vm

. (2.106)

A relationship can be found at the thin-interface limit, where the interface thick-
ness is small compared with the diffuse boundary layer. The complete derivation
of the thin-interface limit of the presented model for solidification of binary alloys
is derived in [Kim et al., 1999]. The relationship between the interface-kinetic
coefficient and the phase-field mobility is

1

µk

=
σ

Mφε2
φ

− εφ

Dint

√
2w

γ (cαeq, cβeq) . (2.107)

This relationship was derived under the assumption that the diffusivity is negli-
gible in the phase β, and that the diffusivity Dint is constant within the interface
region. The function γ is

γ (cαeq, cβeq) =
∂2fβ

∂c2β

∂2fα

∂c2α
(cβeq − cαeq)

2

(2.108)∫ 1

0

p (φeq) (1 − p (φeq))

(1 − p (φeq))
∂2fβ

∂cmβ
2 + p (φeq)

∂2fα

∂cmα
2

dφeq

φeq (1 − φeq)
.

If we take that δ ∼ εφ/
√
w → 0, Eq.(2.107) is reduced to the sharp-interface limit

condition

µk =
Mφε

2
φ

σ
= Mφδ. (2.109)
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Model Parameters

The PFV profile related by the interface thickness at the equilibrium is computed
by substituting Eq.(2.105) in Eq.(2.96)

φeq =
1

2

[
1 − tanh

(
3x

δ

)]
. (2.110)

From the interface energy Eq.(2.101) and the interface thickness Eq.(2.105), the
model parameters such as the gradient energy coefficient εφ and the height of
energy hump w are

ε2
φ = σδ , w =

18σ

δ
. (2.111)

The phase-field mobility at the sharp-interface limit condition Eq.(2.109) is

Mφ =
µk

δ
. (2.112)

The phase-field equation, expressed by the physical properties and the inter-
face thickness is

∂φ

∂t
=
µk

δ

{
σ
[
δ∇2φ− 36

δ
φ (1 − φ) (1 − 2φ)

]
− 30φ2 (1 − φ)2 ∆gβα

Vm

}
. (2.113)

2.3.4 Geometry Description of the Phase-Field Equation

A simple geometrically motivated derivation of the phase-field equation starting
from the Gibbs-Thomson interface relation is presented in [Beckermann et al.,
1999]. The Gibbs-Thomson relation for an isotropic interface energy can be
written as

vn

µk

= −2σκ− ∆gβα

Vm

. (2.114)

The normal component of the interface velocity is

vn = �v · �nβα = �v ·
(
− ∇φ
|∇φ|

)
=

1

|∇φ|
∂φ

∂t
, (2.115)

and the curvature is given by

κ =
1

2
∇ · �nβα = − 1

2|∇φ|
(
∇2φ− (∇φ · ∇)|∇φ|

|∇φ|
)
. (2.116)

The PFV in the diffusion interface is

φ =
1

2

[
1 − tanh

(
3n

δ

)]
, (2.117)

where n is the coordinate normal to the interface. From Eq.(2.117), the following
relationships can be obtained

|∇φ| =
∂φ

∂n
=

6

δ
φ (1 − φ) ,

(∇φ · ∇)|∇φ|
|∇φ| =

∂2φ

∂2n
=

36

δ2
φ (1 − φ) (1 − 2φ) .

(2.118)
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The phase-field equation is derived by substituting Eqs.(2.115,2.116,2.118) into
the Gibbs-Thomson relation Eq.(2.114). The phase-field equation becomes

∂φ

∂t
=
µk

δ

{
σ
[
δ∇2φ− 36

δ
φ (1 − φ) (1 − 2φ)

]
− 6φ (1 − φ)

∆gβα

Vm

}
. (2.119)

The first two terms in the phase-field equation are caused by the curvature effect:
(i) the first contribution tends to spread and (ii) the second one tends to narrow
the interface region. The third term is related to the thermodynamic driving
force.

The phase-field equation derived directly from the Gibbs-Thomson interface
relation Eq.(2.119) is identical to the phase-field equation derived from the Allen-
Cahn equation Eq.(2.113), if we choose the interpolation function as p (φ) =
φ2 (3 − 2φ) (Eq.(2.75)).

2.3.5 Summary

The phase-field equation for the evolution of the PFV is

∂φ

∂t
= Mφ

[
ε2

φ∇2φ− 2wφ (1 − φ) (1 − 2φ) − 30φ2 (1 − φ)2 ∆gβα

Vm

]
. (2.120)

The model parameters in the phase-field equation are determined by the interface
thickness and physical properties as

ε2
φ = σδ, w =

18σ

δ
, Mφ =

µk

δ
. (2.121)

The driving force in the phase-field equation is computed from a thermodynamic
database as

∆gβα = gβ − gα −
M−1∑
m=1

∂gα

∂Xm
α

(
Xm

β −Xm
α

)
, (2.122)

and it is a function of concentration in the phases of the diffuse-interface region.
The concentrations in phases are computed by the definition of mixture con-

centration

cm = φcmβ + (1 − φ) cmα , (2.123)

and by the condition that the phase diffusion potentials are equal in the phases

∂fα

∂cmα
=
∂fβ

∂cmβ
. (2.124)

If the phase β is stoichiometric with constant concentrations in the phase β,
cβ = cst

β , then the concentration in the phase α can be computed using Eq.(2.123)
only

cmα =
cm − φcmβ

st

1 − φ
. (2.125)
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The concentration equations derived by the control-volume approach are used
in this thesis. The concentration equation of component m, when the cross-
diffusion terms in the interdiffusion coefficient matrix are neglected, is

∂cm

∂t
= ∇ · [(1 − φ)Dm

α ∇cmα + φDm
β ∇cmβ

]
. (2.126)

As conclusions, the set of governing equations arising from the two physical
models, initial and boundary conditions are summarized in Table 2.1.
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3 Solution Procedures

The solution procedures for solving the physical models are explained in this
chapter. The governing equations of the TDA and PFM are deeply different,
consequently the solution procedures of the mentioned methods are different,
and are separately explained.

The TDA requires the use of the so-called moving-grid or front-tracking nu-
merical schemes in order to capture the moving boundary. The well-known front-
tracking method for the solution of the governing equations of the TDA in one-
dimensional geometry is shortly presented. The results computed by this proce-
dure are used as the reference results for the estimation of the results computed
by the PFM.

The PFM is solved by the two solution procedures, the classical finite differ-
ence method and the advanced meshfree method. The finite difference discretiza-
tion of the governing equations is briefly presented.

The local collocation by radial basis functions, as new solution procedure, for
solving the general PDE are explained in more detail. This advanced numerical
scheme is implemented for the solution of the PFM. Application of the meshless
method on an r-adaptive node arrangement strategy is pointed out.

3.1 Solution of the TDA using the Front-Tracking

Method

The TDA requires the existence of a discrete boundary between phases in the
computational domain. The primary difficulty associated with its implementation
is tracking the moving interphase interface. The solution procedure is presented
for the phase transformations with a stoichiometric phase only, but expanding to
general phase transformations is straightforward. The physical model based on
the TDA for the phase transformations of the stoichiometric phase consists of:

• mass diffusion equations in the phase α

∂cmα
∂t

= Dm
α

∂2cmα
∂x2

; m = 1, 2, . . . ,M − 1, (3.1)

• the local thermodynamic equilibrium condition at the interface

gα (T, cαI) = 0, (3.2)

47
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• mass conservation equations at the interface

(
cm,st
β − cmαI

)
v = Dm

α

∂cmα
∂x

∣∣∣
I
; m = 1, 2, . . . ,M − 1. (3.3)

The left side of the mass conservation equation for each component is equal,
and the system Eq.(3.3) can be reorganised such that the interface velocity does
not exist in M − 2 independent equations:

Dm−1
α

∂cm−1
α

∂x

∣∣∣
I
= Dm

α

∂cmα
∂x

∣∣∣
I
; m = 2, . . . ,M − 1 , (3.4)

(
c1,st
β − c1αI

)
v = D1

α

∂c1α
∂x

∣∣∣
I
. (3.5)

The above system, that represents the mass conservation at the interface is used
in the solution procedure.

The one-dimensional system with length lΓ is considered. The interphase
interface position between the phases is denoted by lβα. Since the interface is
moved, the variable lβα changes with time while lΓ remains constant. The moving
grid transformation is implemented to allow the grid to move with the interphase
interface, an approach introduced in [Murray and Landis, 1959]. The method
is referred to in this thesis as the Front-Tracking Method (FTM). The moving
grid enables the implementation of the moving boundary conditions described
by Eq.(3.3) very easily, because the node in the moving grid coincides with the
moving interface position lβα. Numerical modelling of the diffusion-controlled
phase transformation in a ternary system based on coordinate transformation is
presented in [Vitek et al., 1995]. The coordinate transformation is done as

ξα (t) =
x− lβα (t)

lΓ − lβα (t)
, (3.6)

where x and ξα are the horizontal Cartesian coordinate and spatial transformation
coordinates, respectively. The spatial transformation coordinate is a function of
time, ξα = ξα (t). The coordinate transformation transforms the partial deriva-
tives in the governing equations Eqs.(3.1,3.3) into the forms

∂cmα (x, t)

∂t
=
∂cmα (ξα, t)

∂ξα

∂ξα
∂t

+
∂cmα (ξα, t)

∂t
,

∂cmα
∂x

=
∂cmα
∂ξα

∂ξα
∂x

=
1

(lΓ − lβα)

∂cmα
∂ξα

, (3.7)

∂2cmα
∂x2

=
∂2cmα
∂ξ2

α

∂2ξα
∂x2

=
1

(lΓ − lβα)2

∂2cmα
∂ξ2

α

.

Now, the mass diffusion equations (Eq.(3.1)) and the mass conservation equations
at the interface (Eq.(3.3)) described by the transformation coordinate are

∂cmα
∂t

=
Dm

α

(lΓ − lβα)2

∂2cmα
∂ξ2

α

− ∂cmα
∂ξα

∂ξα
∂t

, (3.8)
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(
cm,st
β − cmαI

)
v =

Dm
α

(lΓ − lβα)

∂cmα
∂ξα

∣∣∣
I
. (3.9)

The first term on the right hand side of Eq.(3.8) corresponds to the right hand
side of Eq.(3.1), while the second term is the correction due to the Murray-Landis
coordinate transformation (Eq.(3.6)).

The fields in the matrix phase α are discretized by the equidistant Nα + 1
nodes. By using the transformation Eq.(3.6), the nodes ξα,1 and ξα,Nα+1 coincide
with the interface position lβα and the exterior boundary lΓ, respectively. The
time dependent spatial step and the position at the point i, expressed by the
transformation coordinate are

∆ξα (t) =
lΓ − lβα

Nα

, ξα,i =
(i− 1) ∆ξα
lΓ − lβα

. (3.10)

The discretization in the one-dimensional system with the concentration pro-
file of component m is presented in Fig.(3.1).

Figure 3.1: The transformation coordinate discretization in the phase α and concentration
profile of component m in the one-dimensional geometry.

The governing equations are discretized by the implicit scheme in time. The
first derivative in time at node i is discretized as

∂u

∂t

∣∣∣k+1

i
∝ uk+1

i − uk
i

∆t
, (3.11)

where u represents an unknown field, ∆t represents the time-step length, and the
superscripts k and k+ 1 represent the previous and new time steps, respectively.
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An iterative solution procedure is performed, because the nonlinearity is in-
troduced throughout the thermodynamic equilibrium condition at the interface
(Eq.3.2). For the first iteration, the interface velocity v and the interface concen-
trations in the phase α cmαI in the new time step are presumed from the previous
time step values. This enables the spatial discretization of mass diffusion equa-
tions, because the starting grid in the new time step is formed. The second-order
finite difference discretization of mass diffusion equations in the phase α at nodes
2, . . . ,Nα are

cm,k+1
α,i − cm,k

α,i

∆t
=

Dm
α(

lΓ − lk+1
βα

)2

cm,k+1
α,i+1 − 2cm,k+1

α,i + cm,k+1
α,i−1

∆ξk+1
α

2 −
(3.12)

cm,k+1
α,i+1 − cm,k+1

α,i−1

2∆ξk+1
α

ξk+1
α,i − ξk

α,i

∆t
; i = 2, 3, . . . , Nα.

The discretization of the Neumann boundary condition on the exterior boundary
by the second-order finite difference scheme [Özisik, 1994] is

3cm,k+1
α,Nα+1 − 4cm,k+1

α,Nα
+ cm,k+1

α,Nα−1

2∆ξk+1
α

= 0 . (3.13)

From Eqs.(3.12,3.13), the concentration of each component m and at each node
at the new time step k + 1 can be computed.

The thermodynamic interface condition Eq.(3.2) and the reorganised system
of interface conditions Eq.(3.4) consists of the system of M−1 nonlinear equations
with M− 1 unknowns: interface concentrations cm,k+1

αI , m = 1, 2, . . . ,M − 1. The
discretized system by the second-order finite difference scheme is

gα

(
cm,k+1
αI , m = 1, 2, . . . ,M − 1

)
= 0 , (3.14)

Dm−1
α

−3cm−1,k+1
αI + 4cm−1,k+1

α,2 − cm−1,k+1
α,3

2∆ξα
k+1

= Dm
α

−3cm,k+1
αI + 4cm,k+1

α,2 − cm,k+1
α,3

2∆ξα
k+1

.

(3.15)
In order to solve such a system of equations, an analytical function that represents
the thermodynamic interface condition Eq.(3.2) needs to be carefully prepared.
The interpolation is implemented by the radial basis function for accurate repre-
sentation of the thermodynamic interface condition. This interpolation allows for
the very accurate and simple calculation of the partial derivatives with respect
to the particular component concentration. Such a defined interface condition
enables the solution of the system of equations Eqs.(3.15,3.14) by the Newton-
Rapson numerical procedure.

When the interface concentrations are calculated, the interface velocity at the
new iteration dl/dtk+1,n is computed from Eq.(3.5):

(
c1,st
β − c1αI

)
vk+1,n =

D1
α

lΓ − lk+1
βα

−3c1,k+1
α,I + 4c1,k+1

α,2 − c1,k+1
α,3

2∆ξα
k+1

, (3.16)
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the superscript n represents the value at the new iteration. If the difference
between the interface velocity in the new and previous iteration is higher than
the prescribed small value ε, the computation at time step k+1 is performed again.
The interface velocity in the new iteration is used for the new grid redistribution,
vk+1 = vk+1,n.

This computation is performed until the computation time is equal to the final
time. The algorithm of the proposed solution procedure is presented in Fig.(3.2).

Figure 3.2: Flow chart of the solution procedure for the FTM.
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3.2 Solution of the PFM using the Finite Dif-

ference Method

The PFM consists of the phase-field equation and the concentration equation for
each independent component. The phase-field equation for the evolution of the
PFV is

∂φ

∂t
= Mφ

[
ε2

φ∇2φ− 2wφ (1 − φ) (1 − 2φ) − 30φ2 (1 − φ)2 ∆gβα

Vm

]
(3.17)

and the concentration equation for component m, derived by the control-volume
approach, is

∂cm

∂t
= ∇ · [(1 − φ)Dm

α ∇cmα + φDm
β ∇cmβ

]
. (3.18)

The solution procedure for computation of the molar driving force for phase
transformation ∆gβα in Eq.(3.17) is needed to solve these equations, and it is
explained first. The same procedure is used for both solution procedures for
solving the PFM.

The molar driving force for the isothermal phase transformation introduced
in Eq.(2.69) is

∆gβα (Xα,Xβ) = gβ (Xβ) − gα (Xα) −
M−1∑
m=1

∂gα

∂Xm
α

(Xα)
(
Xm

β −Xm
α

)
. (3.19)

It is, in general, a function of the concentration in both phases, where the tem-
perature is known.

If the second phase β is stoichiometric, then the concentration vector in the
phase α is computed explicitly from the mixture concentration vector in the
interface region (Eq.(2.123)):

cα =
c − φcst

β

1 − φ
. (3.20)

In this example, the molar driving force is the function of concentration vector
in the phase α only:

∆gβα = ∆gβα (cα) . (3.21)

We do not use a direct link to a thermodynamic database, and the specific data
for the phase transformation have to be prepared before modelling. The molar
driving force is calculated for the concentration vector in the phase α in a dis-
cretized or tabular form, where the data are obtained from the thermodynamic
database. The values are calculated over the finite number of points N :

∆gβα,n = ∆gβα (cα,n) ; n = 1, 2, . . . N. (3.22)

The accurate calculation of the molar driving force for an arbitrary concentration
vector in the phase α is crucial for qualitative simulation by the PFM. The values
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of the molar driving force need to be accurately approximated. This is enabled
by using the radial basis function interpolation to get a very accurate analytical
function of the molar driving force as a function of the concentration vector in
the phase α. The interpolation is in the form

∆gβα (cα) =
N∑

n=1

ςnψn (‖cα − cα,n‖) , (3.23)

where ψn and ςn are the radial basis function and its coefficient, respectively. The
radial basis function is the function of distance between the concentration vector
cα where the value of the driving force needs to be computed and its centre cα,n.
By using this interpolation, the number of points N where the values of the molar
driving force are calculated can be reasonably small. The implementation for
multicomponent systems is straightforward. Also, temperature can be included
in the interpolation.

If the phase β is nonstoichiometric, concentration vectors of the phases need
to be solved from the system of nonlinear equations:

cm = (1 − φ) cmα + φcmβ ; m = 1, 2, . . . ,M − 1, (3.24)

µm
α (cα) − µM

α (cα) = µm
β (cβ) − µM

β (cβ) ; m = 1, 2, . . . ,M − 1. (3.25)

The first equation Eq.(3.24) represents the definition of the mixture concentra-
tion vector, and the second one Eq.(3.25) requires that the local phase diffusion
potentials in phases are equal. The solution of this system is the concentration
vectors in phases. This system needs to be solved at each point in the diffuse-
interface region. For the solution of this system, the chemical potentials of com-
ponents, in particular phases as functions of the concentration vector, need to
be approximated. The chemical potentials of components in the particular phase
are prepared in a discretized or tabular form for a finite number of points

µm
ϕ,n = µm

ϕ (cϕ,n) ; n = 1, 2, . . . , Nϕ . (3.26)

Now, the radial basis functions interpolation of the component chemical potentials
in the phases is

µm
ϕ (cϕ) =

Nϕ∑
n=1

ςmϕ,nψn (‖cϕ − cϕ,n‖) . (3.27)

This interpolation allows for the very accurate and simple calculation of the
partial derivatives with respect to the component concentration:

∂µm
ϕ

∂cmϕ
(cϕ) =

Nϕ∑
n=1

ςmϕ,n

∂ψn

∂cmϕ
(‖cϕ − cϕ,n‖) . (3.28)

The global interpolation by a multiquadric radial basis function is performed.
These approximations enable using fast iterative solvers for the solution of the
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system of nonlinear equations Eqs.(3.24,3.25). The modified Powell hybrid al-
gorithm from the IMSL library is used as a solver for the fast computation of
concentration vectors at each point in the diffuse-interface region.

The molar driving force for phase transformation is computed with calculated
concentration vectors in both phases from Eq.(3.19).

The governing equations (Eqs.(3.17,3.18)) are discretized by the explicit Euler
scheme. The source term, which includes the driving force for phase transforma-
tion, is calculated at previous time step. The time discretization at the point
(i, j) by the explicit Euler numerical scheme is

∂u

∂t

∣∣∣k
i,j

∝ uk+1
i,j − uk

i,j

∆t
. (3.29)

The differential operators in the PFM (Eqs.(3.17,3.18)) are discretized in the
two-dimensional Cartesian coordinate system by the Finite Difference Method
(FDM) as

∇u =
∂u

∂x
�i+

∂u

∂y
�j ,

∇2u = ∇ · (∇u) =

(
∂

∂x
�i+

∂

∂y
�j

)
·
(
∂u

∂x
�i+

∂u

∂y
�j

)
=
∂2u

∂x2
+
∂2u

∂y2
, (3.30)

∇ · �Ju =

(
∂

∂x
�i+

∂

∂y
�j

)
·
(
Ju,x

�i+ Ju,y
�j
)

=
∂Ju,x

∂x
+
∂Ju,y

∂y
.

The PFM is solved on the mesh with the spatial distance between points
∆x and ∆y on the x and y coordinates, respectively. The differential operators
discretized at the point (i, j) by the spatial central finite difference are

∇u|i,j ∝ ui+1/2,j − ui−1/2,j

∆x
�i+

ui,j+1/2 − ui,j−1/2

∆y
�j ,

∇2u|i,j ∝ ui+1,j − 2ui,j + ui−1,j

∆x2
+
ui,j+1 − 2ui,j + ui,j−1

∆y2
, (3.31)

∇ · �Ju|i,j ∝ Ju,x,i+1/2,j − Ju,x,i−1/2,j

∆x
+
Ju,y,i,j+1/2 − Ju,y,i,j−1/2

∆y
.

The values between grid points are calculated by the linear interpolation, for
example for x coordinate:

u|i±1/2,j =
ui±1,j + ui,j

2
. (3.32)

The Neumann boundary condition in the two-dimensional Cartesian coordi-
nate system is written as

∇u · �nΓ =

(
∂u

∂x
�i+

∂u

∂y
�j

)
·
(
nΓx

�i+ nΓy
�j
)

=
∂u

∂x
nΓx +

∂u

∂y
nΓy. (3.33)
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The first derivatives in the boundary conditions, discretized by the second-
order finite difference scheme, are

∇u · �nΓ|i,j ∝ ∓3ui,j ± 4ui±1,j ∓ ui±2,j

2∆x
nΓx +

∓3ui,j ± 4ui,j±1 ∓ ui,j±2

2∆y
nΓy, (3.34)

where the upper sign is used when the corresponding component of unit vector
is negative, nΓχ < 0, χ = x, y and vice versa.

The phase-field equation (Eq.(3.17)) with the pronounced source term Sφ is:

∂φ

∂t
= Mφ

[
ε2

φ∇2φ− Sφ

]
, Sφ = 2wφ (1 − φ) (1 − 2φ) + 30φ2 (1 − φ)2 ∆gβα

Vm

.

(3.35)
The phase-field equation at the point (i, j) is discretized by the central finite
difference in space and by the explicit Euler in time as:

φk+1
i,j = φk

i,j+∆tMφ

[
ε2

φ

(
φk

i+1,j − 2φk
i,j + φk

i−1,j

∆x2
+
φk

i,j+1 − 2φk
i,j + φk

i,j−1

∆y2

)
− Sk

φ,i,j

]
,

(3.36)
where the source term is

Sk
φ,i,j = 2wφk

i,j

(
1 − φk

i,j

) (
1 − 2φk

i,j

)
+ 30φk

i,j

2 (
1 − φk

i,j

)2 ∆gk
βα,i,j

Vm

,
(3.37)

∆gk
βα,i,j = ∆gβα

(
ck

α,i,j , c
k
β,i,j

)
.

The concentration equation for component m (Eq.(3.18)), introducing the com-
ponent flux �Jm, is rewritten as

∂cm

∂t
= ∇ · �Jm , �Jm = (1 − φ)Dm

α ∇cmα + φDm
β ∇cmβ . (3.38)

The component flux in the two-dimensional Cartesian coordinate system is

Jm
x = (1 − φ)Dm

α

∂cmα
∂x

+ φDm
β

∂cmβ
∂x

, Jm
y = (1 − φ)Dm

α

∂cmα
∂y

+ φDm
β

∂cmβ
∂y

. (3.39)

The component flux is discretized at the point (i, j) by Eq.(3.31), where the fluxes
are

Jm
x,i+1/2,j =

(
1 − φi,j + φi+1,j

2

)
Dm

α

cmα,i+1,j − cmα,i,j

∆x
+
φi,j + φi+1,j

2
Dm

β

cmβ,i+1,j − cmβ,i,j

∆x

Jm
x,i−1/2,j =

(
1 − φi−1,j + φi,j

2

)
Dm

α

cmα,i,j − cmα,i−1,j

∆x
+
φi−1,j + φi,j

2
Dm

β

cmβ,i,j − cmβ,i−1,j

∆x
(3.40)

Jm
y,i,j+1/2 =

(
1 − φi,j + φi,j+1

2

)
Dm

α

cmα,i,j+1 − cmα,i,j

∆y
+
φi,j + φi,j+1

2
Dm

β

cmβ,i,j+1 − cmβ,i,j

∆y

Jm
y,i,j−1/2 =

(
1 − φi,j−1 + φi,j

2

)
Dm

α

cmα,i,j − cmα,i,j−1

∆y
+
φi,j−1 + φi,j

2
Dm

β

cmβ,i,j − cmβ,i,j−1

∆y
.
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The discretization of the concentration equation of component m at the point
(i, j) by the second-order finite difference scheme in space and the explicit Euler
in time is

cm,k+1
i,j = cm,k

i,j + ∆t{(
1 − φk

i,j + φk
i+1,j

2

)
Dm

α

cm,k
α,i+1,j − cm,k

α,i,j

∆x2
+
φk

i,j + φk
i+1,j

2
Dm

β

cm,k
β,i+1,j − cm,k

β,i,j

∆x2
−

(
1 − φk

i−1,j + φk
i,j

2

)
Dm

α

cm,k
α,i,j − cm,k

α,i−1,j

∆x2
+
φk

i−1,j + φk
i,j

2
Dm

β

cm,k
β,i,j − cm,k

β,i−1,j

∆x2
+

(3.41)(
1 − φk

i,j + φk
i,j+1

2

)
Dm

α

cm,k
α,i,j+1 − cm,k

α,i,j

∆y2
+
φk

i,j + φk
i,j+1

2
Dm

β

cm,k
β,i,j+1 − cm,k

β,i,j

∆y2
−

(
1 − φk

i,j−1 + φk
i,j

2

)
Dm

α

cm,k
α,i,j − cm,k

α,i,j−1

∆y2
+
φk

i,j−1 + φk
i,j

2
Dm

β

cm,k
β,i,j − cm,k

β,i,j−1

∆y2

}
.

The molar driving force is computed by Eq.(3.19) when the concentration vector
in both phases are calculated. The values of the PFV and the concentration of
each independent component in the domain points are computed by Eq.(3.36)
and Eq.(3.41), respectively. The values at the boundary points are computed by
Eq.(3.34). The solution procedure for solving the PFM by the FDM is presented
in Fig.(3.3).

3.3 An Alternative to the Solution of the PFM:

Implementing the Meshfree Method

In recent decades, a number of MeshFree Methods (MFMs) have been devel-
oped to circumvent the problem of polygonisation encountered in the classical
numerical methods. In meshless or meshfree methods, the discretization is en-
tirely constructed in a set of gridpoints. The MFMs can be classified into two
major categories based on the formulation procedure: MFMs based on strong-
form [Kansa, 1990a; Kansa, 1990b] and MFMs based on weak-form [Atluri, 2004].
Recently, MFMs based on strong and weak forms which use advantages of both
categories have been developed [Liu and Gu, 2003]. The meshfree strong-form
method is regarded as a truly MFM as the mesh is neither used in discretization
nor in integration. The formulation procedure is rather simple and straightfor-
ward, compared to the weak-form method, but according to the literature [Liu,
2003; Liu and Gu, 2005], the strong-form methods are often found to be less
stable than the weak-form methods.

The collocation with radial basis functions, a representative of meshfree strong-
form methods, is analysed in this thesis. The method is truly meshfree, very
simple, and easy to implement for solving various PDEs. The development and
implementation of the method for an adaptive analysis is a logical step forward.
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Figure 3.3: Flow chart of the solution procedure for the PFM.

Although, the collocation with radial basis functions could suffer from instability,
we demonstrate that it can be sufficiently implemented for a carefully selected
r-adaptive analysis. In the r-adaptation, the number of nodes remains constant
throughout computations whereas positions of nodes are redistributed. Recently,
authors [Liu et al., 2006] claimed that the implementation for adaptive analysis
is impossible and proposed a stabilized scheme based on least-squares when using
collocation methods for adaptive analysis.

Radial Basis Functions (RBFs) were first intensively researched [Franke, 1982]
in the areas of multivariate data and function interpolation. Franke found that
global interpolation methods generally outperformed local interpolation methods
in his elaborated analysis. Out of all the methods tested, Hardy’s multiquadric
RBFs gave the most accurate results on a spectrum of benchmark problems.
Considering these results, Kansa focused on the multiquadric RBFs and argued
that PDEs are intrinsically related to the interpolation scheme from which PDEs
solvers are derived [Kansa, 1990a; Kansa, 1990b].

Interpolation of the fields on the boundary and in the domain by the Global
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Radial Basis Function Collocation Method (GRBFCM) is obtained by a set of
global functions and a subsequent representation of the partial derivatives by the
partial derivatives of them. In these methods, the discretization is represented
only on gridpoints, in contrast to finite element and finite volume methods (where
the approximate polygonisation also needs to be generated) or FDM (where the
points are constrained to the coordinate lines). The main disadvantage of the
GRBFCM is in dealing with full large-sized matrices that can be ill-conditioned.
Consequently, the implementation is confined to a relatively small number of
gridpoints in the computational domain. The matrix of the system of linear
equations arising from the GRBFCM usually has a very large condition number,
and becomes increasingly ill-conditioned as the number of gridpoints increases.
Also, the free parameter in RBFs has to be carefully selected in the collocation
with the multiquadric RBFs.

Keeping in mind the drawback of implementation of the global interpolation
numerical methods for solving PDEs, different approaches for overcoming the is-
sues are proposed, such as compactly supported RBFs [Jumarhon et al., 2000],
domain decomposition [Kansa and Hon, 2000], local interpolation [Lee et al.,
2003; Lazzaro and Montefusco, 2002]. . . Currently, the most attractive and the
most frequently used concept for meshfree strong-form method is local approxi-
mation of the solution, which easily overcomes problems with large full matrices.
The concept of local approximation is extended for the collocation by RBFs, and
the Local Radial Basis Function Collocation Method (LRBFCM) is derived for
the solution of PDEs. Approximation of the fields and partial derivatives in the
domain and on the boundary are obtained by using a small set of the RBFs with
centres in the vicinity of the reference node where the solution needs to be found.
This concept introduces local support of each domain and boundary node. The
selection of points in the local support needs to be done earlier. Determination of
the local support for each node, which may differ from node to node, represents
another degree of freedom in the LRBFCM.

In the local MFMs, the function and its derivatives are approximated by a
linear combination of a small number of RBFs with centres in the local support
of the reference node and their coefficients. For every reference node, linear
equations with a small number of unknown coefficients need to be solved. The
system of obtained linear equations can be solved in two different ways. In the
first one, each discretization equation for every reference node is assembled in
a global, but most importantly, sparse matrix. The matrix size is equal to the
total number of nodes in the computational system, the same as in the global
collocation method [Liu, 2003]. The solution can be found by a sparse matrix
solver. In the second one, for every reference node, a small system of linear
equations is solved. The size of the system is equal to the number of nodes in the
local support of the reference node [Lee et al., 2003; Šarler and Vertnik, 2006].
The interpolation in the local concept is more difficult because of local support
overlapping. If a point corresponds to several local supports, the value of the
function at this point is collocated as the mean of the values from corresponding
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local supports. Here, the second way is chosen because of the matrix size.

This local concept of MFMs introduces the local support of each domain
and boundary node. Two approaches for selection of the supporting nodes in
a uniformly distributed node arrangement are well established. However, the
selection of supporting points in a scattering node arrangement, especially in
an adaptive node arrangement, is another poorly analysed problem that exists
today. The selection procedure for supporting points in highly r-adaptive node
arrangements needs to be developed.

In this thesis, the local interpolation or collocation for determination of un-
known coefficients is performed. The local characteristics of the method enable
the system to be employed with a large number of nodes. Also, it requires no extra
effort in the division of the computational domain. Parallel with the collocation,
the coefficients can be obtained from the approximation using the least squares
formulation. In the literature, the method is known as the diffuse-approximate
method. The implementation of this method in various transport phenomena is
demonstrated in [Perko, 2005].

Instability is a fatal shortcoming of meshfree strong-form methods. Insta-
bility and poor accuracy (usually on the boundary) often arise, especially when
derivative boundary conditions exist, and several techniques have been proposed
to overcome instability in the meshfree strong-form methods [Liu and Gu, 2005].
The stability of the results is very sensitive to the determination of the local sup-
port, especially in the boundary nodes. Therefore, the local support for boundary
nodes with the only one node, a reference node, is proposed on the boundary.
Also, better stability of the results at the boundary is accomplished by using the
collocation based on Hermite-type interpolation.

A very fine grid in the diffuse-interface region must be used for proper solving
of the governing equations obtained by the PFM. If one uses a sufficiently fine
equidistant mesh, the majority of the nodes are not coincident with the vicinity of
the diffuse-interface region, and the computation time turns out to be enormous.
This fact represents a principal motivation for introducing adaptive grids which
could follow the migration of the interface. Adaptive approaches of finite element
and FDM for the solution of the PFM have been applied in [Provatas et al., 1999;
Nestler et al., 2005].

3.3.1 Radial Basis Functions

A RBF is a function ψ : �d → �, ψi (r) = ψ (‖�p− �pi‖), which depends only on
the distance between the vector point �p ∈ �d and the fixed vector point �pi ∈ �d,
referred to as a reference node. A RBF is a continuous, bounded function on
any bounded subdomain Ω ⊆ �d. The function ψi is radial and symmetric about
the vector point �pi. The most frequently used RBFs to date are generalized
MultiQuadric (MQ)

ψ (r) =
(
r2 + c̄2

)n̄/2
, (3.42)
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with free parameters c̄ and n̄, the Thin-Plate Spline (TPS) of order n̄

ψ (r) = r2(n̄−1) log r (3.43)

and Gaussian
ψ (r) = exp

(−γ̄r2
)

(3.44)

with free parameter γ̄. For example, in the case of the two-dimensional Cartesian
coordinate system

�p = x�i+ y�j, (3.45)

x, y denote the Cartesian coordinates (base vectors �i, �j) of the vector point �p.
The norm ‖ · ‖ is usually taken to be the Euclidean norm

‖�p− �pi‖ = �p · �pi =

√
(x− xi)

2 + (y − yi)
2, (3.46)

although other norms are possible.
MQ functions with the values n̄ = 1 and c̄ = 0 are often referred to as

conicals whilst those with n̄ = 3 and c̄ = 0 are referred to as Duchon cubics. All
above RBFs are globally supported. If globally supported RBFs are used in the
GRBFCM, the coefficient matrix is a full matrix, and usually poorly conditioned.
The Gaussian and inverse MQ (i.e. n̄ < 0 in Eq.(3.42)) are positive definite
functions, while TPS and MQ (i.e. n̄ > 0 in Eq.(3.42)) are conditionally positive
definite functions of order n̄. These functions require additional polynomial terms
and homogeneous constraint conditions in order to assure an invertible coefficient
matrix.

Hardy derived the two-dimensional MQ scheme to approximate geographical
surfaces (n̄ = 1 in Eq.(3.42)), and today these RBFs are most frequently used

ψ (r) =
√
r2 + c̄2 . (3.47)

Another frequently used form of MQ is the reciprocal MQ, n̄ = −1 in Eq.(3.42)

ψ (r) =
1√

r2 + c̄2
. (3.48)

MQ functions ware largely unknown to mathematicians until the publication
of Franke’s review paper [Franke, 1982]. Most mathematicians have not seriously
studied this method because the mathematical analysis of MQ is very difficult,
and it is presently not known why MQ performs so well for interpolation problems.

The value of the parameter c̄ controls the shape of the MQ RBFs, and is
denoted as a shape parameter. A large value of c̄ gives rise to a flat sheet-like
basis function, an intermediate c̄ value gives rise to a bowl-like basis function,
and small c̄ values give rise to narrow cone-like basis functions.

The second group of the RBFs are compactly supported. If Compactly
Supported (CS) positive definite RBFs are used, the coefficient matrix in the
GRBFCM is sparse and positive definite. The additional polynomial term is not
required when using the CS RBFs.
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The most frequently used CS RBFs originate from Wendland, and are for the
two-dimensional problems, [Jumarhon et al., 2000]:

ψ (r) = (1 − r)3
+ (3r + 1) , ψ (r) = (1 − r)5

+

(
8r2 + 5r + 1

)
, (3.49)

where

(1 − r)+ =

{
1 − r, if 0 ≤ r ≤ 1

0, if r > 1.
(3.50)

For upper functions, the size of the support of the CS RBFs is one. In a practical
applications, a transformation

r = ‖�p− �pi‖ =

√(
x− xi

R̄i

)2

+

(
y − yi

R̄i

)2

(3.51)

can be used to define the support for the CS RBFs, with a free parameter R̄i.
The idea of using the CS RBFs is very good because the coefficient matrix is
sparse, but the accuracy of the results obtained by the CS RBFs is lower than
with the above defined global RBFs.

In the following, the MQ RBFs (Eq.(3.47)) are selected as the RBFs due
to their excellent performance for the interpolation and very accurate results in
PDEs computed by collocation on scattered node arrangements [Vertnik, 2007].

3.3.2 Interpolation by RBFs

In approximation problems, scattered data set S = {(�pi, F (�pi)) , �pi ∈ Ω, i =
1, 2, . . . , N} is assumed to be known. The local standard interpolation of a func-
tion F (�p) at an arbitrary point �p, close to the reference node �pi, can be written
in the following form

s (�p) ≡
Ni∑
j=1

ςjψ (‖�p− �pj‖) + P (�p) , (3.52)

where Ni is the number of nodes in the local support of the reference node �pi,
ςj are coefficients that must be determined, �pj are centres of RBFs in the same
local support, and P (�p) is the additional polynomial term.

In the global collocation method, the number of nodes in the local support
of every node is equal to the total number of points in the whole domain, i.e.
Ni = N . In the local collocation method, the number of nodes in the local
support is a free parameter and can be different from one reference node to
another, but always Ni ≤ N . Selection of the supporting points in the local
support is described later.

The polynomial term used in the above equation is defined as

P (�p) =

LP∑
l=1

ςNi+lwl (�p) , (3.53)
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where LP is the length of the polynomial and wl (�p) are basis polynomials for the
space of polynomials of degree up to n̄ − 1 in �d. The length of polynomials in
relation to the order of the RBF (n̄) and the dimension of space (d) is:

LP =

(
n̄+ d− 1

d

)
. (3.54)

For example, for n̄ = 3 and d = 2, the basis of additional polynomials wl(�p) are:

w1 (�p) = 1, w2 (�p) = (x− x0) , w3 (�p) =
(
y − y0

)
,
(3.55)

w4 (�p) =
(
x− x0

)2
, w5 (�p) = (x− x0) (y − y0) , w6 (�p) =

(
y − y0

)2
.

The scaling constants x0, y0 are set to

x0 =
1

2

(
x+ + x−

)
, y0 =

1

2

(
y+ + y−

)
, (3.56)

where x+, y+ represent the maximum, and x−, y− the minimum coordinates x,
y of the local support, respectively. The scaling constants can be simply set to
the coordinate of the reference node �pi, x

0 = xi and y0 = yi.
The local support of the node �pi in the local MFMs is not the whole domain,

such as in the global interpolation by RBFs. To obtain the values of coefficients
ςj, j = 1, 2, . . . , Ni + LP , the interpolation at each node �pn in the local support
has been done by Eq.(3.52)

F (�pn) =

Ni∑
j=1

ςjψ (‖�pn − �pj‖) +

LP∑
l=1

ςNi+lwl (�pn) ; n = 1, 2, . . . , Ni. (3.57)

In order to ensure the uniqueness of the interpolation, the following constraints
are necessary,

Ni∑
j=1

ςjwl (�pj) = 0 ; l = 1, 2, . . . , LP . (3.58)

The matrix formulation of the above local interpolation procedure for the
reference node �pi can be written as

Φi ςςς i = bi. (3.59)

The symmetric interpolation or coefficient matrix is defined as

Φi =

[
(ψnj)Ni×Ni

(wnl)Ni×LP

(wnl)
T
LP×Ni

(0)LP×LP

]
N̄i×N̄i

, (3.60)

where ψnj ≡ ψ (‖�pn − �pj‖) , wnl ≡ wl (�pn) , n, j = 1, . . . , Ni and l = 1, 2, . . . , LP .
The coefficient matrix size is equal to the sum of the number of nodes in the
local support of the reference node �pi and the length of the additional polynomial
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term, N̄i = Ni + LP . The coefficient vector ςςς i and the right-hand side vector bi

are

ςςς i = [ς1 ς2 . . . ςNi+LP
]T , bi = [F (�p1)F (�p2) . . . F (�pNi

) 0 . . . 0]T . (3.61)

The interpolation matrix is nonsingular when using the MQ RBFs if the shape
parameter is not equal to zero and all the supporting points are distinct points
[Lee et al., 2003]. If the matrix is nonsingular, the coefficient vector is uniquely
computed by

ςςς i = Φ−1
i bi. (3.62)

Now, the interpolation of function at an arbitrary point in the local support of
the reference node �pi is computed by Eq.(3.52) using the coefficients computed
by Eq.(3.62).

The local standard interpolation by RBFs can also be used for approximation
of derivatives at an arbitrary point in the domain. For example, the k-th partial
derivative of the function F with respect to coordinate x at the point �p in the
local support �pi is

∂kF

∂xk
(�p) ≈

Ni∑
j=1

ςj
∂kψ

∂xk
(‖�p− �pj‖) +

LP∑
l=1

ςNi+l
∂kwl

∂xk
(�p) . (3.63)

A possible straightforward approximation of high-order derivatives represents one
of the advantages of the interpolation by RBFs.

The shape function in the local and global MQ RBFs interpolation has a very
high influence on the interpolation results. The effect of varying the shape pa-
rameter on the fit quality in the global interpolation is investigated in [Tarwater,
1985]. It was found that error is related to the shape parameter. When the shape
parameter increases, the error drops to a minimum, called the optimum shape
parameter, and then grows rapidly thereafter. By adjusting the shape parameter,
the accuracy can be considerably improved. Also, the shape of the surface to be
fitted is a factor in optimizing the accuracy. Various methods for estimating par-
tial derivatives on scattered data are examined in [Stead, 1984]. Excellent results
are obtained in regions with modest and large gradients, which are approximated
by the MQ RBFs with small and intermediate values of the shape parameter.
Today, almost all papers that deal with MQ RBFCM employ a constant shape
parameter. Also, the shape parameter can be different from one reference node
to another in local MFMs.

Early interpolations by MQ RBFs, without the additional polynomial term,
involve noise in the regions with shallow gradient regions. The flat surface was
represented by a linear combination of the RBFs with a very large shape pa-
rameter and large values of coefficients. A method for overcoming these noises is
performed by adding the polynomial term Eq.(3.53) in the standard interpolation
form Eq.(3.52). However, the additional polynomial term increases the size of the
coefficient matrix, which consequently increases computational time.
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Hermite-type Interpolation

The interpolation by MQ RBFs performs well in the inner region, but results in
a significant error in the derivatives at the boundary nodes [Zhang et al., 2000].
Consequently, using the collocation by the RBFs to solve a PDE could result
in a significant error due to inaccurate approximation of the derivatives at the
boundary points which involve Neumann or Robin-type (derivative) boundary
conditions. The concept of collocation with RBFs based on a Hermite-type inter-
polation can significantly increase the accuracy of results at the boundary where
derivative boundary conditions are defined.

In Hermite-type interpolation, the RBFs are not only used for the function
interpolation, but its derivatives are also employed. Assume that the data sets
S1 = {(�pi, F (�pi)) , �pi ∈ Ω, i = 1, 2, . . . , N1}, and S2 = {(�pi,L[F (�pi)]) , �pi ∈
Ω, i = 1, 2, . . . , N2} are known, where a linear differential operator is denoted as
L. The intersection of data sets cannot be the empty set. The interpolation of
the function F by the local Hermite-type interpolation can be written as

s (�p) ≡
Ni1∑
j=1

ςjψ (‖�p− �pj‖) +

Ni2∑
k=1

ςNi+kLk [ψ (‖�p− �pk‖)] + P (�p) , (3.64)

where Nin is the number of nodes in the local support of the reference node
�pi from the set Sn (Nin ≤ Nn, n = 1, 2). The superscript k indicates that the
functional L acts on the RBF ψ viewed as a function of the second argument
�pk. This form of the operator is chosen in order to guarantee symmetry of the
coefficient matrix.

Imposing the interpolation conditions at each node of the local support of the
reference node �pi

F (�pn) =

Ni1∑
j=1

ςjψ (‖�pn − �pj‖) +

Ni2∑
k=1

ςNi1+kLk [ψ (‖�pn − �pk‖)] +

(3.65)
LP∑
l=1

ςNi1+Ni2+lwl (�pn); �pn ∈ S1,

LF (�pn) =

Ni1∑
j=1

ςjL [ψ (‖�pn − �pj‖)] +

Ni2∑
k=1

ςNi1+kLLk [ψ (‖�pn − �pk‖)] +

(3.66)
LP∑
l=1

ςNi1+Ni2+lL [wl (�pn)]; �pn ∈ S2.

The following constraints are necessary for computing a unique set of coefficients

Ni1∑
j=1

ςjwl (�pj) +

Ni2∑
k=1

ςNi1+kLk [wl (�pk)] = 0; l = 1, 2, . . . , LP . (3.67)
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The coefficient matrix from the Hermite-type interpolation scheme is

Φi =

⎡
⎢⎣

(ψnj)Ni1×Ni1

(Lk [ψnk]
)

Ni1×Ni2
(wnl)Ni1×LP

(L [ψnj])Ni2×Ni1

(LLk [ψnk]
)

Ni2×Ni2
(L [wnl])Ni2×LP

(wnl)
T
LP×Ni1

(Lk [wnl]
)T

LP×Ni2
(0)LP×LP

⎤
⎥⎦

N̄i×N̄i

, (3.68)

where L [ψnj] ≡ L [ψ (‖�pn − �pj‖)] and N̄i = Ni1+Ni2+LP . The coefficient vector
ςςς i and the right-hand side vector bi are

ςςς i = [ς1 ς2 . . . ςNi1+Ni2+l]
T , bi = [F (�pn) ‖�pn ∈ S1 L[F ] (�pn) ‖�pn ∈ S2 0 . . . 0]T .

(3.69)
The test shows that the accuracy of the derivatives is improved significantly

by using Hermite-type interpolation, so it can be expected that the accuracy will
be also improved by using the Hermite-type interpolation in solving PDEs.

3.3.3 Solution of PDEs by Collocation with RBFs

The local collocation method is introduced to solve a general PDE in the domain
Ω imposed by the boundary conditions on the boundary Γ. The boundary Γ
is divided into two parts, Γ = Γu ∪ Γd, the part of the boundary Γu where the
Dirichlet boundary condition is defined and the part of the boundary Γd where
the derivative boundary conditions are defined.

Similar to the interpolation, the data set S = {�pi ∈ Ω ∪ Γ, i = 1, 2, . . . , N}
can be scattered or equidistant. The above data set is divided into a set of
domain points SΩ = {�pi ∈ Ω, i = 1, 2, . . . , NΩ}, a set of boundary points where
Dirichlet boundary condition exists SΓu = {�pi ∈ Γu, i = 1, 2, . . . , NΓu}, and a
set of boundary points where derivative boundary conditions exist SΓd

= {�pi ∈
Γd, i = 1, 2, . . . , NΓd

}. The total number of nodes in the whole computational
domain is N = NΩ +NΓu +NΓd

.
Consider the following general PDE in the form of

∂u

∂t
+ L [u] (�p) = FΩ (�p) ; �p ∈ Ω, (3.70)

u (�p) = FΓu (�p) ; �p ∈ Γu, (3.71)

B [u] (�p) = FΓd
(�p) ; �p ∈ Γd, (3.72)

where FΩ, FΓu and FΓd
are the known functions. The operators L and B are linear

partial differential operators on the domain Ω and the part of the boundary Γd,
respectively. The initial field u (�p, t0) is prescribed.

Approximation of the solution u by a standard or direct local collocation close
to the reference node �pi is

u (�p, t) ≈
Ni∑
j=1

ςj (t)ψ (‖�p− �pj‖) +

LP∑
l=1

ςNi+l (t)wl (�p). (3.73)
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The unknown coefficient vector ςςς is a function of time only in time dependent
problems.

The number of nodes in the local support of the node �pi that belongs to
the sets SΩ, SΓu and SΓd

are NiΩ, NiΓu and NiΓd
, respectively. The number of

nodes in the local support is equal to the sum of the number of nodes in subsets,
Ni = NiΩ +NiΓu +NiΓd

.
The local collocation by RBFs for solving PDEs is performed by using the

explicit Euler scheme in time. The explicit Euler scheme enables solution of the
general PDE in a purely local character.

Time discretization of Eq.(3.70) in domain points �pi ∈ Ω is

u
(
�pi, t

k+1
)

= u
(
�pi, t

k
)

+ ∆t
{
FΩ (�pi) − L [u] (�pi)

}
, (3.74)

The values of the field at the domain points and at the new time step is computed
by Eq.(3.74).

After the computation of the field in the domain points, the values of the field
on the boundary points that satisfied the boundary conditions are computed.
The values of the field at boundary nodes are computed by the collocation. The
supporting nodes �pn that belong to the local support of the reference boundary
point �pi have to satisfy the following conditions:

Ni∑
j=1

ςk+1
j ψ (‖�pn − �pj‖) +

LP∑
l=1

ςk+1
Ni+lwl (�pn) = u

(
�pn, t

k+1
)
; �pn ∈ SΩ , (3.75)

Ni∑
j=1

ςk+1
j ψ (‖�pn − �pj‖) +

LP∑
l=1

ςk+1
Ni+lwl (�pn) = FΓu (�pn) ; �pn ∈ SΓu , (3.76)

Ni∑
j=1

ςk+1
j B [ψ (‖�pn − �pj‖)] +

LP∑
l=1

ςk+1
Ni+lB [wl (�pn)] = FΓd

(�pn) ; �pn ∈ SΓd
. (3.77)

The additional constraint conditions are

Ni∑
j=1

ςk+1
j wl (�pj) = 0; l = 1, 2, . . . , LP . (3.78)

Eqs.(3.75,3.76,3.77,3.78) from the direct collocation consist of the system of linear
algebraic equations with the unknown coefficients ςk+1

j , j = 1, 2, . . . , Ni + LP for
the reference boundary node �pi. The system can be written in the matrix form

Ai ςςς
k+1
i = bk+1

i , (3.79)

where

Ai =

⎡
⎢⎢⎢⎣

(ψnj)NiΩ×Ni
(wnl)NiΩ×LP

(ψnj)NiΓu×Ni
(wnl)NiΓu×LP

(B [ψnj])NiΓd
×Ni

(B [wnl])NiΓd
×LP

(wnl)
T
LP×Ni

(0)LP×LP

⎤
⎥⎥⎥⎦

N̄i×N̄i

,
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ςςςk+1
i =

[
ςk+1
1 ςk+1

2 . . . ςk+1
Ni+LP

]T
, (3.80)

bk+1
i =

[
u
(
�pn, t

k+1
) ‖ �pn ∈ SΩ FΓu (�pn) ‖ �pn ∈ SΓu FΓd

(�pn) ‖ �pn ∈ SΓd
0 . . . 0

]T
.

The size of the matrix Ai is N̄i = Ni + LP .
If the matrix Ai is nonsingular, the unknown coefficients ςςςk+1

i for the reference
boundary point �pi in the new time step k + 1 can be uniquely computed by

ςςςk+1
i = A−1

i bk+1
i . (3.81)

When the coefficients for the boundary nodes are computed, the field at the
boundary nodes is computed as

u
(
�pi, t

k+1
)

=

Ni∑
j=1

ςk+1
j ψ (‖�pi − �pj‖) +

LP∑
l=1

ςk+1
Ni+lwl (�pi) , �pi ∈ Γ. (3.82)

The values of the field in the new time step are already determined and the
coefficients for reference domain nodes are computed. The coefficients in the new
time step ςςςk+1

i for the reference domain points, �pi ∈ Ω, are computed by

ςςςk+1
i = Φ−1

i bi, (3.83)

where the coefficient matrix Φi is introduced in Eq.(3.60) and the vector bi is

bk+1
i =

[
u
(
�p1, t

k+1
)
u
(
�p2, t

k+1
)
. . . u

(
�pNi

, tk+1
)

0 . . . 0
]T
. (3.84)

In transient problems, the initial field in the computational domain is pre-
scribed. The coefficients at the initial stage are computed in the same way as
in the interpolation problem. For steady-state problems, the local collocation
by RBFs solves the problem in the presented way by introducing the artificial
transient term ∂u/∂t in the domain’s governing equation. The initial condition
is artificially prescribed. The solution for the time-independent problem is com-
puted when the difference between two successive time steps is smaller than a
prescribed small number which defines the accuracy of the result.

The influence of the shape parameter on the numerical results computed by
the collocation with RBFs has been estimated by numerical experiments with
the conclusion that the value of the shape parameter has a large influence on the
accuracy of results. Generally, when the value of the shape parameter increases,
errors decrease. In the GRBFCM, the growth of the shape parameter is confined
because the value of the condition number of the coefficient matrix increases and
the system of equations becomes ill-conditioned ([Kovačević et al., 2003; Wang
and Liu, 2002]). In the LRBFCM, when the value of the shape parameter reaches
a certain value, the accuracy of the results are nonsensitive to its changes [Lee
et al., 2003].

The direct collocation method produces accurate results for various PDEs
when the boundary conditions are all of Dirichlet type. If there is any derivative
boundary condition, the accuracy of the solution deteriorates drastically and the
solution can be unstable; small changes in the setup of the problem can lead to
a large change in the solution. One of the proposed methods is collocation based
on Hermite-type interpolation, as introduced in Section 3.3.2.



68 SOLUTION PROCEDURES

Hermite-type Interpolation

Collocation methods based on Hermite-type interpolation can significantly im-
prove the numerical results of PDEs imposed by the derivative boundary condi-
tions. The method was proposed by Fasshauer for global collocation [Fasshauer,
1997]. The collocation matrix is symmetric in this method and thus the method
is also known as the symmetric GRBFCM. Comparison between the direct-
unsymmetric and symmetric GRBFCM for the numerical solution of PDEs is
presented in [Power and Barraco, 2002]. The system of algebraic equations ob-
tained with the symmetric method is, in general, simpler to solve than one with
the direct GRBFCM method, and the resulting algorithm performs better. How-
ever, the unsymmetric method is simpler to implement.

The implementation of local collocation methods based on the Hermite-type
interpolation is not unique. A local collocation numerical scheme similar to the
symmetric global collocation method can be introduced, but the stability and
the accuracy of the results in the presence of the derivative boundary conditions
are not much better than in the direct collocation method. We present the local
collocation numerical scheme based on double interpretation of the derivative
boundary points, proposed for global collocation in [Zhang et al., 2000; Chen,
2002]. This numerical scheme is used for increasing the stability as well as the
accuracy of results on the boundary where derivative boundary conditions exist.
In this collocation, the derivative boundary nodes are double treated. The domain
equation (Eq.(3.70)) and the derivative boundary conditions (Eq.(3.72)) have to
be satisfied at the derivative boundary nodes.

The approximation of the solution u is based on Hermite-type interpolation
with double treatment of the derivative boundary points close to the reference
node �pi

u (�p, t) ≈
Ni∑
j=1

ςj (t)ψ (‖�p− �pj‖)+
NiΓd∑
k=1

ςNi+k (t)Bk [ψ (‖�p− �pk‖)]+
LP∑
l=1

ςNi+NiΓd
+l (t)wl (�p),

(3.85)
where Bk is the differential operator used in Eq.(3.72).

The values of the field in the new time step are computed at the domain and
derivative boundary nodes as

u
(
�pi, t

k+1
)

= u
(
�pi, t

k
)

+ ∆t
{
FΩ (�pi) − L [u] (�pi)

}
. (3.86)

The values at the derivative boundary nodes in the domain nodes are used for
the collocation, explained in the following. The conditions that must be satisfied
at the boundary nodes in the local support of the reference node �pi are:

Ni∑
j=1

ςk+1
j ψ (‖�pn − �pj‖) +

NiΓd∑
k=1

ςk+1
Ni+kBk [ψ (‖�pn − �pk‖)] +

(3.87)
LP∑
l=1

ςk+1
Ni+NiΓd+l

wl (�pn) = u
(
�pn, t

k+1
)
; �pn ∈ SΩ ∪ SΓd

,
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Ni∑
j=1

ςk+1
j ψ (‖�pn − �pj‖) +

NiΓd∑
k=1

ςk+1
Ni+kBk [ψ (‖�pn − �pk‖)] +

(3.88)
LP∑
l=1

ςk+1
Ni+NiΓd+l

wl (�pn) = FΓu (�pn) ; �pn ∈ SΓu ,

Ni∑
j=1

ςk+1
j B [ψ (‖�pn − �pj‖)] +

NiΓd∑
k=1

ςk+1
Ni+kBBk [ψ (‖�pn − �pk‖)] +

(3.89)
LP∑
l=1

ςk+1
Ni+NiΓd+l

B [wl (�pn)] = FΓd
(�pn) ; �pn ∈ SΓd

.

The additional constraint conditions are

NiΩ+NiΓd
+NiΓu∑

j=1

ςk+1
j wl (�pj) +

NΓd∑
k=1

ςNiΩ+NiΓd
+NiΓu+kBk [wl (�pk)] = 0;

(3.90)
l = 1, 2, . . . , LP .

The matrix form of the system of linear Eqs.(3.87,3.88,3.89,3.90) is

Ai ςςς
k+1
i = bk+1

i , (3.91)

where

Ai =

⎡
⎢⎢⎢⎢⎢⎣

(ψnj)(NiΩ+NiΓd)×Ni

(Bk [ψnk]
)
(NiΩ+NiΓd)×NiΓd

(wml)(NiΩ+NiΓd)×LP

(ψnj)NiΓu×Ni

(Bk [ψnk]
)
NiΓu×NiΓd

(wnl)NiΓu×LP

(B [ψnj ])NiΓd
×Ni

(BBk [ψnk]
)
NiΓd

×NiΓd

(B [wnl])NiΓd
×LP

(wnl)
T
LP×(NiΩ+NiΓd

+NiΓu)
(Bk [wnl]

)T
LP×NiΓd

(0)LP×LP

⎤
⎥⎥⎥⎥⎥⎦

N̄i×N̄i

,

(3.92)

ςςςk+1
i =

[
ςk+1
1 ςk+1

2 . . . ςk+1
Ni+NiΓu+LP

]T

bk+1
i =

[
u
(
�pn, t

k+1
)
‖ �pn ∈ SΩ ∪ SΓd

FΓu (�pn) ‖ �pn ∈ SΓu FΓd
(�pn) ‖ �pn ∈ SΓd

0 . . . 0
]T
.

The matrix size is equal to N̄i = Ni + NΓd
+ LP . The coefficient vector in the

new time step ςςςk+1
i for the boundary reference node �pi is determined by

ςςςk+1
i = A−1

i bk+1
i . (3.93)

The values of the field at the boundary nodes are

u (�pi) =

Ni∑
j=1

ςk+1
j ψ (‖�pi − �pj‖) +

NiΓd∑
k=1

ςk+1
Ni+kBk [ψ (‖�pi − �pk‖)] +

(3.94)
LP∑
l=1

ςk+1
Ni+NiΓd

+lwl (�pi); �pi ∈ Γ.
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The coefficient vector for the domain nodes, �pi ∈ Ω, is computed by

ςςςk+1
i = Φ−1

i bi, (3.95)

where the coefficient matrix Φi and the vector bi are

Φi =

⎡
⎢⎢⎣

(ψnj)Ni×Ni

(Bk [ψnk]
)

Ni×NiΓd

(wnl)Ni×LP

(B [ψnj])NiΓd
×Ni

(BBk [ψnk]
)

NiΓd
×NiΓd

(B [wnl])NiΓd
×LP

(wnl)
T
LP×Ni

(Bk [wnl]
)T

LP×NiΓd

(0)LP×LP

⎤
⎥⎥⎦

N̄i×N̄i

,

(3.96)

bk+1
i =

[
u
(
�pn, t

k+1
) ‖�pn ∈ SΩ ∪ SΓu ∪ SΓd

FΓd
(�pn) ‖�pn ∈ Γd 0 . . . 0

]T
.

3.3.4 Selection of Local Support

Approximation of the function and its derivatives at the domain and boundary
points is performed by using the local support. Selection of the local support for
the domain and boundary nodes can be different and will be separately analysed
here. At the start, the local supports for the domain nodes are determined.

Domain Local Support

Two approaches for selection of local support for domain nodes in the MFMs
community are well established. The shape and the size of the local support is
determined explicitly in the first approach. For example, the local support can be
a circle in two dimensions and a sphere in three dimensions, i.e., for a reference
node �pi, its local support is defined as

Si = {�pj, ‖�pj − �pi‖ < Ri}, (3.97)

where Ri is the radius of the circle and represents the size of the local support.
The term domain of influence is very frequently used instead the term the local
support for this situation. The number of supporting points within the local
support is restricted to a given value in the second approach. The supporting
points are chosen by their distance from the reference node, with the closer one
having higher priority. The described approaches on two-dimensional equidistant
grids are presented in Fig.(3.4). The domain of influence is determined with the
radius of the circle Ri in Fig.(3.4(a)), and the number of supporting nodes in the
second approach is five Fig.(3.4(b)). The domain, boundary, supporting nodes,
and the reference node on the following schemes are presented by blue, red, green,
and black colours, respectively.

These two approaches work well when the nodes in the domain are uniformly
distributed or the local density of nodes varies smoothly. However, when the
nodes are unevenly distributed locally, which is usual in an r-adaptive node dis-
tribution, these two methods may not be appropriate anymore [Ding et al., 2005].



SOLUTION OF THE PFM USING THE LRBFCM 71

(a) The domain of influence determined by
the circe with radius Ri.

(b) The local support with five supporting
nodes.

Figure 3.4: Local supports for domain reference nodes on the equidistant grid.

Arbitrary Node Arrangements. If one tries to use the domain of influence in
r-adaptivity node arrangements, where the nodes in the domain have a track-like
distribution, then too many supporting nodes will be captured in one direction
from the reference node and not enough in the others. The approximations of the
function, and especially the derivatives, with such supporting nodes are very bad
and cannot be used for solution of PDEs. Because of that, the second approach
for determination of the local support, where the number of supporting nodes is
previously determined, is better suited for r-adaptivity node arrangements. The
number of supporting nodes is the input parameter in the local MFM. We will
concentrate on the local support with five supporting nodes (Mi = 5) in the
two-dimensional geometry. The local support with five supporting nodes, on the
equidistant grid, is presented in Fig.(3.4(b)).

The possibility of MFMs for numerical computations on an arbitrary, and
especially adaptive, node arrangement is used. Therefore, a useful and quick
approach for determination of the local support for domain reference nodes in an
arbitrary node arrangement is developed. The number of nodes in the supporting
domain is five, but the approach can be generalized for an arbitrary number of
nodes in the supporting domain. A schematic presentation of the approach is
presented in Fig.(3.5). The first supporting node is the nearest node to the
reference node, Fig.(3.5(a)). The second node has to be selected in the opposite
quadrant (90 o) from the first selected node. The nodes outside of this quadrant
(shaded on scheme) are not included in the selection. The second selected node in
the local support is the nearest node in the opposite quadrant. The selection of the
second node is presented in Fig.(3.5(b)). The selection of third supporting point is
computed from the region which is influenced by the positions of the previous two.
The total angle of this region is 90 o. The third node is the nearest node in this
region (Fig.(3.5(c))). The last node is selected in the same way, but now the region
is constructed from the previously selected three nodes (Fig.(3.5(d))). The total
angle of this region is between 90 o and 112.5 o. In the proposed approach, the
minimum angle that is formed between two supporting points and the reference
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node is higher than 45 o.
The idea for such selection of the supporting points has emerged during so-

lution of one-dimensional problems with the r-adaptive grids. Even in the one-
dimensional geometry, the distance to the reference node is not the only priority
for the selection of the local support. The local support has to consist of the
same number of nodes from both sides of the reference node. The local support
with three supporting nodes consists of the closest node from one side and the
closest node from the other side of the reference node.

(a) The first supporting point. (b) The second supporting point.

(c) The third supporting point. (d) The fourth supporting point.

Figure 3.5: The new approach for selection of the local support with five supporting points
in an arbitrary node arrangement.

Boundary Local Support

Implementation of boundary conditions in the local collocation by RBFs is still an
open topic, and consequently, the general collocation numerical scheme does not
exist. Also, the numerical results computed by the global collocation method on
the boundary where derivative boundary conditions exist are less accurate than
the results in the domain. Still in the global collocation, different strategies are
proposed for increasing accuracy of the results on the boundary. The symmetric
collocation approach based on Hermite-type interpolation proposed by Fasshauer
[Fasshauer, 1997] and the double consideration of the boundary nodes proposed
by Zhang [Zhang et al., 2000] and Chen [Chen, 2002] are the two examples of
these strategies. All strategies for global collocation can be translated on the
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local collocation. The only difference is that determination of the local support
in the local collocation is another degree of freedom for consideration, especially
on the boundary.

Theoretically, selection of the local support for boundary nodes could be the
same as for domain nodes, and the two previously explained approaches can be
easily implemented. In the direct local collocation, the only difference is that
at the boundary nodes, the boundary conditions are implemented. The local
support with six supporting points is presented in Fig.(3.6(a)). The stability of
results computed by this boundary local support is not very good when the deriva-
tive boundary conditions are applied. The approximation of the first derivative
at the boundary nodes is a key factor for accuracy of the results. The stabil-
ity of results continues to decrease with increases in the number of boundary
nodes in the local support. Because of this observation, the idea for using only
one reference-boundary node in the local support has been proposed [Šarler and
Vertnik, 2006], where the boundary condition is implemented. The such defined
boundary local support with five supporting nodes is presented in Fig.(3.6(b)).
Numerical experiments have shown that this boundary local support stabilizes
numerical results.

(a) The classical method for determination of
the local support for boundary nodes.

(b) The local support with only one boundary
node in the local support.

Figure 3.6: Local supports for boundary reference nodes.

3.3.5 R-adaptation

The possibility of MFMs for solving PDEs with arbitrary node arrangements
could be very useful if the node arrangement is carefully prepared. The adaptation
of node arrangements can be performed in different ways [Thompson et al., 1999].
Two basic strategies are h-adaptivity and r-adaptivity. The number of nodes
can be added and removed in the h-adaptation, whereas the number of nodes is
constant throughout computations in the r-adaptation. The implementation of h-
adaptivity for MFMs has been performed only recently [Rabczuk and Belytschko,
2005].

In the r-adaptation, the total number of nodes is constant and nodes are
only redistributed in the computational domain. This was done for the first time
in [Kovačević and Šarler, 2005]. The fine node arrangement is necessary in the
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phase-change region where the gradients of the field are highest. The method with
an elliptic automatic adaptive node redistribution, designed to properly cope with
the gradients in the phase-change region, is implemented. As a result, we have
to solve one more differential equation to redistribute the nodes in the domain.
On the other hand, the number of nodes is much smaller in comparison with the
uniform distribution while retaining the same accuracy.

Grid generation for the computation position of the nodes is used. One of the
most general methods for grid generation is the method with an elliptic genera-
tor, where the grid density is simply controlled. This adaptivity method in the
framework of the finite volume method is demonstrated in [Mencinger, 2001].

Grid Generation with Elliptic Generator

Grid generation with the elliptic generator is based on solving the elliptic PDE,
which is called the elliptic generator [Thompson et al., 1999]. The standard
method for grid generation with the elliptic generator is based on solving the
Poisson equation:

∇2ζ = P. (3.98)

The solution of this differential equation is controlled by the prescribed control
function P. In fact, the control function P together with the boundary conditions
determines the solution as well as the shape and density of the grid generation.
In general, this control function is not easily to be determined. The grid density
is easier to control by solving another kind of PDE:

∇ · (κ̄∇ζ) = 0, (3.99)

where the control function κ̄ and the boundary conditions determine the solution.
An analogy between the coordinate lines and isotherms is used for an easier

discussion. The steady temperature distribution T in the body is determined
by the heat conduction equation and the boundary conditions (temperature or
temperature flux):

∇ · (k∇T ) = S, (3.100)

where k and S are the thermal conductivity and the heat source density, respec-
tively. For example, if the body is homogenous (k = const), the isotherm density
is influenced only by the heat source S as well as the boundary conditions. In
another example, if the inhomogeneous body is without heat sources (S = 0), the
isotherm density in the body is inversely proportional to the thermal conductivity
k. From comparison of both methods, our opinion is that the isothermal density
could be easier to control with the prescribed thermal conductivity k, rather than
the heat source S.

The influence of the control function κ̄ on the grid density in Eq.(3.99) is the
same as the influence of the thermal conductivity k on the temperature field in
Eq.(3.100). In the region where the value of κ̄ is lower, the grid density is higher,
and vice versa. Other advantages of using this method are that temperature
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in the body is in the temperature interval confined by the boundary conditions
and isotherm overlapping is avoided. Consequently, nodes that fall out of the
computational domain and overlapping nodes are avoided [Mencinger, 2001].

Numerical Implementation

The grid generator (Eq.(3.99)) for the curvilinear coordinates ξ and η as depen-
dent variables in the two-dimensional geometry are:

∇ · (κ̄∇�) = 0 , � = ξ , η. (3.101)

In fact, the position (x, y) of the intersection of curvilinear coordinate lines (ξ, η),
which are independent variables in Eq.(3.101), has to be solved. The boundary
conditions for the curvilinear coordinate ξ are the Dirichlet type in the x direction
with values of the physical boundaries and the Neumann with no flux in the y
direction, and vice versa for the curvilinear coordinate η.

These positions can be solved by two different approaches. In the first one,
Eq.(3.101) are directly computed and the positions of the intersections of coordi-
nate lines are computed thereafter. Eq.(3.101) is the classical elliptic PDE, and
it is relatively simple to solve numerically. The implementation of the control
function as a function of physical coordinates (κ̄ = κ̄ (x, y)) is straightforward.
Because of this, the control function is computed only once at the start of the
computation. An additional effort is the computation of the position (x, y) for
computed values of the curvilinear coordinates (ξ, η). The solution is iteratively
found by the global interpolation with RBFs. This approach is used in the one-
dimensional geometry [Kovačević and Šarler, 2005], where only one equation of
Eq.(3.101) is solved.

In the second approach, the position of the intersection of curvilinear coor-
dinate lines can be solved straight away by using the inverse functions (x =
x(ξ, η), y = y(ξ, η)). Eq.(3.101) that are transformed to
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are covariant components of a matrix tensor. The boundary conditions for the
physical coordinate x are the Dirichlet type in the direction ξ with the value of
the physical boundaries and the Neumann type with no flux in the direction η,
and vice versa for the physical coordinate y.

If we use the curvilinear coordinate (ξ, η) as an independent coordinate (Eq.(3.102)),
the simple square domain (1, N +1; 1, N +1) is used, where N +1 represents the
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number of nodes in one direction. The distance between neighbouring nodes is
one, ∆� = 1.

The control function is the function of physical coordinates (κ̄ = κ̄ (x, y))
and have to be computed in each time step. The computation of the control
function is performed by local standard interpolation, explained in Section 3.3.2.
Eq.(3.102) are solved by local standard collocation, explained in Section 3.3.3.
The computation is performed iteratively by adding the transient term (∂χ/∂t) on
the right-hand side of Eq.(3.102). The equidistant node distribution which covers
the whole computational domain is used as the initial node distribution (x, y
position). The condition that the maximum difference between two subsequent
grids is smaller than predefined small number (ε) is used as the convergence
criteria. So, the convergence criteria is

max
i=1

| χn
i − χn̄

i |≥ ε , χ = x, y, (3.104)

where index i represents the node in the computation domain, and superscripts
n̄ and n represent the positions in the previous and the new time step.

Examples of Mesh Generation

The control function κ̄, as explained earlier in this section, is crucial for the node
distribution, and the influence of the control function on the node distribution is
demonstrated here. The control function can be defined in different ways as well.
Our idea for definition of the control function emerged from the definition of the
PFV in the PFM. The control function is defined as

κ̄ (x, y) = κ̄max − σn (x, y) (κ̄max − κ̄min) , (3.105)

where κ̄max and κ̄min are predefined maximum and minimum values of the control
function, and σn (x, y) is the function for controlling the node distribution. A
smooth transition from the maximum to minimum value, similar to the PFV, is
obtained by using the function σn as

σn (x, y) =
1

2

[
1 + tanh

(
3n (x, y)

δn

)]
, (3.106)

where n represents an independent variable normal to the interface position and
δn represents the transition zone thickness. The function σn is prescribed in
the interval [0, 1]; consequently the control function κ̄ is confined in the interval
[κ̄min, κ̄max]. The minimum value of the control function in each computation is
equal to one.

Two basic examples of node arrangements influenced by the control function,
defined in such a way, are demonstrated in Fig.(3.7). The square physical domain
with the length 50 is used in both examples. The examples are computed on the
equidistant 61 × 61 grid. The maximum of the control function in the examples
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is five. The transition zone thicknesses in the first and second example are ten
and two, respectively. The interface positions in the examples are

1. l : x− xc = 0, 2. l : (x− xc)
2 + (y − yc)

2 − r2
c = 0, (3.107)

where the parameters xc, yc and rc are 25 , 25 , 10, respectively. The control
function fields and the computed grids in the first and second examples are pre-
sented in Figs.(3.7(a),3.7(b)) and Fig.(3.7(c),3.7(d)), respectively. A fine grid is
obtained in the region where the value of the control function is lower and vice
versa. The transition zone in the first example is much thicker than in the second.
Because of that, in the first example, transition between the fine and coarse grid
is smoother than in the second one. The convergence criteria in the examples is
ε = 2 × 10−5.

Phase-change problems are focused on in this thesis, and therefore adaptive
node arrangements for phase-change problems are specially derived. In phase-
change problems, a fine grid is necessary in the phase-change region, which is
the interphase interface position. Therefore, a correlation between the control
function and the interface position is used to obtain denser node arrangement in
the vicinity of the interface position, l = l (x, y). For this purpose, we introduce
a modified definition of the control function for phase-change problems in a form

κ̄ = κ̄max − σ′
n (x, y) (κ̄max − κ̄min) , (3.108)

where the norm σ′
n = σ′

n(x, y) is defined as

σ′
n =

∣∣dσn

dn

∣∣
max

(∣∣dσn

dn

∣∣) ,
∣∣∣∣dσn

dn

∣∣∣∣ =
3

2δn cosh2 (3n/δn)
. (3.109)

The node distribution of the proposed method for phase-change problems is con-
trolled by two parameters: the maximum value of the control function κ̄max in
Eq.(3.108) and the transition zone thickness δn in Eq.(3.109). The influence of the
maximum value of the control function κ̄max is explained in the one-dimensional
domain with length 50µm. The interface position is located 15µm from the left
side of the system. The total number of nodes used in this example is 151. The
transition zone thickness δn is chosen to be 6µm. Node arrangements for three
maximum values of the control function 10, 30 and 50 are presented in Fig.(3.8).
The node positions are computed by the first approach.

These adaptive grids are used for phase-change simulation by the phase-filed
model. The very narrow interface thickness δ, 1.2 × 10−7 m in the PFM is used.
The number of nodes in the vicinity of the diffuse interface is a function of the
maximum value of the control function (Fig.(3.8)). The number of nodes in the
narrow interface region is 2, 5 and 8 and by using the maximum value of control
function 10, 30 and 50, respectively. As κ̄max increases, the relative number of
nodes in the vicinity of the diffuse interface relative to the total number of nodes
also increases. If one tries to solve the same problem with an equidistant node
arrangement and to obtain the same number of nodes in the diffuse-interface
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(d) Grid computed by the elliptic generator.

Figure 3.7: Test examples for demonstration of r-adaptation.

region, the total number of nodes has to be much higher 834, 2084 and 3334,
respectively.

If one tries to compute problems with the microstructure geometry received
from a micrograph, the interface position cannot be analytically written. In
fact, the interface position, the boundary between phases, is obtained implicitly
from the graph, as presented in Fig.(3.9(a)). The demonstration is done on the
equidistant 76 × 76 grid. The interface between phases is sharp. To obtain a
smooth control function, the transition zone between phases needs to be diffused.
The diffusion is enabled by solving the Poisson equation:

∂σ′
n

∂t̃
= ∇2σ′

n, (3.110)
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where the boundary conditions are of the Neumann type with zero flux. The
parameter t̃D is named as the diffusion time. A relation between the diffusion
time and time does not exist. The initial norm σ′

n is numerically computed.
Here, the parameter for definition of the transition zone thickness is t̃D, instead
of δn. The time integration proceeds in the closed interval

[
0, t̃D

]
. After the

diffusion of the transition zone, the control function is computed from Eq.(3.108).
Node distributions for three diffusion times 75, 150 and 300 are presented in
Figs.(3.9(b), 3.9(c), 3.9(d)), respectively.
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Figure 3.8: The influence of the maximum value of the control function on the node arrange-
ment in the one-dimensional geometry.

3.3.6 Numerical Procedure

The numerical procedure of the r-adaptive LRBFCM for solving the phase-change
problems simulated by the PFM is presented here. The algorithm for the r-
adaptive numerical procedure is presented in Fig.(3.10). The driving force for
phase transformation, the phase-field equation, and the concentration equations
are solved in each-time step, the same as in other numerical procedures. The
node arrangement is automatically redistributed after a transition time, denoted
as tp on a flow chart.

The input parameters in the proposed r-adaptive node arrangements are:

• the maximum value of control function κ̄max in Eq.(3.108),

• the convergence criteria ε in Eq.(3.104).
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Figure 3.9: The influence of diffusion time t̃D on the node arrangements in the two-dimensional
geometry.

• the diffusion time t̃D in Eq.(3.110) and

• the transition time tp.

Node Redistribution

The computation is performed on the same adaptive node distribution during the
transition time. The interface position moves in time, therefore the adaptive grid
has to be redistributed. The new region with the fine grid is determined by the
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Figure 3.10: Flow chart of r-adaptivity strong-form MFM for solving phase-change problems
simulated by the PFM.

PFV which implicitly defines the interface position in the PFM. The control func-
tion for the node distribution is computed by Eq.(3.108). The norm is computed
by Eq.(3.109), where the function for controlling node distribution is equal to the
PFV, σn(x, y) ≡ φ(x, y). To obtain a smooth transition in the node arrangement,
the PFV needs to be diffused. The diffusion of the PFV is computed on the old
node arrangement and this control function field is transformed on the equidistant
grids (κ̄ = κ̄ (x, y)). The positions of the new node arrangement are computed by
Eq.(3.102) by using the previously computed values of the control function. The
positions for the new node arrangement are obtained when Eq.(3.104) is satisfied.
After that, selection of the local support for every node is accomplished.

The values of the fields at the new node arrangement. The computa-
tional fields are translated at every node in the new node arrangement when the
nodes are redistributed. The fields are computed from the values of the fields on
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the old grid. The closest node from the old node arrangement is used as the ref-
erence node. The local support of this reference node is used for computation of
the fields at the new node. The schematic presentation of the computation of the
values of the field in the new node arrangements is demonstrated on Fig.(3.11).
The previous grid is plotted using unfilled circles and the new node, where the
value of the field is computed, is presented by red circle. The values of the fields
at the new node �pm are computed by the values in local support of the reference
node �pi by

F (�pm) =

Ni∑
j=1

ςjψ (‖�pm − �pj‖) +

LP∑
l=1

ςNi+lwl (�pn) , (3.111)

where the coefficient vector of the fields of the reference node �pi is known from
the old node arrangement. The computed values at the new node arrangement
are used for continuation of the computation at the new node arrangement.

Scaling of the MQ RBFs. The numerical results are computed by the MQ
RBFs with the shape parameter c̄ (Eq.(3.47)). When using the adaptive node
arrangement, the classical MQ RBFs need to be modified. The modified MQ
RBF in the two-dimensional geometry is:

ψ(‖�p− �pj‖) =

√
(x− xj)

2

x2
max i

+
(y − yj)

2

y2
max i

+ c̄2 , (3.112)

where the scaling parameters xmax i and ymax i are set to the maximum nodal
distance in direction x and y in the local support of the reference node �pi. The
scaling parameters are

xmax i = max
i

|xj − xk| , ymax i = max
i

|yj − yk| ; j, k = 1, . . . , Ni. (3.113)

The scaling of the MQ RBFs is twofold. In the first one, the difference in distances
between the supporting nodes decreases. In the second one, size differences of
local supports also decrease. Because of this, the shape parameter in the MQ
RBFs for each supporting point in the local support (and in each local support
in the whole computational domain) can be constant.

Figure 3.11: A schematic presentation of the computation of the values of the field in new
node arrangements (Eq.(3.111)).
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4 Dissolution of Primary
Particles

The primary purpose of homogenisation of aluminium alloys is to remove Cu,Mg, Si
- bearing particles, formed during solidification. This chapter is dedicated to the
estimation of the dissolution kinetics of primary particles into the aluminium
phase for different heat-treatable aluminium systems. The phase transformations
of stoichiometric and nonstoichiometric particles for binary and multicomponent
systems are elaborated, commented and simulated by previously explained physi-
cal models. Also, the capability of using the local collocation by RBFs for solving
phase transformations described by the PFM on r-adaptive node arrangements
is presented, explained and commented.

The TDA and PFM are enforced for the dissolution of primary particles during
homogenisation of aluminium alloys. Special attention is paid for linking data
from a thermodynamic database to the physical models.

The numerical results for the isothermal diffusion-controlled dissolution of
stoichiometric and nonstoichiometric primary particles in binary and multicom-
ponent aluminium systems are compared for validation of physical models. A very
nice agreement between the numerical results computed by the PFM and previ-
ously derived Vermolen model [Vermolen et al., 1998b; Vermolen et al., 2002] for
the dissolution of multicomponent particles during homogenisation of aluminium
alloys is demonstrated. Also, a very nice agreement between results computed by
the PFM and the TDA based on the general thermodynamic interface condition
are presented. The possibility of the PFM for simulation of the phase transfor-
mation in complex geometry is demonstrated. Advantages and disadvantages of
using the r-adaptivity strong-form MFM for solving the PFM are pointed out.

The phase transformations in the solid state are between two extremes, known
in the literature as the diffusion-controlled or the interface-controlled modes. In
the diffusion-controlled mode, the main assumption is that the interface reaction
proceeds quickly with respect to long-distance diffusion in the phases. There-
fore, the interface concentrations are determined through the thermodynamic
equilibrium state. If the interface reaction proceeds slower than long-distance
diffusion in the phases, the phase transformations are interface-controlled. The
transformation is in a mixed-mode character if both processes influence on the
transformation kinetics. The transition between the modes depends upon the
relative magnitude of the solute diffusion and the interface mobility.

85
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The temperature dependence of the diffusion coefficient of element m in the
aluminium phase is

Dm
Al = Dm

0 exp

(
−Q

m
D

RT

)
, (4.1)

where Dm
0 is temperature-independent preexponential, and Qm

D is the activation
energy for diffusion. The impurity diffusion coefficients used in this thesis are
computed with coefficients from Tab.(4.1). The coefficients are rewritten from
Smithells Metals Reference Book [Brandes and Brook, 1992].

Table 4.1: The impurity diffusion coefficients used in this thesis [Brandes and Brook, 1992].

m Dm
0 Qm

D Temp. range Dm
Al, (T = 500 ◦C)

− [cm2/s] [kJ/mol] ◦C [m2/s]
Cu 0.65 136.0 321 − 655 4.193 × 10−14

Mg 1.24 130.4 394 − 655 1.741 × 10−13

Si 2.48 137.0 480 − 620 1.369 × 10−13

4.1 Diffusion-Controlled Dissolution

The physical models for the solid-solid phase transformations are analysed in
Chapter 2. In the Diffusion-Controlled (DC) mode, the local interface condition
is determined throughout the thermodynamic equilibrium state. Connections for
the TDA and the PFM with a thermodynamic database for different aluminium
systems are explained in detail at the beginning. The numerical results com-
puted by the TDA and PFM for the validation of physical models are compared.
The PFM as a one-domain approach enables relatively easy computation in the
complex two-dimensional topology. A sensitive study of the influence of model
parameters on the PFM results is done. The LRBFCM described in Section 3.3
is implemented for solving the PFM. Comparison with the numerical results com-
puted by the fine-grid FDM in one and two-dimensional geometry is performed.

4.1.1 Connection of the Physical Models with a Thermo-
dynamic Database

The major difficulty in modelling of phase transformations is the link between
the model and the thermodynamic data. The JMatPro software for aluminium
alloys [JMatPro, 2004] is used as the thermodynamic database in this thesis. The
thermodynamic data for using the FTM and the PFM for binary, stoichiometric
or nonstoichiometric second phases and multicomponent systems are explained
in this section.
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Binary Systems

The number of degrees of freedom in isobaric binary systems with two coexisting
phases are equal to one (Eq.(1.3)). In heat treatment processes, the tempera-
ture is the known process parameter and the number of degrees is equal to zero
at the interphase interface. Therefore, the interface conditions are completely
determined by the equilibrium phase diagram.

Connection to the PFM with a thermodynamic database is different for stoi-
chiometric or nonstoichiometric second phase. Because of this, it is necessary to
separately treat it. The stoichiometric phase is considered first.

Stoichiometric phase. The link between the models and the thermodynamic
database, where the second phase is stoichiometric, is explained in an example
of a Al-Mg system. In the Al-Mg system, the aluminium phase and intermetallic
compound Al3Mg2 phase exist in the two-phase solid-solid region. The concen-
tration of Mg in the intermetallic stoichiometric Al3Mg2 phase is constant and
equals to 36.06 wt%.

FTM. The solubility of Mg determines the interface concentration in the
aluminium phase. Solubility as a function of temperature is presented on the
binary equilibrium phase diagram by the solvus line. The solubility as a function
of temperature is written in Tab.(4.2).

Table 4.2: The interface concentrations of Mg in the aluminium phase as a function of tem-
perature, obtained from the thermodynamic database [JMatPro, 2004].

T cMg
AlI T cMg

AlI T cMg
AlI T cMg

AlI
◦C [wt%] ◦C [wt%] ◦C [wt%] ◦C [wt%]
20 0.32 140 1.82 260 5.39 380 11.46
40 0.46 160 2.25 280 6.22 400 12.72
60 0.64 180 2.75 300 7.13 420 14.04
80 0.86 200 3.30 320 8.11 440 15.44
100 1.13 220 3.93 340 9.16 450.3 16.19
120 1.45 240 4.62 360 10.28

PFM. The thermodynamic condition in the PFM is included via the thermo-
dynamic driving force for phase transformation. The method for computation of
the thermodynamic driving force is presented in Section 3.2. If the second phase
is stoichiometric, the component concentration in the aluminium phase in the
interface region is explicitly determined from the mixture concentration as:

cAl =
c− φcstAl3Mg2

1 − φ
, (4.2)

because the concentration of the second phase is constant. The molar driving
force is only a function of component concentration (Mg) in the aluminium phase
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during the isothermal phase transformation. The molar driving force, ∆gβα, for
the phase transformation of Al3Mg2 in the aluminium phase for three homogeni-
sation temperatures is presented in Fig.(4.1). The system is at its thermodynamic
equilibrium state, when the molar driving force is zero. If the driving force is pos-
itive, the second phase dissolves into the aluminium matrix, and vice versa. If
the driving force is negative, the second phase grows into the matrix. This molar
driving force represents the connection between the PFM and the thermodynamic
database.
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Figure 4.1: The molar driving force for phase transformation of Al3Mg2 in the aluminium
phase for three homogenisation temperatures.

Nonstoichiometric phase. The connection between the models for phase
transformations of the nonstoichiometric phase and aluminium matrix is ex-
plained in an example of the Al-Cu system. The aluminium and θ nonstoi-
chiometric phase exist in two phase region in the solid state. The θ phase has
approximately composition Al2Cu, and in the literature is also denoted as Al2Cu.

FTM. The interface concentrations in both phases are determined from the
equilibrium phase diagram presented in Fig.(4.2). The interface concentration
in aluminium and θ phase can be read from the light brown and sky blue line
in the equilibrium phase diagram, respectively. The growth or dissolution of the
second phase in the aluminium matrix is determined by the interface mass fluxes
(Eq.(2.25)).
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Figure 4.2: The equilibrium phase diagram of the binary Al-Cu system, obtained from [JMat-
Pro, 2004].

PFM. When dealing with nonstoichiometric phases even in binary alloys, the
connection between the explained PFM with a thermodynamic database is not
as simple. Local concentrations of phases in the interface region need to be found
from the following system of nonlinear equations:

c = φ cθ + (1 − φ) cAl
(4.3)

µCu
Al − µAl

Al = µCu
θ − µAl

θ .

The first equation is the definition of the mixture concentration and the second
one represents the condition that phase diffusion potentials in both phases are
equal. This system needs to be solved at each point in the diffuse-interface region.
The chemical potentials of components as functions of concentration are necessary
for the solution of this system. The chemical potentials of elements in both phases
as a function of concentration of Cu, obtained by the thermodynamic database
for temperature 500 ◦C are written in Tab.(4.3). These values are interpolated
by the MQ RBFs for obtaining very accurate analytical functions of chemical
potentials as functions of component concentration, as explained in the previous
chapter. These approximations enable the use of solvers for the solution of the
system of nonlinear equations. The molar driving force is computed from the
values of the calculated concentrations of both phases.

Multicomponent Systems

Second phases are usually intermetallic compounds in multicomponent aluminium
systems. The link between the physical models and thermodynamics is much
simpler, if the second phase has a constant concentration.



90 DISSOLUTION OF PRIMARY PARTICLES

Table 4.3: The chemical potentials of components as function of Cu concentration in the
aluminium and θ phases at temperature 500 ◦C, obtained from [JMatPro, 2004].

cCu
Al µAl

Al µCu
Al cCu

θ µAl
θ µAl

θ

[wt %] [J/mol] [J/mol] [wt %] [J/mol] [J/mol]
2.0 −28761.5 −77761.7 30.0 −28845.7 −71327.2
6.0 −28840.4 −72668.7 34.0 −23791.5 −87913.4
10.0 −28890.3 −71249.6 38.0 −24136.6 −86471.6
14.0 −28913.5 −70830.9 42.0 −24602.5 −84831.1
18.0 −28913.7 −70821.7 46.0 −25299.5 −82752.5
22.0 −28896.6 −70981.0 50.0 −26583.1 −79507.4
26.0 −28870.2 −71178.0 54.0 −36233.3 −59496.5

FTM. The phase transformation of the Mg2Si in the aluminium phase in the
Al-Mg-Si system is used for expression of connections between FTM and ther-
modynamics. The interface concentrations in the aluminium phase need to be
determined only from thermodynamics as an example of the second stoichiomet-
ric phase. The interface concentrations in the aluminium phase in the thermody-
namic equilibrium with the Mg2Si phase can be computed from the hyperbolic
relation (Eq.(2.23)):

XMg
Al

2
XSi

Al = K (T ) , (4.4)

where the aluminium phase is assumed as the dilute solution. The solubility prod-
uct is computed from the pseudo-binary Al-Mg2Si phase diagram of the ternary
Al-Mg-Si system. The interface concentrations in the aluminium phase, computed
by Eq.(4.4), are compared with the values directly obtained from the thermody-
namic database. The interface concentrations, obtained from both methods and
for three temperatures are presented in Fig.(4.3). The values are in very good
agreement. We conclude that a hyperbolic relationship (Eq.(4.4)) can be used as
the interface condition between the Mg2Si and aluminium phase, if the JMatPro
software [JMatPro, 2004] is used as the reference.

The aluminium phase can not be treated as the dilute solution in all phase
transformations of aluminium systems. The interface condition is directly ob-
tained from the thermodynamic database (Eq.(2.17)) in general. The phase
transformation of the Al2CuMg in the aluminium phase in the Al-Cu-Mg sys-
tem is the example. This interface condition is used for modelling the phase
transformation of the Al2CuMg phase into aluminium phase.

PFM. In modelling the isothermal phase transformations with the PFM, if
the second phase is stoichiometric, the molar driving force is the only function of
the component concentrations in the aluminium phase. The molar driving force
for the phase transformation of the Mg2Si in the aluminium phase as a function
of concentration of Mg and Si in the aluminium phase at temperature 560 ◦C is
presented in Fig.(4.4). For accurate computation, the driving force as a function
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Figure 4.3: The interface concentrations in the aluminium phase during phase transformation
between Mg2Si and the aluminium phase at three temperatures.

of component concentrations in the aluminium phase needs to be very accurately
approximated. Again, the interpolation by the MQ RBFs is incorporated here.

Summary

In the FTM, the interface condition for DC phase transformations is determined
by the thermodynamic equilibrium state. For binary systems, the interface con-
dition can be read from the equilibrium phase diagram. For multicomponent
systems, the interface condition is determined in two ways. In the first one,
the hyperbolic relationship between component concentrations in the aluminium
phase is derived. This equation is derived throughout the solubility product,
where the aluminium phase is assumed to be the dilute solution. In the second
one, the interface condition is determined as an isothermal cross section of the
solubility surface of the aluminium phase in the equilibrium phase diagram for
multicomponent systems.

In the PFM, the connection of the model with a thermodynamic database is
established via the driving force for the phase transformation. The molar driving
force is the difference between the molar free energies of phases and gives informa-
tion about the departure from the thermodynamic equilibrium state. In dealing
with the stoichiometric second phase, the driving force is a function of compo-
nent concentrations in the aluminium phase only. The accurate approximation
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Figure 4.4: The molar driving force for phase transformation of Mg2Si in the aluminium phase
at temperature 560 ◦C.

of this function is essential for accurate computation of phase transformations
by the PFM. In dealing with the nonstoichiometric second phase, the component
concentrations in the phases have to be computed from the condition that phase
diffusion potentials in both phases are equal. This condition at each node in
the interface region has to be satisfied. The interpolation by MQ RBFs is im-
plemented for accurate approximation of the thermodynamic data for computing
the driving force.

4.1.2 Validation of the Physical Models

Comparison between the numerical results computed by the TDA and PFM in
one-dimensional geometry is performed for validation of both physical models. It
is performed in one-dimensional geometry only, because tracking of the interphase
interface in the TDA in complex geometry is not a trivial task. On the other
hand, the lack of knowledge about physical parameters, for example the interface-
kinetic coefficient, makes the PFM difficult for quantitative simulations. Such a
comparison can serve as a tool for estimation of the interface-kinetic coefficient
in the PFM for the DC phase transformations.

The isothermal DC dissolutions of the Al3Mg2, θ, Mg2Si and Al2CuMg phase
in the aluminium phase in the Al-Mg, Al-Cu, Al-Mg-Si and Al-Cu-Mg systems
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are computed, respectively. The numerical results computed by both models
are presented on the same graphs to demonstrate the possibility of the PFM for
quantitative phase transformations for modelling in the solid state. Because of
the almost coincident results, the representative data of the following figures are
written also in a tabular form. The FTM and FDM are used as solution proce-
dures for the solution of the TDA and the PFM physical models, respectively.

The results are presented for the one-dimensional system with length 50µm.
The simulation time is one hour. Initial concentrations of components in the alu-
minium phase are assumed to be constant for simplicity. The boundary conditions
are assumed to be of the Neumann type with zero flux.

Two equidistant fixed meshes are used for discretization of the PFM. The first
mesh is around the interface and the coarser one out of the phase-change region.
Distances between neighbouring nodes are for the first ∆xin = 2 × 10−2 µm and
the second mesh ∆xout = 2 × 10−1 µm.

The interface thickness in each example is 1.2 × 10−1 µm. A very narrow
interface region is used for getting sufficiently grid independent results. Therefore,
the distance between the neighbouring nodes in the interface region has to be
small. Consequently, the time-step length has to be short. The number of nodes
in the diffuse-interface region is 6.

The interface energy and the interface-kinetic coefficient in the PFM have
to be estimated. The interface energy depends on the type of particle-matrix
interface [Porter and Easterling, 1990; Howe, 1997]. The interface energy has no
big influence on the phase transformation kinetics in the DC mode and is chosen
to be 5.0×10−1 J/m2 in this section. The interface energy anisotropy significantly
influences the particle shape.

The interface-kinetic coefficient in the PFM defines the mode of the phase
transformation: DC, interface-controlled or mixed-mode. The interface-kinetic
coefficient is proportionally constant between the driving force for phase transfor-
mation and the interface velocity (Eq.(1.16)). If the value of the interface-kinetic
coefficient is high, the interface velocity has no influence on the transformation
kinetics and the transformation is in the DC mode. The interface-kinetic coeffi-
cient is confined in application by the upper side, because it is proportional with
phase-field mobility in the phase-field equation (Eq.(2.76)). The time-step length
is inversely proportional with phase-field mobility during the numerical computa-
tion of the phase-field equation. The interface-kinetic coefficient for a particular
phase transformation is an unknown parameter and it is adjusted by numerical
experiments. The interface-kinetic coefficient is slowly increased until the dif-
ference in results computed with subsequent values becomes very small. Such
approaches can determine the interface-kinetic coefficient as well as the phase-
field mobility when the phase transformation is in the DC mode. The interface
kinetic-coefficients for the validation of the PFM in DC mode and for different
phase transformations are written in Tab.(4.4).
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Table 4.4: The interface-kinetic coefficient for the phase transformations in the DC mode.

Phase Trans. µk

System between [m4/Js]
Al-Mg Al3Mg2 and Al 5.0 × 10−13

Al-Cu θ and Al 5.0 × 10−14

Al-Mg-Si Mg2Si and Al 5.0 × 10−15

Al-Cu-Mg Al2CuMg and Al 5.0 × 10−14

The relative difference between the numerical results is defined as

∆ =
| VFTM − VPFM |

VFTM

× 100% , (4.5)

where VFTM and VPFM are values computed by the FTM and PFM, respectively.
The interface values in the PFM are computed implicitly from the isovalue of the
PFV, φ = 0.50. The interface values are computed by the linear interpolation
between values at the neighbouring nodes.

The validation of physical models for each aluminium system is performed for
three homogenisation temperatures with differences between them 20 ◦C. The nu-
merical results computed by the FTM and PFM and relative differences between
them are written in the Tables. The comparison of the results was presented in
[Kovačević and Šarler, 2006b].

Al-Mg System

The one-phase classical Stefan problem needs to be solved in the TDA, because
the Al3Mg2 is a stoichiometric phase. The diffusion length of Mg in this phase
transformation (DMg

Al /v) is much smaller than the diffusion length of other com-
ponents in binary systems. The total number of nodes for sufficiently accurate
results in the FTM is 402, whereas the number of nodes in phases is equidistantly
distributed in the initial condition.

The finer mesh in the PFM are between 6µm and 16µm. The total number
of nodes in the domain is 701. The time-step lengths in the FTM and PFM are
5 × 10−2 s and 5 × 10−4 s, respectively.

The initial concentration of Mg in the aluminium phase is equal to 1.00 wt%.
The initial interface position is chosen to be 15µm. The numerical results are
presented for following homogenisation temperatures 400 ◦C, 420 ◦C and 440 ◦C.

The Mg concentration profiles computed by the FTM and PFM after one hour
of isothermal DC dissolution of the Al3Mg2 in the aluminium phase at three ho-
mogenisation temperatures are presented in Fig.(4.5(a)). The respective interface
positions are presented in Fig.(4.5(b)). The values of the molar driving forces are
interpolated from the values presented in Fig.(4.1). The data in Fig.(4.5(b)) and
the relative differences between the numerical results computed by both physical
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models are written in Tab.(4.5). The interface positions and relative differences
are calculated in ten equal time steps during the simulations.
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Figure 4.5: Isothermal DC dissolution of the Al3Mg2 in the aluminium phase at three ho-
mogenisation temperatures.

Table 4.5: The numerical data for Fig.(4.5(b)) and the relative differences between the results
of both methods.

400 ◦C 420 ◦C 440 ◦C
FTM PFM ∆× FTM PFM ∆× FTM PFM ∆×

t [s] l[µm] l[µm] 102[%] l[µm] l[µm] 102[%] l[µm] l[µm] 103[%]
360 14.239 14.242 2.089 13.790 13.794 3.210 13.115 13.123 6.227
720 13.926 13.928 2.148 13.290 13.295 3.393 12.338 12.346 6.684
1080 13.685 13.688 2.252 12.907 12.912 3.608 11.741 11.749 6.940
1440 13.482 13.485 2.376 12.584 12.589 3.844 11.238 11.246 7.385
1800 13.303 13.306 2.411 12.299 12.304 4.066 10.795 10.803 7.723
2160 13.141 13.144 2.472 12.042 12.047 4.116 10.394 10.403 8.017
2520 12.992 12.995 2.206 11.805 11.810 4.072 10.026 10.034 7.974
2880 12.854 12.857 2.253 11.585 11.590 4.168 9.683 9.691 8.381
3240 12.724 12.727 2.532 11.378 11.383 4.425 9.361 9.369 8.789
3600 12.601 12.604 2.615 11.183 11.188 4.444 9.056 9.065 9.268

Al-Cu System

Copper is the most common element for aluminium alloys, and a variety of alloys
(2xxx series) in which copper is the major addition were developed. Copper is
solvable up to 5.74 wt% in the aluminium phase. The aluminium phase has the
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FCC crystal structure and the phase θ has a complex body-centred tetragonal
structure.

The basic purpose of homogenisation of 2xxx aluminium alloys is to dissolve
the interdendritic eutectic, the mixture of the phases θ and Al. In this section,
we demonstrate the numerical results of the dissolution of the θ phase in the
aluminium phase, computed by the FTM and PFM. Dissolution of the eutectic
phase in the aluminium phase during homogenisation is presented in Chapter 6,
where the eutectic phase is treated as a heterogeneous mixture of solid phases.

The initial concentrations of Cu in the aluminium and θ phase are constant
and equal to 0.50 wt% and 53.00 wt%, respectively. The position of the initial
interface is chosen to be 10µm. Temperatures 480 ◦C, 500 ◦C, and 520 ◦C are
chosen as homogenisation temperatures.

The number of nodes in both models are the same as in the Al-Mg system. The
time-step length in the PFM is 5 × 10−5 s. The time-step length is considerable
lower than in the example with a stoichiometric phase, because the condition,
that phase diffusion potentials in both phases are equal, is implemented.

The Cu concentration profiles after one hour of isothermal DC dissolution of
the θ in the aluminium phase at three homogenisation temperatures computed by
the FTM and PFM are presented in Fig.(4.6(a)). Interface positions are presented
in Fig.(4.6(b)). The data in Fig.(4.6(b)) and the relative differences between the
numerical results computed by both physical models are written in Tab.(4.6).
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Figure 4.6: Isothermal DC dissolution of the θ in the aluminium phase at three homogenisation
temperatures.

Al-Mg-Si System

Aluminium alloys of the 6xxx heat-treatable series are most widely used for the
production of extruded parts. The Al-Mg-Si system defines the 6xxx series of
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Table 4.6: The numerical data for Fig.(4.6(b)) and the relative differences between the results
of both methods.

480 ◦C 500 ◦C 520 ◦C
FTM PFM ∆× FTM PFM ∆× FTM PFM ∆×

t [s] l[µm] l[µm] 103[%] l[µm] l[µm] 103[%] l[µm] l[µm] 103[%]
360 9.840 9.839 5.984 9.749 9.748 2.847 9.607 9.607 0.274
720 9.774 9.773 6.841 9.644 9.644 1.535 9.441 9.441 0.555
1080 9.723 9.722 3.634 9.563 9.563 1.752 9.308 9.308 0.490
1440 9.680 9.679 6.008 9.493 9.493 4.953 9.192 9.192 3.075
1800 9.642 9.641 4.229 9.431 9.430 3.727 9.088 9.088 1.134
2160 9.607 9.606 3.388 9.373 9.373 5.056 8.993 8.993 3.899
2520 9.575 9.574 6.898 9.320 9.320 3.777 8.906 8.906 0.148
2880 9.545 9.544 2.845 9.270 9.270 3.410 8.824 8.824 0.024
3240 9.516 9.516 6.925 9.223 9.223 1.594 8.747 8.747 0.386
3600 9.490 9.489 4.316 9.178 9.178 5.096 8.674 8.674 4.066

aluminium alloys. Extrudability of these alloys is strongly influenced by the
amount of Mg and Si in the solid solution, and the size of Mg2Si precipitates.

The dissolution of the stoichiometric Mg2Si phase in the aluminium phase
during homogenisation is presented here. The hyperbolic relation (Eq.(4.4)) as
the condition for the interface concentrations in the aluminium phase is used in
the FTM. The molar driving force for dissolution of Mg2Si in the aluminium
phase used in the PFM at temperature 560 ◦C is presented in Fig.(4.4). The ini-
tial concentrations of Mg and Si in the aluminium phase are constant and equal
to 0.01 wt% and 0.01 wt%, respectively. The initial concentrations of components
are very low for making the dissolution kinetics as high as possible. The con-
centrations of Mg and Si in the Mg2Si stoichiometric phase are 63.38 wt% and
36.62 wt%, respectively. The initial interface position is 6µm. Homogenisation
temperatures are 520 ◦C, 540 ◦C and 560 ◦C.

The total number of nodes in the FTM is 115, whereas the number of nodes in
the Mg2Si and the aluminium phase are 15 and 100, respectively. The boundary
between the meshes in the PFM in both multicomponent system is 7µm from the
left boundary of the system. The total number of nodes is 566. The time-step
lengths in the TDA and PFM are 1 × 10−1 s and 1 × 10−4 s, respectively.

The interface positions during isothermal DC dissolution of the Mg2Si phase
in the aluminium phase at three homogenisation temperatures are presented
in Fig.(4.7(a)). The numerical results related to Fig.(4.7(a)) are written in
Tab.(4.7). The interface concentrations of Mg and Si in the aluminium phase
during homogenisation computed by both models are presented in Fig.(4.7(b)).
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Figure 4.7: Isothermal DC dissolution of the Mg2Si in the aluminium phase at three ho-
mogenisation temperatures.

Table 4.7: The numerical data for Fig.(4.7(a)) and the relative differences between the results
of both methods.

520 ◦C 540 ◦C 560 ◦C
FTM PFM ∆× FTM PFM ∆× FTM PFM ∆×

t [s] l[µm] l[µm] 103[%] l[µm] l[µm] 103[%] l[µm] l[µm] 103[%]
360 5.872 5.872 2.420 5.804 5.804 4.967 5.705 5.706 4.465
720 5.819 5.818 2.876 5.722 5.723 5.306 5.585 5.586 4.456
1080 5.778 5.778 3.665 5.661 5.661 4.599 5.501 5.501 1.730
1440 5.744 5.744 2.325 5.612 5.612 1.075 5.440 5.440 1.362
1800 5.714 5.714 4.439 5.572 5.572 1.160 5.395 5.395 5.137
2160 5.688 5.688 0.049 5.539 5.539 1.271 5.363 5.363 0.668
2520 5.666 5.666 1.580 5.512 5.512 0.472 5.339 5.339 4.885
2880 5.646 5.646 1.450 5.490 5.490 1.900 5.322 5.322 1.431
3240 5.628 5.628 0.004 5.472 5.472 0.185 5.310 5.309 4.086
3600 5.612 5.612 3.871 5.457 5.457 1.718 5.300 5.300 4.689

Al-Cu-Mg System

Dural alloys based on Al-Cu-Mg systems are important in structural applications
where a combination of good damage tolerance and high strength is required. In
this section, we estimate the transformation kinetics of the Al2CuMg or S phase
in the aluminium phase during solution heat treatment. The initial concentra-
tions of Cu and Mg in the aluminium phase are constant and equal to 0.50 wt%
and 1.20 wt%, respectively. The concentrations of Cu and Mg in the Al2CuMg
stoichiometric phase are 44.80 wt% and 17.14 wt%, respectively. The general ther-
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modynamic condition for the interface concentrations in the aluminium phase is
used from Eq.(2.17). If we use this interface condition, additional assumptions
are not needed. Homogenisation temperatures are 450 ◦C, 470 ◦C and 490 ◦C.

The position of the initial interface and the number of nodes in both models
are the same as in the Al-Mg-Si system. The time-step lengths in the TDA and
PFM are 1 × 10−1 s and 2 × 10−4 s, respectively.

The interface positions during isothermal DC dissolution of the Al2CuMg
phase in the aluminium phase at three homogenisation temperatures are pre-
sented in Fig.(4.8(a)). The interface concentrations of alloying components in
aluminium computed by the models are presented in Fig.(4.8(b)). The numeri-
cal results of interface positions and relative differences between the results are
written in Tab.(4.8). The relative differences between the results computed by
the models are negligible from the engineering point of view.
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Figure 4.8: Isothermal DC dissolution of the Al2CuMg in the aluminium phase at three
homogenisation temperatures.

Summary

The physical modes are validated by comparison of the numerical results com-
puted by the TDA and PFM. The comparison is performed for isothermal DC
phase transformations. The whole spectra of represented numerical results, com-
puted by both physical approaches are in very good agreement. The dissolution
of the stoichiometric Al3Mg2 and nonstoichiometric θ phase into the aluminium
phase for Al-Mg and Al-Cu binary system is solved, respectively. The dissolution
of the second stoichiometric and nonstoichiometric phase in the aluminium phase
for binary system is successfully modelled by the FTM and PFM.

Furthermore, the good agreement between the results computed by the pre-
sented PFM and the Vermolen model [Vermolen and Vuik, 2000] for the dissolu-



100 DISSOLUTION OF PRIMARY PARTICLES

Table 4.8: The numerical data for Fig.(4.8(a)) and the relative differences between the results
of both methods.

450 ◦C 470 ◦C 490 ◦C
FTM PFM ∆× FTM PFM ∆× FTM PFM ∆×

t [s] l[µm] l[µm] 103[%] l[µm] l[µm] 103[%] l[µm] l[µm] 103[%]
360 5.929 5.929 7.494 5.862 5.862 0.440 5.744 5.744 0.240
720 5.900 5.900 6.071 5.804 5.804 0.302 5.637 5.637 3.684
1080 5.877 5.877 7.304 5.760 5.760 1.871 5.556 5.555 2.998
1440 5.858 5.858 5.893 5.723 5.724 1.579 5.487 5.487 3.746
1800 5.842 5.841 0.966 5.691 5.691 1.860 5.426 5.426 4.404
2160 5.826 5.826 0.428 5.661 5.661 0.767 5.372 5.372 0.041
2520 5.812 5.812 4.087 5.634 5.634 3.728 5.321 5.321 3.645
2880 5.799 5.799 3.098 5.609 5.609 0.704 5.274 5.274 1.934
3240 5.787 5.787 0.612 5.585 5.585 3.138 5.231 5.231 0.742
3600 5.776 5.775 5.022 5.562 5.563 2.829 5.190 5.190 1.885

tion of a Mg2Si particle in an aluminium matrix for Al-Mg-Si system is presented.
The isothermal DC dissolution of the Al2CuMg particle in the aluminium phase
for Al-Cu-Mg system is computed by both physical models. The dissolution kinet-
ics computed for simulation in a multicomponent system by the physical models
are in very good agreement. The general thermodynamic interface condition for
this phase transformation is used in the TDA. The interface-kinetic coefficients in
the PFM for the DC phase transformations are estimated by such comparisons.

It is evident that there is a huge influence of homogenisation temperature on
the dissolution kinetics. Because of the narrow interface thickness, the number of
points in the PFM is higher than in the FTM. Consequently, the time-step length
is smaller in the PFM. Also, if we use the thermodynamic conditions written in
Eq.(4.3) at every node in the interface region, the time-step length is even smaller.

The accuracy of the PFM results depends on the quality of the interpolation
scheme for computing the molar driving force in the phase-field equation. Even
with finer meshes, the linear interpolation of the driving force as a function of
component concentrations does not produce sufficiently accurate results.

The DC phase transformations in one-dimensional geometry are more easily
simulated by the TDA only. The preliminary experimental results show that
solid-solid phase transformations are between the DC and interface-controlled
mode. In the mixed-controlled mode, the interface condition is influenced by the
interface velocity. The tracking of the interphase interface in the FTM is very
difficult to implement with complex topology. Also, interface curvature influences
the interface condition. The curvature computation in the TDA is not a trivial
task. The above mentioned reasons confine the implementation of the TDA for
the phase transformations in the solid state. In the following of the thesis, the
focus is on the PFM.
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4.1.3 The PFM in Two-Dimensional Geometry

Phase transformations at the micro level always occur in the presence of com-
plex geometry. The capability of the PFM for solving phase transformations in
a complex topology is demonstrated in this section. Results, independence of
interface thickness as well as the total number of nodes in one-dimensional ge-
ometry, are demonstrated at the start. These facts enable us to solve the PFM
on an equidistant mesh with two-dimensional geometry with reasonable compu-
tational time. The governing equations are discretized by the second-order finite
difference scheme in space and explicit in time, as explained in Section 3.2. The
physical and material properties are assumed to be isotropic.

Results Independence of the Interface Thickness

The interface thickness is fixed to a very small value 1.2×10−1 µm in the previous
computations. The interface positions and concentrations are enabled to be very
accurate by using a very small value of this model parameter. The interface values
in the PFM are obtained indirectly by the PFV. These interface values need to
be very accurate, because of the comparison with numerical results obtained by
the TDA, where the interface values are explicitly defined in the model.

The DC phase transformations can be computed with much larger interface
thicknesses then in previous computations. Results that are independent of the
interface thickness parameter in the PFM are demonstrated here. The numerical
results are presented for the Al-Mg system, because of its fastest dissolution
kinetics and the shortest diffusion length. Consequently, it can be implemented
for other binary or multicomponent systems.

The Mg concentration profiles after one hour of isothermal DC dissolution
computed by various interface thicknesses are presented in Fig.(4.9(a)). The in-
terface thicknesses are 1.2 × 10−1 µm, 6.0 × 10−1µm and 1.2µm. The numerical
results that are independent of the interface thickness are clearly presented. Ac-
curate numerical results can be obtained by using interface thicknesses that are
ten times larger than in previous examples. Therefore, the results can be obtained
by a significantly smaller number of nodes in the phase-change region.

Recent numerical results are computed by the earlier grid with distances be-
tween neighbouring nodes inside ∆xin = 2.0 × 10−2µm and outside the phase-
change region ∆xout = 2.0×10−1µm. The numerical results obtained by different
distances between neighbouring nodes in the phase-change region are presented
in Fig.(4.9(b)). The interface thickness is fixed to be 6.0 × 10−1µm. It is ev-
ident that accurate results can be obtained even when the distances between
neighbouring nodes in outside and inside the phase-change regions are equal,
∆xin = ∆xout = 2.0 × 10−1µm. The total number of nodes in the domain is
251. Accurate results can be obtained even when using few nodes over the diffuse
interface. The time-step length is fixed on 2.5 × 10−3 s.
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(a) The numerical results computed by the
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(b) The numerical results computed by the
three node arrangements with the interface
thickness 6.0 × 10−1 µm.

Figure 4.9: The Mg concentration profiles of DC dissolution at homogenisation temperature
440 ◦C computed by different interface thicknesses and different meshes.

Dissolution of Complex Shape Particle

The dissolution of a complex shape Al2CuMg particle in the aluminium phase
is chosen for demonstration. The model parameters of this phase change are:
the interface energy 5.0 × 10−1 J/m2, the interface thickness 6.0 × 10−1µm and
the interface-kinetic coefficient 5.0 × 10−15 m4/Js. The interface-kinetic coeffi-
cient is lower than in the previous example of this phase transformation (5.0 ×
10−14 m4/Js), because we now use a larger time-step length in the computation
only. The phase transformation using the selected interface-kinetic coefficient is
still in the DC mode.

The arbitrary initial shape of Al2CuMg phase is presented in Fig.(4.10). The
computational domain is 50µm × 50µm square. The initial uniform concentra-
tions of Cu and Mg in the aluminium phase are 0.50 wt% and 0.50 wt%, respec-
tively. The boundary conditions are assumed to be of the Neumann type with
zero flux. The governing equations are discretized by the FDM on the equidistant
251 × 251 mesh. The time-step length is 5 × 10−3 s.

The DC dissolution of a Al2CuMg particle in the aluminium phase is com-
puted at a homogenisation temperature 490 ◦C. The Cu and Mg concentra-
tion fields during homogenisation are presented in Fig.(4.11). The concentra-
tion fields after one hour of heat treatment (Fig.(4.11(a),4.11(b))), two hours
(Fig.(4.11(c),4.11(d))) and three hours (Fig.(4.11(c),4.11(d))) are presented. In
the first stage of homogenisation, the dissolution is dominant. Later, when the
component concentration gradients become smaller, rounding is also pronounced.
The curvature effect is more evident when the particle becomes smaller. The dis-
solution of concave surfaces is slower than the dissolution of convex interfaces.
In the presented example, the particle is approximately a circle after three hours
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Figure 4.10: The initial shape of Al2CuMg particle, obtained from the PFV.

of dissolution. The particle is completely dissolved after 3 h 40 min at heating
treatment temperature.

The dissolution of the complex shape particle is computed. The PFM has been
implemented for phase transformation using various particle topologies, where the
soft impingement diffusion mechanism has been also considered.

Summary

The major problem in the PFM is the determination of the model parameters.
Interface thickness, as a model parameter, has to be small in comparison with the
diffusion length of the component in the particular phase transformation. The
results that are independent of interface thickness are demonstrated in the disso-
lution of Al3Mg2 in the aluminium phase example. Thicker interfaces enable the
use of fewer nodes in the system. Such a problem is computed on an equidistant
grid with one-dimension geometry without losing accuracy. This conclusion en-
ables the use of equidistant grids with the two-dimensional geometry. Also, the
interface thickness has to be small in comparison with interface curvature. The
capability of the PFM is demonstrated in the dissolution of an arbitrary complex
shape Al2CuMg particle into the aluminium phase. On this simple example, one
can see that particle curvature influences the dissolution kinetics. During the
dissolution, the particle also becomes round. All necessary physical parameters
for solid-solid phase transformation modelling are incorporated in the PFM.
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(c) The Cu concentration field, two hours.
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(d) The Mg concentration field, two hours.
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Figure 4.11: The isothermal DC dissolution of the artificial shape Al2CuMg particle in the
aluminium phase at the homogenisation temperature 490 ◦C.



DIFFUSION-CONTROLLED DISSOLUTION 105

4.1.4 Comparison of Different Solution Procedures using
the PFM

The numerical results simulated by the PFM and solved by the local r-adaptive
strong-form MFM are compared with and the results computed by the fine-grid
FDM. The isothermal DC dissolution of Al3Mg2 particles in the aluminium phase
is simulated. The Al-Mg binary system is selected, because the solubility of Mg
is highest in the aluminium phase, and the dissolution kinetics are the fastest out
all alloying elements in commercial aluminium production. The interface energy
and the interface-kinetic coefficient are 3.0 × 10−1 J/m2 and 3.0 × 10−14 m4/Js,
respectively. The constant concentration of Mg in the aluminium phase is used
as the initial state. The concentration field and the interface position through
time are computed by the previously explained solution procedure in Section
3.3. The procedure and its performance are considerably different in the one and
two-dimensional geometry; because of this, the numerical results are presented
separately.

One-dimensional Geometry

The system length and the initial interface position are again 50µm and 15µm,
respectively. The initial concentration of Mg in the aluminium phase is the equi-
librium concentration at temperature 20 ◦C. This concentration is computed by
the JMatPro software for aluminium alloys, and takes on the value 0.35 wt%Mg.
The interface thickness is 1.2 × 10−1 µm.

The total number of nodes used for presentation of the numerical procedure
is chosen to be 151. The number of nodes in the local support is three, the
simplest possible. The control function is computed by Eq.(3.108), where the
transition zone thickness in Eq.(3.109) is 6µm. Generally, the control function
for node distribution can be written analytically in the one-dimensional geometry,
therefore the node distribution is much easier. The maximum value of the control
function is 30. The time-step length is 1× 10−3 s. The transition time is 5 s, and
therefore the grid is redistributed every 5 s. The computational method for the
node positions is explained in Section 3.3.5. The collocation based on the local
standard interpolation is used for the computation. The values at the new node
positions are computed by the global interpolation with RBFs.

The Mg concentration profiles computed by the r-adaptive local collocation
with RBFs during one hour of isothermal dissolution for three homogenisation
temperatures are presented in Fig.(4.12). The concentration profiles are presented
every 720 s. Homogenisation temperatures are 400 ◦C, 420 ◦C and 440 ◦C. The
interface positions during the dissolution for three homogenisation temperatures
are presented in Fig.(4.13). The results obtained by the r-adaptive LRBFCM
and the FDM are plotted by solid blue and dashed red lines, respectively. The
interface positions and the relative difference between the results computed by
both numerical methods every 360 s are written in Tab.(4.9).

The numerical results are compared with the results obtained by the fine-grid
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FDM, used as the reference solution. The purpose of this comparison is to verify
the equivalence of the new numerical procedure. The agreement between nu-
merical results obtained by the proposed numerical procedure and the reference
solution is very good. The r-adaptive numerical procedure derived for the solu-
tion of phase-change problems gives very accurate results in the one-dimensional
geometry. These accurate results are obtained with a significantly less number of
total nodes even if the interface thickness is small.

The major advantage of the presented procedure is better shown in the next
example, where the same problem is solved by only 101 nodes in the computa-
tional domain. The comparison of the Mg concentration profiles after 720 s, 2160 s
and 3600 s at homogenisation temperature 440 ◦C are presented in Fig.(4.14(a)).
Again, agreement between the r-adaptive LRBFCM results and the fine-grid FDM
is very good. The input parameters in the r-adaptive node arrangement are the
same as in the previous example.

Table 4.9: The interface positions in time at three homogenisation temperatures computed by
the LRBFCM and the FDM.

T = 440 ◦C T = 420 ◦C T = 400 ◦C
t l [µm] ∆× l [µm] ∆× l [µm] ∆×
[s] FDM MFM 102[%] FDM MFM 102[%] FDM MFM 102[%]
360 13.064 13.063 0.278 13.749 13.749 0.204 14.209 14.209 0.117
720 12.260 12.259 0.459 13.230 13.231 0.483 13.881 13.881 0.028
1080 11.643 11.642 1.180 12.832 12.832 0.182 13.630 13.629 0.278
1440 11.123 11.121 1.723 12.496 12.496 0.024 13.417 13.417 0.014
1800 10.665 1.0663 1.627 12.201 12.200 0.516 13.230 13.230 0.214
2160 10.251 10.248 2.381 11.933 11.932 0.755 13.062 13.061 0.474
2520 9.870 9.866 3.293 11.688 11.687 0.966 12.906 12.905 0.743
2880 9.515 9.511 4.014 11.459 11.457 1.303 12.762 12.761 0.715
3240 9.182 9.178 5.226 11.244 11.242 1.883 12.626 12.625 0.822
3600 8.867 8.862 6.295 11.041 11.038 2.065 12.497 12.496 0.618

The component concentration profiles after 720 s, 2160 s and 3600 s of the
isothermal dissolution in one-dimensional geometry, computed by three different
maximum values of the control function, are presented in Fig.(4.14(b)). The
results are presented for the maximum values of the control function of 10, 30
and 50. The initial node arrangements computed by the same three maximum
values of the control function are presented in Fig.(3.8). The interface positions
computed by the LRBFCM and the FDM are written in Tab.(4.10). Also, the
relative difference between the results computed by the LRBFCM with the three
maximum values of control function and the reference values are written in the
same table. The numerical results are clearly independent of the maximum values
of the control function that controls the node arrangements.
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Table 4.10: The interface positions during one hour of dissolution for three maximum values
of control function of r-adaptive LRBFCM and the FDM.

FDM MFM, κ̄max = 10 MFM, κ̄max = 30 MFM, κ̄max = 50
t l l ∆× l ∆× l ∆×
[s] [µm] [µm] 102 [%] [µm] 102 [%] [µm] 102 [%]
360 13.064 13.067 2.620 13.061 2.049 13.060 3.211
720 12.260 12.257 2.409 12.256 2.820 12.254 4.482
1080 11.643 11.642 1.252 11.640 2.490 11.636 6.163
1440 11.123 11.120 2.694 11.120 2.984 11.114 7.785
1800 10.665 10.662 2.843 10.661 3.430 10.655 9.308
2160 10.251 10.246 4.329 10.247 3.715 10.240 10.360
2520 9.870 9.862 7.423 9.866 4.251 9.858 11.385
2880 9.515 9.506 9.642 9.511 4.576 9.504 11.583
3240 9.182 9.173 9.974 9.177 5.453 9.171 12.010
3600 8.868 8.860 8.127 8.862 6.048 8.856 12.470

Two-dimensional Geometry

The computational domain is a square with size 15µm. The initial particle shape
of Al3Mg2 phase is taken arbitrarily from the micrograph. The initial concentra-
tion of Mg in the aluminium phase is 1.00 wt%Mg. The initial PFV and initial
concentration of Mg are presented on Figs.(4.15(a),4.15(b)), respectively. The
positions of nodes are computed on equidistant 76×76 grids with a total number
of nodes equal to 5776.

The node arrangement from the procedure explained in Section 3.3.5 is com-
puted by Eq.(3.102). The collocation by a local standard interpolation scheme
without a additional polynomial term is implemented for solving these equations.
The local supports for the boundary nodes with the only one boundary nodes
are necessary for accurate computation of the Neumann boundary conditions
(Fig.(3.6(b))). A collocation is made by local support with five supporting nodes
on equidistant grids (Fig.(3.4(b))).

The phase-field equation and the concentration equation are solved by the
collocation with RBFs on the r-adaptive node distributions. All boundary condi-
tions in the phase-field and the concentration equation are of Neumann type with
zero flux. These boundary conditions have a crucial influence on the stability of
results computed by the collocation methods on an r-adaptive arrangement. The
results computed by collocation based on the local standard interpolation scheme
using adaptive node distribution are not correct on the boundaries, even if only
one boundary node is used in the local support. The high gradients in the fields
have an influence this condition. Therefore, double consideration of boundary
nodes for the collocation based on Hermite-type interpolation is necessary for
computation on the r-adaptive node distribution.
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The polynomial term is necessary for obtaining the interpolation without noise
in the region with flat fields. The results are without noise even with a constant
polynomial term. By increasing the order of the polynomial augmentation at the
same time as the matrix size increases, the computation time is also increased.
Because of this, the length of the polynomial term is chosen to be one. The
local supports are determined by the procedure described in Section 3.3.4 and
presented in Fig.(3.5).

The interface thickness is 8.0 × 10−1 µm. The control function is computed
by Eq.(3.108), where the norm in Eq.(3.109) is computed by Eq.(3.110). In
Eq.(3.110), the diffusion time is 1. The maximum value of the control function
is 2. The time-step length is 5 × 10−3 s. The transition time is 25 s, and the grid
is redistributed every 25 s. The values at new node positions are interpolated by
the local interpolation explained in Section 3.3.6. The field transformation from
a one node distribution to another is easy and very straightforwardly related to
the strong-form MFMs.

The PFVs and the Mg concentration fields during one hour of dissolution
of Al3Mg2 particle into the aluminium phase, computed by the collocation with
RBFs on r-adaptive node arrangement, are presented in Fig.(4.15). The temporal
node arrangements are presented by black circles. The dissolution kinetics are
the highest at the start because of the high gradient of component concentration
in the aluminium phase. Later on, the particle curvature influences this phase
transformation and the interphase interface becomes flatter. The transformation
ends, when the component concentration is equal to the equilibrium concentration
at a high process temperature and the interface is a straight line.

The results computed by the collocation with RBFs on r-adaptive node dis-
tribution are compared with the results computed by FDM on a fine equidistant
251 × 251 grid. The interface position comparisons are presented in Fig.(4.16).
The 0.5 contour of the PFV is used as the interface position and the agreement
between the positions is very good.

The maximum value of the control function may be higher and the majority
of nodes could be in the phase-change region, whereas a relatively small number
of nodes are outside of the phase-change region. This node distribution influences
that Neumann boundary conditions on the boundaries are not accurately solved,
because a small number of nodes is in the vicinity of the boundary. Consequently,
the phase transformation is not accurately solved, as well. The higher value of
the control function can be used for the higher total number of nodes. The initial
Mg concentration field on the node arrangement, when the maximum value of
the control function is five, is presented in Fig.(4.17).

The transition time ensures that the interface position does not move outside
the fine-grid region. Very nice agreement is obtained by using different transition
times 10 s, 25 s and 50 s. Therefore, we can conclude that the results are indepen-
dent of the transition time. The transition time is in relation to the parameters
for controlling node arrangements. The transition zone decrease is achieved by
increasing the maximum value of the control function or/and decreasing the dif-
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fusion time.

Summary

The collocation by RBFs and the development of an r-adaptive strong-form
MFMs represent one of the principal goals of this thesis. The procedure is imple-
mented for solution of phase-change problems. The automatic elliptic generator
for computation of node positions is used. The control function in the elliptic
generator controls the node distribution and remains in relation to the interface
position. The node arrangement is controlled by two parameters: the maximum
value of the control function and the transition zone thickness in one-dimensional
geometry, or the diffusion time in the two-dimensional geometry. The node dis-
tribution is easily controlled by the chosen method. The collocation by RBFs
based on a local standard interpolation scheme on an equidistant grid is used for
the solution of the elliptic generator. The field transformation from one node dis-
tribution to another is very straightforwardly related to the strong-form MFMs.

The numerical procedure is implemented for phase-change simulation by the
phase-field model. The r-adaptive numerical procedure derived for solution of
phase-change problems gives very accurate results in the one-dimensional geom-
etry. The computations are performed by three nodes in the supporting domain.
Accurate results are obtained with a significantly smaller number of the total
nodes even if the interface thickness is small. There are two reasons that explain
this fact. The r-adaptive node arrangement is easily controlled, and the approxi-
mations of derivatives and functions by the local standard collocation using RBFs
with three supporting nodes are very accurate. The derivative boundary condi-
tions do not influence the stability of the results in the one-dimensional geometry.

The stability of the collocation by RBFs based on the local standard interpo-
lation method is not sufficient at boundary nodes where the derivative boundary
conditions exist. The stability is significantly improved by using only one bound-
ary node for the boundary local support. The collocation with RBFs by using
the double consideration of boundary nodes based on Hermite-type interpolation
enables computation on the r-adaptive node arrangement. It improves the sta-
bility and accuracy of the results at the derivative boundary nodes. A useful
and quick approach for determination of the local support for domain reference
nodes in arbitrary node arrangements is developed. Local supports with only five
nodes are considered. The addition polynomial term is necessary for obtaining
the interpolation without noise for flat fields, such as the PFV for example. The
result computed by the collocation using RBFs is in agreement with the results
computed by the fine-grid FDM.

The present development of the mesh free technique is more time consuming,
so that the main results presented in the forthcoming simulations have been
obtained with the FDM.
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(c) t = 1440 s.
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(d) t = 2160 s.
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(e) t = 2880 s.
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(f) t = 3600 s.

Figure 4.12: The Mg concentration profiles during one hour of dissolution at three homogeni-
sation temperatures computed by the LRBFCM and the FDM.
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Figure 4.13: Interface positions in time at three homogenisation temperatures computed by
the LRBFCM and the FDM.
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Figure 4.14: The Mg concentration profiles during one hour of dissolution at homogenisation
temperatures 440 ◦C computed by the LRBFCM and the fine-grid FDM.
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(b) Initial concentration field of Mg.
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(d) t = 360 s.
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(f) t = 720 s.



DIFFUSION-CONTROLLED DISSOLUTION 113

0 5E-06 1E-05 1.5E-05
0

5E-06

1E-05

1.5E-05

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(g) t = 1440 s.

0 5E-06 1E-05 1.5E-05
0

5E-06

1E-05

1.5E-05

36

33

29

26

22

19

15

12

8

5

1

(h) t = 1440 s.
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(j) t = 2160 s.
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(l) t = 3600 s.

Figure 4.15: The PFVs and the Mg concentration fields during one hour of isothermal disso-
lution of Al3Mg2 in the aluminium phase at homogenisation temperature 440 ◦C.
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Figure 4.16: Interface positions during one hour of dissolution computed by the LRBFCM
(75 × 75) and the fine-grid FDM (251 × 251) at homogenisation temperature 440 ◦C.
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Figure 4.17: The initial Mg concentration field approximated on the node arrangement ob-
tained by the maximum value of the control function five.
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4.2 Interface-Controlled Dissolution

In the DC mode, the main assumption is that the interface reaction proceeds
sufficiently fast with respect to long-distance diffusion in the phases. Therefore,
interface concentrations are determined through the thermodynamic equilibrium
state (Fig.(1.3)). If the interface reaction proceeds slower than long-distance dif-
fusion in the phases, the phase transformations are mixed-controlled or Interface-
Controlled (IC). The theoretical background of the influence of the interface re-
action influences on the interface condition has already been explained in Section
1.3.4.

IC dissolution can be simulated by the TDA and PFM. In the PFM, the
phase-field mobility is proportional with the interface-kinetic coefficient in the
sharp-interface limit (Eq.(2.109)). The interface-kinetic coefficient quantifies the
interface reaction mobility. The PFM copes with all necessarily physics for the
simulation of phase transformations in different modes.

The TDA is explained for the DC phase transformations in Section 2.2. The
interface conditions for a two-phase binary A-B system is determined throughout
the thermodynamic equilibrium state:

µA
α (T, cαeq) = µA

β (T, cβeq) , µB
α (T, cαeq) = µB

β (T, cβeq) , (4.6)

where cϕ eq represents the equilibrium interface concentration in the phase ϕ.
A variety of atomic attachment mechanisms have been proposed [Aaron and

Kotler, 1971] to account for the observed interface reaction into the TDA. Various
relationships between the interface velocity magnitude v and the departure from
interface equilibrium conditions ∆cα are proposed, where the assumption that the
second phase β is intermetallic compound (cβeq = cstβ ) is used. Since the interface
reaction reduces the flux of atoms which crosses the interphase interface, the
actual interface concentration cαI during dissolution is less than the equilibrium
interface concentration cαeq. It is convenient to define a positive departure ∆cα
as

∆cα = cαeq − cαI. (4.7)

The appropriate relationships between interface velocity magnitude v and the
departure ∆cα for dissolution has been developed in [Aaron and Kotler, 1971].
One of them is the uniform atomic detachment

v = −K̄∆cα, (4.8)

where the parameter K̄ is related to the interface mobility. From the Gibbs-
Thomson relation, one can obtain the relationship between the parameter K̄ and
the interface-kinetic coefficient µk:

K̄ = µk (Xβeq −Xαeq)
µαI − µαeq

XαI −Xαeq

. (4.9)

Now, the interface concentration, including interface reaction influence, is cαI =
cαeq − ∆cα. For the uniform detachment mechanism, one can get

cαI = cαeq +
v

K̄
. (4.10)
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The interface concentration is a function of the interface velocity for simulation
of IC phase transformations by the TDA.

The interface-kinetic coefficient influences of the dissolution of Al3Mg2 in the
aluminium phase in the binary Al-Mg system computed by the PFM are pre-
sented in Fig.(4.18). If the interface-kinetic coefficient is high, the interface reac-
tion is fast enough that the dissolution is DC. If the interface-kinetic coefficient
is higher than 5.0 × 10−14 m4/Js, the dissolution kinetics does not dependent on
the interface mobility. The interface concentration converges to the equilibrium
concentration (cαI → cαeq), when v/K̄ → 0 as is evident from Eq.(4.10). The
Mg concentration profiles after one hour of isothermal dissolution with different
interface-kinetic coefficients are presented in Fig.(4.18(a)). Homogenisation tem-
perature and the interface energy are 440 ◦C and 5.0 × 10−1 J/m2, respectively.
The time-step length is 5×10−4 s in computations, except for the interface-kinetic
coefficient 5 × 10−13 m4/Js where the time-step length is 1 × 10−4 s.

Decreasing the interface-kinetic coefficient, increasing the interface reaction
influences of the dissolution (Fig.(4.18(b))). Therefore the dissolution kinetics is
slower. In the example with the interface-kinetic coefficient 5.0 × 10−20 m4/Js,
the dissolution is in the IC mode. The interface-kinetic coefficients between these
two extremes (5.0× 10−16 m4/Js, 5.0× 10−17 m4/Js, 5.0× 10−18 m4/Js) define the
dissolution in the mixed-controlled mode. The interface-kinetic coefficient easily
controls the transformation mode.

The interface position changes by square root law with time in the example
of the DC dissolution, as in classical Stefan problem. In the IC and the mixed-
controlled mode, the interface position changes linearly with time. Comparison
of interface positions with time as a function of the interface-kinetic coefficient is
presented in Fig.(4.18(b)).

A recent study of austenite decomposition to ferrite during the cooling of
steel was performed by experiments and the PFM [Mecozzi et al., 2005]. The
interface-kinetic coefficient was used as a fitting parameter to optimise the agree-
ment between the experimental and simulated ferrite-fraction curve. Is was found
that this phase transformation is in a mixed-mode character, situated between
two extremes of the DC and IC mode. At the initial stage, the transformation
is predominantly IC, but gradually shifts toward DC mode with a degree that
depends on the cooling rate. Consequently, the interface-kinetic coefficient in the
PFM does not have to be a uniform parameter during the phase transformation
simulation.
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Figure 4.18: The dissolution of Al3Mg2 in the aluminium phase as a function of the interface-
kinetic coefficient at temperature 440 ◦C.
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5 Si-particle Spheroidisation

Modelling of the spheroidisation of elongated Si-particles during high-temperature
treatment is elaborated in this chapter. Application of the PFM for spheroidisa-
tion or rounding of undissolvable particles during annealing of aluminium alloys
is pointed out. The driving force for spheroidisation is the minimization of the
total free energy of the system or the minimization of the ratio between the inter-
face areas and the particle volumes. The theoretical background of the solubility
dependence on the particle curvature is described in Section 1.3.3. The influence
of interface energy anisotropy on the particle shape simulated by the PFM is
presented at the end of this chapter.

The ductility of Al-Si alloys depends on the dendrite grain size and the size
and shape of the Si-particles. The ductility of the large grain size is low, since it
is dominated by the large elongated Si-particles. The dendrite grain size as well
as the size of the Si-particles are influenced by the solidification rate. By increas-
ing the solidification rate, the grain size and the size of Si-particles decreases,
consequently the ductility increases [Cáreras et al., 1995]. Mg and Cu elements,
alone or together, increase the strength and reduce the ductility of Al-Si alloys
[Dons et al., 2005].

The as-cast microstructure of Al-12 wt%Si alloy is presented in Fig.(5.1). The
micrograph was obtained from the Micrograph Library of the University of Cam-
bridge [Micrograph Library, University of Cambridge, 2007]. The eutectic com-
prises large elongated plates of silicon in the aluminium matrix. Such alloy has
a poor ductility due to the brittleness of large elongated Si-particles. The typi-
cal Al-Si eutectic is closer to a lamellar structure than to a fibrous one. This is
usually attributed to the strong anisotropy of the growth of silicon and to the
relatively low interface energy between silicon and aluminium.

For the commercial Al-Si alloys, microstructural modifications have been made
by adding strontium (Sr) to the melt as a modifier in order to obtain a low aspect
ratio of silicon plates. Also, the size of the Si-particles is low, and is much less
affected by the solidification rate than the unmodified alloy. The micrograph
comparison between the unmodified and modified Al-Si alloys is presented in
[Mondolfo, 1976].

119
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The changes of eutectic silicon during high-temperature treatment can roughly
be divided into three steps:

• Disintegration,

• Spheroidisation and

• Growth of Si-particles.

The beginning of the disintegration of Si-particles is provoked by small fluctua-
tions of its faceted interfaces. The spheroidisation and later coarsening are driven
by the solubility dependence of the particle curvature. Also, because the solubil-
ity of Si is low even at high temperature, Si-particles grow into the aluminium
matrix in Al-Si alloys.

Following the increasing demands of the automotive industry, safety parts
should have a minimum fracture elongation of 15 % and a minimum yield strength
of 180 MPa, so some relatively new alternative casting technologies are under de-
velopment. The huge hurdle for Al-Si cast alloys is the 15 % fracture elongation
which cannot be reached by conventional sand or semicontinuous casting. Thixo-
casting as a semi-solid process yields encouraging ductility values [Ogris, 2002].

Figure 5.1: The as-cast micrograph of Al-12wt%Si alloy obtained from [Micrograph Library,
University of Cambridge, 2007].
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5.1 Rounding Kinetics

The disintegration of Si-particles is provoked by small fluctuations of its faceted
interfaces, so a fluctuation term must be included in the model in order to model
this effect. This fluctuation is incorporated into the PFM by the additional source
term in the phase-field equation [Hechta et al., 2004]. This model is the most
frequently used for the simulation of the grain nucleation during solidification.
The nucleation and growth during the non-isothermal heat treatment conditions
simulated by the PFM is presented in [Simmons et al., 2004].

Our model does not include any fluctuation term, and is used for the esti-
mation of the rounding kinetics of the single elongated particle. The isotropic
material and isotropic interface energy (interface energy is constant around the
particle) are assumed for simulations. The single Si plate with a large aspect
ratio embedded in the surrounding aluminium matrix is chosen for demonstra-
tion. The initial length, width and aspect ratio are 5µm, 2 × 10−1 µm and 25,
respectively. The shape of elongated Si consists of two faceted, horizontal inter-
faces and two particle tops. The initial size and shape of the particle is presented
in Fig.(5.2). The initial concentration of Si in the aluminium matrix is equal to
the equilibrium concentration of Si at temperature 560 ◦C. This concentration is
computed by the JMatPro software for aluminium alloys, and takes on the value
1.36 wt%Si. The interface thickness and the interface-kinetic coefficients for each
computation are 1 × 10−1 µm and 5.0 × 10−17 m4/Js, respectively. Homogenisa-
tion temperature and the interface energy in the first example are 560 ◦C and
8.0 × 10−1 J/m2, respectively.

The computations are performed on one half of the particle. The computa-
tional domain is 3µm wide and 2µm high. The phase-field and concentration
equation are discretized by the FDM on the 150× 100 equidistant mesh with the
spatial step 2 × 10−2 µm. Neumann-type boundary conditions are defined at the
symmetric and the exterior boundaries. The time-step length is 8 × 10−5 s.

The size and shape of the Si-particles and the Si concentration field in the alu-
minium matrix during rounding at high-temperature treatment are presented on
the left and right sides of Fig.(5.3), respectively. The particle shape is determined
by the isovalue 0.50 of the PFV. The results are presented at every hour of the
heat treatment. The rounding kinetics of the Si-particle are evident. The aspect
ratio rapidly decreases over the course of homogenisation. The higher solubility
of Si at the top of the particle is effected by its curvature. This is evident in the
concentration field in Fig.(5.3). This higher concentration from the particle top
diffuses into the aluminium matrix. The concentration above the solubility at
the planar interface results in the growth of faceted interfaces into the aluminium
matrix.

In the computations, the interface thickness is high and equal to the Si-particle
curvature at the start of computations. Because of that, the computation on the
300×200 equidistant mesh with double thinner interface thickness 5×10−2 µm is
performed. A comparison is made between the results computed on the previously
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Figure 5.2: The initial shape of elongated Si-particle.

defined mesh with the interface thickness 1 × 10−1 µm and the results computed
on double denser mesh with the interface thickness 5 × 10−2 µm. The results
are in well agreement, which enables us to conclude that the computed rounding
kinetics do not depend on the interface thickness as the selected model parameter.
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Figure 5.3: Rounding of Si particles during homogenisation at temperature 560 ◦C with in-
terface energy 8.0 × 10−1 J/m2.
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5.1.1 Influence of the Parameters of Rounding Kinetics

The influence of the interface energy as a physical interface property and the
influence of homogenisation temperature as a process parameter on the rounding
kinetics are demonstrated here. The interface energy influence on the rounding
kinetics is analysed first.

Interface Energy Influence

The increase in the molar free energy of the particle caused by its local curvature
κ is

∆gκ = 2σVmκ . (5.1)

The interface energy in the solid phase is not a well researched physical property.
The interface energy depends on the type of the particle-aluminium interface:
for coherent interfaces, the energy ranges up to 2 × 10−1 J/m2, for semicoherent
interfaces the energy is in the range 2-5×10−1 J/m2 and for incoherent interfaces
it is in the range 5-10×10−1 J/m2 [Porter and Easterling, 1990]. More information
related to the interface energy in the solid state can be found in [Howe, 1997].

The interface energy influences the rounding kinetics of the Si-particle at ho-
mogenisation temperature 560 ◦C, as presented in Fig.(5.4). The three interface
energies used in the computation are 6× 10−1 J/m2, 8× 10−1 J/m2 and 1.0 J/m2.
The higher interface energy has the influence that the molar free energy of the
particle is higher due to the curvature (Eq.(5.1)), and consequently the solubility
of Si in the aluminium matrix increases (Fig.(1.4)). The higher concentration gra-
dient results in an increased driving force for diffusion in the aluminium matrix,
and in a higher influence of concentration on the growth of the faceted particle-
matrix interface. The aspect ratio of the particle for three interface energies
during high-temperature treatment is presented in Fig.(5.6(a)). The particles
are roughly spheroidisated in the cases with interface energies 8× 10−1 J/m2 and
1.0 J/m2 after eight hours at high-temperature treatment at 560 ◦C.

Temperature Influence

The influence of temperature on the rounding kinetics of the defined Si-particle
with the fixed interface energy of 1.0 J/m2 is presented in Fig.(5.5). The three
homogenisation temperatures used in the computations are: 520 ◦C, 540 ◦C and
560 ◦C. Homogenisation temperature influences: (i) the molar free energies of
the phases present, (ii) the driving force for the phase transformation and (iii)
the component diffusion coefficient into the aluminium matrix. For temperatures
lower than 560 ◦C, the driving force is negative and the Si particle along the
faceted interface grows into the aluminium matrix. This results in the spheroidi-
sation of the Si-particle. The driving force influenced by the curvature for each
temperature is roughly constant because the initial particle geometry as well as
the interface energy is fixed. This driving force changes by molar volume only.
The aspect ratio of the particle for three temperatures is presented in Fig.(5.6(b)).
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The most important parameter for the rounding kinetics during high-temperature
treatment is temperature, which is responsible for the component diffusion coef-
ficient into the aluminium matrix. The particle is not completely rounded after
eight hours of heat treatment at temperature 520 ◦C. The aspect ratio of the
particle after heat treatment at this temperature is approximately 4.
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(d) The size and shape of the Si particle after eight hours.

Figure 5.4: The influence of the interface energy on the rounding kinetics of the Si-particle at
a homogenisation temperature of 560 ◦C at different interface energies.
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Figure 5.5: The influence of the temperature on the rounding kinetics of the Si-particle with
a fixed interface energy of 1.0 J/m2 at different temperatures.
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Figure 5.6: The aspect ratio of the Si particle during high-temperature treatment.

5.2 Anisotropy

Secondary particles nucleate during all three homogenisation steps. The phase
transformations of the secondary particles are nucleation, precipitation or growth,
dissolution and coarsening. The majority of secondary particles nucleate on the
grain boundaries because of the heterogenous nucleation. The purpose of the
secondary particles is to control grain size during further mechanical treatment
such as extrusion or rolling. This section introduces the basic understanding and
modelling of the anisotropic growth of dispersoids.

The isotropic material and isotropic interfaces give rise to spherical precipi-
tates, since the sphere has a minimal interface area with respect to its volume.
The anisotropy in properties leads to a deviation from spherical morphology, and
the shape of the precipitates depends on the degree of anisotropy.

The anisotropy in materials originates from different properties, the most
influential of which are [Hu, 2004]:

• the interface energy,

• the interface-kinetic coefficient,

• the elastic modulus of the phases,

• the stress-free strain.

The anisotropy in the elastic modulus is observed even for cubic systems,
and is related to the bond strength along different directions. The elastic energy
anisotropy is determined not only by the elastic modulus contribution but also
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through the contribution of stress-free strain contribution. The anisotropy can
also be introduced by differences in the growth behavior of the interfaces. Growth
processes are related to the presence or absence of good atomic fit across the
interface. If the interface is incoherent, then atom transfer across the interface by
thermally activated jumps is easier. The presence of good atomic fit across one
of the precipitate interfaces poses a significant growth barrier for the coherent
interface. This growth barrier favors growth perpendicular to these interfaces
[Howe, 1997].

5.2.1 Influence of the Interface Energy Anisotropy on the
Particle Shape

The interface energy anisotropy is not prevalent in iso-structural systems, espe-
cially for the high-temperature treatment. This effect is more pronounced during
age hardening treatment at low temperatures. Anisotropies arise between phases
with different structures, leading to coherent and/or semi-coherent interfaces.
The equilibrium morphology based on the interface energy anisotropy can be
obtained by the Wulff’s shape construction. The Wulff’s shape construction con-
structs the particle shape that minimizes the amount of total free energy affected
by the interface energy [Porter and Easterling, 1990]. Coherent interfaces lead to
faceted interfaces, while incoherent interfaces are not faceted.

Here, the concept of the interface energy anisotropy in the PFM is introduced.
The total free energy for binary systems, expressed in Eq.(2.55), is

F =

∫
V

[
f ch (φ, c, T ) +

ε2
φ

2
|∇φ|2

]
dV . (5.2)

The interface energy anisotropy is usually taken into account throughout the
energy-gradient coefficient. The energy-gradient coefficient depends on the ori-
entations of the interface

εφ = εφ (θ) , (5.3)

where θ is the angle between the interface normal and a reference axis, for example
the x axis. The angle θ is introduced as

θ = atan

(
∂φ/∂y

∂φ/∂x

)
. (5.4)

Because of that, the phase-field equation in Eq.(2.54) is reinterpreted as

∂φ

∂t
= −Mφ

[
∂f ch

∂φ
−∇2

(
ε2

φφ
)

+
∂

∂x

(
εφ
dεφ

dθ

∂φ

∂y

)
− ∂

∂y

(
εφ
dεφ

dθ

∂φ

∂x

)]
. (5.5)

The phase-field modelling of the highly anisotropic interface energy growth of
Widanstätten ferrite in binary Fe-C is introduced in [Loginova, 2003].

In crystalline materials, the interface energy always depends on the orienta-
tion. The dependence of orientation on the interface energy is represented by a
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radial vector whose magnitude is proportional to the interface energy. This is the
so-called interface energy gamma-plot.

The two interface energy gamma plots are used as input parameters for the
PFM. The first gamma plot determines the intermediate θ′ phase in Al-Cu al-
loys [Hu, 2004], and it is presented in Fig.(5.7(a))). The second gamma plot
determines a theoretical six surface precipitate, and is presented in Fig.(5.7(b)).

A circular particle with radius 0.1µm is used as the initial shape. The ther-
modynamic driving force for the phase transformation is set up for a constant
negative value (109 J/mol). The interface thickness and the interface-kinetic co-
efficient are 7.0 × 10−2µm and 1.0 × 10−17 m4/Js, respectively. The interface
energies are used from the gamma plots in Fig.(5.7). The computational domain
is 2.56 × 10−1µm square. The phase-field equation is discretized on the equidis-
tant 513 × 513 mesh. The time-step length is 1 × 10−2 s, the particle shapes are
presented after 5 s of the simulations.

The secondary particle grows with the equilibrium shape, influenced by the
interface energy anisotropy. The equilibrium shapes of the θ′ phase and the
six surface precipitate are presented in Fig.(5.8(a)) and Fig.(5.8(b)), respectively.
The shapes obtained by the PFM are in good agreement with Wulff’s construction
shapes.

5.3 Summary

The rounding kinetics of the elongated Si particles are estimated by the PFM. The
spheroidisation can be roughly divided into three separate physical phenomena:

• The solubility of Si at the top of the particle is highly affected by the particle
curvature;

• The Si diffuses according to a concentration gradient into the aluminium
matrix;

• The concentration above solubility at the planar interface has the influence
that the faceted interface starts to grow into the aluminium matrix.

The influence of the interface energy as a physical property of the interface
and the influence of homogenisation temperature as a process parameter on the
rounding kinetics have been shown to both strongly influence the rounding kinet-
ics.

The interface energy anisotropy on the equilibrium shape of the secondary
particles is computed by the PFM. The computed equilibrium shapes are in good
agreement with the equilibrium shapes obtained by the Wulff’s shape construc-
tion.
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(a) The gamma plot for the intermediate θ′

phase in Al-Cu alloys.
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(b) The gamma plot for the theoretical six sur-
face precipitate.

Figure 5.7: The interface energy gamma plots. The interface energy is expressed in [J/m2].
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(a) The intermediate θ′ phase in Al-Cu alloys.
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Figure 5.8: The equilibrium particle shapes as a function of the interface energy gamma plots
sketched in Fig.(5.7).
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6 Application to Commercial
Aluminium Alloys

The application of the PFM for simulations of homogenisation of commercial
aluminium alloys is focused in this chapter. The model is concentrated on the
dissolution kinetics of the interdendritic eutectic phase in the aluminium matrix.
The eutectic phase is treated as the homogeneous phase, where its molar free
energy is computed as the heterogeneous mixture of eutectic phases present.

In aluminium alloys, the as-cast microstructure consists of the cored dendrites
of the aluminium matrix, with a variety of constituents at the grain boundaries
or interdendritic spaces. Specifically, in the interdendritic spaces of Al-Cu alloys,
a brittle, more or less continuous network of the eutectic is formed. By increasing
the copper content, there is a continuous increase in the hardness, but the strength
and especially the ductility depend on the shape of the copper-rich θ phase.
The difference is between spheroidised and evenly distributed particles and a
continuous network at grain boundaries. Dissolved copper produces the highest
increase in strength. The network of the copper-rich phase has a strong negative
influence on ductility. The dissolution of this network represents a key issue in
successful homogenisation of binary aluminium alloys [Mondolfo, 1976].

The as-cast micrograph of the commercial Al-5 wt%Cu alloy is presented in
Fig.(6.1). It is obtained from the Micrograph Library of University of Cambridge
[Micrograph Library, University of Cambridge, 2007].

The basic purpose of homogenisation of 2xxx aluminium alloys is to dissolve
the interdendritic eutectic network, the mixture of the aluminium and the θ phase.
The regular, lamellar eutectic is formed during an eutectic reaction of Al-Cu al-
loys. The microstructure [Micrograph Library, University of Cambridge, 2007]
of Al-33 wt%Cu, eutectic alloy, is presented in Fig.(6.2). The phase transforma-
tions in high-temperature treatment of the observed eutectics are: disintegration,
spheroidisation and coarsening of θ lamellae. The total-free energy affected by
the interface energy tends to be minimized in the interdendritic eutectic during
the homogenisation.

The intention is to derive a model for the dissolution of the eutectic phase,
as a homogeneous phase, in the aluminium phase. This assumption ignores all
phase transformations in the lamellar eutectic. This assumption is only necessary,
because the phase transformations in the eutectic and on grain size occur on
different scales, and by using the uniform grid it is not possible to catch all the
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mentioned phase transformations.
The concept of the eutectic phase allows a connection between the microseg-

regation solidification and the homogenisation model. The effects of homogenisa-
tion temperature, grain size and macroscopic concentration on dissolution kinetics
are analysed. The initial concentration profile in the primary aluminium phase is
obtained by the Scheil-Gulliver solidification model [Kurz and Fisher, 1998]. This
concept of the eutectic phase was presented in [Kovačević and Šarler, 2006a].

The as-cast micrograph of the commercial Al-5 wt%Cu alloy is used as a realis-
tic initial condition for the homogenisation model with two-dimensional geometry.
Breaking of the interdendritic eutectic network is estimated by the model.

Figure 6.1: The as-cast micrograph of Al-5wt%Cu alloy obtained from [Micrograph Library,
University of Cambridge, 2007].

The dissolution of the regular, lamellar eutectic by taking into account the
realistic spatial layout of eutectic phases in the one-dimensional geometry is sim-
ulated by the PFM. After that, a new concept of the eutectic phase is introduced.

6.1 Dissolution of the Lamellar Eutectic

The eutectic reaction in Al-Cu binary system occurs at T = 548.01 ◦C, where the
molar concentrations in the aluminium, θ and liquid are:

XAl = 2.52 at%Cu, Xθ = 31.72 at%Cu, XLiq = 17.43 at%Cu, (6.1)
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Figure 6.2: The regular, lamellar eutectic after casting of eutectic alloys Al-33wt%Cu obtained
from [Micrograph Library, University of Cambridge, 2007].

respectively.
The dissolution of the lamellar eutectic during homogenisation is simulated by

the PFM. The phase transformations are in the DC mode, where the aluminium
lamellae and aluminium matrix are treated as the same phase. Therefore, the
phase transformation between these phases is ignored. The geometry assumption
that the lamellae are parallel to the aluminium dendrite is used. The thermo-
dynamic condition that the phase diffusion potentials are equal in phases in the
interface region is implemented (Eq.(4.3)).

A Cu concentration profiles during dissolution of the lamellar eutectic at ho-
mogenisation temperature 520 ◦C are presented in Fig.(6.3). The system length
is 50µm, whereas the eutectic is placed in 6.0µm on the left side of the system.
Results with five (coarser) and ten (finer) lamellae in eutectic of the same size
are demonstrated. Interlamellar spacing with five and ten lamellar eutectic are
1.2µm and 6.0 × 10−1 µm, respectively.

The concentrations of Cu in the aluminium and θ lamellae are equal to the eu-
tectic concentrations of these phases. The initial concentration in the aluminium
phase is constant and equals 1.00 wt%Cu. The initial concentration profiles are
presented in Figs.(6.3(a),6.3(b)). The concentration profiles with five and ten
lamellae in the eutectic are presented on the left and right side of Fig.(6.3), re-
spectively. The interface thickness is 6 × 10−2 µm in both cases. The interface
energy and the interface-kinetic coefficient are 6.0×10−1 J/m2 and 5×10−15 m4/Js,
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respectively. The boundary conditions are assumed to be of the Neumann type
with zero flux.

Two equidistant meshes are used in computation. The first mesh is inside
the eutectic and the coarser one is outside of the eutectic region. The boundary
between the meshes is 7µm from the left boundary of the system. The distance
between neighbouring nodes are in the first 1.0 × 10−2 µm and in the second
mesh 2.0 × 10−1 µm. The total number of nodes is 916. The time-step length is
5.0 × 10−4 s.

The computed concentration profiles are presented after one hour (Figs.(6.3(c),6.3(d))),
four hours (Figs.(6.3(e),6.3(f))) and eight hours (Figs.(6.3(g),6.3(h))) of the ho-
mogenisation. Very fast after the start of the heat treatment, the concentrations
in both lamellae become equal to the equilibrium concentrations at high process
temperatures.

6.2 The Eutectic Phase

The eutectic reaction in a multicomponent system occurs when the chemical
potentials of components in the liquid and solid phases become equal. During the
eutectic reaction, the number of solid phases is equal to the number of components
and the number of phases is P = M + 1. The number of degrees of freedom in
the eutectic reaction, for an isobaric system, is

F = M − P + 1 = M − (M + 1) + 1 = 0. (6.2)

Therefore, the eutectic reaction occurs at a fixed, eutectic temperature.

In general, the remaining liquid in the system solidifies during the eutectic
reaction. It can be written as:

Liq (XEu) →
M∑

i=1

si (Xsi
) , (6.3)

where si represents a solid phase in the alloy. For example, the eutectic reaction
in the binary Al-Cu can be written as:

Liq (XEu) → Al (XAl) + θ (Xθ) . (6.4)

From a thermodynamic point of view, the eutectic is a heterogeneous mixture
of solid phases. In this section, a new, artificial, homogenous, eutectic phase is
introduced. The thermodynamic values and properties of this new eutectic phase
are computed from the thermodynamic values and properties of solid phases in
the eutectic. The molar free energy and molar volume of such a defined eutectic
phase needs to be defined for incorporation into the PFM. Two definitions are
presented here.



THE EUTECTIC PHASE 137

Length (m)

C
on

ce
nt

ra
tio

n
of

C
u

(w
t%

)

0 1E-05 2E-05 3E-05 4E-05 5E-05
0

5

10

15

20

25

30

35

40

45

50

(a) Five lamellae in eutectic, initial state.

Length (m)

C
on

ce
nt

ra
tio

n
of

C
u

(w
t%

)

0 1E-05 2E-05 3E-05 4E-05 5E-05
0

5

10

15

20

25

30

35

40

45

50

(b) Ten lamellae in eutectic, initial state.
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(c) Five lamellae in eutectic, one hour.
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(d) Ten lamellae in eutectic, one hour.
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(e) Five lamellae in eutectic, four hours.
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(f) Ten lamellae in eutectic, four hours.
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(g) Five lamellae in eutectic, eight hours.
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(h) Ten lamellae in eutectic, eight hours.

Figure 6.3: The Cu concentration profiles during eight hours of isothermal dissolution of the
lamellar eutectic at homogenisation temperature 520 ◦C.

Case 1. If an assumption is made that industrial solidification is fast enough,
that the solid phases in the eutectic do not interact with each other, the phase
transformations into the eutectic, after its formation, are ignored. The concen-
trations in the solid phases are the same concentrations as during the eutectic
reaction. In this case, the Case 1, the molar free energy of eutectic phase g1

Eu is
defined by

g1
Eu (XEu, T ) =

M∑
i=1

x̄si
gsi

(Xsi
, T ) , (6.5)

where x̄si
and gsi

are the molar fraction and the molar free energy of phase si,
respectively. In the Case 1, the concentrations in the solid phases are equal to
the concentrations during the eutectic reaction:

Xsi
(T ) = Xsieq (TEu) . (6.6)

The molar free energy of the phase si at a constant concentration Xsi
as a function

of temperature are available from a thermodynamic database. The schematic
presentation of the proposed concept for definition of the molar free energy of
the eutectic phase in binary aluminium alloys with two solid phases α and β is
presented in Fig.(6.4). In the example of the binary Al-Cu system, the molar
fraction of phases are calculated by the lever rule as:

x̄Al =
Xθ −XEu

Xθ −XAl

, x̄θ =
XEu −XAl

Xθ −XAl

. (6.7)

The molar free energy of eutectic phase, calculated by Eq.(6.5), is used as
the second phase in the PFM. The molar volume of eutectic phase is defined as
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a linear combination of the molar volumes of phases in eutectic, weighed by its
molar fractions:

VmEu (XEu, T ) =
M∑

i=1

x̄si
Vmsi

(Xsi
, T ) . (6.8)

The Cu concentration profiles during homogenisation computed by the artificial
eutectic phase, defined in this paragraph, are presented in Fig.(6.5). The sys-
tem length is 50µm, whereas the eutectic is placed in 6.0µm on the left side of
the system. The initial concentration in the aluminium phase is constant and
equals 1.00 wt%Cu. The boundary conditions are assumed to be of the Neu-
mann type with zero flux. The interface thickness, the interface energy and the
interface-kinetic coefficient are 1.2×10−1 µm, 6.0×10−1 J/m2 and 5×10−15 m4/Js,
respectively.

Two equidistant fixed meshes are used for discretization. The boundary
between the meshes is 7µm from the left boundary of the system. The total
number of nodes is 566. Distances between neighbouring nodes are for the first
∆xin = 2 × 10−2 µm and the second mesh ∆xout = 2 × 10−1 µm. The time-step

Figure 6.4: Case 1: The definition of the free energy of eutectic phase in free energy-
concentration diagram.
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length is 5.0 × 10−3 s.

The equilibrium state in the lamellar eutectic is very rapidly reached. The
concentrations of both phases in the eutectic become equal to the equilibrium
concentrations at the homogenisation temperature. Because of this, the second
concept for definition of the eutectic phase is introduced.
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(a) The eutectic phase, initial state.
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(b) The eutectic phase, one hour.
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(c) The eutectic phase, four hours.
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(d) The eutectic phase, eight hours.

Figure 6.5: The Cu concentration profiles during eight hours of isothermal dissolution of the
eutectic phase defined by the Case 1.

Case 2. The diffusion phase transformations in the lamellar eutectic perform
very fast because the interlamellar spacing is small. In the second method eutectic
phase definition incorporates this fact. The molar free energy of the eutectic phase
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is in this case defined as:

g2
Eu (XEu, T ) =

M∑
i=1

x̄si
gsi

(Xsieq, T ) . (6.9)

The eutectic phase is in Case 2 also stoichiometric. The only difference between
these cases is in the determination of the concentrations in phases. The concen-
trations in phases are equal as during the eutectic reaction in Case 1, whereas in
Case 2, the concentrations in the phases are equal to the equilibrium concentra-
tions at the homogenisation temperature:

Xsi
(T ) = Xsieq (T ) . (6.10)

The molar free energy definition of the eutectic phase is in this case presented
in Fig.(6.6). Concentrations in phases at process temperature are determined by
the common tangent line construction.

The molar free energy in Case 2 is lower than in Case 1, consequently, the
driving force for dissolution of the eutectic phase in the aluminium phase is lower
and the dissolution kinetics are slower. The difference between the two cases
grows when the difference between the eutectic and homogenisation temperature
increases, as is evident from the definitions of the eutectic phase. Interface posi-
tions during the isothermal dissolution of the eutectic phase, computed by both
concepts, at three homogenisation temperatures, are presented in Fig.(6.7). The
interface positions are computed implicitly from the PFV (φ = 0.50).

6.2.1 Comparison with the Lamellar Eutectic

Interface positions during homogenisation computed by the concept of the eutec-
tic phase and the lamellar eutectic are compared in Fig.(6.8). The eutectic phase
computed by Case 2 is compared with five and ten lamellae in the eutectic at
homogenisation temperature 520 ◦C. Interface position of lamellar eutectic dur-
ing time is a step-like function whereas the lamellae of the eutectic phase θ and
lamellae of the aluminium phase are subsequently and alternatively dissolved.
The interface position during dissolution of the phase θ is a roughly parabolic
function of time, whereas the interface position drops rapidly when dissolution of
this phase is completed. This vertical line is a consequence of the assumption that
the aluminium lamellae are in the same phase as the aluminium grain. The com-
parison with the eutectic phase is acceptable when the dissolution of the whole
eutectic lamellae, Al and θ, is only completed. When the number of lamellae in
the eutectic increases, the artificial homogeneous eutectic phase becomes more
suitable for simulation.

6.3 Influence of Homogenisation Parameters

The definition of the eutectic phase is essential for connection to homogenisation
with the solidification model. The numerical results obtained from the solidifi-
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Figure 6.6: Case 2: The definition of the free energy of eutectic phase in free energy-
concentration diagram.

cation model, is the initial condition for the homogenisation model. Here, the
Scheil-Gulliver model is implemented as the solidification model [Kurz and Fisher,
1998], whereas other models can be implemented as well. The formation of an ini-
tial profile from the solidification model is done by using the assumption that the
phase densities are equal. In this section, high temperature is instantly reached
in computations. Again, the binary Al-5 wt%Cu alloy is in the focus.

The physical parameters used in the computations are as follows. The in-
terface thickness, the interface energy and the interface-kinetic coefficient are
1.2 × 10−1 µm, 6.0 × 10−1 J/m2 and 5 × 10−15 m4/Js, respectively.

The boundary conditions are assumed to be of the Neumann type with zero
flux. Two equidistant fixed meshes are used for discretization. The boundary
between the meshes is 7µm from the left boundary of the system. Distances
between neighbouring nodes are for the first ∆xin = 2× 10−2 µm and the second
mesh ∆xout = 2 × 10−1 µm. The time-step length is 5.0 × 10−3 s.

The homogenisation parameter Hp for quantified estimating of the dissolution
kinetics is introduced as
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Figure 6.7: Comparison of interface positions computed by the definitions of the eutectic
phase at three homogenisation temperatures.
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Hp (T ) =
cmax − cmin

cmax

, (6.11)
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where cmax and cmin are the maximum and minimum concentrations of Cu in
the aluminium phase [Vermolen et al., 1998b]. Concentrations in the aluminium
phase are determined in the region where the PFV is lower then 0.50.

6.3.1 The Homogenisation Temperature

The temperature influence on dissolution kinetics, as the most important process
parameter, is estimated at the beginning. The influence is demonstrated at three
homogenisation temperatures: 480 ◦C, 500 ◦C and 520 ◦C. The system length
is 50µm. The Cu concentration profiles during isothermal homogenisation are
presented in Fig.(6.9). The initial concentration profile obtained by the Scheil-
Gulliver solidification model is presented in Fig.(6.9(a)). The Cu concentration
profiles after one (Fig.(6.9(b))), four (Fig.(6.9(c))) and eight hours (Fig.6.9(d))
of homogenisation are presented. The homogenisation parameters in time during
solution heat treatment at three temperatures are presented in Fig.(6.10). The
temperature influence on dissolution kinetics has been already demonstrated in
Fig.(6.7).

Obviously, the influence of homogenisation temperature on dissolution kinet-
ics is enormous. If the homogenisation temperature is higher, the dissolution is
faster, and vice versa. The homogenisation temperature is limited by the melt-
ing temperature of the presented solid phases which is the eutectic temperature
in this example. The easiest way to estimate temperature influence is to com-
pare the homogenisation parameter after homogenisation. The homogenisation
parameters for temperatures 480 ◦C, 500 ◦C and 520 ◦C are approximately 0.40,
0.24 and 0.10, respectively.

The temperature influence on the dissolution kinetics is twofold:

• The solubility of the second phase increases with temperature,

• The diffusion coefficient exponentially increases with temperature (Eq.(4.1)).

At the beginning of the isothermal homogenisation, the eutectic phase grows,
because the aluminium phase is supersaturated with Cu, i.e. the concentration
in the vicinity of the interface is higher than the solubility of the eutectic phase
in the aluminium phase. The initial growth is more pronounced with lower ho-
mogenisation temperature, because solubility depends on temperature.

6.3.2 The Grain Size

The grain size influence on the homogenisation time is considered next. The
as-cast grain size is a function of the solidification rate during casting. The
homogenisation times for the required homogenisation parameters for grain sizes
30µm, 50µm, 70µm and 90µm are written in Tab.(6.1). The homogenisation
temperature is 520 ◦C. The system length with the grain and the eutectic phase
is denoted as lΓ. The huge influence of the grain size on the homogenisation
time is demonstrated. The homogenisation times are higher for larger grain
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(d) The concentration profiles after eight hours.

Figure 6.9: Concentration profiles of Cu after one, four and eight hours of isothermal disso-
lution of the eutectic phase at three homogenisation temperatures.

sizes, as expected. If the homogenisation parameter needs to be lower than 0.10,
homogenisation has to last more than one day when the average as-cast grain size
is 90µm.

6.3.3 The Macroscopic Concentration

The influence of the macroscopic concentration on the dissolution kinetics of the
eutectic phase in the aluminium phase is estimated. The numerical results for
three macroscopic concentrations 4 wt%Cu, 5 wt%Cu and 6 wt%Cu are presented
in Fig.(6.11). The homogenisation temperature and grain size are 520 ◦C and
50µm, respectively. The macroscopic concentration influences the fraction of the
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Figure 6.10: Homogenisation parameters during homogenisation computed at three homogeni-
sation temperatures.

Hp [−] 0.70 0.50 0.30 0.10
lΓ [µm]

30 0 h 26 min 0 h 50 min 1 h 26 min 2 h 55 min
60 1 h 12 min 2 h 20 min 4 h 06 min 8 h 05 min
70 2 h 21 min 4 h 35 min 8 h 02 min 15 h 52 min
90 3 h 53 min 7 h 34 min 13 h 17 min 26 h 13 min

Table 6.1: The grain size influence on the dissolution kinetics of the eutectic phase in the
aluminium phase for Al-5wt%Cu alloy.

eutectic phase after solidification, as presented in Fig.(6.11(a)). The initial con-
centration profiles and the concentration profiles after one (Fig.(6.11(b))), four
(Fig.(6.11(c))) and eight (Fig.(6.11(d))) hours of homogenisation are displayed.
The dissolution of the eutectic phase is completed after eight hours of homogeni-
sation with macroscopic concentration 4 wt%Cu.

6.4 Dissolution of the Eutectic Phase in Realis-

tic Geometry

Modelling of the phase transformations in a realistic microstructure with complex
geometry is demonstrated here. The dissolution of the network of the eutectic
phase in a Al-5 wt%Cu alloy is simulated. The representative micrograph of this
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(c) The concentration profiles after four hours.
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(d) The concentration profiles after eight hours.

Figure 6.11: The macroscopic concentration influence on the dissolution kinetics of the eutec-
tic phase in the aluminium phase in Al-5wt%Cu alloy at homogenisation temperature 520 ◦C.

alloy is presented in Fig.(6.1). A closer look at the microstructure was achieved by
the Slovenian aluminium company IMPOL, d.d. and is represented in Fig.(6.12).
The 53µm computational square domain is emphasized by the transparent blue
colour. The homogenisation temperature is 520 ◦C. The interface thickness,
the interface energy and the interface-kinetic coefficient are 6 × 10−1 µm, 6.0 ×
10−1 J/m2 and 5 × 10−15 m4/Js, respectively.

The initial condition of the PFV is presented in Fig.(6.13(a)). The eutectic
and aluminium phases are represented by red and blue colours, respectively. The
initial Cu concentration field is obtained by using the Scheil-Gulliver solidification
path. The most distant point from the eutectic phase is the lower left corner of the
computation domain. This point is established as the center of the aluminium
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grain. The initial Cu concentration field is represented in Fig.(6.13(b)). The
boundary conditions are assumed to be of the Neumann type with zero flux. The
governing equations are discretized by the FDM on the equidistant 266 × 266
mesh. The time-step length is 5.0 × 10−3 s.

The PFV and Cu concentration field after each hour of homogenisation are
presented in Fig.(6.13). The dissolution of the network of the eutectic phase is
clearly demonstrated and one can observe that after four hours of homogenisation
the network of the eutectic phase is broken.

For more precise computation of the dissolution kinetics of the eutectic phase
during homogenisation, the model can be upgraded in two ways:

• The initial profile can be computed with a more sophisticated solidification
model in which the diffusion in the solid phase during solidification can be
included;

• Temperature profile during the heating step of homogenisation can be in-
corporated in the model.

The second upgrade of the model is demonstrated in the following.

50 mm

Figure 6.12: The as-cast micrograph of the Al-5wt%Cu alloy. The micrograph is obtained
from the Slovenian aluminium company IMPOL, d.d..
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(f) The Cu concentration field, two hours.
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(h) The Cu concentration field, four hours.
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(k) The PFV, eight hours.
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Figure 6.13: The PFV and the concentration field of Cu during homogenisation of Al-5wt%Cu
at homogenisation temperature 520 ◦C.
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6.5 Heating Step of Homogenisation

Consider that a homogenisation furnace is continuously supplied by billets. Ev-
ery billet passes from the input to output door throughout the preheating and
holding chamber. The furnace is designed such that every billet spends half of
the homogenisation time in the preheating chamber. In the preheating chamber,
the billet temperature increases to the homogenisation temperature. During the
holding step, the billet temperature is equal to the homogenisation temperature
in the holding chamber of the homogenisation furnace.

The idea is to estimate the dissolution of the eutectic phase during the heating
step of homogenisation. Because of this, the numerical model for computing
temperature field during heating at the macro level is derived.

The input parameters for the macroscopic model are:

• alloy type,

• billet dimension, length and diameter,

• homogenisation temperature and

• homogenisation time.

The macroscopic temperature field is an input for the previously derived PFM
for dissolution of the eutectic phase at the micro level.

6.5.1 Macroscopic Temperature Field in Aluminium Bil-
let

Temperature field in a billet during heating step of homogenisation can be pre-
scribed by the classical heat diffusion equation:

ρcp
∂T

∂t
= ∇ · (k∇T ) , (6.12)

where ρ, cp, k, T , t represent density, specific heat, thermal conductivity of a
material, temperature and time, respectively [Incropera and DeWitt, 2002]. The
boundary conditions are described by the convective heat transfer

hef (TA − TS) = −
(
∂T

∂rc

)
S

, (6.13)

where hef , TA and TS represent the effective heat transfer coefficient, temperature
of the surrounding air in the furnace and temperature of billet surface, respec-
tively. The effective heat transfer coefficient includes the correction influenced by
the radiation from the furnace wall to the billets.

The heat conduction in billets is postulated as an axisymmetric problem, and
the governing equation Eq.(6.12) can be rewritten in cylindrical coordinates as

ρcp
∂T

∂t
=

1

rc

∂

∂rc

(
krc

∂T

∂rc

)
+

∂

∂z

(
k
∂T

∂z

)
, (6.14)
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where rc and z represent radial and axial coordinate, respectively. The governing
equation (Eq.(6.14)) with the prescribed boundary condition (Eq.(6.13)) is dis-
cretized by the finite volume method [Versteeg and Malalasekera, 1996; Patankar,
1980].

The thermophysical macroscopic properties, ρ, cp and k, as a function of
temperature are for Al-5 wt% Cu obtained from the JMatPro software for alu-
minium alloys [JMatPro, 2004]. The only unknown in the macroscopic model
is the effective heat transfer coefficient (hef) in the preheating chamber of the
homogenisation furnace. The velocity field of air in the furnace is very complex
and the theoretical determination of the convective heat transfer coefficient is
not a trivial task. Also, radiation from the furnace wall to billets is not easy for
estimation. Because of this, in-situ temperature measurements in billets during
homogenisation are carried out. Two basic conclusions from the measurements
[Kovačević and Šarler, 2005] are:

• Heat transfer coefficient varies with the billet position in preheating cham-
ber of the homogenisation furnace.

• The radiation from the furnace wall to billet tops is not negligible in the
first hour of heating.

The effective heat transfer coefficient as a function of billet position in the pre-
heating chamber is tuned throughout the measurement results. These values are
written in Tab.(6.2). Temperature field in a Al-5 wt%Cu alloy billet after first
hour of heating in the preheating chamber of the furnace is computed by the
macroscopic model. It is presented in Fig.(6.14(a)). The billet length and di-
ameter are 5.90 m and 2.82 × 10−1 m, respectively. The initial temperature in
aluminium billet on the furnace entry is equal to 25 ◦C. Homogenisation parame-
ters are 520 ◦C and 8 h. The homogenisation model is implemented at two points,
points 1 and 2 depicted in Fig.(6.14(a)). Point 1 is placed 90 mm and 500 mm
from the billet surface and top, respectively, whereas point 2 is placed in billet
centre. Temperature profiles during the heating step of homogenisation at these
points are presented in Fig.(6.14(b)).

6.5.2 The PFM for Non-Isothermal Phase Transforma-
tions

Until now, the PFM has been derived for isothermal phase transformations. For
the implementation of a model for non-isothermal phase transformation, the phys-
ical properties related to model parameters as functions of temperature need to
be estimated. The phase-field equation rewritten from Eq.(2.113) is

∂φ

∂t
=
µk

δ

{
σ
[
δ∇2φ− 36

δ
φ (1 − φ) (1 − 2φ)

]
− 30φ2 (1 − φ)2 ∆gβAl

Vm

}
. (6.15)

The physical properties included in the PFM are:
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Table 6.2: The effective heat transfer coefficient as a function of billet position in the preheating
chamber of the homogenization furnace.

Pos. Time interval hef [J/m2] Pos. Time interval hef [J/m2]
- [s] Surface Top - [s] Surface Top
1 0-960 31.9 200.2 9 7681-8640 74.1 74.1
2 961-1920 40.9 160.5 10 8641-9600 73.3 73.3
3 1921-2880 53.2 120.9 11 9601-10560 70.0 70.0
4 2881-3840 58.2 81.2 12 10561-11520 67.0 67.0
5 3841-4800 61.4 61.4 13 11521-12480 61.7 61.7
6 4801-5760 63.6 63.6 14 12481-13440 59.4 59.4
7 5761-6720 71.9 71.9 15 13441-14400 56.9 56.9
8 6721-7680 74.2 74.2

T (oC): 310 317 324 332 339 346 353 360 368

21

(a) Temperature field in Al-5wt%Cu alloy
billet after the first hour of heating in a pre-
heating chamber of the homogenisation fur-
nace. Two points where the homogenisation
model is implemented are depicted.
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(b) Temperature profiles during heating step of
homogenisation at points 1 and 2.

Figure 6.14: Temperature field in aluminium billet during the heating step of homogenisation,
computed by the macroscopic numerical model.

• the interface energy,

• the interface-kinetic coefficient and

• the driving force for phase transformation.

Interface Energy. Interface energy does not depend on temperature in present
approximation. The diffusion coefficient as a function of temperature is written
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in Eq.(4.1) with parameters in Tab.(4.1).

Interface-Kinetic Coefficient. The interface-kinetic coefficient as a function
of temperature is postulated as:

µk = µk0 exp

(
−Qµk

RT

)
, (6.16)

where the activation energy Qµk
is equal to 140 kJ/mol. This value was experi-

mentally obtained in the study of γ → α phase transformation in a Fe-Mn steel
alloy [Mecozzi et al., 2005]. The constant µk0 is calculated from the condition
that the interface-kinetic coefficient is equal to 5.0×10−15 J/m4K at temperature
520 ◦C.

Driving Force for Phase Transformation. In pure material, the driving
force for freezing is equal to the difference between the molar free energies of the
solid and liquid phase. It is proportional with undercooling ∆T

∆gsl =
LM

TM

∆T, (6.17)

where LM and TM represent the latent heat of melting and melting temperature,
respectively. The difference in specific heat between the solid and liquid and the
specific heat as a function of temperature are ignored [Porter and Easterling,
1990].

The statement that the driving force for phase transformations is linearly
proportional with temperature may be extended for alloys. The theoretical proof
is presented in the two-phase α-β system of binary A-B alloy [Rollet, 2001].
The molar free energy versus concentration and the equilibrium phase diagram
for presentation of the driving force as a function of temperature is depicted in
Fig.(6.15). The two phase system is in thermodynamic equilibrium at the initial
temperature T0. After that, temperature is instantly increased by ∆T . The
driving force for dissolution of the phase β into the phase α is the difference
between the chemical potentials of components B:

∆gβα = µB
eq − µB

0 = RT ln
aB

eq

aB
0

, (6.18)

where it is assumed that the phase β is a pure component. By using the as-
sumption that the phase α is a dilute solution, the molar free energy difference
is:

∆gβα = RT ln
Xeq

X0

. (6.19)

The solubility is often approximated by an Arrhenius expression

Xeq = A exp

(
−QM

RT

)
, (6.20)
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Figure 6.15: Estimation of the driving force for dissolution of phase β into phase α as a
function of temperature. The molar free energy versus concentration and the equilibrium phase
diagram of a binary A-B system are demonstrated.

where QM is heat absorbed (enthalpy) when one mole of the phase β is dissolved
in a dilute solution of the phase α. From Eqs.(6.19,6.20), can be obtained that
the driving force is linearly increasing with temperature difference:

∆gβα =
QM

T
∆T. (6.21)

The driving force for phase transformation is linearly proportional with temper-
ature, Eq.(6.21), by using the assumption that the phase α is the dilute solution.

The driving force for phase transformation of silicon in aluminium for fixed
concentrations of Si in the aluminium phase as function of temperature is pre-
sented in Fig.(6.16). The results obtained from the thermodynamic database
confirm the previous statement that the driving force for phase transformation is
linearly proportional with temperature.
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Figure 6.16: The driving force of silicon in the aluminium phase as a function of temperature
for four fixed concentrations of Si in the aluminium phase (cSi

Al).

6.5.3 Dissolution of Eutectic Phase during Heating Step
of Homogenisation

The unsteady temperature field during the heating step of homogenisation is
computed by the macroscopic model. Temperature profiles at points 1 and 2
(Fig.(6.14(b))) as the inputs for the dissolution of the eutectic phase at the micro
level are incorporated into the PFM. The non-isothermal PFM described in the
previous section is used for computation.

The driving force for phase transformation at the homogenisation temperature
and the temperature slopes for fixed concentration in the aluminium phase are
obtained from the thermodynamic database. In this way, the driving force for
phase transformation as a function of concentration in the aluminium phase as
well as temperature is calculated. Also, the molar volume of the second phase is
a function of temperature.

The system length is 50µm. The interface thickness and the interface energy
are 1.2 × 10−1 µm and 6.0 × 10−1 J/m2, respectively. The boundary conditions
are assumed to be of the Neumann type with zero flux.

Two equidistant meshes are used in computation. The boundary between
the meshes is 7µm from the left boundary of the system. The distance between
neighbouring nodes are in the first 1.0 × 10−2 µm and in the second mesh 2.0 ×
10−1 µm. The total number of nodes is 566. The time-step length is 5.0× 10−3 s.

The Cu concentration profiles after one (Fig.(6.17(a))), two (Fig.(6.17(b))),
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three (Fig.(6.17(c))) and four hours (Fig.(6.17(d))) of heating in the preheating
chamber of the furnace are presented. The grain size and homogenisation times
are 50µm and 8 h, respectively. The concentration gradient in the aluminium
phase at the interface is positive after the first hour of heating, and therefore
the eutectic phase grows during this period. The growth of the eutectic phase
is more evident in the next graph, where the interface positions during heating
step of homogenisation at points 1 and 2 are presented in Fig.(6.18). During
the first hour of the heating step of homogenisation, interface positions do not
move. After this period, the eutectic phase starts to grow, because the solubility
of component is lower then the concentration of Cu in the interface vicinity. After
this short period, the eutectic phase continuously dissolves into the aluminium
phase.

After heating step of homogenisation, 31 % and 28 % parts of the eutectic
phase are dissolved at points 1 and 2, respectively. The comparison of the ho-
mogenisation parameters after the heating step with isothermal homogenisation
at 520 ◦C, the heating part of homogenisation is equal to 63 min and 51 min of
the isothermal homogenisation at points 1 and 2, respectively (Fig.(6.10)). The
effect of four hours of heating step of homogenisation on the eutectic phase is
similar as the effect of one hour of the holding step at a temperature of 520 ◦C.

6.6 Summary

The new concept of the eutectic phase for application in commercial aluminium
alloys is introduced. The eutectic phase is treated as a homogeneous phase, where
the properties of this artificial phase are computed as the heterogeneous mixture
of the solid eutectic phase present. This assumption ignores all phase transfor-
mations inside the eutectic. The dissolution kinetics of the interdendritic eutectic
phase in the aluminium matrix is enabled by this model. Such a definition of the
eutectic phase enables the use of the microsegregation solidification model as the
initial profile for the new homogenisation model. Here, the initial concentration
profile in the aluminium phase is obtained by the Scheil-Gulliver solidification
model.

The two stoichiometric eutectic phases are postulated here. In Case 1, the
concentrations in the solid phases are the same concentrations as during the eutec-
tic reaction. In Case 2, concentrations in the phases are equal to the equilibrium
concentration at the homogenisation temperature. The molar free energy in Case
2 is lower than in Case 1, consequently the driving force for the dissolution of the
eutectic phase in the aluminium phase is lower and the dissolution kinetics are
slower.

The dissolution of the eutectic phase is compared with the regular lamellar
eutectic in the one-dimensional geometry. By decreasing the interlamellar spacing
in the regular eutectic, the concept of the eutectic phase becomes more suitable
for the estimation of dissolution kinetics.

The effects of homogenisation temperature, grain size and macroscopic con-
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(b) Concentration profile, two hours.
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(c) Concentration profile, three hours.
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(d) Concentration profile, four hours.

Figure 6.17: Cu concentration profiles during the heating step of homogenisation of Al-
5wt%Cu alloy at points 1 and 2 . The homogenisation parameters are 520 ◦C and 8 h.

centration on dissolution kinetics are analysed. The tremendous influence of ho-
mogenisation temperature and grain size on the homogenisation times is demon-
strated.

The possibility of the PFM for solving the realistic phase-change problems in
complex geometries such as in industrial homogenisation of aluminium alloys is
clearly demonstrated. The model is capable of estimating when the dissolution
of network of the interdendritic eutectic phase breaks.

The unsteady temperature field in the billet during the heating step of ho-
mogenisation is computed by the macroscopic model. In-situ temperature mea-
surements in aluminium billets during the heating step of homogenisation are
carried out for estimation of the effective heat transfer coefficient from the sur-
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Figure 6.18: Interface position during heating step of homogenisation at points 1 and 2.

rounding air to the billet surface.
The PFM for non-isothermal phase transformations is derived. It is demon-

strated that the driving force for phase transformation is linearly proportional
with temperature for a constant concentration in the aluminium matrix. The
dissolution kinetics of the eutectic phase during the heating step of homogenisa-
tion is estimated by this PFM. The effect of four hours of heating on the eutectic
phase is similar as the effect of one hour of the holding step of homogenisation at
a temperature of 520 ◦C.



160 APPLICATION TO COMMERCIAL ALUMINIUM ALLOYS



7 Conclusions and Further
Developments

The main contribution of this thesis is the application of the phase-field ap-
proach to specific phase transformations observed during the homogenisation of
aluminium alloys. The explicit phase-field model for such phase transformations
is developed. Furthermore, the numerical procedure based on the strong-form
meshfree method on r-adaptive node arrangements for solving governing equa-
tions of the phase-field model is derived.

7.1 Conclusions

The conclusions of the presented work can be summarized in the following points.

7.1.1 Model Developments

• Phase transformations in heat treatment processes are modelled by the two-
domain approach and phase-field model. Thermodynamic data needed for
the physical models are obtained from the JMatPro software for aluminium
alloys. The general physical model based on the two-phase approach for
diffusion-controlled phase transformations in multicomponent alloys is de-
rived.

• The phase-field model is a very strong tool for modelling solid-solid phase
transformations under industrial conditions in microstructure topology.

• In the presented phase-field model, the mixture of two phases with different
compositions and same local phase diffusion potentials are assumed in the
diffuse-interface region. The model connection with the thermodynamic
database is established via the driving force for phase transformation.

• The phase-field model for non-isothermal solid-solid phase transformations
is derived. The driving force for phase transformation between a phase
and aluminium phase is linearly proportional to temperature for constant
concentrations in the aluminium matrix.
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• In dealing with the stoichiometric second phase, the driving force is a func-
tion of concentrations in aluminium phase only. An accurate approximation
of this function is essential for accurate computation of phase transforma-
tions by the phase-field model. In dealing with the nonstoichiometric second
phase, the concentrations in phases have to be computed with the condition
that phase diffusion potentials in both phases are equal. This condition has
to be satisfied at each node in the diffuse-interface region.

• The interpolation by multiquadric radial basis functions for an accurate
approximation of the driving force as a function of component concentra-
tions in aluminium phase in the example of phase transformation between
stoichiometric phases and aluminium matrix is implemented. The same in-
terpolation is used for the interpolation of the chemical potentials of each
component in both phases in the example of phase transformation between
nonstoichiometric phase and the aluminium matrix.

• The isothermal diffusion-controlled dissolution of the primary nonstoichio-
metric and stoichiometric particles in aluminium phase is successfully sim-
ulated by the two-phase approach and phase-field approach. The physical
models are validated by a comparison of numerical results computed for the
isothermal diffusion-controlled phase transformations. The whole spectrum
of represented numerical results, computed by both physical approaches are
in very good agreement.

• The very accurate agreement between the results computed by our phase-
field model and the Vermolen model for the dissolution of Mg2Si particle
in the aluminium matrix in Al-Mg-Si system is presented. The phase-
field model is straightforwardly applied in multidimensional geometry with
complex topology.

• The interface-kinetic coefficient in the phase-field model for the diffusion-
controlled phase transformation is estimated by the comparison between
the two-domain approach and the phase-field model. The interface-kinetic
coefficient in the phase-field model easily controls the transformation mode.

7.1.2 Numerical Developments

• The local radial basis function collocation method is implemented for the
computation of phase transformations described by the phase-field model.
The method is efficient because it does not require a solution to a large
system of equations like in the previous global collocation method. Instead,
small systems of linear equations have to be solved in each time step for each
node in associated local support. Solutions are computed on three and five
nodes in local support in one-dimensional and two-dimensional geometry,
respectively. Even with the smallest possible local supports, the accuracy
of results is sufficient.



CONCLUSIONS 163

• The r-adaptive numerical procedure for the collocation by radial basis func-
tions is derived. The automatic elliptic generator for the computation of
node positions is used. The control function in the elliptic generator con-
trols the node distribution and it has to be in relation with the interface
position. The collocation by radial basis functions based on the local stan-
dard interpolation scheme on the equidistant grid is used for the solution
of the elliptic generator. The field transformation from a node distribu-
tion to other is very straightforwardly related to the strong-form meshfree
methods.

• The stability of the collocation by radial basis functions based on the local
standard interpolation method is not sufficient at boundary nodes where
the derivative boundary conditions exist. The stability is significantly im-
proved by using only one boundary node for the boundary local support.
The collocation with radial basis functions by using the double considera-
tion of boundary nodes, based on Hermite-type interpolation enables the
computation on the r-adaptive node arrangement. It improves the stability
and accuracy of the results at the derivative boundary nodes.

• A quick model of determining local support for domain reference nodes
in arbitrary node arrangements in two-dimensional geometry is developed.
Local supports with only five nodes are considered.

• Accuracy of numerical results computed by derived numerical procedure is
very high even with the small total number of nodes considered.

• Results computed by the collocation with radial basis functions on r-adaptive
node arrangements are in agreement with the result computed by the fine
grid FDM.

7.1.3 Phase Transformations Simulated by the Developed
Phase-Field Model

• The dissolution of the stoichiometric Al3Mg2 and nonstoichiometric θ phase
into the aluminium phase for Al-Mg and Al-Cu binary system are simu-
lated, respectively. The isothermal diffusion-controlled dissolution kinetics
of Al2CuMg particle in the aluminium phase for Al-Cu-Mg system is es-
timated. The dissolution of complex shaped Al2CuMg particle into the
aluminium phase is simulated.

• The spheroidisation kinetics of needle-like undissolvable particles can be es-
timated by the phase-field model. The rounding kinetics of the elongated
Si-particle is presented in this thesis. The spheroidisation is in fact a dif-
fusion process of components in the aluminium matrix. The driving force
is the solubility dependence on particle curvature. Because of that, the
particle part with smaller particle curvature dissolves, whereas the faceted
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interface grows into the aluminium matrix. Consequently, the geometrical
aspect ratio and the ratio between volume and area interface are reduced.
The influences of the interface energy and homogenisation temperature on
the rounding kinetics of the elongated Si-particle are simulated. Homogeni-
sation temperature strongly influences the rounding kinetics. For these
simulations, the isotropic material and the isotropic interface energy are
assumed.

• The concept of the eutectic phase for application in commercial binary
aluminium alloys is introduced. The eutectic phase is treated as a homoge-
neous phase, where the properties of this artificial phase are computed as
the heterogeneous mixture of solid eutectic phases present. The spheroidis-
ation and coarsening of eutectic lamellae by the artificial eutectic phase are
omitted. Because of the eutectic phase defined in this way, the initial profile
for the homogenisation model can be obtained from the microsegregation
solidification model. The tremendous influence of the homogenisation tem-
perature and the as-cast grain size on the homogenisation times are demon-
strated. The possibility of employing the phase-field model in solving the
realistic phase-change problems in complex geometry such as in industrial
homogenisation of aluminium alloys is clearly demonstrated. The break-
ing of the interdendritic eutectic network is estimated by the model. After
four hours of isothermal homogenisation of Al-5 wt%Cu, the interdendritic
eutectic network is broken.

• The dissolution kinetics of the eutectic phase during the heating step of
homogenisation is also estimated. The effect of the four-hour heating step
of homogenisation on the eutectic phase is similar to the effect of one-hour
holding step of homogenisation at the temperature of 520 ◦C.

• The unsteady temperature field in the billet during the heating step of
homogenisation is computed by the macroscopic model. The in-situ tem-
perature measurements in the aluminium billets during the heating step
of homogenisation are carried out for the estimation of the heat transfer
coefficient from the surrounding air to the billet surface and the radiation
from furnace wall to the billet surface.

7.2 Recommendations for Further Developments

Recommendations for further developments of the presented work can be empha-
sized in the following points.

7.2.1 Model Developments

• The phase-field model can be extended to multiphase systems, because
phase transformations in heat treatments of commercial, multicomponent
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alloys occur between more phases simultaneously.

• The elastic strain energy can be incorporated into the presented phase-field
model. The influence of elasticity on the solid-solid transformation kinetics
can be estimated.

• The source terms can be included into the phase-field model. The nucleation
of dispersoids during heat treatments can be modelled by this model.

7.2.2 Numerical Developments

• The phase-field model can be solved also by a h-adaptivity node distribu-
tion. The number of nodes can be added into the diffuse-interface region,
where the control function for the node density can be in relation with the
gradient of the phase-field variable.

• Solving the model with the elastic strain energy included with the local
collocation by radial basis functions is a very interesting and promising
task. By using this numerical procedure, the governing equations of the
phase-field model can be solved directly in their strong forms.

7.2.3 Industrial Relevance

• The realistic shape and size of primary particles can be included as initial
conditions for the simulation of phase transformations during the homogeni-
sation of aluminium alloys. The dissolution between different primary par-
ticles and the aluminium matrix during homogenisation can be simulated
by the multiphase-field model.

• The spheroidisation of Si-particle can be observed by a relevant experiment.
A comparison between numerical and experimental results can be a tool for
estimation of the value of the interface energy as well as the magnitude
of the interface energy anisotropy between Si-particle and the aluminium
matrix. Furthermore, interaction between elongated Si-particles in Al-Si
eutectic can be modelled.

• The concept of eutectic phase can be extended to multicomponent systems.
The Gibbs free energies of the phases solidified between the primary alu-
minium and the final eutectic are functions of component concentrations.
The number of independent concentrations for computing the Gibbs free en-
ergy of these artificial mixture phases is equal to the number of the degrees
of freedom during solidification.

• Kinetics of the β-AlFeSi to α-Al(FeMn)Si transformation in Al-Mg-Si alloy
can be simulated by the multiphase-field model. The advantage of using
the multiphase-field model for the simulation of this phase transformation
in a realistic geometry can be demonstrated.
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• The presented phase-field model is applied to aluminium alloys. The model
can be adapted and extended for simulations of phase transformations in
other metallic systems.



Bibliography

Aaron, H. B. and Kotler, G. R. (1971). Second phase dissolution. Metallurgical
Transactions, 2:393–408.

Alexander, D. T. L. and Greer, A. L. (2002). Solid-state intermetallic phase
tranformations in 3XXX aluminium alloys. Acta Materialia, 50:2571–2583.

aluMATTER (2007). http://aluminium.matter.org.uk.

Atluri, S. N. (2004). The Meshless Method (MLPG) for Domain, Bie Discretiza-
tions. Tech Science Press, Forsyth, GA USA.

Ballufi, R. W., Allen, S. M., and Carter, W. C. (2005). Kinetics of Materials.
John Wiley & Sons, Inc., Hoboken, NJ USA.

Baty, D. L., Tanzilli, R. A., and Heckel, R. W. (1970). Solution kinetics of CuAl2
in an Al-4Cu alloy. Metallurgical Transactions, 1:1651–1656.

Beckermann, C., Diepers, H. J., Steinbach, I., Karma, A., and Tong, X. (1999).
Modeling melt convection in phase-field simulations of solidification. Journal of
Computational Physics, 154:468–496.

Boettinger, W. J., Warren, J. A., Beckermann, C., and Karma, A. (2002). Phase-
field simulation of solidification. Annual Review of Materials Research, 32:163–
194.

Brandes, E. A. and Brook, G. B. (1992). Smithells Metals Reference Book.
Butterword–Heinemann, Oxford, UK.

Cahn, J. W. and Allen, S. M. (1977). A microscopic theory of domain wall
motion and its experimental verification in Fe-Al alloy domain growth kinetics.
Journal de Physique, 38:C7–51.

Cahn, J. W. and Hilliard, J. E. (1958). Free energy of a nonuniform system. I.
interfacial free energy. Journal of Chemical Physics, 28:258–267.

Callister, W. D. (2003). Materials Science and Engineering: An Introduction.
John Wiley & Sons, Inc., New York, NY USA.

167



168 BIBLIOGRAPHY
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