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Heat and Fluid Flow Simulation of the Continuous Casting 
of Steel by a Meshless Method 

Abstract 

A novel two-dimensional (2D) steady-state meshless solution of coupled heat 
transfer and turbulent fluid flow in continuous casting process of steel is 
represented in the present dissertation. The meshless method is based on the 
local collocation with the multiquadric radial basis functions. The local 
collocation is made over a set of overlapping influence domains, established by 
five nodes. The Bennon and Incropera mixture continuum model is used to 
derive the conservation equations of mass, momentum, and energy for the binary 
solid-liquid phase-change material. The solidification in the mushy zone is 
treated as a porous media, which is modelled by the Darcy’s law. The 
permeability of the porous media is calculated by the Kozeny-Karman relation, 
where the morphology of the porous media is modelled by a constant value. The 
incompressible turbulent flow of the molten steel is described by the Low-
Reynolds-Number (LRN) -k ε  turbulence model, where two additional transport 
equations for the turbulent kinetic energy and the dissipation rate are solved. 
Three different LRN turbulence models are discussed and numerically 
implemented in the present work: Jones-Launder (JL), Launder-Sharma (LS) and 
Abe-Kondoh-Nagano (AKN). The velocity-pressure coupling of the 
incompressible flow is resolved by the explicit Chorin’s fractional step method, 
with the intermediate velocity field, calculated without the pressure term. The 
transport equations for the energy, the turbulent kinetic energy, and the 
dissipation rate are solved decoupled from the velocity-pressure algorithm. The 
governing equations are discretized in their strong formulation. Due to the 
convection dominated problem, an adaptive upwind technique is used for 
approximating the convection terms in the transport equations. Various 
numerical examples are performed in order to validate the developed numerical 
method. An adaptive upwind technique is tested on a one-dimensional 
convective-diffusive problem. The natural convection in a square cavity, at 
Rayleigh numbers 6 810 -10  and Prandtl ( Pr ) number 0.71 , is used for 
benchmarking a fully coupled problem of the heat and fluid flow and for testing 
a velocity-pressure coupling of the fractional step method. A backward-facing 
step problem is chosen to test the proper implementation of the inflow and 
outflow boundary conditions, at Reynolds ( Re ) numbers 300-800  (based on the 
channel height after the step). The results are also obtained with random node 
arrangement. The implementation of the LRN turbulence models is tested on a 
2D channel flow at Re 7890= , Re 12300= , and Re 30800=  (based on the 
channel half-height). Due to the similarity of the JL and LS models, only the LS 



  

 

and AKN models are used in further numerical examples. These include the 
numerical examples considering the turbulent fluid flow in a 2D channel flow at 
Re 4560=  (based on the channel height) with uncoupled heat transfer at 
Pr 0.71= , a 2D vertical channel flow at Re 4494=  (based on the channel 
width), Grashof number 59.6 10⋅  and Pr 0.71=  with combined forced and 
natural convection, and turbulent flow over a backward-facing step at Re 5000=  
(based on the step height). In each example, the obtained results are validated 
and verified by the direct numerical simulation or by the experimental data. 
Some numerical examples are also simulated and compared with the commercial 
computational fluid dynamics software package Fluent. The numerical model of 
the continuous casting of steel is developed. The node arrangement of the real 
curved billet geometry is generated by the open-source software Gridpak. The 
initial and the boundary conditions for the velocity, temperature, and turbulence 
model variables are described in detail. The boundary conditions for the 
temperature field are assumed from the validated thermal simulation system of 
the Štore Steel billet continuous caster. The process parameters are assumed 
directly from the technological program. The material properties of the steel 
grades are calculated by the JMatPro software and imported into the present 
numerical model. The developed numerical model is verified with the numerical 
results, obtained with Fluent. For the verification purpose, the simplified thermo-
physical properties of the steel and boundary conditions are used. After 
successful verification, simulation of the C45 steel grade for a square billet of 
dimension 0.14 m is performed at typical casting conditions. The sensitivity 
study of the morphology constant of a porous media is made. The effects of 
various process parameters on the velocity and the temperature field inside the 
billet are analyzed and compared with the reference case. The purpose of the 
analyses is to test the behaviour of the developed model on variation of process 
parameters. The developed numerical method is found to be applicable for 
simulating large spectra of laminar and turbulent fluid flow problems, and it is 
suitable for solving the solidification phenomena in the continuous casting of 
steel. The advantages of the novel numerical method are its simplicity, accuracy, 
similar code for 2D and three-dimensional problems, no integrations are needed, 
and straightforward applicability in non-uniform node arrangements. Due to its 
locality and explicit time stepping, the method appears very suitable for 
parallelization. 

Key words 

laminar flow, turbulent flow, natural and forced convection, solidification, steel, 
continuous casting, mixture continuum model, eddy-viscosity models, two- 



equation turbulence models, local radial basis function collocation method, 
multiquadrics, explicit time discretization, adaptive upwind scheme, fractional 
step method, verification and validation, simulation of the continuous casting of 
steel 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Simulacija prenosa toplote in toka kapljevine pri 
kontinuirnem ulivanju jekla z brezmrežno metodo 

Povzetek 

V disertaciji je predstavljena nova dvo-dimenzionalno (2D) časovno neodvisna 
brezmrežna rešitev  prenosa toplote in turbulentnega toka kapljevine pri procesu 
kontinuirnega ulivanja jekla. Brezmrežna metoda temelji na lokalni kolokaciji z 
mulitkvadričnimi radialnimi baznimi funkcijami. Lokalna kolokacija je izvedena 
preko prekrivajočih se pod-domen, zgrajenih s petimi točkami. Enačbe za 
ohranitev mase, gibalne količne in energije za binarni fazno-spremenljivi 
material so izpeljane na podlagi Bennon in Incroperovega modela kontinumske 
mešanice. Strjevanje v kašastem področju je obravnavano kot porozni medij, 
modeliran z Darcyjevim zakonom. Permeabilnost poroznega medija je 
izračunana z Kozeny-Karmanovo relacijo, pri katerem je morfologija poroznega 
medija modelirana s konstantno vrednostjo. Turbuletni tok nestisljivega 
tekočega jekla je opisan z Low-Reynolds-Number (LRN) -k ε  turbulentnim 
modelom, pri katerem sta rešeni dodatni transportni enačbi za turbulentno 
kinetično energijo in disipacijo. V predstavljenem delu so obravnavani in 
numerično implementirani trije različni LRN turbulentni modeli: Jones-Launder 
(JL), Launder-Sharma (LS) in Abe-Kondoh-Nagano (AKN). Hitrostno-tlačna 
sklopitev nestisljivega toka je rešena z eksplicitno Chorinovo metodo delnih 
korakov, kjer je vmesna hitrost izračunana brez tlačnega člena. Transportne 
enačbe za energijo, turbuletno kinetično energijo in disipacijo so rešene ločeno 
od hitrostno-tlačnega algoritma. Vodilne enačbe so diskretizirane v močni 
formulaciji. Zaradi konvekcijsko dominatnega problema so konvekcijski členi v 
transportnih enačbah aproksimirani s pomočjo adaptivne privetrne tehnike. 
Validacija razvite numerične metode je izvedena na nekaj numeričnih primerih. 
Adaptivna privetrna tehnika je testirana na eno-dimenzijskem konvekcijsko-
difuzijskem problemu. Problem naravne konvekcije v kvadratni kotanji pri 
Rayleigh-ovih številih 6 810 -10  in Prandtlovem ( Pr ) številu 0.71  je uporabljen 
za testiranje popolnoma sklopljenega problema prenosa toplote in gibalne 
količine, in za testiranje hitrostno-tlačne sklopitve pri metodi delnih korakov. 
Problem toka fluida preko stopnice pri Reynolds-ovih ( Re ) številih 300-800  
(glede na višino kanala za stopnico) je izbran za testiranje pravilne 
implementacije vtočnih in iztočnih robnih pogojev. Rezultati so prav tako 
izvedeni pri naključni postavitvi točk. Implementacija LRN turbuletnih modelov 
je testirana na primeru toka v 2D kanalu pri Re 7890= , Re 12300=  in 
Re 30800=  (glede na polovico višine kanala). Zaradi podobnosti JL in LS 
modelov, sta v nadaljnih primerih uporabljena samo LS in AKN modela. 
Izvedeni so sledeči numerični primeri z upoštevanim turbuletnim tokom fluida: 



  

 

tok v 2D kanalu pri Re 4560=  (glede na višino kanala) s prenosom toplote, kjer 
je temperatura upoštevana kot pasivni skalar pri Pr 0.71= , tok v vertikalnem 2D 
kanalu pri Re 4494=  (glede na širino kanala), Grashof-ovem številu 59.6 10⋅  in  
Pr 0.71=  s sklopljeno prisilno in naravno konvekcijo, in turbuletni tok preko 
stopnice pri Re 5000=  (glede na višino stopnice). V vsakem od naštetih 
problemov so rezultati verificirani in validirani s podatki iz direktne numerične 
simulacije ali z eksperimentalnimi podatki. Nekateri izmed naštetih primerov so 
prav tako simulirani in primerjani s programskim paketom za računalniško 
dinamiko fluidov Fluent. Razvit je numerični model kontinuiranega ulivanja 
jekla. Razvrstitev točk realne zvite geometrije gredice je generirana z odprto-
kodnim programom Gridpak. Podrobno so opisani začetni in robni pogoji za 
hitrost, temperaturo in spremenljivke turbuletnega modela. Robni pogoji za 
temperaturno polje so privzeti iz preverjenega termičnega simulacijskega 
sistema za kontilivno napravo gredic podjetja Štore Steel. Procesni parametri so 
neposredno privzeti direktno iz tehnološkega programa. Snovne lasnosti jekel so 
izračunane s programom JmatPro, in vnesene v razviti numerični model. 
Numerični model je verificiran z numeričnimi rezultati, dobljenimi s Fluent-om. 
Za namen verifikacije so uporabljene poenostavljene snovne lasnosti jekla in 
robni pogoji. Po uspešni verifikaciji je izvedena simulacija jekla C45 za gredico 
dimenzije 0.14 m pri tipičnih pogojih ulivanja. Opravljena je občutljivostna 
študija morfološke konstante poroznega medija. Opravljena je analiza vpliva 
različnih procesnih parametrov na hitrostno in temperaturno polje v gredici glede 
na referenčni primer. Namen analize je testirati obnašanje razvitega modela na 
spremembe procesnih parametrov. Razviti numerični model je uporaben za 
simulacijo širokega spektra problemov z laminarnim in turbuletnim tokom 
tekočin in je primeren za reševanje problemov strjevanja pri procesu 
kontinuirnega ulivanja jekla. Prednosti nove numerične metode so njena 
enostavnost, natančnost, podobna programska koda za 2D in tri-dimenzionalne 
probleme, vključenih ni nobenih integracij in enostavna implementacija za 
neuniformne postavitve točk. Zaradi njene lokalnosti in eksplicitnega časovnega 
koraka je zelo primerna za paralelizacijo. 

Ključne besede 

laminarni tok, turbuletni tok, naravna in prisilna konvekcija, strjevanje, jeklo, 
kontinuirano ulivanje, model kontinumske mešanice, vrtinčno-viskozni modeli, 
dvo-enačbni turbuletni modeli, lokalna kolokacijska metoda z radialnimi 
baznimi funkcijami, multikvadriki, eksplicitna časovna diskretizacija, adaptivna 
privetrna shema, metoda delnih korakov, verifikacija in validacija, simulacija 
kontinuirnega ulivanja jekla 
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1 Introduction 

1.1 Continuous Casting of Steel 

Continuous casting [Irwing, 1993] is currently the most common process for 
production of steel. In the year 2008, the total world production of the crude 
steel was 1351.289million tons, where 1243.191million tons were produced by 
the continuous casting process [World Steel Committee on Economic Studies, 
2009]. Approximately 90 % of all steel grades are produced by this technique. 
The process is represented in Figure  1.1. The basic principle of the process is 
based on pouring the liquid steel vertically into a water cooled copper mould 
which is open at the bottom. Liquid steel solidifies immediately and a solid shell 
is formed. When the solidified shell is sufficiently thick to contain the molten 
core at the centre, the strand leaves the mould into the secondary cooling system. 
The secondary cooling system is composed of the spray cooling systems and 
rolls. The cooling spray systems further cool the strand surface in order to 
prevent the re-melting of the solidified shell. Rolls support the steel to minimize 
bulging due to the ferrostatic pressure, and lead the strand through the casting 
machine. When the strand is completely solidified, it is cut into required length 
segments. The cross-section of the strand can be of various shapes: billets, 
blooms and slabs. Billets are defined as a small square or round cross-sections, 
blooms are defined as rectangular cross-sections usually with an aspect ratio less 
than 2, while slabs are anything larger than blooms and usually with an aspect 
ratio greater than 2. The Figure  1.2 represents the casting machine in Štore Steel 
company (“http://www.store-steel.si/”) for casting of square billets. 
The most important component of the casting machine is the mould, shown in 
Figure  1.3, where many complex physical phenomena occur. The molten steel is 
poured with high velocity ( 0.3-0.7≈ m/s) through the Submerged Entry Nozzle 
(SEN) into the mould. The high velocities in the SEN produce the turbulent fluid 
flow in the SEN and later in the mould. The turbulent jet, that carries the 
superheat, flows across the mould and impinges against the solidifying shell. It 
further separates the flow upward to the top of the free surface and downwards 
towards the interior of the mould. Several re-circulating zones occur in the 
mould region, which influence the entrapment of the top surface flux layer of the 
powder and the motion of the inclusion particles. 
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Figure  1.1: Scheme of the continuous casting process. 

 

 
Figure  1.2: Casting machine for continuous casting of billets in the Štore Steel company. 
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The mould powder is added on the top surface of the molten steel to prevent heat 
transfer and chemical reactions between the steel and the surroundings. Due to 
the high temperatures of the molten steel, the powder melts and forms the 
surface flux layer, which floats on the top surface of the molten steel. Some 
liquid flux re-solidifies into a solid flux rim, which prevents the heat transfer at 
the meniscus. The remaining flux is consumed into the gap between the mould 
and the solidified strand, which prevents sticking and tries to establish the 
uniform heat transfer. The important parameters regarding the surface flux layer 
are the horizontal velocity of the molten steel at the top surface and amount of 
the powder, which is added on the top surface. If the horizontal velocity is too 
large, the shear flow and possible vortices can entrain the liquid flux into the 
steel. The entrapped flux layer than moves with the molten steel in the mould, 
and can latter be entrapped into the solidified shell, and further produces internal 
defects of the final product. Also, an improper amount of the mould powder can 
lead to non-uniform initial solidification and produce various surface defects. 
Inclusion particles, exiting the SEN, can be described as impurities of the molten 
steel, having various shape and size. They move with the fluid flow up towards 
the surface flux layer, or they are entrapped in the solidifying shell. If they are 
entrapped into the shell, the internal defects can be generated in the final 
product. 
The mould is periodically oscillating to prevent sticking of the solidified strand 
and the mould. But, the oscillation produces the so called oscillation marks, 
which affect the heat transfer and produce inclination to surface cracks. 
One of the major reasons of internal defects is macrosegregation of solute 
elements. Macrosegregation refers to variations in composition during the 
solidification and range in scale from several millimetres to centimetres or even 
meters. Segregation occurs in the mushy zone due to the difference in solute 
solubility between the solid and the liquid phase. Normally, the alloying 
elements have a lower solubility in the solid than in the liquid phase. During 
solidification, the solutes are therefore rejected into the liquid phase, leading to a 
continual enrichment of the liquid and lower solute concentrations in the solid. 
This phenomenon takes place on the scale of the dendrite arms is therefore 
termed microsegregation. Consider now a small volume element that contains 
several dendrite arms and the interdendritic liquid between them. The solute-rich 
liquid or the movement of the solute-poor solid in or out of the volume element 
changes the average composition of the volume element away from the nominal 
composition. Since the solute can be advected over large distances, 
macrosegregation occurs. The described compositional variations in the cast 
structure result in non-uniformity of mechanical properties of products, which 
lower the quality of the product. 
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Figure  1.3: Physical phenomena in the mould. 

 
In order to prevent these briefly overviewed defects and to improve the quality 
of the metal produced, the casting process has to be optimally controlled through 
the process parameters, such as the casting speed, casting temperature, the SEN 
depth, spray water flow, etc. Optimal control can be achieved by fully 
understanding the turbulent fluid flow and other processes inside the mould. The 
turbulent flow processes are greatly influenced by the geometry (nozzle shape, 
number of nozzles, etc.) of the SEN, and also its position inside the mould. The 
analysis of the influence of the process parameters and the geometry parameters 
of the SEN on the casting process can very hardly or almost impossible be 
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achieved by the measurements inside the mould during the casting process. This 
fact is due to the very high temperature of the liquid steel and inaccessibility of 
the interior of the process. An alternative way is to perform measurements in the 
laboratories via the scaled (usually 1:3) or 1:1 water models [Yuan et al., 2004], 
where the same geometry of the mould and SEN is used as in the real casting 
process. These measurements are very expensive especially if we want to change 
the geometry of the mould or the SEN, and also the solidification effects can not 
be considered. Beside the experiments, we can use the numerical models, which 
are these days very popular due to the increasing power of the personal 
computers and model complexity. There are several advantages of using the 
numerical models over the experiments: various physical phenomena can be 
considered at the same time (coupled mass, momentum, energy and turbulent 
transport processes together with solidification), the changes in the geometry of 
the casting machine, the steel grade, the process parameters governing the 
numerical model, the real thermo-physical material properties, etc. can be 
included. 

1.2 Literature Review on Numerical Modelling of the 
Continuous Casting of Steel 

Soon after the first computers arrived, the researchers and the scientists are 
trying to numerically solve many kinds of physical phenomena in nature and 
industry. The involved physical processes are prescribed by one or several 
Partial Differential Equations (PDEs), which are usually non-linear, time 
dependent, and fully coupled. To numerically evaluate these PDEs, several 
conventional numerical methods can be used. The Finite Difference Method 
(FDM) [Özisik, 1994], the Finite Volume Method (FVM) [Versteeg and 
Malalasekera, 1995], the Finite Element Method (FEM) [Zienkiewicz and 
Taylor, 2000], and the Boundary Element Method (BEM) [Wrobel, 2001] are the 
most widely used among them at the present. In the framework of modelling the 
heat and fluid flow of the continuous casting processes, the FVM is the dominant 
choice, and still today represents an integral part of the most commercial 
Computational Fluid Dynamics (CFD) software packages. The numerical 
models of the continuous casting process can be classified into the following 
three groups: thermal models, fluid models, and thermo-fluid models. 
The thermal models involve only one PDE equation, which describes the heat 
transfer with solidification. From the numerical point of view, they are very easy 
to implement, since the velocity is predefined and constant for all phases, i.e. the 
solid and the liquid phase. If the heat diffusion in the casting direction is 
neglected, the model can be further simplified into the slice-model, where only 
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the transversal cross-section of the strand (slice) is considered for the 
computational geometry [Thomas and Storkman, 1988; Thomas et al., 1990; 
Constales et al., 2002; Gonzalez et al., 2003; Louhenkilpi, 2003; Šarler et al., 
2005; Wang et al., 2005; Wang et al., 2007; Zhang et al., 2007]. Transient heat 
conduction equation is solved by moving the slice from the meniscus to the 
cutting zone (end of the computational domain) by the prescribed velocity. This 
technique reduces the computational time significantly and enables to calculate 
the temperature field up to the cutting zone of the casting machine. The 
important parameters, such as the shell thickness along the casting direction, the 
metallurgical length and the temperature of the strand surface before the 
straightening can be calculated with the satisfactory accuracy. Thomas and co-
workers [Thomas et al., 1987] developed slice model with the FEM to predict 
the temperature field and stress generation in the slab, where only one-quarter of 
the slice was considered. They calculated the temperature field, air gap 
formation and the slab shape distortion at various times and as a function of the 
mould taper amount for AISI 304 stainless steel. In [Thomas et al., 1990], 
Thomas and co-workers use the same model to optimize the mould taper by 
calculating the heat flow, shrinkage, and stress generation in the solidifying steel 
shell. They concluded that the linear taper appears to be a reasonable choice. 
Constales and co-workers [Constales et al., 2002] developed an inverse 
numerical model to determine the optimal cooling parameters in the primary and 
secondary cooling systems under changing the casting speed. Gonzalez with co-
workers [Gonzalez et al., 2003] developed computational simulation model with 
the FEM. The system couples two modules: one for solving the temperature field 
in the slab and the inverse model for predicting the heat flux between the 
solidified steel and the mould. The heat flux was obtained by providing the 
measured temperatures of the thermo-couples installed in the mould plates. An 
industrial case was also presented. Louhenkilpi [Louhenkilpi, 2003] presents 
various heat transfer models developed at the Helsinki University of 
Technology. One of them is called TEMPSIMU-2D, which is a slice model 
developed by the FVM and implicit time-discretization. Šarler and co-workers 
[Šarler et al., 2005] have developed a complete simulation system for the billet 
and slab casting machine, which involves the numerical solver, program for 
graphic representation of the results (see Figure  1.4), and GUI (Graphical User 
Interface) programs [Vertnik and Šarler, 2002; Šarler et al., 2005] for easy 
manipulation of all involved programs (see Figure  1.5). The system is integrated 
into a real casting facility, and enables an on-line communication between the 
casting process and the simulation system. They also have developed a real-time 
program for calculating the metallurgical length, surface temperature at the 
straightening position, and shell thickness at the end of the mould. Wang and co-
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workers [Wang et al., 2005] developed a similar model to analyse the 
temperature field as a function of the main operating parameters including the 
casting speed, secondary cooling conditions, slab size and steel melt superheat. 
Zhang and co-workers [Zhang et al., 2007] have used the meshless method, 
called Finite Point Method (FPM) to calculate the temperature field inside the 
square billet, where only one symmetric quarter of the billet was considered. The 
numerical model was verified by the FEM. The growth of the shell-thickness 
was compared by the measurement data, where very good agreement was found. 
Another possibility represents the use of a 2D geometry and considers the 
longitudinal cross-section of the strand [Hardin et al., 2003; Vertnik and Šarler, 
2009]. This approach is more suitable for the slab casting, where the ratio 
between the width and the thickness of the slab is large enough to neglect the 
heat transfer in the third dimension. This approach needs larger amount of the 
computer memory and computational time compared to the slice-model. 
However, the time-dependent solution can be obtained and the process 
parameters can be included as a function of the casting time. Hardin and co-
workers [Hardin et al., 2003] have calculated the two-dimensional heat transfer 
in the slab by the DYSCOS program, which uses the FVM and implicit time-
discretization. For the initial conditions, the model assumes that the caster is in 
operation under the steady-state conditions, and the slab is present throughout 
the machine. The numerical results were compared by the measured slab surface 
temperatures. Vertnik and Šarler [Vertnik and Šarler, 2009] have developed the 
meshless numerical method based on the local collocation with the radial basis 
functions (RBFs) to calculate the temperature field inside the square billet. The 
numerical method is also discussed and used in the present dissertation. The 
numerical model also considers the growth of the computational domain from 
the meniscus to the cutting zone of the caster. The results were compared by 
Fluent at different values of the simulation time. Due to the increasing power of 
computers, the researchers start to develop three-dimensional (3D) thermo 
models [Heibi et al., 2006; Louhenkilpi, 2006; Batraeva et al., 2007; Xie et al., 
2008]. Heibi and co-workers [Heibi et al., 2006] developed a 3D inverse model 
to obtain the real thermal behaviour of the mould characteristics in plant 
production, including the mould heat transfer, the steel solidification, and the 
slag film distribution, with the objective of understanding the relationship among 
them. Only the mould was taken into account for the computational geometry. 
Louhenkilpi [Louhenkilpi, 2006] presented two 3D models: TEMPSIMU-3D for 
steady-state simulations and DYN for transient simulations. Models are based on 
FDM, where the upwind scheme was used for convective term and a seven point 
FDM stencil for the rest of the terms. The IDS software package, developed at 
the Helsinki University of Technology, was used to include the temperature 
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dependent thermo-physical properties of steel. The IDS and TEMPSIMU 
packages were coupled together to predict the microstructure evolution in the 
slab. Batraeva and co-workers [Batraeva et al., 2007] developed a transient 
numerical model based on an explicit FDM. For the initial condition, the 
calculated temperature field from the steady-state simulation was used. The 
model was used for optimization and regulation of the flow rate in the sections 
of the secondary cooling zone. Xie with co-workers [Xie et al., 2008] also 
developed a transient model for calculating the temperature field in the mould. 
They analyzed temperature variation with the consideration of different mould 
wall thickness and cooling water rates. The model is based on the FEM, 
developed in the programming language FORTRAN. The experimental data 
have been used to validate the model. 
The fluid models involve the modelling of the turbulent fluid flow on a fixed 
geometry. Turbulent effects must be included, due to the large melt velocity in 
the SEN and relatively small dynamic viscosity of the molten steel. Modelling of 
the turbulent flow problems involves solving additional transport equations, 
which depend on the turbulence model selected. In engineering practice, the 
turbulent models based on the eddy-viscosity approach are found to be the most 
appropriate. The two equation -k ε  model is the representative one when 
modelling the fluid flow of the continuous casting processes. Kubo and co-
workers [Kubo et al., 2004] used the numerical simulation of fluid flow under a 
magnetic field to track the argon gas bubbles in the mould and evaluate the 
surface velocity at the location between the powder and the molten steel. They 
use the standard -k ε  turbulence model. The computational geometry was 
assumed to be 2D. Pfeiler and Ludwig [Pfeiler and Ludwig, 2005] used an 
Eulerian-Lagrangian approach to model 3D turbulent flow with the standard 

-k ε  turbulence model to track the non-metallic inclusions and gas bubbles in 
continuous casting process. It is a two-phase model, where the melt flow is 
solved in an Eulerian framework, while the trajectories of the inclusions are 
tracked in the Lagrangian framework. They performed one-way and two-way 
coupling between the continuous and dispersed phase. The two-way coupling, 
which means that the influence of the melt flow on the movement of the 
inclusions and back influence are considered, was found to be preferable for a 
proper prediction of the inclusion trajectories. Yuan and co-workers [Yuan et al., 
2001] developed two Large Eddy Simulation (LES) models and use CFX 
computer software (Version 4.2) with a standard -k ε  turbulence model for 
calculating the transient fluid flow inside the mould. The results were compared 
with the Particle Image Velocity (PIV) measurements, where it was found, that 
the standard -k ε  model is not suitable for predicting the transient flow 
phenomena. They also perform particle transport simulations to study the 
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distribution of inclusion particles, and the multiphase simulation to study the 
argon bubbles distribution inside the mould. Comparison of the four different 
methods to evaluate the fluid velocities in a mould was performed by [Thomas et 
al., 2001]: the PIV measurements, the standard -k ε  model, Direct Numerical 
Simulation (DNS) with 1.5-milion nodes, and the LES. The PIV measurements 
were obtained in a water-model with a single-phase to get the time-averaged and 
transient fluid flow patterns. The same problem was then simulated by the 
numerical methods. The time-averaged results of all three numerical methods 
gave very good agreement with the PIV measurements. The transient 
simulations were not performed very well with the standard -k ε  model. The 
LES model was found to be the most appropriate for simulating transient effects 
in the mould, but it has to be performed in 3D and it is time-consuming 
compared to the -k ε  model. The paper [Thomas et al., 2001] also incorporated 
the measurements with the electromagnetic sensors embedded in the mould 
walls in the plant. The measurements were compared with the time-averaged 
results of the numerical methods, where a remarkable agreement was found. 
The thermo-fluid models involve the solution of the fluid flow with the heat 
transfer and solidification. Because of the strong coupling between mass, 
momentum and energy equations, they are much more complex to implement 
than the thermo- and fluid-models. As regarding the physical models of the 
binary solid-liquid solidification, a single-phase model was found to be the most 
representative one. The main reason should be the relatively simple 
implementation, where each PDE equation is valid in all phases, i.e. solid, liquid 
and mushy. The fluid flow in the mushy region is usually treated as the porous 
media, modelled by the Darcy’s law, which is a function of the permeability of 
the porous media. The permeability is calculated by the Kozeny-Carman 
equation, which is a function of the liquid fraction. Almost all thermo-fluid 
models, which will be reviewed here, are based on above mentioned 
assumptions. Those assumptions will not be repeated for each reviewed work, 
unless stated otherwise. Seyedein and Hasan [Seyedein and Hasan, 1997] 
developed a 3D numerical model of coupled turbulent flow, heat transfer, and 
solidification in a continuous slab caster. The LRN-LS turbulence model was 
used. The governing equations were solved using the FVM on a staggered grid. 
The effects of the casting speed, superheat of the melt and the immersion depth 
of the SEN on the velocity and temperature distributions were reported and 
discussed. Kim and co-workers [Kim et al., 2000] developed a model for 
analyzing the 3D, steady conservation equations for transport phenomena in a 
slab caster with electromagnetic brake (EMB) to investigate the effects of EMB 
on the turbulent melt-flow, temperature fields, and macroscopic solidification of 
the molten steel. Ha and co-workers [Ha et al., 2003] described a 3D model with 
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involved Maxwell equation to consider the effects of the magnetic field on the 
turbulent flow field, heat transfer and solidification. They used standard -k ε  
model. Lan and Khodadadi [Lan and Khodadadi, 2001] developed a 2D transient 
numerical model for round billets in order to investigate the velocity and 
temperature fields in the mould during the ladle change. Lam and Bremhorst 
[Lam and Bremhorst, 1981] LRN turbulence model was used, where the 
Neumann boundary conditions for the dissipation rate were set at the surface of 
the billet. They found out that the size of the mushy zone and the shell thickness 
does not vary during the period of the ladle change. While the volume occupied 
by the liquid phase expands in the radial direction and its axial extent shrinks 
during the early stage of the ladle change. Later, those effects were reversed. 
Also, the surface temperatures vary over the two cycles of the ladle change 
operation. A fully coupled analysis of fluid flow, heat transfer and stress in a 
round billet casting was performed by Lee et al. [Lee et al., 1999]. The FVM 
was used to analyse the fluid flow and the heat transfer, while the stress analysis 
were performed by the FEM. Also, the stress analysis of the mould was included 
to analyze the deformation of the mould with a mould taper. The velocity-
pressure coupling was treated by the SIMPLER algorithm, while the turbulent 
flow was modelled by the standard -k ε  model. The air gap between the mould 
and the billet was calculated as a function of the solidification shrinkage and 
thermal contraction of the solidifying shell. They predicted the cracks in the 
billet based on the calculated yield strength of steel and the crack susceptibility. 
Further, they analyzed the effects of the casting speed on the velocity and 
temperature field in the billet. A numerical algorithm, based on the FEM and the 
enthalpy formulation, was developed by [Wiwatanapataphee et al., 2004]. The 
turbulent flow was considered by the LS-LRN -k ε  model, which was modified 
to account for the solidification effects in the mushy zone. The developed 
numerical method was found to be stable and capable of capturing the rapid 
changes of temperature and velocity near the phase-change boundary. Yang et 
al. [Yang et al., 1998] represent a 3D slab casting model with included 
governing equation for solute transport. The FVM with the SIMPLER velocity-
pressure coupling algorithm were used for solving the system of the governing 
equations. They represented the temperature and the velocity fields in a slab, and 
the shell thickness along the mould. The results were also compared with the 
experimental data, where a very good agreement was found. The profiles of the 
carbon segregation were given as a function of double diffusive convection and 
the solidifying process. Aboutalebi and co-workers [Aboutalebi et al., 1995] 
derived the governing conservation equations on the basis of a continuum 
mixture model for binary alloys, originally developed by Bennon and Incropera 
[Bennon and Incropera, 1987]. A 2D geometry was considered for both, round 
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and square billets. The turbulent flow was modelled by the LRN-LS turbulence 
model, where both transport equations, i.e. k  and ε  involve additional Darcy’s 
like source terms to account the solidification effects in a mushy zone. Their 
model also included the transport equation for species in order to predict the 
solute transport in a billet. The FVM with the SIMPLER velocity-pressure 
coupling algorithm was used to solve the system of governing equations. They 
represented the velocity and the temperature field as a function of the casting 
speed, and the profiles of carbon segregation ratio along the billet. They also 
predicted the trajectories and density distribution of inclusion particles in a billet 
as a function of the particle diameter.  
 

 
Figure  1.4: Simulation system for temperature field in Štore Steel billet caster [Šarler et al., 

2005]. Calculated temperature fields of the billet surface. 
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Figure  1.5: Input/output GUI programs of the simulation system [Vertnik and Šarler, 2002; 

Šarler et al., 2005]. 

1.3 Meshless Numerical Methods 

To numerically evaluate the physical models in the science and engineering, 
several different numerical methods can be used, such as FDM, FVM, FEM, 
BEM, etc. Despite the powerful features of these methods, there are often 
substantial difficulties in applying them to realistic, geometrically complex two 
and three dimensional transient situations with moving and/or deforming 
boundaries. 
In recent years, a number of meshless methods [Atluri and Shen, 2002; Atluri, 
2004; Liu, 2003; Liu and Gu, 2005] have been developed to circumvent the 
problem of polygonisation encountered in the classical numerical methods. In 
meshless methods, approximation is constructed entirely in terms of a set of 
nodes (see Figure  1.6). There exist a number of different meshless methods such 
as the element free Galerkin methods, the meshless local Petrov-Galerkin 
method, the point interpolation method, the point assembly method, the FPM, 
the FDM with arbitrary irregular grids, smoothed particle hydrodynamics, 
reproducing kernel particle method, etc. A class of such methods is based on 
collocation with RBFs [Šarler, 2007]. These functions [Buhmann, 2003] have 
been first under intensive research in multivariate data and function interpolation 
[Franke, 1982]. Kansa used them for scattered data approximation [Kansa, 
1990a] and than for the solution of partial differential equations [Kansa, 1990b]. 
The key point of the Radial Basis Function Collocation Method (RBFCM) or 
Kansa method for solving the PDEs is the approximation of the fields on the 
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boundary and in the domain by a set of global approximation functions. The 
discretization is, respectively, represented only by grid-points (poles of the 
global approximation functions) in contrast to FEM method where appropriate 
polygonisation needs to be generated in addition (see Figure  1.6), or FDM, 
where points are constrained to the coordinate lines. The main advantage of 
using the RBFCM for solution of PDEs is its simplicity, applicability to different 
PDEs, and effectiveness in dealing with arbitrary dimension and complicated 
domains. The method recently started to be applied in many scientific and 
engineering disciplines. It has been first used in the heat transport context by 
[Zerroukat et al., 1998]. The method has been afterwards applied to the classical 
De Vahl Davis natural convection problem by asymmetric collocation in [Šarler 
et al., 2001] and additionally by the symmetric and modified collocation in 
[Šarler, 2005]. The method was used for solution of the Stefan problems 
[Kovačević et al., 2003], wave equations [Haq et al., 2008] and solid mechanics 
problems [Mai-Duy et al., 2007a; Le et al., 2008] as well. The method has been 
formulated instead of deriving the RBFs by integrating the partial derivatives 
[Mai-Duy and Tran-Cong, 2003] and applied to transient problems [Mai-Cao 
and Tran-Cong, 2005] fluid flow [Mai-Duy et al., 2007b] and moving 
boundaries [Mai-Cao and Tran-Cong, 2008]. Several other special developments 
of the method have been deduced such as the improved treatment of the 
Neumann boundary conditions [Libre et al., 2008]. 
The main disadvantage of the mentioned method represent the related full 
matrices that are very sensitive to the choice of the free parameter in RBFs and 
are difficult to solve for problems of the order of 3000  unknowns or larger. The 
solution of related problem has been attempted by domain decomposition [Mai-
Duy and Tran-Cong, 2002], multi-grid approach and compactly supported RBFs 
[Chen et al., 2002] which all represent a substantial complication of the original 
simple method. The RBFs have been first put into context of porous media flow 
by [Šarler et al., 2000] where the natural convection problem in Darcy porous 
media, and later Darcy-Brinkman porous media [Šarler et al., 2004a] have been 
solved by the dual reciprocity boundary element method. This method belongs to 
the semi-meshless methods, because the domain fields are approximated by the 
global interpolation with the RBFs and the boundary fields by the boundary 
elements (polygons). A truly mesh-less RBFCM has been for the first time used 
for solution of Darcy porous media in [Šarler et al., 2004b]. A substantial 
breakthrough in the development of the RBFCM was its local formulation, 
LRBFCM. This formulation was first developed for diffusion problems [Šarler 
and Vertnik, 2006], than to convection-diffusion problems with phase-change 
[Vertnik and Šarler, 2006a], to industrial application of direct chill casting of 
aluminum alloys [Vertnik et al., 2006], continuous casting of steel [Vertnik and 
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Šarler, 2008], to solid-solid phase transformations [Kovačević and Šarler, 2005] 
and to solution of Navier Stokes equations [Divo and Kassab, 2007; Kosec and 
Šarler, 2008a] and porous media flow [Kosec and Šarler, 2008b]. The method 
was later used for solving the incompressible turbulent fluid flow problems 
[Vertnik and Šarler, 2009a], for solving the turbulent fluid flow with 
solidification in continuous casting of steel [Vertnik and Šarler, 2009c], and 
multiscale solidification modelling [Šarler et al., 2010]. Several numerical 
examples from this publication are represented in the present dissertation. A 
similar, local quadrature based RBF approach, was developed by [Shu et al., 
2005]. The main issue of the local version of the RBFCM is the collocation on a 
sub-set of, in general, overlapping influence domains, which drastically reduces 
the collocation matrix size on the expense of solving many small matrices 
instead of a large one. Since the method does not experience significant accuracy 
drawback in comparison with the global version, it represents a practical choice 
also for solving very large problems. 
 

     
Figure  1.6: Left: the triangulation of the geometry in FEM. Right: the node arrangement in 

meshless methods. 

1.4 Objectives of the Dissertation 

The principal goal of the present dissertation is in development of a new 
numerical method, based on the LRBFCM, to solve the mass, momentum and 
energy equations which govern the turbulent heat and fluid flow phenomena of 
the continuous casting process. The objectives of the research performed are 

• Extension of the usage of the LRBFCM for solving incompressible 
laminar flow problems. The involved velocity-pressure coupling 
algorithm for resolving the fluid incompressibility retained the 
simplicity, locality and explicitness of the LRBFCM. Validation of the 
developed numerical method performed on various numerical examples 
with and without heat transfer. 
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• Extension of the above developed numerical method for solving 
incompressible turbulent fluid flow problems, where the turbulence is 
modelled based on the eddy-viscosity approach. To verify and validate 
the developed numerical method for various numerical and experimental 
examples with turbulent fluid flow. 

• Development of a numerical model for solving a 2D steady-state heat 
and fluid flow of the continuous casting of steel. The physical model 
relies on an existing single-domain mixture continuum model, developed 
by [Bennon and Incropera, 1987]. The derived turbulence transport 
equations for modelling the turbulent flow consider the solidification 
effects, involved in the mushy zone. 

• Development of a numerical model of the continuous casting of steel that 
includes: 

− the temperature dependent thermo-physical properties of the steel 
grade, calculated by the JMatPro commercial software, 

− the discretization of real curved geometry of the Štore Steel billet 
caster and 

− the boundary conditions from an already developed thermal 
numerical model of the Štore Steel billet caster. 

• The validation of the numerical model by the numerical results obtained 
with the software package Fluent. 

• The simulation of steel grade C45 with real process parameters used in 
the Štore Steel billet casting process. Further, the obtained results are 
used to perform sensitivity study of the Darcy’s constant, and analysis of 
the effects of the variable process parameters on the solution of the 
velocity and the temperature fields. Three process parameters are chosen: 
the casting speed, the casting temperature, and the SEN depth. 
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2 Physical Model 

This chapter describes the basic concepts of mathematical modelling of turbulent 
flows and solidification processes. First of all, the fundamentals and possibilities 
of the modelling of turbulence are given. Attention is made on the modelling 
with the eddy-viscosity turbulence models. The Reynolds-time-averaging 
procedure is explained, where the averaged transport equation for an arbitrary 
scalar are derived. Two eddy-viscosity models (EVMs) are discussed: the 
standard -k ε  turbulence model and the LRN -k ε  turbulence model. Next, the 
phase-change phenomena are explained for pure materials and alloys. A simple 
binary phase-change diagram and some models are presented for evaluating the 
relationship between the solid fraction and temperature. A brief overview of the 
mathematical modelling of binary solid-liquid phase-change phenomena is 
given, with attention to macroscopic transport processes, model simplifications, 
and connections between the microscopic and the macroscopic scale. From the 
macroscopic point of view, the mixture continuum model is chosen to be the 
most appropriate for the numerical modelling of the continuous casting of steel, 
since it became a representative model in this research area. The basic 
relationships and principles of the derivation of the mixture continuum 
conservation equations are presented, while the complete derivation is omitted in 
the present dissertation. The turbulent effects are modelled by the eddy-viscosity 
approach, where the Reynolds-time-averaged procedure is performed to obtain 
the final form of the mass, momentum and energy conservation equation. 

2.1 Numerical Modelling of Turbulence 

Turbulent flows can be observed in our everyday surroundings. Typical 
examples are flows around vehicles, buildings, smoke from a chimney, water in 
a river, flows and combustion in engines, etc. The turbulent flow is known to be 
irregular, random and chaotic. The flow consists of a spectrum of different eddy 
sizes. The largest eddies are strongly influenced by the geometry of the flow 
(i.e., by the boundary conditions), and they control the transport and mixing. The 
behaviour of the smallest eddies are determined almost entirely by the rate at 
which they receive energy from the large eddies, and also by the viscosity. They 
are dissipated into internal energy. Turbulent flow is always 3D and time-
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dependent, however it can be treated as steady-state and two-dimensional if the 
equations of motion (i.e. mass and momentum equations) are time averaged. 
Particular turbulent flows have already been studied experimentally by many 
researchers, for example two-dimensional channel flow [Laufer, 1948] and the 
flow through a backward-facing step [Jović and Driver, 1994]. Those 
experiments are very important, not only for understanding the behaviour of the 
turbulent flows, but also for developing mathematical models, which are able to 
accurately predict the properties of the turbulent flows. The modelling of the 
turbulent flows is known to be very difficult, mainly because there is no prospect 
of a simple analytic theory. However, with increasing power of computers, 
several numerical techniques have been established to numerically predict the 
turbulent flows: DNS, LES, and EVMs. To decide which model is appropriate 
for a particular flow depends mainly on the available computer power and the 
desired accuracy [Pope, 2000]. 
 
Direct numerical simulation 
The classical Navier-Stokes (N-S) equation is directly solved, where all the 
scales of motion are resolved. It is the simplest one to implement, but the 
computational cost is very high due to the need for the 3D spatial discretization 
and the time-dependent solution of the N-S equation. However, the DNS was 
already successfully used for flow problems with simple geometry with low and 
moderate Re  numbers [Kim et al., 1987; Kasagi et al., 1992; Kasagi et al., 
1997; Le et al., 1997]. The results are very important and helpful for developing 
and estimating other turbulence models, like EVMs. 
 
Eddy-viscosity models 
They are still the most popular ones in engineering, especially for simulating 
complex industrial applications. They are based on the Reynolds-Averaged 
Navier-Stokes (RANS) equation in which the N-S equation is solved for the 
mean velocity field. The time-averaging process of the N-S equation generates 
additional terms, which are called the Reynolds-stresses. These stresses are 
unknown and have to be determined by a turbulence model, either via the eddy-
viscosity hypothesis or from modelled Reynolds-stress transport equations. In 
the eddy-viscosity approach, the Reynolds-stress tensor is determined by the 
relationship between the turbulent viscosity and the velocity gradients. The 
resulting Reynolds-stress tensor is almost identical to the shear-stress tensor of 
the N-S equation. The turbulent viscosity is calculated by solving the additional 
one or two transport equations, depending on the turbulence model chosen. In 
one-equation models, only the transport equation for the turbulent kinetic energy 
is solved. The turbulent kinetic energy was suggested independently by 
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Kolmogorov and Prandtl [Pope, 2000] as the base quantity to define the velocity 
scale for the turbulence. The turbulent length scale in one-equation models is not 
modelled but rather determined empirically for particular flow types [Wilcox, 
1993]. In the two-equation models the turbulent length scale is modelled by 
solving another transport equation for the dissipation rate ε  (the -k ε  model) or 
the specific dissipation rate ω  (the -k ω  model). Both transport equations, i.e. k  
and ε  (or ω ), are derived from the N-S equation [Wilcox, 1993]. After time 
averaging process, different terms appear in k  and ε  equations defining various 
physical phenomena of the turbulent flow, i.e. dissipation, turbulent diffusion, 
pressure diffusion, productions, etc. Those terms are modelled by introducing 
damping functions and closure coefficients to describe the behaviour of the 
typical turbulent flow problem, i.e. turbulent boundary layer, turbulent channel 
flow, separation, etc. In approximately thirty years of turbulence modelling with 
the two-equation models, a lot of variations of both -k ε  and -k ω  models were 
developed [Wilcox, 1993; Bredberg, 2001; Pope 2000]. Older models [Jones and 
Launder, 1972; Launder and Sharma, 1974; Chien, 1982; Abe et al., 1994] were 
mainly developed to represent the turbulent boundary layer in a 2D channel 
flow. The newer models [Bredberg, 2001] are improved and extended versions 
of the older ones by introduced additional terms in modelled transport equations. 
In the present dissertation, the two-equation -k ε  models are used to solve 
various turbulent flows problems, so the next sections are focused strictly on 
these models.  
 
Large-eddy simulation 
In LES simulation, the unsteady motion of the larger scales (large eddies) are 
represented directly, similar as in DNS. The effects of small scales are modelled. 
From the point of view of computational cost, the LES is somewhere between 
DNS and Reynolds stress models, and was developed to overcome the 
difficulties of both approaches. The LES models are expected to be more 
accurate as the Reynolds stress models, especially for flows were the large-scale 
unsteadiness is significant, such as unsteady separation and vortex shading. The 
simulation must be performed in 3D and time-dependent, however, the number 
of computational nodes is reduced, because the smaller eddies are modelled (in 
the simpler way by the EVM). The main part of the LES is the filtering 
operation, where the velocity is decomposed into the sum of filtered (or 
resolved) component and a residual (or subgrid-scale, SGS) component. The 
filtered velocity field, which is 3D and time-depended, represents the motion of 
the large eddies. Then the filtered form of the N-S equation is derived, which 
becomes the standard N-S equation, with the momentum equation containing the 
residual-stress tensor (SGS stress tensor) arising from the residual motions. The 
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SGS tensor is modelled in a most simple way by EVM. Other details and 
characteristics about LES can be found in several readings [Pope, 2000; 
Schiestel, 2008]. 

2.1.1 Reynolds Time Averaging 

Before we introduce the concept of EVM, the Reynolds-time-averaging 
procedure is presented. This is a statistical approach, where the instantaneous 
transport variable ( ), tφ p  is decomposed into the sum of the mean ( )φ p  and the 
fluctuating part ( )' , tφ p , i.e. 

 ( ) ( ) ( ), ' ,t tφ φ φ= +p p p , (2.1) 

where p  and t  are position vector and time, respectively. The mean variable 
( )φ p  is defined as 
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The time average of the mean variable produces the mean value, i.e. 
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The time average of the fluctuating part is zero. By using the equation (2.3), we 
get 

 ( )1
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t dt
t

φ φ φ φ φ φ φ
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Δ →∞
⎡ ⎤= − = − = − =⎣ ⎦Δ ∫ p p p p p p . (2.4) 

Other correlations and principles of time-averaging can be found in [Wilcox, 
1993; Bredberg, 1999; Davidson, 2003]. Here, we continue with the time-
averaging processes of the mass and momentum equation. The mass and 
momentum equation of the laminar incompressible flow are defined as 

 ( ) 0
t

ρ ρ∂ +∇⋅ =
∂

u , (2.5) 

 ( ) ( ) ( )2P
t
ρ ρ μ∂ +∇⋅ = −∇ +∇⋅

∂
u uu S , (2.6) 

where ρ , u , P , μ , S  are density, velocity, pressure, dynamic viscosity and 
strain rate, repectively. A strain-rate tensor is defined as 
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 ( )T1 2

2 3
⎡ ⎤= ∇ + ∇ − ∇ ⋅⎢ ⎥⎣ ⎦

S u u u . (2.7) 

Since we are dealing with incompressible flow (i.e. low Mach number), the last 
term (the dilatation term) in equation (2.7) is zero. Here, it must be noted that we 
use the term “incompressible” in the sense that the density is independent of 
pressure ( / 0P ρ∂ ∂ = ), but it can depend for example on temperature or 
concentration. In such a case, the strain-rate tensor reduces to 

 ( )( )T1

2
= ∇ + ∇S u u . (2.8) 

It is also worth to mention, that the dynamic viscosity μ  is variable in general. 
The time-averaging process of the equations (2.5) and (2.6) gives 

 ( ) 0
t

ρ ρ∂ +∇⋅ =
∂

u , (2.9) 

 ( ) ( ) ( )2 ' 'P
t
ρ ρ μ ρ∂ +∇⋅ = −∇ +∇⋅ −

∂
u uu S u u , (2.10) 

where the mean strain rate tensor S  is defined as 

 ( )T1

2
⎡ ⎤= ∇ + ∇
⎣ ⎦

S u u . (2.11) 

The averaged momentum equation (2.10) is also called the RANS equation. The 
time-averaged equations (2.9) and (2.10) are almost identical to the 
instantaneous equations (2.5) and (2.6). The only difference is between the 
momentum equations, where additional term ' 'ρu u  appears in the time-
averaged form. This term represents the major problem of the turbulence 
modelling in the engineering practice. In order to compute the mean-flow 
variables of the turbulent flow, we also need to compute the ' 'ρu u . This term is 
known as the Reynolds-stress tensor Rτ  

 ' 'R ρ= −τ u u , (2.12) 

which has six independent components, which represent correlations between 
the fluctuating velocities. This additional stress term has to be modelled to close 
the system of equations (2.10). This is called the closure problem, which means 
that the number of unknowns (ten: three velocity components, pressure, six 
stresses) is larger than the number of equations (four: the continuity equations 
and three components of the N-S equation). 
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In EVMs the Reynolds-stress tensor is a function of turbulent viscosity tμ  and 
mean rates of deformation 

 ( )T 2
' ' 2

3R t t kρ μ μ ρ⎡ ⎤= − = = ∇ + ∇ −
⎣ ⎦

τ u u S u u Δ . (2.13) 

This relation is called the Boussinesq assumption. In equation (2.13), tμ  is 
turbulent dynamic viscosity, and Δ  is a tensor of the Kronecker delta δ , where 
the components are 1ijδ =  if i j=  and 0ijδ =  if i j≠ . The last term in equation 
(2.13) is needed to obtain the proper trace of Rτ  [Wilcox, 1993]. The 
momentum equation (2.10) is re-written, considering the definition of Rτ , into 
the following equation 

 ( ) ( ) ( ) 2
2

3tP k
t
ρ ρ μ μ ρ∂ ⎡ ⎤+∇⋅ = −∇ +∇⋅ + −⎢ ⎥∂ ⎣ ⎦

u uu S Δ . (2.14) 

All EVMs are based on this approach. The question is how to calculate tμ , 
which has no physical meaning. Because, there is no general prescription to 
calculate it, there exist many different models. Each model comes with a set of 
closure coefficients, which were obtained based on the experimental data (older 
models) or DNS data (newer models). In the next sections we present two of 
them: the standard -k ε  model and the LRN -k ε  models. Both of them are the 
representative models in the numerical modelling of continuous casting 
processes. 
The physical processes in nature or industry can also involve other physical 
phenomena, for example heat transfer or species transfer. The transport equation 
for each additional scalar variable has to be also time-averaged. Consider the 
general transport equation for an arbitrary scalar quantity φ  represented by the 
following equation 

 ( ) ( ) ( ) S
t φρφ ρ φ φ∂ +∇⋅ = ∇ ⋅ ∇ +
∂

u D , (2.15) 

with D  and Sφ  standing for diffusion tensor and source term, respectively. 
Using the same principles of the time-averaging of the momentum transport 
equation, the final time-averaged form of equation (2.15) is 

 ( ) ( ) ( ) ( )' 'S
t φρφ ρ φ φ ρ φ∂ +∇⋅ = ∇ ⋅ ∇ + −∇⋅
∂

u D u . (2.16) 

The last term in equation (2.16) represents an extra turbulent transport term, 
taken to be proportional to the gradient of the mean value of the transported 
scalar quantity, i.e. 
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 ' ' tρ φ φ− = Γ ∇u , (2.17) 

where tΓ  is the turbulent diffusivity, defined as 

 t
t

t

μ
σ

Γ = . (2.18) 

In equation (2.18), tσ  is the turbulent Prandtl number. Various experiments 
show that tσ  is often nearly constant and valued around 1 [Versteeg and 
Malalasekera, 1995]. 

2.1.2 Standard k-ε Model 

The standard -k ε  turbulence model is the most popular two-equation viscosity 
model. The turbulent viscosity tμ  is computed by the following expression 

 
2

t

k
cμμ ρ

ε
= , (2.19) 

where cμ  is the closure coefficient. In order to compute tμ , two additional 
transport equations have to be solved: the first one for the turbulent kinetic 
energy k  and the second one for the dissipation rate ε . The turbulent kinetic 
energy is defined by taking the trace of the Reynolds-stress tensor, i.e. 

 ( )0.5 tr Rk = ⋅ τ . (2.20) 

The transport equation of k  is derived from the N-S equation [Davidson, 2003] 
or by taking the trace of the Reynolds-stress equation [Wilcox, 1993; Bredberg, 
1999]. Both leads to the following transport equation 

 ( ) ( ) t
k

k

k k k P
t

μρ ρ μ ρε
σ

⎡ ⎤⎛ ⎞∂ +∇⋅ = ∇⋅ + ∇ + −⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
u , (2.21) 

where kP  is the production term and kσ  is the turbulent Prandtl number for k . 
The kP  is defined as 

 ( )T
:k tP μ ⎡ ⎤= ∇ ∇ + ∇
⎣ ⎦

u u u . (2.22) 

The dissipation rate ε  is defined by the following relation 

 
' '
i i

j j

u u

x x
ε ν ∂ ∂=

∂ ∂
, (2.23) 
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where ν  is the kinematic viscosity. The transport equation for ε  is also derived 
from the N-S equation [Wilcox, 1993; Bredberg, 1999]. The final equation for ε  
is given as 

 ( ) ( ) ( )1 2
t

kc P c
t kε ε

ε

μ ερε ρ ε μ ε ρε
σ

⎡ ⎤⎛ ⎞∂ +∇⋅ = ∇⋅ + ∇ + −⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
u , (2.24) 

where εσ  is turbulent Prandtl number for ε  and 1c ε , 2c ε  are the closure 
coefficients. The closure coefficients cμ , kσ , εσ , 1c ε  and 2c ε  are determined 
and optimized by applying the model to various fundamental flows such as flow 
in channel, pipes, jets, wakes, etc. They are given the following values 

 0.09cμ = , 1.0kσ = , 1.3εσ = , 1 1.44c ε = , 2 1.92c ε = . (2.25) 

There is one serious drawback of modelling the turbulent flows with the standard 
-k ε  model described. It was developed for high Re numbers, so assuming a 

fully turbulent flow. The problem arises when flow near the boundary is also 
important, where the Re  numbers are very low. Figure  2.1 shows a typical 
velocity profile for turbulent boundary layer flow. The velocity u  and the 
distance from the wall y  are normalized by the friction velocity uτ  to obtain +u  
and y+ , i.e. 

 
u

u
uτ

+ = , (2.26) 

 
yu

y τρ
μ

+ = , (2.27) 

where uτ  is defined as 

 wuτ
τ
ρ

=  , (2.28) 

with wτ  standing for the wall shear stress, calculated by the equation 

 w

u

y
τ μ ∂=

∂
. (2.29) 

The whole domain of the turbulent boundary layer can be divided into three sub-
regions: viscous sub-layer, log layer and defect layer (see Figure  2.1). In the 
viscous sub-layer the fluid is stationary, and also the turbulent eddy motions 
stop. Close to the surface, the velocity varies approximately linearly with y+ , 
and gradually asymptotes to the log layer. The log layer typically lies between 
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30y+ =  and 0.1 by δ+ =  ( bδ  is the boundary layer width), where the upper 
boundary depends upon Re  number. In this region the viscous and the turbulent 
effects are both important. The velocity profile obeys the log-law, i.e. 

 
1

ln lwu y B
κ

+ += + , (2.30) 

where κ  and lwB  are von Kármán constant and dimensionless constant, 
respectively. It was found [Versteeg and Malalasekera, 1995] that for the smooth 
wall 0.4κ =  and 5.5lwB = . The defect layer is far from the wall, where the 
inertial forces are dominated and it is free from direct viscous forces. In this 
region, the log-law of the wake [Versteeg and Malalasekera, 1995] holds 

 max 1
ln lw

b

u u y
A

uτ κ δ
− = + , (2.31) 

where lwA  and maxu  are the constant and the maximal velocity in the boundary 
layer, respectively. This completes the description of the turbulent flow 
phenomena near the wall. 
The standard -k ε  model is not capable of resolving the viscous sub-layer region. 
If we put more calculation points in this region, the standard -k ε  model is not 
valid, because it was made for fully turbulent flows, so up to the limit between 
the viscous sub-layer and log layer region. The first calculation point must be 
located in the log layer, where the wall functions have to be applied. The wall 
functions obey the log-law, equation (2.30), and they are valid up to the wall. 
Based on the discussed characteristics of the turbulence modelling with the 
standard -k ε  model, several conclusions can be made: 

• The wall functions are valid only in the log layer, and they can not be 
used in the viscous sub-layer. When the viscous effects are also 
important, such as separation or reattachment, the model is not 
appropriate. 

• When predicting heat transfer it is in general not a good idea to use wall 
functions, because the heat transfer near the walls is very important for 
the temperature field in the whole domain. 

• To overcome the represented difficulties, the LRN -k ε  was developed 
[Jones and Launder, 1972]. 

The derivation of the wall functions and other details about the standard -k ε  
model, which are not included in the present dissertation, can be found in several 
classical readings on the subject [Wilcox, 1993; Versteeg and Malalasekera, 
1995; Hoffmann and Chiang, 2000]. 
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Figure  2.1: Typical velocity profile for a turbulent boundary layer flow. 

2.1.3 Low-Reynolds-Number Models 

In the previous section we discussed a major problem of using wall functions in 
the standard -k ε  turbulence model. Here, we present the LRN turbulence 
models, which were developed in order to overcome the weakness of standard 
model, which cannot predict very well the turbulent boundary layer. The LRN 
models are on contrary capable of resolving the flow properties up to the wall, 
where the Re  numbers are very low. It must be noted, that the low Re  number 
does not mean the global Re  number, but here we are considering the local 
turbulent Reynolds number Ret l , which varies throughout the computational 
domain and it is proportional to the ratio of the turbulent and the physical 
viscosity /tμ μ , i.e. Re /t l tμ μ∝ . This ratio is very large in the fully turbulent 
flow and it descends to zero when a wall is approached. 
First LRN turbulence model was proposed by [Jones and Launder, 1972]. The 
transport equations (2.21) and (2.24) of the standard -k ε  model were modified 
into the following form 

 ( ) ( ) t
k

k

k k k P D
t

μρ ρ μ ρε
σ

⎡ ⎤⎛ ⎞∂ +∇⋅ = ∇⋅ + ∇ + − +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
u � , (2.32) 
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μ ερε ρ ε μ ε ρε
σ

⎡ ⎤⎛ ⎞∂ +∇⋅ = ∇⋅ + ∇ + − +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
u

�

� � � � , (2.33) 

where ε�  is a modified dissipation rate, 1f  and 2f  are the damping functions, 
and D  and E  are additional source terms. This turbulent model solves ε� , which 
is defined as 

 Dε ε= −� , (2.34) 

where D  is equal to value of ε  at the wall, which gives an easy boundary 
condition 0ε =�  for transport equation (2.33). Turbulent viscosity in the LRN 
models is calculated by the following equation 

 
2

t

k
c fμ μμ ρ

ε
=

�

, (2.35) 

with fμ  standing for the damping function. Many LRN models use ε�  for 
solving the turbulent viscosity, but some of them rather use ε  with both D  and 
E  equal to zero. In the present dissertation, the following models are used: JL 
[Jones and Launder, 1972], LS [Launder and Sharma, 1974] and AKN [Abe et 
al., 1994]. The closure coefficients cμ , 1cε , 2cε , kσ  and εσ  for each model are 
given in Table  2.1, the source terms D  and E  in Table  2.2, and the damping 
functions fμ , 1f , 2f  in Table  2.3. In the JL and LS models, the transport 
equation (2.33) is used to calculate tμ  (equation (2.35)), while the AKN model 
solves equation (2.33) for ε  with the following boundary condition at the wall 

 
2

2w

k

y

με
ρ

= , (2.36) 

where y  and k  are the normal distance and the turbulent kinetic energy at the 
nearest domain node, respectively. 
The damping functions fμ  and 2f  in the AKN model depend on the non-
dimensional distance from the wall y∗ , defined as 

 
u y

y ερ
μ

∗ = . (2.37) 

In equation (2.37), the uε  is the Kolmogorov velocity scale, defined as 

 ( )1/4
uε νε= . (2.38) 

In the damping functions, Ret  is the turbulent Re  number, i.e. 
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2

Ret

k

νε
= . (2.39) 

The source terms in Table  2.2 are written in tensor index notation. For 2D case 
with Cartesian -x y  coordinate system, the terms are calculated as 
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Table  2.1: Closure coefficients of the LRN turbulence models. 

model cμ  1cε  2cε  kσ  εσ  

JL 0.09 1.55 2.00 1.00 1.30 

LS 0.09 1.44 1.92 1.00 1.30 

AKN 0.09 1.40 1.40 1.50 1.90 

 
Table  2.2: Source terms D  and E of the LRN turbulence models. 
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Table  2.3: Damping functions of the LRN turbulence models. 

model fμ  1f  2f  

JL 
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The EVMs are still the most widely used turbulence models in engineering 
practice. They are the most widely validated models and give very good 
performance for many industrially relevant flows. However, there exist some 
flow problems, for which they give poor performance:  

• curved boundary layer, 
• swirling flows, 
• some unconfined flows, 
• rotating flows, etc. 

When comparing the LRN models, used in the present dissertation, we can 
conclude the following: 

• AKN model is numerically very stable model and gives very good 
performance for various types of flows, such as the channel flow, and the 
flow with separation and reattachment. The main disadvantage of using 
this model is the calculation of the damping functions, which depend on 
the wall distance. If we are dealing with the pure liquid flows, the 
calculation of the wall distance is not a hard task. However, when 
modelling the solidification problems, this could become a problem, 
since it is almost impossible to define the wall, which is relevant for the 
turbulence model. The wall is somewhere in the mushy zone, and could 
not be known in advance. It is a part of the solution, similar as the 



 Physical Model 

 

30 

liquidus and solidus curves in the solidification problem. The CFD 
commercial software, such as Fluent, calculates the wall distance up to 
the boundary of the fixed geometry, even for the solidification problems, 
which is definitely not correct. 

• LS and JL models are very old turbulence models and very similar to 
each other. The JL model was the first LRN and is practically not in use 
any more today. While, the LS model is an extended version of the JL 
model, and very well established model with overall average prediction. 
It is repeatedly used as a comparative model in science and it is 
implemented in the various CFD commercial packages. They are both 
numerically unstable, due to extra source terms D  and E  in the k  and 
ε  equations, respectively. However, the LS model is the most popular in 
modelling of the continuous casting process. The reason is in its damping 
functions, which are simpler then in the AKN model and depend only on 
the Ret . The numerical stability can be improved in LS model by 
removing an extra source terms and using the Neumann boundary 
condition for ε  equation [Prescott and Incropera, 1995]. 

2.2 Phase-Change Phenomena 

Heat transfer problems involving dissolution or solidification are generally 
referred to as solid-liquid phase-change problems or moving boundary problems, 
and also as Stefan problems [Šarler, 1995]. They involve free or moving 
boundaries between the phases that need to be determined as a part of the 
solution. Dissolution is the phenomena, where the solid phase, of in general 
multi-component material, is changed into a liquid, by absorbing heat. 
Solidification is the inverse phenomena of dissolution, where the liquid phase is 
changed to solid, by releasing heat. Absorbed or released heat energy is often 
termed as latent heat, which influences the phase-change velocity.  
For pure substances or eutectic alloys, the phase-change phenomena occur at a 
fixed temperature, called the melting point temperature mT . When the 
temperature of a substance is equal to a melting temperature, the phase-change 
process commences. At this stage, the latent heat is absorbed to a material or 
released from a material to change its phase. During the melting or freezing, the 
liquid and the solid are assumed to be in thermodynamic equilibrium, and the 
temperature of the substance does not change. The solid and the liquid phases 
are separated by a single moving interface which determines the boundary 
between the phases.  
In the case of alloys, dissolution or solidification takes place over an extended 
range of temperature, where the solid and the liquid phases are separated by a 
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two-phase moving region, the 'mushy zone'. This is a region only from the 
macroscopic point of view. When observing microscopically, it shows a highly 
complex solid-liquid inter-phase morphology. The upper limit of this 
temperature range at which the mixture becomes completely liquid is termed as 
liquidus temperature LT  and the lower limit at which solidification is complete 
and the mixture is entirely solid is termed as the solidus temperature ST . The 
mass fraction of the solid phase (solid fraction) in the mixture, Sf , is zero at LT  
and unity at ST , and in the mushy zone has values between zero and unity. The 
relation between the solid fraction and the temperature may be evaluated from 
the phase-change diagrams, shown in Figure  2.2, where the temperature is 
presented as a function of the solute concentration Ac . For any given solute 
concentration, there exists an equilibrium liquidus and solidus temperature. 
Likewise, for any given temperature, there is an equilibrium solidus solute 
concentration ,A Sc  and liquidus solute concentration ,A Lc . The liquidus or solidus 
temperature can be approximated (linearly) by the following equation 

 ,m AT T m c℘ ℘ ℘= + ; ,L S℘= , (2.42) 

where m℘  is the slope of the liquidus or the solidus line at ,Ac ξ .  
 

 
Figure  2.2: Binary phase-change diagram. 

 
A more detailed description of the discussed physical phenomena can be found 
in the following literature [Crank, 1984; Dantzig, 2001; Šarler, 1995; Šarler, 
2009]. 
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The relation between the solid fraction and the temperature in practical 
solidification analysis can be evaluated through several models [Hong, 2004]: 

a) Linear distribution of latent heat 

The latent heat is linearly distributed over the solidification range between LT  
and ST . 

 L
S

L S

T T
f

T T

−=
−

; S LT T T≤ ≤ . (2.43) 

b) Level rule (equilibrium solidification model) 

Complete mixing of solute in liquid and solid is assumed. The solid fraction as a 
function of temperature (see Figure  2.2) is given by 
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where LSk  is defined as 

 ,

,

A S
LS

A L

c
k

c
= . (2.45) 

c) Scheil model 

Complete mixing of solute in liquid and no mixing of solute in solid is assumed. 
In this case the solid fraction as a function of temperature is given by 
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d) Brody-Flemings model 

Complete mixing in liquid and partial mixing in solid are assumed. Here, the 
solid fraction as a function of temperature is given by 
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where tα  is the Brody-Flemings constant and it is defined as 
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with SD , ft  and aλ  are the diffusion coefficient of solute atoms in solid, the 
local solidification time, and the dendrite arm spacing, respectively. 
 
Beside above models, there exist several commercial software packages, which 
are able to calculate material properties as a function of temperature. They are 
based on thermodynamic calculations and experimentally obtained databases, 
which cover a wide range of steel grades. One of them is JmatPro by Sente 
Software, which was developed for general and stainless steel grades. It has 
several different calculation modules, such as: thermodynamic properties, 
solidification, thermo-physical properties, mechanical properties, phase 
transformation, and others. The calculated data are exported into text files, which 
can be further used in different numerical models.  
In the present dissertation, two different approaches are used: model based on 
linear distribution of latent heat, and calculated with the JmatPro (Version 5.0, 
Sente Software, “http://www.sentesoftware.co.uk/jmatpro.aspx”). 
The first approach is used in the simplified numerical example, where the 
validation of the numerical model is performed. The thermo-physical properties 
are considered as a linear function of temperature between the liquidus and the 
solidus temperature. 
The second approach uses the JMatPro calculations to obtain a realistic 
temperature-depended liquid fraction and thermo-physical properties of a 
relevant multi-component steel. The following thermo-physical properties, 
calculated by the JMatPro, are considered: solidus temperature, liquidus 
temperature, enthalpy, thermal conductivity, and specific heat. The density in 
our numerical model is assumed to be constant and equals the density at the 
solidus temperature. 

2.3 Introduction to Modelling of the Solidification 
Processes 

Mathematical modelling of transport phenomena in the solidification processes 
of metal alloys is increasingly becoming an important tool for predicting the 
state of the final product. In such systems, the phase transformation takes place 
over a range of temperatures, also called the mushy zone. Due to the 
complicated nature and morphology of the dendritic solidification in the mushy 
zone, are the detailed microscopic models which account for transport 
phenomena in the whole system on a microscopic level still beyond the 
capabilities of today’s computing facilities. Therefore, the models are usually 
based on the general macroscopic conservation principles and semi-empirical 
laws that describe the interactions between the solid and liquid phases on a 
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microscopic level [Viskanta, 1990; Ni and Incropera, 1994]. The general 
conservation principles are applied to an arbitrary fixed control volume, which is 
larger than a phase element but smaller than the characteristic domain dimension 
of the system. To derive the governing equations, the following models have 
been established: Mixture model by Flemings, Mixture continuum model, and 
Two-phase averaged model. 
 
Mixture model by Flemings 
In this approach, the mushy region is treated by volume elements, which contain 
both liquid and solid phase. Equations, describing the solidification process, heat 
flow, and species redistribution in the mushy region, are obtained by performing 
the heat and mass balances over each control volume. The basic model was first 
derived by Flemings and co-workers [Mahrebian et al., 1970]. They derived an 
equation to predict the liquid fraction distribution by knowing the velocity and 
the temperature distribution in the mushy region. The interdendritic flow in the 
mushy region can be obtained by the Darcy’s law, which approximates the 
mushy region as a porous medium. Further, the temperature distribution in the 
mushy region is obtained through the solution of an energy balance in the mushy 
zone. In the solid and liquid regions, the velocity and temperature distributions 
are calculated by the single-phase conservation equations. The model equations, 
describing transport processes in each region, are normally solved by the 
complicated multi-domain numerical algorithms, which are capable of explicitly 
tracking the interface boundaries between all three regions. The macro-
segregation is then obtained from the equilibrium phase diagram (see Figure 
 2.2), which accounts that the liquid and the solid phases are in equilibrium.  
 
Mixture continuum model 
The mixture continuum model was derived based on the macroscopic 
conservation principles for dendritic solidification, without considering 
microscopic equations, by utilizing the continuum theory of mixtures. The solid, 
the liquid and the mushy regions are not treated separately, but rather one set of 
equations are derived, which are valid for the entire system. This is the main 
advantage over the previously described mixture theory, but in order to make the 
problem solvable, several simplifications and assumptions are introduced 
[Bennon and Incropera, 1987; Voller et al., 1989]. The complete mixture 
continuum model was first proposed and derived by [Bennon and Incropera, 
1987]. In their model, the following assumptions were used to close the problem: 
the solid and the liquid phases in the mixture continuum are in equilibrium state, 
and the velocity of the solid phase is prescribed. Almost all numerical solutions 
of the heat and fluid flow in the continuous casting of steel process are based on 
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this model and assumptions [Aboutalebi, 1993; Seyedein and Hasan, 1997; Ha et 
al., 2003]. Our equations are derived by the same mixture continuum approach 
and a detail description of the basic principles and derivation are shown in 
Section  2.5. 
 
Two-phase averaged model  
The main disadvantage of all mixture formulations is that they do not explicitly 
provide any relationships between the macroscopic and the microscopic 
parameters, such as the phase interactions. Usually, they assume a complete 
thermal, chemical and mechanical equilibrium between the solid and liquid 
phases in the averaging volume of mixture. However, this assumption is not 
valid for solidification of multi-component mixtures, where strong gradients and 
discontinuities can occur on a microscopic scale. Also mixture models assume 
that the velocity of the solid phase is equal to zero, or it is equal to the prescribed 
value, i.e. casting velocity in the continuous casting of steel. An alternative 
approach to the mixture models involves the use of the volume averaging 
procedure which can be strongly linked to the microscopic conditions. This 
technique was first introduced for the solidification problem by [Beckermann 
and Viskanta, 1988], and was later used to develop a more general two-phase 
averaged model for transport phenomena during solidification [Ni and 
Beckermann, 1991]. In this approach, each phase is treated separately and the 
interactions between the phases are considered explicitly. The macroscopic 
equations for each phase are averaged over an averaging volume, containing 
both liquid and solid. The averaged equations are valid in every region of the 
multi-phase system, including the pure solid and the pure liquid regions. A 
constitutive linkage between the macroscopic and the microscopic transport 
processes is established by constitutive relations for the surface tension, 
pressure, interfacial transfers due to phase-change, interfacial stress, heat and 
species transfer, etc. A detailed explanation and derivation of the model are 
given in [Ni and Beckermann, 1991; Beckermann and Viskanta, 1993]. A 
drawback of this formulation is that it includes two times more conservative 
equations than the mixture model. 

2.4 Treatment of Solidification Region from the Fluid 
Dynamics Perspective 

The solidification process of the steel in the strand is characterized by the 
following three regions: pure liquid, mushy and pure solid. The mushy region is 
further divided into the slurry region and the porous media (see Figure  2.3). The 
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question arises, how the solidification affects the convection in each region, and 
further, how to treat those effects in the physical model. 
The pure liquid region contains the molten steel and various inclusions, i.e. 
impurities, non-metallic inclusions and powder, which are floating in the liquid. 
In this region, the solidification does not occur, and only the body forces 
(buoyancy and solute forces) are acting on the convection in the physical model. 
Due to the strong forced convection, the inclusions are moving along with the 
flow of the molten steel, and can be assumed since their concentration is low to 
have no effects on the flow pattern. 
The slurry region consists of freely floating equiaxed dendrites and the liquid 
phase. Most of the equiaxed dendrites are created by solidification process at the 
liquidus inter-phase, while some of them are resulting from the break-off of the 
columnar dendrites. They can flow back into the pure liquid region and re-melt 
again, while some of them stick onto the columnar dendrites. The fluid flow 
modelling in this region is far more complex than in a pure liquid region. In 
almost all cases of the numerical models of the continuous casting process, the 
slurry region is not considered. However, it could be modelled by assuming that 
the solid phase is moving with the same velocity as the liquid phase [Voller et 
al., 1998]. By using the given velocity assumption, the two-fluid equations can 
be combined into a one-phase equation. The effective diffusion coefficients, 
such as the effective dynamic viscosity and the effective thermal conductivity, 
are calculated as the average of the single phase coefficients [Voller et al., 
1998]. The effects of the solidification are considered by specifying a large solid 
viscosity Sμ , which forces the velocity to be equal to the system velocity. In this 
case, the slurry region is the only region considered in the mushy zone, the 
system velocity is the velocity of a pure solid. While, in the case with considered 
slurry region and the porous media region, the problem arises, how to treat the 
coupling of both regions. Here, it is worth to mention the extension of the 
mixture continuum model [Ni and Incropera, 1994], which involves the 
modelling of the solid movement in the form of floating or settling crystals. 
The porous media involves a solid matrix consisting of the columnar dendrites 
and the interdendritic liquid phase, filled between the dendrites. Between the 
dendrites, the interdendritic liquid is flowing or it is captured, depending on the 
size of the pores. The size of the pores between the dendrites is defined by the 
primary and secondary arm spacing. In the early stage of formation this region, 
the pores are large enough to allow flow of the liquid phase through the porous 
matrix. While in the later stages, the pores are so small that they could capture 
the liquid between the dendrites. The captured liquid is therefore moving along 
with the porous matrix with the prescribed casting velocity. From the numerical 
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point of view, the flow in the porous matrix is treated by the Darcy law, 
explained in the continuation of this chapter. 
In a pure solid region, the material is completely solidified, and forms the solid 
shell. The solid shell is moving in the casting direction with the withdrawal 
speed, determined by the dummy-bar and powered rolls motion. 
The physical model in the present dissertation involves only three regions: pure 
liquid, porous media, and pure solid. 
 

 
Figure  2.3: Solidification process in the strand. 

2.5 Mixture Continuum Model 

In the mixture continuum approach, mass, momentum and energy continuum 
equations are obtained by summing-up the general phase conservation equation 
over each phase, where the interactions of one phase with the other phases are 
considered by including the source terms in the individual phase conservation 
equations. The derived system of continuum equations is valid throughout the 
physical domain, which comprises solid, liquid and mushy zone. The model is 
easily implemented by single-phase numerical procedures but has several 
limitations, such as: 

• the thermal and the species non-equilibrium is not treated, 
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• the interfacial species transfer is neglected, 
• the specific interfacial geometry and the solid structures have not been 

incorporated into the model, and 
• the linkage between the physical phenomena occurring on the 

macroscopic and the microscopic scales are weak in general. 
A continuum (see Figure  2.4) is composed of N℘  distinct separable phases ℘. 
Any location p  can be occupied by all phases. The mean velocity of the phase 
℘, relative to a fixed reference frame, is termed as the phase velocity ℘u . The 
partial density ρ℘  of the phase ℘, which describes the relationship between the 
phase density ρ℘  and the phase volume fraction f℘ , can be expressed as 

 fρ ρ℘ ℘ ℘= , (2.49) 

where f℘  is the volume fraction of the phase ℘, i.e. 

 
V

f
V
℘

℘ = , (2.50) 

with V℘  and V  standing for volume of phase ℘ and the volume of continuum, 
respectively. Then the mixture density and the averaged mixture velocity of the 
mixture continuum are defined as 

 
N

ρ ρ
℘

℘=∑ , (2.51) 

 
1

N

f ρ
ρ

℘

℘ ℘ ℘= ∑u u . (2.52) 

The relationship between the phase volume fractions is explicitly given by the 
following statement, i.e. no porosity is assumed 

 1
N

f
℘

℘ =∑ . (2.53) 

A general transport equation of a scalar φ℘  of the phase ℘ in a multiphase 
mixture can be expressed in a differential form as 

 ( ) ( ) ( )f f S
t
ρ φ ρ φ℘ ℘ ℘ ℘ ℘ ℘ ℘ ℘ ℘

∂ +∇ ⋅ = −∇ ⋅ +
∂

u J , (2.54) 

where ℘J  and S℘  are the diffusion flux vector and the volumetric source terms, 
respectively. The conservation equations of the mixture are then obtained by the 
summation of the individual equations of phases. 
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The complete derivation of the conservation equations for binary alloy 
solidification has been explained in detail in [Bennon and Incropera, 1987]. In 
the present dissertation, only the final form of each equation is represented. 
 

 
Figure  2.4: Multiphase continuum. u : mass averaged mixture velocity. ℘u : velocity of phase 

℘ . 

2.5.1 Turbulence Modelling in Porous Media 

Turbulence modelling in porous media remains an open issue in engineering and 
science. There is a little attention given to this topic [Antohe and Lage, 1997], 
especially in the modelling of the solid-liquid alloy solidification. The complete 
derivation of the macroscopic transport equations for mass, momentum, energy, 
turbulent kinetic energy, and the dissipation rate was for the first time made in 
great detail by Antohe and Lage [Antohe and Lage, 1997]. They assumed the 
incompressible turbulent flow of the fluid in porous media where the solid phase 
is assumed to be rigid, isotropic and fixed. The derivation starts by writing the 
instantaneous form of the momentum equation for the liquid velocity in porous 
media. Then the same equation was time-averaged by the Reynolds approach. 
The transport equation for the turbulent kinetic energy is obtained by subtracting 
the time-averaged momentum equation from the instantaneous momentum 
equation, and multiplying it by the fluctuating velocity. The derived equation is 
then time-averaged to obtain the time-averaged transport equation for the 
turbulent kinetic energy. The transport equation for the dissipation rate is 
obtained by a similar procedure. Additional terms, such as the Darcy’s 
(microscopic viscous drag) term, Forcheimmer (microscopic form drag) term, 
Brinkman (viscous diffusion) term, and Bousinesq-Oberbeck (buoyancy) term, 
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which are included in the momentum equation as the source term, describing the 
physical phenomena in porous media, remains also in the derived equation for 
the turbulent kinetic energy and the dissipation rate. 
In modelling of the continuous casting of steel, the majority of the researchers 
are using a single-phase formulation of all involved equations, i.e. mass, 
momentum, energy, the turbulent kinetic energy, and the dissipation rate, to 
describe the solidification process in the mushy region, which is treated as a 
porous medium. In the single-phase formulation, the mushy region is treated as a 
single-phase, where the solidification effects on the convection are considered 
by the Darcy’s source term. The Darcy’s source term in the momentum equation 
damps the velocity in the mushy zone to the prescribed velocity of the solid 
phase. How fast the Darcy’s term damps the velocity field, greatly depends on 
the permeability of the porous media. In the solidification of alloys, the 
permeability is usually described by the Kozeny-Karman relation, in which the 
permeability is a function of a liquid fraction and the morphology constant of the 
porous matrix. The morphology constant is a free parameter, and defines how 
fast the Darcy’s term damps the velocity field. Some researches [Shyy et al., 
1992; Lan and Khodadadi, 2001; Wiwatanapataphee et al., 2004] set the value 
around 610  (N⋅s⋅m−4) as the mushy zone constant, but some others [Aboutalebi 
et al., 1995; Seyedein and Hasan, 1997; Kim et al., 2000] use the relation by 
[Minakawa et al., 1985] as the permeability constant, which yields the value 
around 1010 m−2. The transport equations of the turbulence model are also 
described in a single-phase form without additional terms describing the 
turbulent effects. This yields the same equations as defined for the turbulent flow 
of a pure liquid. Prescott and Incropera [Prescott and Incropera, 1995] used the 
mixture continuum formulation [Bennon and Incropera, 1987] to describe the 
turbulent effects to a binary alloy solidification. The transport equations for the 
turbulent kinetic energy and the dissipation rate are written in a single-phase 
formulation, where the turbulent viscosity is treated as the liquid one. In their 
work, the Darcy’s term is added to the transport equation for the turbulent 
kinetic energy, but the transport equation for the dissipation rate is defined 
without Darcy’s term. A similar approach was used by [Aboutalebi et al., 1995], 
however the Darcy’s term was added in both equations, i.e. for the turbulent 
kinetic energy and the dissipation rate. 
In the present dissertation, we use the approach by [Antohe and Lage, 1997] to 
derive the macroscopic mixture transport equations for the turbulent kinetic 
energy and the dissipation rate. 
The mass, momentum and energy time-averaged equations are obtained in the 
following way. First, each transport equation for an arbitrary scalar quantity φ  
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for each phase is summed together to obtain the mixture form. Then, the derived 
equations are time-averaged to get the final equations. 

2.5.2 Mass Conservation 

The mass conservation equation is derived from equation (2.54) with 1φ℘ = , 
0℘ =J  and S M℘ ℘= � , where M℘

�  is production of phase ℘. Because 
0

N
f M

℘
℘ ℘ =∑ � , the final time-averaged form is written as 

 ( ) 0
t

ρ ρ∂ +∇⋅ =
∂

u .
 

(2.55)
 

2.5.3 Momentum Conservation 

The momentum equation is derived from the equation (2.54) with φ℘ ℘= u , 
( )2p μ℘ ℘ ℘

= − +J I S  and p fρ℘ ℘ ℘ ℘= +S F B , i.e. 

 
( ) ( ) 2 L p f

L

P
t

ρρ ρ μ
ρ

⎡ ⎤∂ +∇⋅ = −∇ +∇⋅ + +⎢ ⎥∂ ⎣ ⎦
u uu S F B , (2.56) 

where pF  and fB  are the phase interaction force in the multiphase region and 
the buoyancy force, respectively. 
In the present dissertation, the multiphase region (mushy region) is characterized 
by a permeable solid matrix, which can be stationary or its motion is prescribed 
by the predefined constant velocity, as in continuous casting processes. For such 
systems, the fluid flow in the mushy region can be modelled as flow through 
porous media, where the Darcy law can be used. By the Darcy’s law, the phase 
interaction force is proportional to the superficial liquid velocity relative to the 
velocity of the porous solid, i.e. 

 L
p L rf

K

μ=F u , (2.57) 

where K  is the permeability and r L S= −u u u  is the relative velocity. The 
permeability can be described as a function of the porosity or a function of the 
liquid fraction. In the process of continuous casting of steel, the velocity of the 
solid phase is constant and prescribed in advance, and assuming that the phase 
densities are constant, the final equation of the phase interaction force [Bennon 
and Incropera, 1987] is defined as 

 
( )L

p S
LK

μ ρ
ρ

= − −F u u . (2.58) 
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The permeability in equation (2.58) is defined as a function of liquid fraction in 
such a way, that when the liquid fraction decreases, permeability also decreases, 
and forces all the velocities to value zero in the case of stationary solid phase, or 
to the prescribed constant velocity in the case of continuously moving solid 
phase (rigid body), such as in the continuous casting. A well known expression 
for obtaining the permeability is the Kozeny-Carman equation 

 ( )
3

2
1

L

L

f
K

C f
=

−
, (2.59) 

where C  is a morphology constant of the porous media. The buoyancy body 
force fB  in equation (2.56) is defined by the following relation 

 
( )f L T refT Tρ β= −B g , (2.60) 

where Tβ , g  and refT  are the thermal expansion coefficient of the fluid, the 
gravitational acceleration, and the reference temperature, respectively. 
The time-averaged momentum conservation equation (2.56) of the mixture is 
obtained as 

 

( ) ( ) ( )' '2 L p f
L

P
t

ρ ρρ μ ρ
ρ

∂ ⎛ ⎞
+∇⋅ = −∇ +∇⋅ + + −∇⋅⎜ ⎟∂ ⎝ ⎠

u
uu S F B u u . (2.61) 

In the equation (2.61), the last term is the Reynolds-stress tensor, which is 
defined by the equation (2.13). After substituting the equation (2.13) into the 
equation (2.61), we get the final time-averaged momentum equation 

 ( ) ( ) 2
2

3L t
L

P k
t

ρρ ρ μ μ ρ
ρ

⎡ ⎤⎛ ⎞∂ +∇ ⋅ = −∇ +∇⋅ + − ∇ +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
u uu S   

 p f+F B . (2.62) 

2.5.4 Energy Conservation 

A mixture continuum energy conservation equation for binary solid-liquid 
phase-change is derived from the equation (2.54) with hφ℘ ℘= , Tλ℘ ℘= ∇J  and 
S E℘ ℘= � , i.e. 

 ( ) ( ) ( )S S S S L L L Lh f h f h T
t
ρ ρ ρ λ∂ + ∇ ⋅ + = ∇ ⋅ ∇

∂
u u . (2.63) 

In equation (2.63) h  is defined as the mixture enthalpy, i.e. 
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( )S S S L L Lf h f h

h
ρ ρ

ρ
+

= , (2.64) 

where the constitutive temperature-enthalpy relationship Sh  and Lh  are 

 ref

T

S p ST
h c dT= ∫ , (2.65) 

 
( ) ( )S

ref S S

T T T

L p S p L m S p L p S mT T T
h c dT c dT h h T c c dT h= + + = + − +∫ ∫ ∫ , (2.66) 

respectively [Šarler and Kuhn, 1998a]. The mixture thermal conductivity λ  is 
defined through the mixture rule, i.e. 

 S S L Lf fλ λ λ= + . (2.67) 

The time-averaging procedure of the equation (2.63) gives the following time-
averaged energy equation 

 ( ) ( ) ( ) ' '
S S S S L L L L S S S Sh f h f h T f h

t
ρ ρ ρ λ ρ∂ +∇⋅ + = ∇⋅ ∇ −∇ ⋅ −

∂
u u u  

 ' '
L L L Lf hρ∇⋅ u . (2.68) 

The last two terms in the equation (2.68) are known to be the turbulent heat 
fluxes. They are modelled by the Boussinesq formula. The modelled turbulent 
heat flux is prescribed as 

 

' ' t

t

h h
μ

ρ
σ

℘
℘ ℘ ℘ ℘= − ∇u , (2.69) 

where tσ  is the turbulent Prandtl number, which depends on the selected EVM. 
As already discussed, its value is around 1 [Launder and Sharma, 1974; Willcox, 
1993]. Because we are dealing with the systems where the velocity of solid 
phase is zero or constant, the fluctuating part of the velocity of solid phase '

Su  is 
equal to zero, i.e. 

 

' ' 0S S S Sf hρ =u , (2.70) 

while the second turbulent heat flux has a non-zero value, and it is defined by the 
following equation 

 

' ' L t
L L L L L L

t

f h f h
ρ νρ
σ

= − ∇u , (2.71) 
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where tν  is the turbulent kinematic viscosity, i.e. 

 
2

t

k
c fμ μν

ε
= . (2.72) 

2.5.5 Transport Equations of the Turbulence Model 

Turbulence modelling by the LRN turbulent models requires solving two 
additional mixture transport equations for k  and ε . Their derivation is tedious 
and complex to understand, but explained in great details in various works 
[Antohe and Lage, 1997; Bredberg, 1999; Davidson, 2003]. By considering 
these works, the derivation of the mixture form of the momentum equation is the 
same as for the single-phase [Bredberg, 1999; Davidson, 2003], except an 
additional source term is involved due to the Darcy’s term is the mixture 
momentum equation [Antohe and Lage, 1997]. Also the density ratio in the 
diffusive term of the mixture momentum equation remains in both equations of 
the turbulence model. The final form of the two transport equations are 

 
( ) ( ) t

L k k
L k

k k k P G
t

μρρ ρ μ ρε
ρ σ

⎡ ⎤⎛ ⎞∂ +∇⋅ = ∇⋅ + ∇ + + − +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
u

  
 pkD Fρ + , (2.73) 

 ( ) ( ) t
L

Lt ε

μρρε ρ ε μ ε
ρ σ

⎡ ⎤⎛ ⎞∂ +∇⋅ = ∇ ⋅ + ∇ +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
u  

 ( )1 1 3 2 2k k pc f P c G c f E F
kε ε ε ε
ερε ρ+ − + +⎡ ⎤⎣ ⎦ , (2.74) 

where pkF  and pF ε  represent additional damping source terms for k  and ε , 
respectively. They both have a similar form and meaning as the Darcy’s term, 
equation (2.58), in the momentum equation (2.62), i.e. 

 L
pk

L

F k
K

μ ρ
ρ

= − , (2.75) 

 L
p

L

F
Kε
μ ρ ε

ρ
= − . (2.76) 

In both equations (2.73) and (2.74), the kG  is the generation of turbulence due to 
the buoyancy force, defined as 
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 t
k T

t y

T
G g

p

νβ
σ

∂= −
∂

. (2.77) 

kG  is multiplied in the equation (2.74) by the closure coefficient 3c ε , which is in 
the present dissertation calculated by the following relation [Henkes et al., 1991] 

 
3 tanh

u
c

uε
⊥

= � . (2.78) 

In the above equation, u
�
 and u⊥  are the velocity components, parallel and 

perpendicular to the gravitational vector, respectively. 
Also other approaches, without Darcy’s terms, can be used to account for the 
solidification effects to the turbulent flow in a porous media, such as modifying 
the damping function fμ  

in the turbulence model. In [Shyy et al., 1992], the 
authors suggested the following relation

 

 
Lf f fμ μ= . (2.79) 

This technique was also used in modelling of the heat and fluid flow with 
solidification in the continuous casting processes [Lan and Khodadadi, 2000]. 

2.6 The Complete System of the Macroscopic 
Conservation Equations 

In this section, the complete set of previously described governing equations for 
solving the incompressible turbulent flow with solidification is given. The 
derived system of macroscopic transport equations describes the physical model 
of the metal solidification in the continuous casting process of steel. All other 
numerical examples in the present dissertation rely on this system of equations, 
where some terms (Darcy’s terms, body-force terms, etc.) are neglected or 
modified based on the physical nature of the treated such problem. From this 
point on, an over-bar of the time-averaged variables is omitted. 
The conservation equations for the mass, momentum, energy, turbulent kinetic 
energy, and dissipation rate are, respectively, given as 

 0∇⋅ =u , (2.80) 

 ( ) ( ) ( ){ }T 2

3L tP k
t

ρ ρ μ μ ρ∂ ⎡ ⎤+ ∇⋅ = −∇ +∇⋅ + ∇ + ∇ − ∇ −
⎣ ⎦∂
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uu u u   
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−
− + −u u g , (2.81) 
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 ( ) ( ) ( )S S S L L L

h
h T h f h f h

t
ρ ρ λ ρ∂ + ∇⋅ = ∇⋅ ∇ + ∇⋅ − − +
∂

u u u u   

 L t
L L

t

f h
ρ ν
σ

⎛ ⎞
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⎝ ⎠
, (2.82) 
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−
+ − + −⎡ ⎤⎣ ⎦ . (2.84) 

2.7 Initial Conditions 

It is well known that all five transport equations (2.80), (2.81), (2.82), (2.83) and 
(2.84) are strongly coupled. So it is very important how we choose the initial 
conditions for each transport variable. The initial condition for velocity field is 
obtained by solving the potential field 

 2 0ϕ∇ = , (2.85) 

where ϕ  stands for velocity potential. Laplace equation (2.85) is solved by the 
sparse-matrix approach [Lee et al., 2003], presented in Section  3.5. The 
following boundary conditions are used: 

• At the inlet boundaries and solid walls, the Neumann boundary 
conditions for velocity potential are prescribed 

 
ϕ

Γ
Γ

∂ = − ⋅
∂

u n
n

, (2.86) 

where Γn  is a normal vector on boundary Γ . 
• At the outlet boundaries, the Dirichlet boundary conditions for velocity 

potential are set to 

 0ϕ = . (2.87) 
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After solving the potential flow field, the velocity field in the domain is obtained 
by the following relation 

 ϕ= ∇u . (2.88) 

This procedure guarantees the solenoidality of the initial velocity field, which 
helps to improve the convergence of the solution during the early stages of such 
simulation. 
The initial temperature field is set to a constant value for all computations in the 
present dissertation. 
In order to prescribe the proper initial conditions for k  and ε , two different 
techniques might be employed: 

• Use of the uniform profile for both k  and ε . A few thousand time steps 
have to be usually performed with smaller time step to achieve the 
consistency between the velocity, pressure, k  and ε . When a large 
mismatch of the transport variables at the initial times is reduced, larger 
time steps can be used. 

• Use of the assumption of the turbulent equilibrium [Yoder and 
Georgiadis, 1999], where the production of the k  equals the rate of 
dissipation. In order to use this technique, another turbulence model, 
usually algebraic model, is first run to get initial values of the turbulent 
viscosity. 

In the present dissertation, the turbulence transport variables are initialized by 
the first approach. 

2.8 Boundary Conditions 

Four different types of boundaries are considered in the present dissertation: 
inlet, outlet, symmetry, and wall. The following boundary conditions are used at 
these boundaries: 

• At the inlet boundary, the Dirichlet boundary conditions for velocity 
components, temperature, k  and ε  are prescribed. 

• At the outlet boundary, the Neumann boundary conditions for velocity 
components, temperature, k  and ε  are prescribed and set to zero, i.e. 

 0
Γ

∂ =
∂

u
n

, 0
T

Γ

∂ =
∂n

, 0
k

Γ

∂ =
∂n

, 0
ε
Γ

∂ =
∂n

. (2.89) 

• At the symmetry line, the same Neumann boundary conditions as for the 
outlet boundary are used, except for the velocity component, 
perpendicular to the symmetry line, where the Dirichlet boundary 
conditions are prescribed and set to zero. 
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• At the wall, the Dirichlet no-slip boundary conditions are set, which 
implies that the velocity components, k  and ε  are all set to zero. When 
using AKN turbulence model, ε  is set by the equation (2.36). Regarding 
the temperature, Dirichlet, Neumann, or Robin boundary conditions can 
be prescribed. 
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3 Local Radial Basis Function 
Collocation Method 

RBF approximations have been demonstrated to be most useful in many 
scientific and technological fields. Applications of such approximations in the 
context of interpolation are manifold. This chapter represents the LRBFCM for 
interpolating scattered data and for solving the PDEs. Some of the most 
important types of RBFs are presented. The RBFCM for interpolating scattered 
data and solving the PDE [Kansa, 1990a; Kansa, 1990b] is introduced. Its local 
version, i.e. LRBFCM [Šarler and Vertnik, 2006], is derived and explained in 
details. 

3.1 Radial Basis Functions 

RBFs can be expressed in the following form 

 ( ) ( )i irψ ψ= −p p ; : d
iψ →� � , (3.1) 

and depend only on the distance between the position vector d∈p �  and the 
reference position vector d

i ∈p �  ( ip  is usually called the centre) and are 
radially symmetric. This means that any rotation makes no difference to the 
function value. This explains the term radial. In equation (3.1), �  represents 
real number, d  spatial dimension, and r  radial distance.  
For two-dimensional Cartesian system, the position vector p  is represented by 

 x x y yp p= +p i j , (3.2) 

where xp , yp  are the Cartesian coordinates and xi , yj  Cartesian base vectors of 
the position vector p . The radial distance between two vectors is defined by the 
Euclidean norm 

 2 2( ) ( )i x xi y y ir p p p p= − = − + −p p . (3.3) 

To explain basis function part, let’s suppose we have fixed certain reference 
vector points (called centres) 1,...,

d
N ∈p p �  and the following function ( )F p  
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which is represented as a linear combination of the function ψ  centred at the 
points ip  

 ( ) ( )
1

N

i i
i

F αψ
=

≈∑p p ; ( ) ( )i iψ ψ= −p p p , (3.4) 

where N  and iα  stands for a number of points and expansion coefficients, 
respectively. So we have approximated a function ( )F p  which is in the function 
space spanned by the basis functions ( )iψ p . Some commonly used forms of the 
RBF are: 

• Gaussian (GA) (Figure 3.1a) 

 ( ) ( )2crr eψ −= , (3.5) 

• multiquadric (MQ) (Figure 3.1b) 

 ( ) 2 2r r cψ = + , (3.6) 

• inverse multiquadric (IMQ) (Figure 3.1c) 

 ( )
2 2

1
r

r c
ψ =

+
, (3.7) 

• thin plate spline (TPS) (Figure 3.1d) 

 ( )
2

log
r r

r
c c

ψ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (3.8) 

In all numerical examples in the present dissertation, only the MQ-RBF are used. 
The choice is made on the basis of multivariate interpolation tests [Franke, 
1982], where the best accuracy was found with MQ-RBFs. This function include 
the free parameter c , which has to be predetermined or set as a part of the 
solution. Since there is still no rigorous mathematical background for its 
determination, the parameter is chosen based on the numerical experiments. The 
MQ-RBF is plotted in Figure 3.2 as a function of the free parameter. 
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                a)                                                             b) 

 
 
                c)                                                             d) 

 
Figure  3.1: Some of the most commonly used RBFs. a) GA-RBF, b) TPS-RBF, c) MQ-RBF, 

and d) IMQ-RBF. All functions are calculated with the free parameter 0.5c = . 
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Figure  3.2: MQ-RBF with different values of the free parameter. 

3.2 Radial Basis Function Collocation Method for 
Interpolating Scattered Data 

A problem frequently occurring in science and engineering is the approximation 
of a function F , the value of which is known only on a set of points. One way to 
obtain such an approximation is by interpolation. For one-dimensional (1D) 
problems, many methods exist for solving this problem. Most of them (e.g. 
polynomial and piecewise polynomial splines) involve the same general idea: for 
a given set of N  data points 

1
,...,

Nx xp p ∈� and corresponding data values 

1,..., Nf f ∈� , a set of basis functions ( ) ( )1 ,...,x N xp pψ ψ ∈�  is chosen such 
that a linear combination of these functions satisfies the interpolation conditions. 
To be more specific, a function ( )xF p  is sought of the form 

 ( ) ( )
1

N

x i i x
i

F p pαψ
=

≈∑ , (3.9) 

such that ( )
ix iF p f=  for 1,...,i N= . The interpolation conditions lead to a linear 

system of equations which determines the expansion coefficients iα  as 
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 ( )
1

N

i i x j j
i

p fαψ
=

=∑ , 1,...,j N= . (3.10) 

The procedure is also depicted as a block diagram in Figure 3.3. For many 
choices of the basis functions ( )i xpψ , this linear system is guaranteed to be 
non-singular, whenever the data points 

1
,...,

Nx xp p ∈�  are distinct. 
For data sets in more than one-dimension, the prescribed approach with 
polynomial basis (independent of the data points) no longer works. It can be 
shown that there exist distinct data sets, for which linear system of equation for 
determining the expansion coefficients becomes singular (i.e. there does not 
exist an interpolation in the form of equation (3.9)). However, with piecewise 
polynomial splines, it is possible to interpolate data in two and three dimensions. 
This technique works very well for gridded or otherwise highly regularly 
distributed data sets. For scattered data sets, we usually need a triangulation, 
which is not a trivial task for complex two and especially for three dimensional 
problems. The reason for this is that it has to be decided where the piecewise 
polynomials lie and where they are joined smoothly together. 
Instead of taking a linear combination of a set of basis functions that are 
independent of the data points, one takes a linear combination of translates of a 
single basis function that is radial symmetric about its centre. This approach, 
pioneered by Hardy [Hardy, 1971], is referred to as the MQ method. Hardy used 
MQ-RBF as the basis function to solve a problem from cartography. Namely, 
given a set of sparse, scattered measurements from some source points on a 
topographic surface, construct a "satisfactory" continuous function that 
represents the surface. 
The RBFCM is a generalized version of the Hardy's MQ method, and is defined 
as follows: Given a set of N  distinct data points 1,...,

d
N ∈p p �  and 

corresponding data values 1,..., Nf f ∈� , the RBF interpolation is given by 

 ( ) ( )
1

N

i i
i

F αψ
=

≈∑p p ; i ir = −p p , (3.11) 

where ( )irψ  is some radial function and ⋅  is the Euclidean norm (3.3). The 
expansion coefficients iα  are determined from the interpolation conditions 

 ( )i iF f=p ; 1,...,i N= , (3.12) 

which leads to the following linear system of equations 

 =Ψα f , (3.13) 

where the components of Ψ  are given by ( )ij i jψΨ = −p p . The whole 
procedure is also represented in 1D as a block diagram in Figure 3.4. The 
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method has the ability to handle arbitrarily scattered data, to be easily 
generalized to several space dimensions, and to provide spectral convergence. 
Respectively, the method became very popular in several different types of 
applications. Some of these applications include cartography, neural networks, 
medical imaging [Carr et al., 1997], surface fitting [Carr et al., 2001; Carr et al., 
2003], surface reconstruction [Carr et al., 2001], and the numerical solution of 
PDEs [Kansa, 1990a; Kansa, 1990b]. 
More detailed description of the RBF methods can be found in recent 
monographs [Buhmann, 2003; Liu, 2003; Liu ang Gu, 2005]. 
 

 
Figure  3.3: Block diagram of the polynomial interpolation in 1D. 

 
 
 
 
 

and function values 

if ∈� ; 1,...,i N=  

for a given set of N  data nodes 

x ip ∈� ; 1,...,i N=  

a set of polynomial basis 
functions is chosen 

( ) ( )1 ,...,x N xp pψ ψ ∈�  

and the interpolation conditions are set 

( )xi iF p f= ; 1,...,i N=  

linear combination of basis functions 

( ) ( )
1

N

x i i x
i

F p pαψ
=

≈∑  

a linear system of equations is solved 

( )
1

N

i i x j j
i

p fαψ
=

=∑ ; 1,...,j N=  
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Figure  3.4: Block diagram of the RBF interpolation in 1D. 

3.3 Radial Basis Function Collocation Method (Kansa) 
for Solving PDEs 

In recent decade the RBFCM became a useful alternative to FDM and FEM for 
solving partial differential equations. We are focusing on pure collocation 
method for this purpose which was first introduced by Kansa [Kansa, 1990a; 
Kansa, 1990b]. In this method, the PDE and the boundary conditions are 
satisfied by collocation. We are giving an example for solving a Poisson 
boundary value problem. 
Consider a domain Ω  with boundary Γ , shown in Figure  3.5. We have to solve 
the following Poisson equation 

 ( )2 ( ) Sφ Ω∇ =p p ; ∈Ωp  (3.14) 

and function values 

if ∈� ; 1,...,i N=  

for a given set of N  data nodes 

x ip ∈� ; 1,...,i N=  

a single basis function is chosen 

( )x x ip pψ − ∈� ; 1,...,i N=  

and the interpolation conditions are set 

( )xi iF p f= ; 1,...,i N=  

linear combination of basis functions 

( ) ( )
1

N

x i x x i
i

F p p pαψ
=

≈ −∑  

a linear system of equations is solved 

( )
1

N

i x j xi j
i

p p fαψ
=

− =∑ ; 1,...,j N=  
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defined in the domain Ω , subject to the Dirichlet boundary conditions on the 
part of the boundary DΓ  and Neumann boundary conditions on the part of the 
boundary NΓ , where D NΓ = Γ ∪Γ . 

 ( ) ( )DSφ Γ=p p ; D∈Γp , (3.15) 

 ( ) ( ) ( )NS
φ

φ Γ Γ
Γ

∂
∇ ⋅ = =

∂
p

p n p
n

; N∈Γp , (3.16) 

where p  stands for the position vector, and Γn  for the normal on the boundary. 
We discretize the domain with NΩ  domain points and the boundary with NΓ  
boundary points, of which DNΓ  coincide with the Dirichlet part of the boundary 
and NNΓ  with the Neumann part of the boundary. The total number of the 
discretization points is 

 D NN N N N N NΩ Γ Ω Γ Γ= + = + + . (3.17) 

The points are denoted ; 1, 2,...,i i N=p . In Kansa’s method, the approximate 
solution for the problem (3.14)-(3.16) can be expressed as  

 ( ) ( )
1

N

i i
i

φ ψ α
=

=∑p p , (3.18) 

where iα  is an expansion coefficient to be determined from collocation (i.e. 
interpolation) and ( ) ( )i iψ ψ= −p p p  is a RBF. The coefficients α  are computed 
by solving the following linear system of equations 

 1−=α Ψ φ ; ( )ij j iψ ψ= p ; ( )i iφ φ= p . (3.19) 

By using the solution of the system (3.19), the equations (3.14)-(3.16) can be 
written as 

 ( )2 1

1 1

( ) ψ

N N

j i jk k i
j k

Sψ φ−
Ω

= =

∇ =∑ ∑p p ; 1,2,...,i NΩ= , (3.20) 

 ( )1

1 1

( ) ψ

N N
D

j i jk k i
j k

Sψ φ−
Γ

= =

=∑ ∑p p ; 1, 2,..., Di N N N NΩ Ω Ω Γ= + + + , (3.21) 

 ( ) ( )1

1 1

( ) ψ

N N
N

j i jk k i
j k

Sψ φ−
Γ Γ

= =

∇ ⋅ =∑ ∑p n p ; 

 1, 2,...,D Di N N N N NΩ Γ Ω Γ= + + + + . (3.22) 
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The equations (3.20)-(3.22) can be written in a compact form as the following 
system of equations for each point ip  

 ( ) ( )2 1 1

1 1 1 1

N N N N
D

i j i l jk k i j i l jk k
j k j k

ψ φ ψ φ− −
Ω Γ

= = = =

ϒ ∇ Ψ + ϒ Ψ +∑ ∑ ∑ ∑p p  

( ) 1

1 1

N N
N D D N N

i j i l jk k i i i i i i
j k

S S Sψ φ−
Γ Γ Ω Ω Γ Γ Γ Γ

= =

ϒ ∇ ⋅ Ψ = ϒ + ϒ + ϒ∑ ∑p n ; 1, 2,...,i N= , (3.23) 

where we introduced the domain and the boundary indicators 

 ( ) 0;

1;Ω

∉Ω⎧
ϒ = ⎨ ∈Ω⎩

p
p

p
, (3.24) 

 ( ) 0;

1;

D
D

DΓ

⎧ ∉Γ
ϒ = ⎨

∈Γ⎩

p
p

p
, (3.25) 

 ( ) 0;

1;

N
N

NΓ

⎧ ∉Γ
ϒ = ⎨

∈Γ⎩

p
p

p
. (3.26) 

The system of equations (3.23) can be written in a compact form 

 
1

N

ij i i
i

Sφ
=
Ψ =∑ ; 1, 2,...,j N= , (3.27) 

with matrix elements ijΨ   

 ( ) ( )2 1 1

1 1 1 1

N N N N
D

ij i j i jk i j i jk
j k j k

ψ ψ− −
Ω Γ

= = = =

Ψ = ϒ ∇ Ψ + ϒ Ψ +∑ ∑ ∑ ∑p p   

 ( ) 1

1 1

N N
N

i j i jk
j k

ψ −
Γ Γ

= =

ϒ ∇ ⋅ Ψ∑ ∑p n , (3.28) 

 D D N N
i i i i i i iS S S SΩ Ω Γ Γ Γ Γ= ϒ + ϒ + ϒ . (3.29) 
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Figure  3.5: Typical node arrangement for the meshless methods. Red empty circles: boundary 

nodes. Green full circles: domain nodes. 

 
We can easily see that the implementation of Kansa's method is quite simple and 
straightforward. These are the main reasons that this technique is getting popular 
and has been applied to many areas such as the solution of N-S equation [Mai-
Duy and Tran-Cong, 2001; Šarler, 2005] or the solution of solid-liquid phase-
change problems [Kovačević et al., 2003] and porous media flow [Šarler et al., 
2004]. In contrast to formulation advantages of this method, collocation systems 
are often very badly conditioned, especially for larger problems (more than 
approximately thousand centers). The free parameter c  has to be very carefully 
chosen in order to achieve sufficient conditioning of the matrix. The method has 
been further upgraded to symmetric collocation [Fasshauer, 1997; Power and 
Barraco, 2002], to modified collocation [Chen, 2002] and to indirect collocation 
[Mai-Duy and Tran-Cong, 2003]. In contrast to advantages over mesh 
generation, all the listed methods unfortunately fail to perform for large 
problems, because they produce fully populated matrices, sensitive to the choice 
of the free parameters in RBFs. One of the possibilities for mitigating this 
problem is to employ the domain decomposition [Mai-Duy and Tran-Cong, 
2002]. However, the domain decomposition re-introduces some sort of meshing 
which is not attractive. The concept of local collocation in the context of RBF-
based solution of Poisson equation has been introduced by [Lee et al., 2003; 
Tolstykh and Shirobokov, 2003]. For interpolation of the function value in a 
certain node the authors use only data in the (neighbor) nodes that fall into the 
influence domain of this node. The procedure results in a matrix that is of the 
same size as the matrix in the original Kansa method, however it is sparse. The 
circular influence domains have been used in [Lee et al., 2003] where 1D and 
2D Poisson equation has been solved by using MQ-RBFs and IMQ-RBFs with a 
detailed analysis of the influence of the free parameter on the results. In 
[Tolstykh and Shirobokov, 2003] the stencil-shaped domains have been used 
where a class of linear and non-linear elasticity problems have been solved with 
a fixed free parameter. The differential quadrature method, that calculates the 
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derivatives of a function by a weighted linear sum of functional values at its 
neighbor nodes has been structured with the RBFs in [Shu et al., 2003]. Despite 
the local properties, the matrix still has a similar form as in [Lee et al., 2003; 
Tolstykh and Shirobokov, 2003]. Mathematically it represents the same method 
as [Šarler and Vertnik, 2006]. 

3.4 Local Collocation with RBFs 

The local collocation method with RBF’s, i.e. LRBFCM, was developed in order 
to circumvent the ill-conditioning problem in solving large PDE problems with 
global Kansa method. The idea comes from diffuse approximate method (DAM) 
[Nayroles et al., 1988; Sadat and Couturier, 2000; Vertnik et al., 2004], which 
approximates a function locally over a set of neighbour nodes. The neighbour 
nodes are usually situated around the vicinity of the observed node. The 
polynomial functions are used as a basis functions, and a function is 
approximated by the Weighted Least Squares (WLS) method. The same 
technique is used in the LRBFCM, but instead of the polynomial functions we 
use the MQ-RBFs, and the function is approximated by the collocation (i.e. 
interpolation). 
We start with the representation of the function over a set of l N  scattered nodes 

; 1,2,...,l j lj N=p  in the following way 

 ( ) ( )
1

l K

l k l k
k

F ψ α
=

≈∑p p , (3.30) 

where l kψ  stands for the shape functions, l kα  for the expansion coefficients of 
the shape functions, and l K  represents the number of the shape functions. The 
left lower index on entries of equation (3.30) represents the influence domain 

lω  on which the coefficients l kα  are determined. The influence domain lω  can 
in general be contiguous (overlapping) or non-contiguous (non-overlapping). 
Each of the influence domains lω  includes l N  nodes of which l NΩ  can in 
general be in the domain and l NΓ  on the boundary, i.e. l l lN N NΩ Γ= + . The 
influence domain of the node l p  is defined with the nodes having the nearest 

1l N −  distances to the node l p . The five noded 5l N =  influence domains are 
used in the present dissertation. Typically chosen influence domains are shown 
in Figure  3.6. For the domain node, the influence domain contains the domain 
and boundary nodes in general. While for the boundary node, the influence 
domain usually contains this boundary node and all the remaining nodes.  
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Figure  3.6: Node arrangement with typical influence domains. Green full circle: internal 

influence domain. Red empty circle: boundary influence domain. 

 
Let us assume the known function values l jf  in the nodes l jp  of the influence 
domain lω . The collocation implies 

 ( ) ( )
1

l N

l j l k l j l k
k

F ψ α
=

=∑p p . (3.31) 

For the coefficients to be computable, the number of the shape functions has to 
match the number of the collocation nodes l lK N= , and the collocation matrix 
has to be non-singular. The system of equations (3.31) can be written in a 
matrix-vector notation 

 l l l=ψ α f ; ( )l kj l k l jψ ψ= p ; ( )l j l jf F= p . (3.32) 

The coefficients lα  can be computed by inverting the system (3.32) 

 1
l l l

−=α ψ f . (3.33) 

By taking into account the expressions for the calculation of the coefficients lα , 
the collocation representation of function ( )u p  on influence domain lω  can be 
expressed as 

 ( ) ( ) -1

1 1

ψ

l lN N

l k l kj l j
k j

F fψ
= =

≈∑ ∑p p . (3.34) 

Let us introduce a two dimensional Cartesian coordinate system with base 
vectors ; ,x yς ς =i  and coordinates ; ,p x yς ς = , i.e. x x y yp p= +p i i . The first 
partial spatial derivatives of ( )F p  on influence domain lω  can be expressed as 

 ( ) ( ) -1

1 1

ψ

l lN N

l k l kj l j
k j

F f
p pς ς

ψ
= =

∂ ∂≈
∂ ∂∑ ∑p p ; ,x yς = . (3.35) 
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The second partial spatial derivatives of ( )F p  on influence domain lω  can be 
expressed as 

 ( ) ( )
2 2

-1

1 1

ψ

l lN N

l k l kj l j
k j

F f
p p p pς ζ ς ζ

ψ
= =

∂ ∂≈
∂ ∂∑ ∑p p ; , ,x yς ζ = . (3.36) 

The MQ-RBF is used for the shape functions 

 ( ) ( ) 1/22 2
l k l kr cψ ⎡ ⎤= +⎣ ⎦p p ; ( ) ( )2

l k l k l kr = − ⋅ −p p p p , (3.37) 

where c  represents the free parameter. The explicit values of the involved first 
and second derivatives of ( )kψ p  are 

 ( )
( )1/22 2

l k
l k

l k

p p

p r c

ς ς

ς

ψ
−∂ =

∂ +
p ; ,x yς = , (3.38) 

 ( ) ( )
( )

2 22

3/22 2 2

y l k

l k

l k

p p c

p r c

ς

ς

ψ
− +∂ =

∂ +
p ; ,x yς = , (3.39) 

 ( ) ( ) ( )( )
( )

2 2

3/22 2

l k l k

l k l k

l k

p p p p

p p p p r c

ς ς ζ ζ

ς ζ ξ ζ

ψ ψ
− −∂ ∂= = −

∂ ∂ +
p p ; 

 , ,x yς ζ = . (3.40) 

The calculated partial derivatives are then used to solve general transport 
equation in Section  4.2, which represents the solution of the initial value 
problem. While, the solution of the boundary value problem by the local 
approach is presented in Section  3.5. 

3.4.1 Optimal Free Parameter 

Selecting the value of optimal free parameter in RBFs is one of the important 
tasks in the discussed meshless method. The choice of the optimum value of this 
parameter is still an unresolved problem, and the optimum value is usually at the 
present state-of-the-art found by using numerical experiments. Some authors 
[Mai-Dui and Tran-Cong, 2001] claim that the free parameter is related to the 
typical grid distance. Other researchers [Zhang et al., 2000] did not find any 
relation, and claim simply that the optimum free parameter is problem 
dependent. Wang and Liu [Wang and Liu, 2002] analyzed the extended MQ, i.e. 
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 ( ) ( )2 2
l k l kr c

β
ψ ⎡ ⎤= +⎣ ⎦p p , (3.41) 

where the exponent β  is a free parameter as well. The authors concluded that by 
proper fixing of both parameters the solution becomes independent on the node 
density, node distribution and problem. [Lee et al., 2003] found that the results 
are less sensitive to the choice of the free parameter in the local collocation 
methods as in the global ones. The optimal value depends on the number of the 
nodes, the position of the nodes and the function value in the nodes in the 
influence domain. The number of nodes is usually fixed for all influence 
domains for an application, so the influence of the number of nodes is not 
considered. Since the nodes in the influence domain are usually scattered, the 
scale of the influence domain region for each reference node could be different, 
and the optimal free parameter for accurate numerical results may also be 
different. To assign different values of the free parameter for each node is very 
difficult. This difficulty can be handled at least in the following two ways: 

a) By using the dimensionless free parameter c   

The MQ-RBF (equation (3.37)) is changed into the following form 

 ( ) ( ) ( )
1/222

0l k l k lr c rψ ⎡ ⎤= +
⎣ ⎦

p p , (3.42) 

where 0l r  represents the scaling parameter (see Figure  3.7). The scaling 
parameter 0l r  is set to the maximum nodal distance in the influence domain 

 ( )0 maxl l i l jr r= p ; , 1, 2,..., li j N= . (3.43) 

The derivatives are calculated by the equations (3.38)-(3.40), where the free 
parameter c  is replaced by the dimensionless free parameter 0lc r . 

b) By using the normalized influence domain region 

The normalization of the influence domain is performed by scaling the distance 
in x  and y  direction (see Figure  3.8). In equation (3.37) the scaled radial 
distance l kr  between the two nodes is calculated as 

 

2 2

2

max max

y l kyx l kx
l k

l x l y

p pp p
r

p p

⎛ ⎞ ⎛ ⎞−−= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (3.44) 

where the scaling parameters 
maxl xp  and 

maxl yp  are set to the maximum nodal 
distance in both directions of the influence domain 

 ( )max
maxl l i l jp p pς ς ς= − ; , 1, 2,..., li j N= ; ,x yς = . (3.45) 
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The derivatives are calculated by the following equations 

 ( )
( )1/22 2

1

max

l k
l k

l l k

p p

p p r c

ς ς

ς ς

ψ
−∂ =

∂ +
p ; ,x yς = , (3.46) 

 ( ) ( )
( )

2 22

3/22 2 2 2

1

max

l k

l k
l l k

p p c

p p r c

ς ς

ς ς

ψ
− +∂ =

∂ +
p ; ,x yς = , (3.47) 

 ( ) ( ) ( )( )
( )

2 2

3/22 2

1

max max

l k l k

l k l k
l l l k

p p p p

p p p p p p r c

ς ς ζ ζ

ς ζ ζ ς ς ζ

ψ ψ
− −∂ ∂= = −

∂ ∂ +
p p ;  

 , ,x yς ζ = . (3.48) 

 

l 0
r

 
Figure  3.7: Local influence domain with the maximum nodal distance. Green node: reference 

node. Red nodes: neighbor nodes. 

 

                  
Figure  3.8: Local influence domain scaled with the maximum nodal distance in ς  and ξ  

direction. Left: influence domain before scaling. Right: after scaling. 
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3.4.2 Finding the Neighbours for Non-Uniform Node 
Arrangements 

One of the important tasks in using the local collocation is the selection of the 
optimal neighbours for the considered node. The optimal neighbours are nodes 
which are closest to the considered node and their spatial position assures the 
calculation of all derivatives, which are needed for solving the PDE. Finding the 
closest nodes for uniform node arrangements is a trivial task, since the closest 
nodes are already the optimum neighbours. The problem arises when dealing 
with non-uniform node arrangements. Than the closest nodes are not the optimal 
neighbours (see Figure  3.9). The problem with this influence domain is in 
calculation of the derivatives in vertical direction, where we do not have enough 
information. So, we must include at least two nodes in the y-direction, even if 
they are not the closest to the considered node. This could be achieved by 
searching the nodes in different quadrants. The following step-by-step procedure 
can be used: 

Step1 

The origin of the local Cartesian coordinate system is set at the considered node. 
The coordinate system is then divided into four quadrants, as shown in Figure 
 3.10 (left picture).  

Step2 

The Euclidian distances are calculated between each of the nodes and the 
considered node. For each node, we also calculate an angle based on the local 
coordinate system. 

Step3 

The optimal neighbours are those with the closest distance to the considered 
node, and at least one node must lie in each quadrant (see Figure  3.10, right 
picture). 
 
We can also rotate the local coordinate system by / 4π , as shown in Figure  3.11, 
where also the quadrants are rotated. Searching the closest nodes in such a 
rotated local systems is used for finding the optimal neighbours in curved node 
arrangements of the discretized continuous casting machine. 
 



Local Collocation with RBFs  

 

65 

                                  
Figure  3.9: Non-optimal neighbours in a highly non-uniform node arrangement. Left: 

considered node with surrounding nodes. Right: closest non-optimal neighbours. 

 

                               
Figure  3.10: Optimal neighbours in a highly non-uniform node arrangement. Left: considered 

node with surrounding nodes and four quadrants. Right: closest optimal neighbours. 

 

  
Figure  3.11: Rotated local coordinate system for / 4π . 
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3.5 Solving PDEs with Local Collocation 

We present the solution of the same boundary value problem as in Section  3.3, 
but using the LRBFCM. Such a solution was first represented by [Lee et al., 
2003], where the global sparse matrix is constructed and solved. In this 
approach, the ill-conditioning problem of the global Kansa’s method is 
mitigated, since the sparse global matrix is much easier to solve than a fully 
global matrix. 
We start with the same problem definition as in Section  3.3. The region Ω∪Γ  
is further divided into N  overlapping influence domains ; 1,2,...,l l Nω = . Each 
of the influence domains consists of l N  points ; 1, 2,...,l j lj N=p  that coincide 
with some of the global points ; 1, 2,...,i i N=p . There is a relation between the 
global and the local points indices on each of the influence domains. This 
relation is ( , )i i l j= . ( , )i l j  is a function of the local influence domain index l  
and local index j . The following is defined ( ,1)i i i= . The following is valid 

( ), l ji l jp p= ; 1, 2,...,l N= , 1, 2,..., lj N= . The transport variable is represented on 
each of the influence domains by l N  RBF's ( ); 1, 2,...,l j lj Nψ =p , and their 
coefficients ; 1,2,...,l j lj Nα = , i.e. 

 ( ) ( )( , )
1

;
l N

i l j l j l
j

φ ψ α
=

= ∈ Ω∑p p p . (3.49) 

The action of the Laplace operator on a transport variable can be calculated as 

 ( ) ( )2 2
( , )

1

;
l N

i l j l j l
j

φ ψ α
=

⎡ ⎤∇ = ∇ ∈ Ω⎣ ⎦∑p p p . (3.50) 

The coefficients l jα  are determined by collocation 

 ( ) ( )( , ) ( , ) ( , )
1

; ; 1, 2,...,
l N

i l k l i l j i l k l n l l
j

k Nφ ψ α
=

= ∈ Ω =∑p p p , (3.51) 

 ( , )
1

; , 1, 2,...,
l N

i l k l jk l j l
j

j k Nφ α
=

= Ψ =∑ , (3.52) 

with the matrix element l jkΨ  of the matrix lΨ  defined as 

 ( )( , ) ( , )l jk l i l j i l kψΨ = p . (3.53) 

We determine the coefficients l jα  by inverting the matrix lΨ  (i,e. 
1

l l l
− =Ψ Ψ I ) 



Solving PDEs with Local Collocation  

 

67 

 

1
( , )

1

l N

l j l jk i l k
k

α φ−

=
= Ψ∑ . (3.54) 

The RBF representation (3.49) of ( )φ p  on each of the influence domains thus 
reads 

 ( ) ( ) 1
( , ) ( , )

1 1

l lN N

l i l j l jk i l k
j k

φ ψ φ−

= =
= Ψ∑∑p p . (3.55) 

The collocation in global point ; 1, 2,...,l l N=p  reads 

 

1
( , )

1 1

l lN N

l l lj l jk i l k
j k

φ ψ φ−

= =
= Ψ∑∑ . (3.56) 

By using the Laplace equation and the boundary conditions we can write the 
following system of equations for each point ; 1, 2,...,l l N=p  

 2 1 1
( , ) ( , )

1 1 1 1

l l l lN N N N
D

l l lj l jk i l k l l lj l jk i l k
j k j k

ψ φ ψ φ− −
Ω Γ

= = = =

⎡ ⎤ϒ ∇ Ψ +ϒ Ψ +⎣ ⎦∑∑ ∑∑   

1
( , )

1 1

l lN N
N D D N N

l l lj l l jk i l k l l l l l l
j k

S S Sψ φ−
Γ Ω Ω Γ Γ Γ Γ

= =

⎡ ⎤ϒ ∇ ⋅ Ψ = ϒ + ϒ + ϒ⎣ ⎦∑∑ n ; , 1, 2,...,i l N= , (3.57) 

where the domain (equation (3.24)) and the boundary indicators (equation (3.25) 
and (3.26)) are used. The sparse system of equations (3.57) can be written in a 
compact form 

 
1

N

lm m l
m

Sφ
=
Ψ =∑ ; 1, 2,...,l N= , (3.58) 

with matrix elements liΨ   
 

 2 1 1
( , ) ( , )

1 1 1 1

l l l lN N N N
D

lm l l lj l jk i l k m l l lj l jk i l k m
j k j k

ψ δ ψ δ− −
Ω Γ

= = = =

⎡ ⎤Ψ = ϒ ∇ Ψ +ϒ Ψ +⎣ ⎦∑∑ ∑∑  

 1
( , )

1 1

l lN N
N

l l lj l l jk i l k m
j k

ψ δ−
Γ

= =

⎡ ⎤ϒ ∇ ⋅ Ψ⎣ ⎦∑∑ n , (3.59) 

 D D N N
l l l l l l lS S S SΩ Ω Γ Γ Γ Γ= ϒ + ϒ + ϒ . (3.60) 

and Kronecker delta 
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1;

0;im

i m

i m
δ

=⎧
= ⎨ ≠⎩

. (3.61) 
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4 Solution Procedure 

In this chapter the solution procedure for the numerical solution of the 
incompressible turbulent flow with solidification is presented. First, the solution 
procedure of the general transport equation is given. The derived procedure 
stands as a base for solution of all other transport equations, such as: momentum, 
energy, the turbulent kinetic energy and the dissipation rate. Next, we present the 
fractional step method to solve the velocity field, satisfying the flow 
incompressibility. This velocity-pressure coupling algorithm is chosen in order 
to develop a simple time-advancement scheme of the proposed solution 
procedure. The solution of the involved transport equations, described in Section 
 2.6, is given through the step-by-step description. Then, the initial and the 
boundary conditions, which are required to solve the system of transport 
equations, are fully described. To overcome the instabilities due to the 
convection dominated situations, an adaptive-upwind technique is introduced. 

4.1 Time Discretization 

The transient problems have numerous important applications in science and 
engineering. Almost all industrial processes experience transients during various 
stages of the operation. For example, the start-up phase of the continuous casting 
of steel billets, where the billet moves out of the mould to the secondary cooling 
zone and is therefore exposed to different boundary conditions which result in 
transient variations of boundary solid-liquid interface position and temperature 
field [Vertnik et al., 2007; Vertnik and Šarler, 2009]. 
In time-dependent problems, the transport variable ( )φ p  besides the space, also 
depends on time, i.e. ( ), tφ p , which is additional variable to be discretized. The 
time discretization defines the direction for information transfer, namely from 
the past into the future. The common types of the time discretization procedures 
are explicit, implicit and Crank-Nicolson. In all numerical examples in the 
present dissertation, only the simple explicit time discretization is used to derive 
the solution procedure of various conservative equations. The explicit scheme 
simultaneously involves only one unknown variable for the future time, which 
can be directly calculated from known variables from current time, i.e. 
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( ) ( ) ( ) ( )( ) ( )0 0

0

, , ,
F ,

t t t t
t t

t t

φ φ φ
φ

∂ +Δ −
≈ = +Ο Δ

∂ Δ
p p p

p . (4.1) 

The reasons for using explicit time discretizaton are: 
• For domain nodes the matrix of the system of equations (3.32) is 

constant. For this purpose the LU (lower/upper) factorization of the 
matrix is performed for domain nodes before the start-up of calculation. 
The system of linear equations (3.32) is then solved with pre-calculated 
coefficient matrix of the LU factorization. This procedure strongly 
increases the calculation speed of the system (3.32). 

• The matrix is very small, only 5 5×  in the present dissertation. 
• To deal with nonlinear thermo-physical properties and nonlinear 

boundary conditions of the convective-diffusive phase-change problems, 
the time step is often restricted to small values, similar that would be 
used in the implicit scheme. The stability issue is of less importance, 
respectively. 

The explicit time-stepping strategy is only conditionally stable, which means 
that the time step value is restricted by the stability criteria, usually derived by 
the von-Neumann stability analysis [Kunz and Lakshminarayana, 1992]. The 
stability criteria for a system of the governing equations described in the Section 
 2.6, is impossible to define. The actual time step should be determined manually 
with numerical experiments. Usually, the momentum equations and the transport 
equations of the turbulent model require smaller time step for a stable solution as 
the energy equation. 

4.2 Treatment of the General Transport Equation 

Consider the general transport equation, defined on a connected fixed domain Ω  
with boundary Γ , standing for a reasonably broad spectra of mass, energy, 
momentum, and species transfer problems 

 ( ) ( ) ( )C C S
t

ρ φ ρ φ φ∂ +∇⋅ = ∇ ⋅ ∇ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂
u D  (4.2) 

with ρ , φ , t , u , D , and S  standing for density, transport variable, time, 
velocity, diffusion tensor 

 
11 12 13

21 22 23

31 32 33

D D D

D D D

D D D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

D  (4.3) 
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and source, respectively. The scalar function C  stands for a constitutive relation 
between the conserved ( )C φ  and the diffused φ  quantities. We seek the 
solution of the governing equation for the transport variable at the final time 

0t t+ Δ , where 0t  represents initial time and tΔ  the positive time increment. The 
solution is constructed by the initial and boundary conditions that follow. The 
initial value of the transport variable ( ), tφ p  at a node with position vector p  
and time 0t  is defined through the known function 0φ  

 ( ) ( )0, tφ φ=p p ; ∈Ω+Γp . (4.4) 

The boundary Γ  is divided into not necessarily connected parts 
D N RΓ = Γ ∪Γ ∪Γ  with Dirichlet, Neumann and Robin type boundary 

conditions, respectively. At the boundary node p  with normal Γn  and time 

0 0t t t t≤ ≤ +Δ , these boundary conditions are defined through known functions 
DφΓ , NφΓ , RφΓ , R

refφΓ  

 Dφ φΓ= ; D∈Γp , (4.5) 

 Nφ φΓ
Γ

∂ =
∂n

; N∈Γp , (4.6) 

 ( )R R
refφ φ φ φΓ Γ

Γ

∂ = −
∂n

; R∈Γp . (4.7) 

The numerical discretization of equation (4.2), using explicit (Euler) time 
discretization has the form 

 
( ) ( ) ( ) ( ) ( )0 0 0

0 0 0 0

C C C
C

t t

ρ φ ρ φ ρ φ
ρ φ φ

∂ ⎡ ⎤ −⎣ ⎦ ≈ = −∇⋅ +∇⋅ ∇⎡ ⎤⎣ ⎦∂ Δ
u D . (4.8) 

From equation (4.8) the unknown function value ( )C
l

φ  in domain node lp  can 
be calculated as 

 ( ) ( ) ( )( )2
0 0 0 0 0 00 0

0

C C C l l l ll l l

tφ φ ρ φ φ φ
ρ
Δ

⎡ ⎤= + −∇ ⋅ +∇ ⋅∇ + ⋅∇⎣ ⎦u D D . (4.9) 

In continuation, the following assumption regarding the form of the diffusion 
tensor D  is made 

 

1 0 0

0 1 0

0 0 1

D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

D . (4.10) 
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The explicit calculation of expression (4.9) in 2D Cartesian coordinates is 

( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( )

( )

-1
0 00 0

1 10

-1
0 0 0

1 1

-1 -1
0 0

1 1 1 1

-1
0

1 1

C C ψ C

ψ C

ψ . ψ

ψ

l l

l l

l l l l

l l

N N

l l k l l kj x jl l
k jx

N N

l k l l kj y jl
k jy

N N N N

l k l l kj l j l k l l kj l j
k j k jx x

N N

l k l l kj l j
k jy

t
u

p

u
p

D
p p

D
p

φ φ ψ ρ φ
ρ

ψ ρ φ

ψ ψ φ

ψ

= =

= =

= = = =

= =

⎛Δ ∂= + +⎜ ∂⎝

∂ +
∂

⎛ ⎞ ⎛ ⎞∂ ∂ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ∂
∂

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

p

p

p p

p ( ) -1
0

1 1

. ψ

l lN N

l k l l kj l j
k jyp

ψ φ
= =

⎞ ⎛ ⎞∂ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∑ ∑p

 

 ( ) ( )
2 2

-1 -1
0 02 2

1 1 1 1

ψ ψ

l l l lN N N N

l k l l kj l j l k l l kj l j
n j j jx yp p

ψ φ ψ φ
= = = =

⎞∂ ∂+ ⎟⎟∂ ∂ ⎠
∑ ∑ ∑ ∑p p , (4.11) 

where the equations (3.35) and (3.36) have been employed. 
 
The complete solution procedure follows the below defined steps 1-5. 

Step 1 

First, the initial conditions are set in the domain and boundary nodes and the 
required derivatives are calculated from the known nodal values. 

Step 2 

The equation (4.11) is used to calculate the new values of the variable ( )C lφ  at 
time 0t t+ Δ  in the domain nodes. 

Step 3 

The transport variable lφ  is calculated from the constitutive relation ( )C φ  in the 
domain nodes. 

 ( )l Cφ φ= . (4.12) 

Step 4 

The unknown transport variable lφ  at time 0t t+ Δ  in the Dirichlet, Neumann, and 
Robin boundary nodes is calculated. The coefficients lα  have to be determined 
from the new values in the domain, calculated in Step 3, and from the 
information on the boundary conditions. Let us introduce domain, Dirichlet, 
Neumann, and Robin boundary indicators for this purpose. These indicators are 
defined as 
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1;

0;
j

j
j

Ω

∈Ω⎧
ϒ = ⎨ ∉Ω⎩

p

p
, 

1;

0;

D
jD

j D
j

Γ

⎧ ∈Γ⎪ϒ = ⎨ ∉Γ⎪⎩

p

p
, 

1;

0;

N
jN

j N
j

Γ

⎧ ∈Γ⎪ϒ = ⎨ ∉Γ⎪⎩

p

p
, 

 
1;

0;

R
jR

j R
j

Γ

⎧ ∈Γ⎪ϒ = ⎨ ∉Γ⎪⎩

p

p
. (4.13) 

The coefficients lα  are calculated from the system of linear equations 

 

( ) ( )

( ) ( )
1 1

1 1

l l

l l

N N
D

l j l k l j l k l j l k l j l k
k k

N N
N R

l j l k l j l k l j l k l j l k
k k

D D N N
l j l j l j l j l j l j

n n

ψ α ψ α

ψ α ψ α

φ φ φ

Ω Γ
= =

Γ Γ
= =Γ Γ

Ω Γ Γ

ϒ + ϒ

∂ ∂+ ϒ + ϒ =
∂ ∂

= ϒ + ϒ + ϒ +

∑ ∑

∑ ∑

p p

p p  

 ( )
1

l N
R R R

l j l j l k l j l k l ref j
k

φ ψ α φΓ Γ Γ
=

⎛ ⎞
ϒ −⎜ ⎟

⎝ ⎠
∑ p . (4.14) 

The system (4.14) can be written in a compact form 

 l l l=Ψ α b  (4.15) 

with the following system matrix entries 

 ( ) ( ) ( )D N
l jk l j l k l j l j l k l j l j l k l jn

ψ ψ ψΩ Γ Γ
Γ

∂Ψ = ϒ + ϒ + ϒ +
∂

p p p  

 ( ) ( )
1

l N
R R

l j l k l j l j l k l j
kn

ψ φ ψΓ Γ
=Γ

⎡ ⎤∂ϒ −⎢ ⎥∂⎣ ⎦
∑p p  (4.16) 

and with the following explicit form of the augmented right hand side vector 

 D D N N R R R
l j l j j l j j l j j l j l j l ref jb φ φ φ φ φΩ Γ Γ Γ Γ Γ Γ Γ= ϒ + ϒ + ϒ − ϒ . (4.17) 

Step 5 

The unknown boundary values are set from equation (3.34). 
 
When searching the steady-state solution, the following criterion 

 0 stemax l lφ φ φ− ≤  (4.18) 

has to be met. The parameter steφ  is defined as the steady-state convergence 
margin. In case the steady-state criterion is fulfilled or the time of calculation 
exceeds the foreseen time of interest, the calculation is stopped. 
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4.3 Solution of the Incompressible Navier-Stokes 
Equation 

The fluid flow is in all numerical examples of the present dissertation treated as 
incompressible. From the computational point of view, these flows are very 
difficult to handle, because the continuity equation (2.80) does not have a 
dominant variable. It contains only the velocity components, and there is no 
obvious link with the pressure as in the case for compressible flow, where the 
continuity equation (2.55) can be used to determine the density, and the pressure 
is calculated from an equation of state. One way to overcome this difficulty is to 
construct a pressure field by satisfying the continuity equation. The pressure 
equation is constructed by taking the divergence of the momentum equation. The 
resulting equation is then simplified by knowing the continuity equation, which 
leads to the final form of the pressure Poisson equation. This approach is used to 
calculate the pressure in explicit and implicit based methods. A large collection 
of CFD books exist [Patankar, 1980; Fletcher, 1988; Versteeg and Malalasekera, 
1995; Ferziger and Perić, 2002], which represent and describe these methods in 
detail. The most popular, also found in the CFD commercial packages, are 
SIMPLE, SIMPLER, SIMPLEC and PISO, which were developed in a strong 
connection with the FVM. 
Beside the pressure-velocity coupling algorithms, there exist several other 
techniques for solving incompressible flows, such as streamfunction-vorticity 
method [Ferziger and Perić, 2002], fractional step method [Chorin, 1968], and 
artificial-compressibility method [Chorin, 1967]. 
The coupling between the continuity and the momentum equation is in the 
present dissertation based on Chorin’s fractional step method. It belongs to the 
so called “projection methods”, where the computations of the velocity and the 
pressure fields are decoupled. The main idea is to calculate the intermediate 
velocity field without the pressure gradient. The pressure is rather calculated 
separately with considering the continuity equation. The final velocity field is 
then updated (corrected to satisfy the incompressibility constraint) with the 
pressure gradient. The Chorin’s original method is developed based on the 
explicit time discretization, but the whole procedure can be treated also 
implicitly [Kim and Moin, 1984]. 
 
An step-by-step elaboration of the explicit fractional step method is as follows: 

Step 1 

Solve the momentum equations without pressure term to get the intermediate 
velocity u� , which does not satisfy the incompressibility constraint, i.e. 
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 ( ) ( )0 0
2

t ρ μ
ρ
Δ= + − ∇⋅ +∇⋅⎡ ⎤⎣ ⎦u u uu S� , (4.19) 

and 0∇⋅ ≠u�  in general. 

Step 2 

Solve the Poisson’s equation for pressure 

 2P
t

ρ∇ = ∇⋅
Δ

u�
.
 (4.20) 

The related boundary conditions to the equation (4.20) can be found in Section 
 4.5. 

Step 3 

The velocity field is updated 

 
t

P
ρ
Δ= − ∇u u� , (4.21) 

and ready for the next time step, starting with the equation (4.19). 
The fractional step approach was already used for solving incompressible fluid 
flow with the meshless methods. In [Oñate et al., 2000], the finite point method 
was used to solve the various laminar flow problems: driven cavity at Re 1000=  
and backward facing step at Re 389= . The results were obtained by the three-
step semi-implicit fractional step scheme. The local version of the RBF based 
meshless scheme was developed by [Sanyasiraju and Chandhini, 2008] for 
solving the unsteady incompressible flows. The local scheme was derived by 
considering the Lagrange representation of the RBF interpolation vector. An 
explicit fractional step method was used, where the following examples were 
performed: Couette flow at Re 1= , plain Poiseuille flow at Re 1= , flow in a lid-
driven cavity at Re 100= ,1000 , 3200 , flow over a backward-facing step at 
Re 800= , and flow through vascular stenosis at various Re  numbers. 

4.4 Step-by-step Description of the Solution Procedure 

We seek the solution of the velocity field, temperature field, and k  and ε  fields 
at time 0t t+  by assuming known fields u , T , k  and ε  at time 0t  and known 
initial and boundary conditions. At every time step, the following explicit 
numerical algorithm is employed: 
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Step 1 

The intermediate velocity field is calculated first, without considering the 
pressure gradient 

 ( ) ( ) ( )T

0

2

3L t

t
kρ μ μ ρ

ρ
Δ ⎡ ⎡ ⎤⎡ ⎤= + − ∇⋅ +∇⋅ + ∇ + ∇ − ∇ −⎢ ⎣ ⎦⎣ ⎦⎣

u u uu u u�  

 

( ) ( ) ( )
2

3

0

1 L
L S T ref

L

C f
T T

f
μ ρβ

⎤−
− + − ⎥

⎥⎦
u u g , (4.22) 

where the index 0 represents the initial conditions at time 0t t= . 

Step 2  

The pressure Poisson equation (4.20) is solved, which can be solved by 
converting it into a diffusion equation [Divo and Kassab, 2007] or by solving the 
sparse matrix [Lee et al., 2003]. An additional possibility represents the use of 
the local pressure correction [Kosec and Šarler, 2008] which seems to be most 
efficient. However the last correction has not been yet successfully tested for 
inflow and outflow situations. In the present dissertation, the approach by Lee et 
al. is used, where the solution of the sparse matrix is solved by the direct 
method. The construction of the sparse matrix is presented in Section  3.5. In case 
of the fixed node arrangement, the left-hand side of the sparse matrix can be LU 
decomposed before the first time step. This numerical approach significantly 
improves the performance, since only the back substitution is used to solve the 
pressure field at each time step. The boundary conditions for the pressure 
equation are explicitly given in the Section  4.5. 

Step 3 

The intermediate velocity components are corrected through the calculated 
pressure gradient by the equation (4.21). 

Step 4 

The energy equation is solved to obtain the enthalpy field 

 ( ) ( ) ( )0 S S S L L L

t
h h T h h f h f hλ ρ ρ

ρ
Δ ⎡= + ∇ ⋅ ∇ − ∇⋅ + ∇⋅ − − +⎣ u u u u  

 
0

L t
L L

t

f h
ρ ν
σ

⎤⎛ ⎞
∇⋅ ∇ ⎥⎜ ⎟

⎝ ⎠⎦
. (4.23) 
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Step 5 

The temperature field is calculated from the enthalpy field, calculated in step 4, 
using the inverse of the constitutive temperature-enthalpy relationship (equations 
(2.65) and (2.66)), i.e. 

 ( )T T h=  (4.24) 

Step 6 

After the solution of the temperature field, the transport equations (3.6) and (3.7) 
of the turbulence model are solved 

 ( )0
t

L k k
k

t
k k k k P G D

μρ μ ρε ρ
ρ σ

⎡ ⎡ ⎤⎛ ⎞Δ= + − ∇ ⋅ +∇⋅ + ∇ + + − + −⎢ ⎢ ⎥⎜ ⎟
⎢ ⎝ ⎠⎣ ⎦⎣

u  

 
( )2

3

0

1 L

L

L

C f
k

f
μ

⎤−
⎥
⎥⎦

, (4.25) 

 ( )0
t

L

t

ε

με ε ρ ε μ ε
ρ σ

⎡ ⎡ ⎤⎛ ⎞Δ= + − ∇⋅ +∇⋅ + ∇ +⎢ ⎢ ⎥⎜ ⎟
⎢ ⎝ ⎠⎣ ⎦⎣

u  

 ( ) ( )2

1 1 3 2 2 3

0

1 L

k k L

L

C f
c f P c G c f E

k fε ε ε
ερε ρ μ ε

⎤−
⎥+ − + −⎡ ⎤⎣ ⎦
⎥⎦

. (4.26) 

Step 7 

The turbulent viscosity is updated, using the equation (2.35), and the solution is 
ready for the next time step. 
 
The block diagram of the described algorithm is schematically represented in 
Figure  4.1. 
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Figure  4.1: Block diagram of the solution procedure. 

4.5 Boundary Conditions for Pressure 

Boundary condition for pressure equation (4.20) at inlet, symmetry and wall are 
of the Neumann type. They are constructed by using the normal component of 
the momentum equation (2.6) with explicit time discretization, i.e. 

 
( ) ( ) ( )0

0
2

w
P

t
ρ ρ μΓ

Γ Γ

⋅ −
= − ⋅∇ + ⋅ − ∇⋅ +∇⋅⎡ ⎤⎣ ⎦Δ

n u u
n n uu S . (4.27) 

initialization of variables from initial 
conditions 0u , 0T , 0k , 0ε  and 0tμ  

solution of intermediate velocity u� , 
equation (4.22) 

solution of pressure P , equation 
(4.20) 

correction of the velocity field u , 
equation (4.21) 

solution of k  and ε  fields, equations 
(4.25) and (4.26) 

updating of the turbulent viscosity, 
equation (2.35) 

set calculated values to initial values 
and go to the next time step 

solution of the temperature field T , 
equations (4.23) and (4.24) 
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By using the equation (4.19) for derivation of 0u , and substituting the resulting 
equation into equation (4.27), we get the following boundary condition for 
pressure 

 ( )wP
t

ρ
Γ Γ⋅∇ = ⋅ −

Δ
n n u u� , (4.28) 

where u�  is solved by the equation (4.19) at the wall. In equation (4.28), the wu  
represent the wall velocities at 0t . 
At the outlet boundary the Direchlet boundary condition for pressure is used, 
equal to the prescribed ambient pressure. The ambient pressure is in all 
discussed cases set to zero. 

4.6 Adaptive Upwind Technique 

The turbulent flows belong to the convection dominated problems. If the spatial 
discretization is not fine enough, the solution becomes instable or oscillatory. 
Without any special numerical technique, the five nodded LRBFCM gives 
similar results as the central scheme in FDM, where the solution exhibits 
oscillatory behaviour for Péclet ( Pe ) number is greater than two. To stabilize the 
numerical solution, the adaptive upwind technique [Lin and Atluri, 2000; Gu and 
Liu, 2005] is used, where the adaptive upwind support domain is constructed 
based on the local Pe  number. This technique was already found to be very 
successful in the numerical modelling of the heat transfer in the continuous 
casting process [Vertnik et al., 2007]. 
In the adaptive upwind support technique, the expansion coefficients are first 
calculated by the LRBFCM. The derivatives of the convection terms are then 
calculated in the point p ςΔ , shifted by the central offset distance pςΔ  in the 
opposite direction of the velocity (see Figure  4.2). The position of the shifted 
point is defined as 

 p p pς ς ςΔ = − Δ ; ,x yς = . (4.29) 

The central offset distance is calculated by 

 
2

sign( ) up

d
p uς ς δΔ = ; ,x yς = , (4.30) 

where upδ  is the upwind function, presented in Figure  4.3, and d  is the distance 
between the central point and the neighbour points in the opposite direction of 
the velocity, as shown in Figure  4.2. The upwind function is defined as  
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1

coth Pe
Pe

up ς
ς

δ = − ; ,x yς =   (4.31) 

and the Pe  number for the energy and the momentum equation, respectively as 

 
( )

Pe
p x x x

t

c u p pρ
λ λ

+ −−
=

+
; p t

t
t

cρ ν
λ

σ
= , (4.32) 

 
( )

Pe Re
x x x

t

u p pρ
μ μ

+ −−
= ≡

+
. (4.33) 

 

 
Figure  4.2: The adaptive upwind support. 

 

 
Figure  4.3: The upwind function. 

 
The accuracy and stability of the adaptive upwind technique is demonstrated by 
the numerical example in Section  5.3. 



 

81 

5 Numerical Examples 

In this chapter, the numerical examples for validation of the developed 
numerical algorithm are presented. First, a detailed explanation of the refinement 
procedure of the node generation near the walls is given. Next, the adaptive-
upwind technique is tested on a 1D convective-diffusive phase-change problem. 
The obtained results are compared with the analytical solution at various Pe  
numbers. This technique is further used in all examples, where the turbulent flow 
is involved. The fluid flow examples are arranged into two separable groups, i.e. 
laminar and turbulent flow problems. 
The laminar flow problems contain two numerical examples: the natural 
convection in a square cavity and the flow over a backward-facing step. The 
natural convection in a square cavity is performed to test the implementation of 
the fractional step method and the fully coupled problem between the 
momentum and the energy equations. The laminar flow over a backward-facing 
step is chosen in order to test the implementation of the inlet and the outlet 
boundary conditions, and the separation and reattachment phenomena. 
The turbulent flow problems contain four examples: 2D channel flow, 2D 
channel flow with temperature as a passive scalar, 2D channel flow with 
combined forced and natural convection, and flow over a backward-facing step. 
The first two examples are mainly chosen to test the implementation of a LRN 
turbulence models, i.e. JL, LS and AKN model. The third example is found to be 
very important, since similar physical phenomena are involved in the continuous 
casting of steel. It involves the forced convection, the free-stream flow through a 
2D channel, and natural convection due to the differentially heated walls. The 
last example is a standard test problem for evaluating the turbulence models. The 
results are compared with the results obtained by the DNS data, experimental 
data, and with the numerical results obtained by the commercial software Fluent 
(Version 6.3.26, ANSYS, Inc., “http://www.fluent.com/”). 

5.1 Numerical Implementation 

The presented numerical method is written in Compaq Visual Fortran (CVF) 
(Version 6.6a). 



 Numerical Examples 

 

82 

The linear system of equations for local collocation is solved by LAPACK 
library (Version 3.0). The left side of a matrix is inverted by calling the 
following two routines in a sequence: DGETRF for computing an LU 
factorization of a matrix, and DGETRI for computing an inverse of a matrix 
using the LU factorization computed by DGETRF routine. The final solution is 
obtained by using the multiplication of the inverted left side and right side of the 
matrix with the Fortran function MATMUL. The first two routines, i.e. 
DGETRF and DGETRI, are called only once before the simulation starts, due to 
the fixed node arrangements. 
The sparse matrix is solved by the HSL 2007 library, package MA48 (Version 
2.1.0, “http://www.hsl.rl.ac.uk/”). The MA48 package has ability to solve un-
symmetric sparse system with the conventional direct method using the Gaussian 
elimination. First, the routine MA48AD is called to prepare data structures for 
factorization, optionally permuting the left side matrix to block upper triangular 
form. Next, the MA48BD routine is used to factorize the left side matrix with the 
given data provided by routine MA48AD. A sparse system is then solved by the 
routine MA48CD, which uses the factors produced by MA48BD routine. The 
routines MA48AD and MA48BD are called only once, before the simulation 
starts. This is allowed when using the fixed node arrangements, since the left 
side of the matrix depends only on the node position and thus it is unchanged 
during the simulation. So, in each time step, only the MA48CD routine is called. 
All graphics outputs (simple graphs, contours, streamlines, fields, etc.) are 
generated in CVF with the PGPlot graphic library (Version 5.2.2, 
“http://www.astro.caltech.edu/~tjp/pgplot/”). The streamlines are constructed by 
integrating the calculated velocity field with the fourth-order Range-Kutta 
integrator [Press et al., 1992]. 
The simulations are performed on the following computers: 

• Compaq 8710w, Mobile Workstation, Intel Core Duo 2.4 GHz processor 
and 

• HP xw9300 Workstation, 2x AMD Opteron 2.6 GHz processor. 

5.2 Refinement Near the Walls 

The node arrangements in the numerical examples with the fluid flow 
calculations are generated with the refinement near the walls in order to achieve 
a better accuracy in the boundary layers. Here, we present a detailed procedure 
of the refinement through an example of node generation of a horizontal edge: 

• First, the uniform node arrangement (see Figure  5.1), is created by the 
following equation 
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 ( ) max min
min

( )
1

1
uniform
xn

x x
p x n

N NΩ Γ

−= + −
+ −

; 1, 2,...,n N NΩ Γ= + . (5.1) 

 

 
Figure  5.1: Uniform node arrangement. 

 
• The node arrangement is then normalised (see Figure  5.2), respectively. 

In the normalised arrangement the position of each node uniform
xnp  lies 

between 0 and 1, i.e. 

 min

max min

uniform
x nuniform

xn

p x
p

x x

−
=

−
. (5.2) 

 

 
Figure  5.2: Normalised uniform node arrangement. 

 
• The uniform node position uniform

xnp  is then recalculated by the power 
function to obtain its refinement position 

 1.0 (1.0 )refined uniform b
xn xnp p= − − , (5.3) 

where refined
xnp  and b  are standing for refined node position and exponent 

of the power function, respectively. Figure  5.4 represents the effect of the 
exponent b , which defines the level of the refinement. The refined node 
position in the normalized arrangement is shown in Figure  5.3. 
 

 
Figure  5.3: Normalized node arrangement, refined near the wall with 1.75b = . 

 
• After refinement, the node positions are scaled back (de-normalized) to 

get the final discretization (see Figure  5.5), in physical coordinates 

 ( )min max min
refined refined
xn x np x p x x= + − . (5.4) 

This procedure also allows to use other refinement functions, i.e. tanh or 
parabolic, but they are not used in the present dissertation. The same technique is 
applied for vertical edges. In each numerical example, where the refinement is 
used, the level of the refinement b  is given. 
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Figure  5.4: Power function with various exponents. Solid line: 1.5b = . Dashed line: 1.75b = . 

Dashed-dot line: 2.0b = . 

 

 
Figure  5.5: The final node arrangement, refined near the wall with 1.75b = . 

5.3 One-dimensional Convective-Diffusive Phase-
Change Problem 

5.3.1 Problem Description 

This example was already analyzed in detail in the master thesis [Vertnik, 2007] 
and in the publication [Vertnik and Šarler, 2006a]. It is chosen in the present 
dissertation, in order to assess the adaptive-upwind technique, described in 
Section  4.6.  
The computations are done with uniform domain discretizations of the type 

' 3N ×  (see Figure  5.6), with N N NΓ Ω= + , 2 ( 2) 2N NΓ = × − +  and 
2N NΩ = − , defined on strip-shaped domains with longitudinal coordinates 

0xp− = m, 1xp+ = m, and transversal coordinates 0.5yp± = ± . An example of the 
schematic of 21 3×  discretization is shown in Figure  5.6. The steady-state 
solution is reached through a transient from the initial uniform temperature 

0T T −
Γ=  and a jump of the boundary conditions at xp−  from 0T −

Γ = K to 1T +
Γ = K 

for 0t t>  and stopped through the steady state criterion, defined by the equation 
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(4.18). The steady-state criterion used in all calculations in this test is 
8

ste 10T −= K. The time-step used is 610t −Δ = s. 
 

 
Figure  5.6: Discretization schematics ' 3N × ; ' 21N = , with boundary conditions for solving the 

quasi-1D convective diffusive problem. 

5.3.2 Numerical Results 

The calculations are performed with constant unit thermal properties and single 
phase material, with 201 3×  discretization. The results are compared with the 
analytical solution, presented in Appendix  A.1. A comparison is performed 
through the following error measures 

 ( ) ( )max anamax , ,n nT T t T t= −p p ; 1, 2,...,n N= , (5.5) 

 ( ) ( )avg ana
1

1
, ,

N

n n
n

T T t T t
N =

= −∑ p p ; 1, 2,...,n N= , (5.6) 

where maxT  and avgT  are the maximum absolute temperature error and the 
average absolute temperature error, respectively. In both equations (5.5) and 
(5.6), anaT  stands for analytical solution and N  represents the total number of 
the domain nodes. 
The influence of adaptive-upwind technique on the accuracy and stability of the 
numerical results is made by the sensitivity study with respect to Pe  number. 
The accuracy of the results, based on the maxT  and avgT  errors, are given in Table 
 5.1. The results, obtained with and without upwind, are represented for various 
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Pe  numbers in Figures  5.7- 5.13. Without upwind, the solution is stable up to the 
Pe 100= . At higher Pe  values, the solution becomes unstable, as we can see 
from Figures  5.11,  5.12 and  5.13. The adaptive-upwind technique completely 
eliminates those instabilities and also gives very good results at low Pe  
numbers, which is its main advantage over the classical upwind technique.  
 
Table  5.1: Sensitivity of the results with respect to Pe  number at 101 3×  node arrangement. 

avgT (K) maxT (K) 
Pe  

no upwind upwind no upwind upwind 
2 9.609E−4 9.779E−4 1.557E−3 1.585E−3 

10 2.412E−4 5.502E−4 5.364E−4 1.525E−3 
50 3.999E−4 1.168E−3 7.743E−3 2.109E−2 

100 8.103E−4 1.861E−3 3.447E−2 6.680E−2 
200 1.550E−3 2.172E−3 0.135E+0 0.138E+0 
500 7.423E−3 1.421E−3 0.435E+0 0.124E+0 

1000 1.981E−2 7.440E−4 0.666E+0 6.978E−2 
 
 

    
Figure  5.7: Comparison of the calculated temperatures with the analytical solution in the central 

nodes at 0yp = m, Pe 2= . Red dashed line: analytical solution. Blue crosses: present method. 

Left: no upwind. Right: upwind. 
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Figure  5.8: Comparison of the calculated temperatures with the analytical solution in the central 

nodes at 0yp = m, Pe 10= . Red dashed line: analytical solution. Blue crosses: present method. 

Left: no upwind. Right: upwind. 

 

    
Figure  5.9: Comparison of the calculated temperatures with the analytical solution in the central 

nodes at 0yp = m, Pe 50= . Red dashed line: analytical solution. Blue crosses: present method. 

Left: no upwind. Right: upwind. 
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Figure  5.10: Comparison of the calculated temperatures with the analytical solution in the 

central nodes at 0yp = m, Pe 100= . Red dashed line: analytical solution. Blue crosses: present 

method. Left: no upwind. Right: upwind. 

 

    
Figure  5.11: Comparison of the calculated temperatures with the analytical solution in the 

central nodes at 0yp = m, Pe 200= . Red dashed line: analytical solution. Blue crosses: present 

method. Left: no upwind. Right: upwind. 
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Figure  5.12: Comparison of the calculated temperatures with the analytical solution in the 

central nodes at 0yp = m, Pe 500= . Red dashed line: analytical solution. Blue crosses: present 

method. Left: no upwind. Right: upwind. 

 

    
Figure  5.13: Comparison of the calculated temperatures with the analytical solution in the 

central nodes at 0yp = m, Pe 1000= . Red dashed line: analytical solution. Blue crosses: present 

method. Left: no upwind. Right: upwind. 
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5.4 Laminar Flow Problems 

5.4.1 Natural Convection in a Square Cavity 

5.4.1.1 Problem Description 

This example is very well established in science for developing and testing 
various numerical algorithms, capable of solving thermal fluid flow problems 
[Davis, 1983; Sadat and Couturier, 2000; Wan et al., 2001; Šarler, 2005; Kosec 
and Šarler, 2007]. Natural convection is an important physical phenomenon, 
which can be found in nature and industrial applications, such as furnaces, 
electronics cooling, materials processing, etc. 
Computational domain is a closed square cavity with height 1H =  and width 

1L = . The cavity is differentially heated on vertical walls and isolated on 
horizontal walls, shown in Figure  5.14. No slip boundary condition for the 
velocity 0=u  is applied at the walls. Calculations are performed with three 
different node arrangements: 61 61× , 81 81×  and 101 101×  (without 4 corner 
nodes). To enhance the accuracy in the boundary layer, the arrangements are 
refined near the walls with a refinement level 1.2b =  from the centre to the 
walls. A schematic of 61 61×  node arrangement is presented in Figure  5.15. 
Square cavity is filled with air having Prandtl number Pr 0.71=  and 
experiencing the uniform initial temperature field ( )0 / 2h cT T T= + . 

5.4.1.2 Numerical Results 

The steady-state solution of the velocity and temperature field is searched, 
approached by the transient calculation with the fixed time step. The streamlines 
and the temperature fields are presented for 101 101×  node arrangement and 
various Rayleigh numbers: 6Ra 10= , 7Ra 10=  and 8Ra 10=  in Figures  5.16, 
 5.17 and  5.18, respectively. The Rayleigh number is defined as 

 
3 2

R a pg TL cβ ρ
λμ

Δ
= . (5.7) 

The numerical results are compared with the [Davis, 1983; Sadat and Couturier, 
2000; Wan et al., 2001; Šarler, 2005; Kosec and Šarler, 2007] in terms of 
maximum mid-plane velocities and averaged Nusselt number Nuavg  at the hot 
wall, presented in Table  5.2, Table  5.3 and Table  5.4 for 6Ra 10= , 7Ra 10=  and 

8Ra 10= , respectively. Nuavg  is calculated by the following relation 
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 0
Nu d

Nu

H

avg

y

H
= − ∫

, (5.8) 

where Nu  is a local Nusselt number, defined as 

 Nu
h c

L T

T T n

∂= −
− ∂

. (5.9) 

We can conclude from the comparison, that the accuracy of the calculated 
velocity and temperature field of the developed method is very good. Also the 
implementation of the fractional step method for solving the incompressible 
fluid flow problems is successfully approved. 
 

 
Figure  5.14: Problem schematics of the natural convection in a square. 
 

 
Figure  5.15: 61 61×  node arrangement, refined near the walls with a refinement level 1.2b = . 
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Figure  5.16: Streamlines (top) and temperature field with isotherms (bottom) at 6Ra 10=  by 

using 101 101×  node arrangement.  
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Figure  5.17: Streamlines (top) and temperature field with isotherms (bottom) at 7Ra 10=  by 

using 101 101×  node arrangement. 
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Figure  5.18: Streamlines (top) and temperature field with isotherms (bottom) at 8Ra 10=  by 

using 101 101×  node arrangement. 
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Table  5.2: Maximum mid-plane velocities and Nuavg  at 6Ra 10= . 

6Ra 10=  ,maxxu  ,maxyu  Nuavg

[Davis, 1983] 65.33 216.75 8.798 

[Sadat and Couturier, 2000] 64,33 219,41 8.832 

[Wan et al., 2001] 65.40 227.11 8.800 

[Šarler, 2005] 61.55 211.67 / 

[Kosec and Šarler, 2007] 65.91 221.37 8.970 

561 61; 10t −× Δ = s 63.38 214.69 8.860 

581 81; 10t −× Δ = s 64.01 218.26 8.850 
present 
method 

6101 101; 5 10t −× Δ = ⋅ s 64.26 219.43 8.840 

 
Table  5.3: Maximum mid-plane velocities and Nuavg  at 7Ra 10= . 

7Ra 10=  ,maxxu  ,maxyu  Nuavg

 
[Sadat and Couturier, 2000] 145.68 687.43 16.59 

[Wan et al., 2001] 143.56 714.48 16.65 

[Kosec and Šarler, 2007] 149.61 687.20 16.92 

561 61; 10t −× Δ = s 134.11 671.58 16.72 

581 81; 10t −× Δ = s 139.76 686.24 16.64 
present 
method 

6101 101; 10t −× Δ = s 142.62 685.09 16.61 
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Table  5.4: Maximum mid-plane velocities and Nuavg  at 8Ra 10= . 

8Ra 10=  ,maxxu  ,maxyu  Nuavg  

[Sadat and Couturier, 2000] 319.19 2180.10 30.94 

[Wan et al., 2001] 296.71 2259.08 31.48 

[Kosec and Šarler, 2007] 278.49 2095.23 32.12 

561 61; 10t −× Δ = s / / / 

681 81; 10t −× Δ = s 244.31 2069.66 30.87 
present 
method 

6101 101; 10t −× Δ = s 260.79 2133.17 30.78 

5.4.2 Backward-Facing Step 

5.4.2.1 Problem Description 

The problem of the laminar incompressible flow over a backward-facing step is 
a standard test for investigating the flow separation and reattachment. It was 
used by numerous researchers as a benchmark test for various numerical 
methods [Gartling, 1990; Gresho, 1993; Chiang et al., 1999; Keskar and Lyn, 
1999; Barton, 1995; Barton and Kirby, 2000]. The geometry of the problem (see 
Figure  5.19) is characterized by a planar channel with sudden change of the 
geometry, which creates the process of flow separation and generation of several 
re-circulating zones downward the step. A similar phenomena can be observed 
in engineering practice, such as the continuous casting process of metal alloys. 
The computational domain considers only the physical domain after the step, 
where the step has height 0.5H =  and the channel length after the step 
is 30L H= . A node arrangement is generated with a refinement near the top and 
the bottom walls, around the centreline, and near the step in the horizontal 
direction with the refinement level 1.4b =  (see Figure  5.20). An example of the 
detailed view of the generated node arrangement is shown in Figure  5.21. The 
flow conditions are defined by the Re  number based on the characteristic length 
Δ� , i.e. 

 0Re
uρ
μ
Δ= �

. (5.10) 
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In this example, Δ�  is equal to 2H  and the velocity 0u  is equal to the inlet 
velocity of fluid 0xu , entering into the channel before the step. 0xu  is uniform 
and equal to unity. 
The accuracy of the numerical method is evaluated based on the velocity profiles 
at different horizontal positions, wall shear stresses, pressure, and reattachment 
positions of the re-circulating zones. The reattachment is defined as the 
horizontal position, measured from the step, where the wall-shear stress is equal 
to zero.  
The following boundary conditions are used: 

• At the inlet the fully-developed velocity profile is set, which is a 
parabolic function in the horizontal direction [Gartling, 1990], i.e. 

 ( ) ( )24 0.5 ;0.0 0.5x y y y yu p p p p= − ≤ ≤ . (5.11) 

• At the outlet boundary, the Neumann boundary conditions for velocity 
components are prescribed and are all set equal to zero. 

• At the wall, the Dirichlet no-slip boundary conditions are set, which 
implies that the velocity components are all set to zero. 

The time step 310t −Δ = s is set for all calculations. 

5.4.2.2 Numerical Results 

The calculations are first performed at Re 600=  and three different node 
arrangements, i.e. 201 61× , 251 81×  and 301 101×  (without 4 corner nodes), to 
achieve the grid independent solution. The results are presented in Table  5.6, 
where the calculated reattachment positions of the re-circulating zones are given 
and compared by [Barton, 1995]. The position 1xp  defines the reattachment of 
the lower re-circulating zone, and the positions 2xp , 3xp  the upper re-circulating 
zone (see Figure  5.22). The 301 101×  node arrangement is chosen in further 
calculations. 
The effect of the Re  number on the flow development is shown in Figure  5.22, 
where the streamlines are plotted. The Re  numbers are ranging from 300-800  
with step Re 100Δ = . At the Re 300= , only the lover re-circulating zone exists, 
while with the Re 400≥ , another re-circulating zone at the top wall starts to 
develop. With enhancing of the Re  number, both re-circulating zones become 
larger. The calculated reattachment positions at various Re  numbers are 
presented in Table  5.7, compared with the results obtained by Barton [Barton, 
1995]. 
Figures  5.23 to  5.26 represent detailed results of the wall shear stress along the 
upper and the lower wall, horizontal velocity profiles, vertical velocity profiles, 
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and pressure profiles across the channel at 7xp =  and 15xp = , respectively. 
The wall shear stress is calculated by the following equation 

 

x
w

y

u

p
τ μ ∂=

∂
. (5.12) 

The profiles are obtained for the case with Re 800=  and 301 101×  node 
arrangement. The results are compared with the results by Gartling [Gartling, 
1990], where excellent agreement is found. The only visual difference is found 
in the vertical velocity profile at 7x =  (see Figure  5.25). The plotted value of 
the pressure by Gartling is modified, because he used different boundary 
conditions (the convective ones) at the outlet boundary as in our calculations.  
The calculated reattachment positions at Re 800=  are compared with other 
authors [Gartling, 1990; Gresho et al., 1993; Chiang et al., 1999; Keskar and 
Lyn, 1999; Barton and Kirby, 2000] in Table  5.5, where a very good agreement 
is observed. 
The present method is also tested on a slightly random 301 101×  node 
arrangement by repositioning the non-uniform node arrangement with the 
following relation 

 ( ) ( ) minrandom non uniform rndp p c rς ς δ−= + ; ,x yς = , (5.13) 

with rndc , δ  and minr  standing for a random number 1 1rndc− ≤ ≤ + , a 
displacement factor, and the minimum distance between the nodes in the 
influence domain of the non-uniform node arrangement, respectively. In this 
example, a displacement factor is 0.5δ = . A detailed view of the generated 
slightly random node arrangement is shown in Figure  5.27. The calculation is 
performed at Re 600=  and with the same time step as for the non-uniform node 
arrangement. Table  5.8 represents the calculated reattachment positions, 
compared by the results obtained with the non-uniform node arrangement. On 
the basis of this comparison, we can conclude, that the present meshless 
numerical method is capable of solving such kind of problems on a slightly 
random node arrangements. 
 

 
Figure  5.19: Problem schematics of the backward-facing step. 
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Figure  5.20: Levels of the refinement with 1.4b = . 

 

 
Figure  5.21: A detailed view of the 201 61×  node arrangement. ο: boundary nodes. •: domain 

nodes. 
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Figure  5.22: Streamlines for Re 300-800=  with step 100  (from top to bottom) by using 

301 101×  node arrangement. 
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Figure  5.23: Wall-shear stress at the lower and upper wall for Re 800=  by using 301 101×  

node arrangement. Lines: present method. Red symbols: [Gartling, 1990]. Solid line and ×: lower 

wall. Dashed line and Δ: upper wall. 

 

 
Figure  5.24: Horizontal velocity profiles across the channel for Re 800=  by using 301 101×  

node arrangement. Lines: present method. Red symbols: [Gartling, 1990]. Solid line and ×: at 

7xp = . Dashed line and Δ: 15xp = . 
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Figure  5.25: Vertical velocity profiles across the channel for Re 800=  by using 301 101×  node 

arrangement. Lines: present method. Red symbols: [Gartling, 1990]. Solid line and ×: at 7xp = . 

Dashed line and Δ: 15xp = . 

 
Table  5.5: Comparison of results at Re 800= . 

 1xp  2xp  3xp  

[Gartling, 1990] 6.10 4.85 10.48 

[Gresho et al., 1993] 6.10 4.86 10.48 

[Chiang et al., 1999] 6.16 4.82 10.63 

[Barton, 1995] 6.08 4.81 11.03 

[Keskar and Lyn, 1999] 6.09 4.85 10.48 

[Barton and Kirby, 2000] 6.01 5.02 9.90 

present method 6.11 4.87 10.47 
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Figure  5.26: Pressure profiles across the channel for Re 800=  by using 301 101×  node 

arrangement. Lines: present method. Red symbols: [Gartling, 1990]. Solid line and ×: at 7xp = . 

Dashed line and Δ: 15xp = . 
 
Table  5.6: Grid convergence and comparison at Re 600= . 

 1xp  2xp  3xp  

[Barton, 1995] 5.36 4.36 8.12 

200 60×  5.43 4.44 8.09 

250 80×  5.41 4.41 8.10 
present 
method 

300 100×  5.39 4.39 8.10 
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Table  5.7: Reattachment positions for various Re  numbers by using 301 101×  node 

arrangement. 

Re   1xp  2xp  3xp  

[Barton, 1995] 3.55 / / 
300 

present method 3.57 / / 

[Barton, 1995] 4.30 4.10 5.15 
400 

present method 4.33 4.03 5.17 

[Barton, 1995] 4.95 4.22 6.68 
500 

present method 4.98 4.23 6.72 

[Barton, 1995] 5.36 4.36 8.12 
600 

present method 5.39 4.39 8.10 

[Barton, 1995] / / / 
700 

present method 5.81 4.67 9.31 

[Barton, 1995] 6.08 4.81 11.03 
800 

present method 6.11 4.87 10.47 

 
Table  5.8: Reattachment positions for the non-uniform and slightly random node arrangements 

at Re 600= . 

 1xp  2xp  3xp  

non-uniform 5.39 4.39 8.10 

slightly random 5.40 4.40 8.13 
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Figure  5.27: A detailed view of the 301 101×  slightly random node arrangement. ο: boundary 

nodes. •: domain nodes. 

5.5 Turbulent Flow Problems 

5.5.1 Two-dimensional Channel Flow 

5.5.1.1 Problem Description 

Turbulent flow in a channel is a standard benchmark test for turbulence models 
[Jones and Launder, 1972; Lam and Bremhorst, 1981; Chien, 1982; Abe et al., 
1995]. Before availability of the first DNS calculations [Kim et al., 1987], the 
turbulence models were evaluated and developed based on the experimental data 
[Laufer, 1948]. In this numerical example, we used both data in order to check 
the proper implementation of all three turbulence models, i.e. JL, LS and AKN. 
The physical domain is a 2D channel with length L  and height H . In our 
computations, only one half of a channel height / 2 1.0mH =  is considered, as 
shown in Figure  5.28. The length of the channel is large enough to achieve the 
fully developed flow at the channel outlet. The density and the inlet velocity are 
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both equal to unity, while the dynamic viscosity μ  is calculated from the Re  
number, based on the half channel width. 
The following boundary conditions are used: 

• At the inlet, Dirichlet boundary condition is set for the velocity field, the 
turbulent kinetic energy, and the dissipation rate. The horizontal velocity 

0xu  is uniform and equal to unity, while vertical velocity 0yu  is zero. The 
turbulent kinetic energy and the dissipation rate profiles are also uniform 
and defined by the following empirical relations [Versteeg and 
Malalasekera, 1995] 

 ( )2

0 0

3

2 xk I u= ⋅ , (5.14) 

 
3/2

3/4 0
0 0.07

k
C

Dμε = , (5.15)  

where I  is the turbulent intensity, calculated from an empirical 
correlation for the pipe flows [Versteeg and Malalasekera, 1995] 

 1/80.16ReI −= . (5.16) 

• At the outlet boundary, the Neumann boundary conditions in the normal 
direction for velocity components, the turbulent kinetic energy, and the 
dissipation rate are prescribed and set to zero. 

• At the wall, the Dirichlet no-slip boundary conditions are set, which 
implies that the velocity components, the turbulent kinetic energy, and 
the dissipation rate are all set to zero. 

• At the symmetry line, the Neumann boundary conditions in the normal 
direction for the horizontal velocity component, the turbulent kinetic 
energy, and the dissipation rate are prescribed and set to zero. For the 
vertical velocity component, the Dirichlet boundary condition is 
prescribed and equal to zero. 

The numerical results are compared with the DNS data [Kim et al., 1987] at low 
Re 7890=  number ( / 2HΔ =� , see equation (5.10)), and with the experimental 
data [Laufer, 1948] at higher Re 12300=  and Re 30800=  numbers 
( / 2HΔ =� ). Previous results at Re 12300=  have already been published in 
[Vertnik and Šarler, 2009], where the JL model with closure coefficient 

1 1.45Cε =  is used. 
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Figure  5.28: Geometry of the 2D channel flow. 

5.5.1.2 Numerical Results at Re=7890 

This example is first evaluated with LS model and three different node 
arrangements: 151 31× , 151 51×  and 151 71×  (without four corner nodes). The 
node arrangements are refined near the walls to achieve 1y+ ≤  of the first node 
near the wall (see Figure  5.29). A refinement level 2.0b = , 1.8  and 1.6  is used 
for each node arrangement, respectively, with the time step 310t −Δ = s. Figure 
 5.30 represents the calculated non-dimensional velocity at the outlet of the 
channel, where it is evident, that with the finer 151 71×  node arrangement we 
obtain almost grid-independent solution. From this figure, we can also see, that 
the LS model over-predicts the velocity profile away from the viscous sub-layer 
region. This is a normal behaviour of the LS model, found also by other authors 
[Wilcox, 1993; Bredberg, 2001]. 
Next, we run the simulations with 151 71×  node arrangements and various levels 
of refinement near the wall, i.e. 1.2b = , 1.4  and 1.6 . Figures  5.31 to  5.33 
represent the results by the JL, LS and AKN models, respectively. The JL model 
under-predicts the velocity already in the viscous sub-layer, and over-predicts it 
in the log layer [Bredberg, 2001]. The LS model is an extended version of the JL 
model, and better predicts the velocity profile in the viscous sub-layer, while 
similarly as JL model, over-predicts the profile in the log layer [Wilcox, 1993; 
Bredberg, 2001]. The AKN model slightly under-predicts the velocity profile in 
the range between the viscous sub-layer and the log layer [Abe et al., 1994; 
Bredberg, 2001]. The AKN model excellently predicts the viscous sub-layer 
region and region away from the log layer. 
The profile of the non-dimensional turbulent kinetic energy is shown in Figure 
 5.34, where the 151 71×  node arrangement is used. It is dimensionalised by the 
friction velocity as 
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2

k
k

uτ

+ = . (5.17) 

The best prediction is obtained with the AKN model. A similar comparison was 
made by Bredberg [Bredberg, 2001], who reached the same conclusions. 
 

 
Figure  5.29: A selected detail of the 151 71×  node arrangement. ο: boundary nodes. •: domain 

nodes. 
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Figure  5.30: Non-dimensional velocity profile at the outlet, obtained with the LS model. Red 

symbols ×: DNS by [Kim et al., 1987]. Solid line:151 31× . Dashed line:151 51× . Dash-doted 

line: 151 71×  node arrangement. 

 

 
Figure  5.31: Non-dimensional velocity profile at the outlet, obtained with the JL model and 

151 71×  node arrangement. Red symbols ×: DNS by [Kim et al., 1987]. Solid line: 2.80y+ = . 

Dashed line: 1.15y+ = . Dash-doted line: 0.49y+ = . 
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Figure  5.32: Non-dimensional velocity profile at the outlet, obtained with the LS model and 

151 71×  node arrangement. Red symbols ×: DNS by [Kim et al., 1987]. Solid line: 2.87y+ = . 

Dashed line: 1.15y+ = . Dash-doted line: 0.49y+ = . 

 

 
Figure  5.33: Non-dimensional velocity profile at the outlet, obtained with the AKN model and 

151 71×  node arrangement. Red symbols ×: DNS by [Kim et al., 1987]. Solid line: 2.84y+ = . 

Dashed line: 1.19y+ = . Dash-doted line: 0.50y+ = . 
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Figure  5.34: Non-dimensional kinetic energy profile at the outlet, obtained at the 151 71×  node 

arrangement. Red symbols ×: DNS by [Kim et al., 1987]. Solid line: JL model. Dashed line: LS 

model. Dash-doted line: AKN model. 

5.5.1.3 Numerical Results at Re=12300 and Re=30800 

This example tackles the solution at higher values of the Re  number. The 
151 71×  node arrangement with node refinement level 1.8b = . This level of 
refinement is suitable for Re 12300= , while for Re 30800= , the level of 
refinement is enhanced to 2.1b = . The time step is equal to 45 10t −Δ = ⋅ s at 
Re 12300=  and 55 10t −Δ = ⋅ s at Re 30800= . The numerical results are also 
obtained by Fluent, where AKN model is set as the turbulence model, and the 
mesh is generated with a 100000  (1000 100× ) quadrilateral finite volume cells. 
The mesh is refined near the wall. We obtain 0.1y+ =  for Re 12300= , and 

0.25y+ =  for Re 30800=  with Fluent. 
Figures  5.35 and  5.37 represent the calculated velocity profile at the Re 12300=  
and Re 30800= , obtained with different turbulent models and with Fluent. A 
comparison shows very small differences between the numerical results and the 
experiment. For better insight, the absolute differences between the calculated 
velocity profile of the various turbulence models and the measurements are 
plotted in Figures  5.36 and  5.38 for Re 12300=  and Re 30800= , respectively. 
It is difficult to conclude which turbulence model performs the best. On the basis 
of presented absolute differences between the numerical results and the 
experiment, the best agreement is given by the LS model, and the worse with the 
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AKN model. However, we are confident that all LRN models are properly 
implemented. This is the main aim of this numerical example. 
 

 
Figure  5.35: Normalized velocity profile at Re 12300= . 151 71×  node arrangement. Solid line: 

JL model. Dashed line: LS model. Dash-doted line: AKN model. Solid blue line: Fluent with the 

AKN model. 
 

 
Figure  5.36: Absolute difference of the calculated u  and measured velocity mu  at Re 12300= . 

151 71×  node arrangement. Solid line: JL model. Dashed line: LS model. Dash-doted line: AKN 

model. Solid blue line: Fluent with the AKN model. 
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Figure  5.37: Normalized velocity profile at Re 30800= . 151 71×  node arrangement. Solid line: 

JL model. Dashed line: LS model. Dash-doted line: AKN model. Solid blue line: Fluent with the 

AKN model. 

 

 
Figure  5.38: Absolute difference of the calculated u  and measured velocity mu  at Re 30800= . 

151 71×  node arrangement. Solid line: JL model. Dashed line: LS model. Dash-doted line: AKN 

model. Solid blue line: Fluent with the AKN model. 
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5.5.2 Heat Transfer as a Passive Scalar Field 

5.5.2.1 Problem Description 

We simulate the fully developed thermal field in a 2D channel at Re 4560=  (Δ�  
is equal to the channel height, see equation (5.10)) and Pr 0.71=  on which the 
walls are heated with a constant heat flux. With bouyancy effects neglected, 
temperature is considered as a passive scalar, which means, that the energy 
equation is un-coupled from the momentum and the turbulent transport 
equations. An example is taken from the database “DNS Database of Turbulence 
and Heat Transfer”, http://www.thtlab.t.u-tokyo.ac.jp/DNS/dns_database.html, 
example CH122_PG.WL1, and also published [Kasagi et al., 1992]. The same 
problem was also solved by the EVM [Chen et al., 2007]. They used the AKN 
model for the velocity field and two-equation model for the thermal field [Abe et 
al., 1995]. This model will be denoted as AKNT. 
The geometry of a 2D channel is the same as in the previous example (see 
Figure  5.28). The boundary conditions for the velocity components, the turbulent 
kinetic energy and the dissipation rate are also the same. For the temperature 
field, we used the following boundary conditions: 

• At the inlet, the Dirichlet boundary condition is set, where temperature is 
uniform and equal to 288.15 K (15 °C). 

• At the outlet, the Neumann boundary condition in the normal direction is 
prescribed and set to zero. 

• At the wall, the Neumann boundary condition with a constant heat flux, 
equal to 500 W/m2. 

• At the symmetry line: the same boundary condition is used as for the 
outlet boundary. 

The 151 71×  node arrangement is used, with the same refinement level as in the 
previous example. The LS and AKN models are used, while the JL is omitted, 
since the LS is extended (improved) version of the JL model. Turbulent Prandtl 
number is used as constant and equal to 0.9 . The time step is equal to 

310t −Δ = s. 

5.5.2.2 Numerical Results 

In Figure  5.39, the calculated non-dimensional velocity profile is presented. 
Comparing with the DNS data, we got a very good prediction with the AKN 
model. The LS model over-predicts it out from the log-layer, similar as in the 
previous example. 
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Figure  5.40 represents the non-dimensional temperature field, obtained by the 
following relation 

 wT T
T

Tτ

+ −=  , (5.18) 

where wT  and Tτ  are standing for the wall and the friction temperature, 
respectively. The friction temperature is defined as 

 w

p

q
T

c uτ
τρ

= . (5.19) 

In equation (5.19), wq  is the wall heat flux (equal to 500 W/m2) and uτ  is the 
friction velocity. Both models (LS and AKN) predict very well the viscous sub-
layer. In the log layer, the AKN model under-predicts, and the LS model over-
predicts the temperature profile. 
The results are also analyzed on the basis of the bulk Nusselt number Nub  at the 
outlet. It is calculated as 

 
( )

w
b

w b

q D
Nu

T Tλ
=

−
, (5.20) 

with D  and bT  standing for the half channel height and the bulk temperature, 
respectively. bT  is calculated by the following equation 
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ρ
=

∫

∫
. (5.21) 

The calculated Nub  with various turbulence models are presented in Table  5.9. 
An excellent agreement is obtained with the AKNT model, which is expected, 
due to use of the two-equation model for the thermal field. With the present 
method, where the simplest Bousinesq model for the turbulent diffusivity of heat 
and constant Prandtl number are used, the AKN predicts the Nu  number better 
than the LS model. The LS model gives 6.5% under-prediction and the AKN 
gives 4.5 % over-prediction. 
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Figure  5.39: Non-dimensional velocity profile obtained with 151 71×  node arrangement. Red 

symbols ×: DNS data. Solid line: LS model. Dashed line: AKN model. 

 

 
Figure  5.40: Non-dimensional temperature profile obtained with 151 71×  node arrangement. 

Red symbols ×: DNS data. Solid line: LS model. Dashed line: AKN model. 
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Table  5.9: Bulk Nusselt number at the outlet. 

 
turbulence 

model 
Nub  error (%) 

[Kasagi et al.,1992] DNS 15.4 0 

[Chen et al., 2007] AKNT 15.5 <1 

LS 14.4 6.5 
present method 

AKN 16.1 4.5 

5.5.3 Combined Forced and Natural Convection in a 2D 
Channel Flow 

5.5.3.1 Problem Description 

The fluid flow in the continuous casting process is driven by the combined 
turbulent forced and natural convection. The presented method was already 
tested for natural convection in a square cavity, where the flow was treated as 
laminar. The same case with turbulent natural convection was already 
investigated experimentally and numerically by many authors [Markatos and 
Pericelous, 1984; Henkes et al., 1991; Ampofo and Karayiannis, 2003; Hsieh 
and Lien, 2004]. However, we rather chose the DNS test by Kasagi [Kasagi and 
Nishimura, 1997] with combined forced and natural convection turbulent flow in 
a 2D vertical channel. The forced convection drives the fluid upward, while the 
buoyancy force acts upward at the hot wall and downward at the cold wall. The 
results are also presented on the website (“DNS Database of Turbulence and 
Heat Transfer“, http://www.thtlab.t.u-tokyo.ac.jp/DNS/dns_database.html, 
example CH1221BU.WL1). Those results were used by many researchers to 
evaluate various turbulence models, such as the LES [Yin and Bergstrom, 2004; 
Wang et al., 2007] and EVMs [Billard et al., 2008].  
The geometry of the problem is a vertical channel of width W  and height H , 

/ 120H W =  (see Figure  5.41). The flow with constant uniform velocity and 
temperature is entering into the channel at the bottom and leaving the channel at 
the top. Vertical walls are kept at different (left wall hot, right wall cold), but 
constant temperatures. At the outlet, the flow is assumed to be fully developed. 
The forced flow and the buoyancy force drive the flow upward near the hot wall 
(adding flow at the left wall), and downward near the cold wall (opposing flow 
at the right wall). The Re  number is set to 4494  ( WΔ =� , see equation (5.10)), 
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and the Grashof number based on the temperature difference between the 
vertical walls and the channel width is 9.6×105, i.e. 

 
( ) 3

2
Gr T h cg T T Wβ

ν
−

= . (5.22) 

The fluid is assumed to be air with Pr 0.71= . The case is elaborated in [Vertnik 
and Šarler, 2010]. 
 

 
Figure  5.41: Schematics of the mixed convection problem. 

 
Calculations are performed on 81 171×  node arrangement with (without 4 corner 
nodes), which is found sufficiently fine to obtain a reasonably grid-independent 
solution. We also used 61 171×  and 71 171×  node arrangements, where 
negligible difference is found between the 71 171×  and 81 171×  arrangements. 
The same conclusions can be drawn, when more nodes are used in the vertical 
direction. The discretization in the vertical direction yp  is uniform and in the 
horizontal xp  direction is non-uniform, sufficiently refined near the walls to 
achieve the position of the first point to be in the range 1y+ ≤  at each of the 
vertical walls (see Figure  5.42). The time step is set to 0.001stΔ =  for all 
calculations. 
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Figure  5.42: A detailed view of the 81 171×  node arrangement. ο: boundary nodes. •: domain 

nodes. 

5.5.3.2 Numerical Results 

The results are presented in form of non-dimensional variables, i.e. u+  (see 
equation (2.26)), T +  (see equation (5.18)) and k +  (see equation (5.17)) for 
velocity, temperature and the turbulent kinetic energy, respectively. 
Figures  5.43 and  5.44 are representing the non-dimensional velocity profile of 
the aiding and opposing flow at the outlet. The prediction of the velocity profile 
in the region near the walls (viscous sub-layer) agrees very well with the DNS 
data. In the outer layer, the LS model over-predicts the DNS data, which is a 
normal behaviour of the LS model [Billard et al., 2008; Bredberg, 2001; Wilcox, 
1993]. See all of the previous examples. A better agreement with the DNS data 
is obtained by the AKN model, which predicts the velocity profile very well in 
both regions. 
The non-dimensional turbulent kinetic energy is represented in Figures  5.45 and 
 5.46 for the aiding and opposing flows, respectively. On the aiding flow side, the 
k  is under-predicted, also out of the viscous sub-layer region. The reason could 
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be in the anisotropy of the Reynolds-stresses, which were found by the DNS 
solution to be enhanced in the aiding flow. However, it seems that the anisotropy 
does not affect the prediction of the velocity field, especially when the AKN 
model is used (see Figures  5.43 and  5.44). The turbulent kinetic energy of the 
opposing flow agrees very well, since it was reported by the DNS data, that the 
anisotropy of the Reynolds-stresses in this region is weakened. 
The temperature profile is shown in Figures  5.47 and  5.48 for the hot (aiding 
flow) and cold (opposing flow) walls, respectively. For the opposing flow, the 
calculated results are in good agreement with the DNS. However, on the aiding 
side, we observe larger differences between the LRN models and DNS. The 
reason could be in modelling the turbulent diffusivity and turbulent viscosity 
with a constant turbulent Prandtl number (set to 0.9 in the present dissertation). 
This assumption holds only for simple boundary layer flows, where the velocity 
and the temperature fields develop simultaneously [Abe et al., 1995]. In our 
case, the similarity between the temperature and the velocity fields does not 
hold, since the boundary layer is affected by the buoyancy force. It is observed 
from the DNS [Kasagi and Nishimura, 1997] and LES [Wang et al., 2007], that 
the buoyancy force effects the velocity fluctuations differently as the 
temperature fluctuations. The velocity fluctuations are enhanced in the opposing 
flow and reduced in the aiding flow, while the opposite effects are observed for 
the temperature fluctuations. For better prediction of such behaviour, the 
turbulent diffusivity should be modelled by the two-equation models for thermal 
field [Abe et al., 1995]. 
Due to the buoyancy effects, the velocity and the temperature profiles at the 
outlet become un-symmetric. This behaviour is shown in Figures  5.49 and  5.50 
for the velocity and temperature, respectively. The results are presented in the 
following non-dimensional relations 

 

yu
u

uτ

∗
∗= , (5.23) 
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where ∗Θ  stands for the normalized mean temperature. uτ
∗  is the friction 

velocity, calculated from the wall shear stress, averaged on the two walls, i.e. 
cold and hot walls. T ∗  stands for friction temperature, calculated by the 
following equation 
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where Tτ
∗  is calculated from the averaged wall heat flux, i.e. 
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c uτ
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∗= . (5.26) 

The equation (5.25) is used for calculating the hT ∗  and cT ∗  on the hot and cold 
walls, respectively. We can conclude, that the AKN model predicts the velocity 
profile with a very good accuracy, while the LS model over-predicts the velocity 
profile. The temperature profile is over-predicted by both models for the aiding 
flow, and agrees very good with the DNS data for the opposing wall. 
The accuracy of the represented method is evaluated also as a function of the 
Nusselt number and the skin friction at the top of the channel (at the outlet), 
which are calculated by the following equations 
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respectively. In equations (5.27) and (5.28), bT  and bu  are a bulk-averaged 
quantities  over d , which is the interval from the wall to the maximum velocity 
location. A bulk-averaged temperature is calculated by equation (5.21), while a 
bulk-averaged velocity is calculated as 
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1 d

b yu u dy
d

= ∫ . (5.29) 

The results are presented in Table  5.10, where an excellent agreement is 
achieved with both turbulence models. 
 
Table  5.10: Nusselt number Nu  and skin friction fC  at the channel outlet. 

aiding flow opposing flow 
 

turbulence 
model Nu  fC  Nu  fC  

DNS / 7.42 9.90E-3 20.94 7.90E-3 
LS 5.92 9.96E-3 21.97 7.30E-3 

present method 
AKN 7.18 1.05E-2 22.71 7.87E-3 
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Figure  5.43: Non-dimensional velocity profile of the aiding flow in wall coordinates. Red ×: 

DNS solution [Kasagi an Nishimura, 1997]. Solid line: present method with LS model. Dashed 

line: present method with AKN model. 

 

 
Figure  5.44: Non-dimensional velocity profile of the opposing flow in wall coordinates. Red ×: 

DNS solution [Kasagi an Nishimura, 1997]. Solid line: present method with LS model. Dashed 

line: present method with AKN model. 
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Figure  5.45: Non-dimensional turbulent kinetic energy of the aiding flow in wall coordinates. 

Red ×: DNS solution [Kasagi an Nishimura, 1997]. Solid line: present method with LS model. 

Dashed line: present method with AKN model. 

 

 
Figure  5.46: Non-dimensional turbulent kinetic energy of the opposing flow in wall coordinates. 

Red ×: DNS solution [Kasagi an Nishimura, 1997]. Solid line: present method with LS model. 

Dashed line: present method with AKN model. 
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Figure  5.47: Non-dimensional temperature profile of the aiding flow in wall coordinates. Red ×: 

DNS solution [Kasagi an Nishimura, 1997]. Solid line: present method with LS model. Dashed 

line: present method with AKN model. 

 

 
Figure  5.48: Non-dimensional temperature profile of the opposing flow in wall coordinates. Red 

×: DNS solution [Kasagi an Nishimura, 1997]. Solid line: present method with LS model. 

Dashed line: present method with AKN model. 
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Figure  5.49: Non-dimensional velocity profile at the outlet in wall coordinates. Red ×: DNS 

solution [Kasagi an Nishimura, 1997]. Solid line: present method with LS model. Dashed line: 

present method with AKN model. 

 

 
Figure  5.50: Non-dimensional temperature profile at the outlet in wall coordinates. Red ×: DNS 

solution [Kasagi an Nishimura, 1997]. Solid line: present method with LS model. Dashed line: 

present method with AKN model. 
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5.5.4 Backward Facing Step 

5.5.4.1 Problem Description 

The backward facing step problem is probably the most important example for 
evaluating the turbulence models [Bredberg, 2001; Seo, 2001; Chen et al., 2006; 
Ghotbi et al., 2008]. This problem was arranged experimentally and evaluated 
by many authors [Adams, 1984; Vogel, 1984; Jović and Driver, 1994]. Despite 
the simple geometry, complex physical phenomena occur, such as the flow 
separation and reattachment. 
The geometry of the physical domain is taken from the experiment by [Jović and 
Driver, 1994], shown in Figure  5.51. The experiment is characterized by the step 
height 1.0H = m, the channel length after the step 30L H=  and by the 
Re 5000H =  (Δ�  is equal to the step height, see equation (5.10)), which 
determines the inlet conditions at the step. In the experiment, the flow conditions 
in the channel upstream was achieved at the distance / 3.05xp H = −  before the 
step with the Re  number based on the momentum thickness Re 610θ = . The 
Reθ  is defined as 

 0Re
u

θ
ρθ
μ

= , (5.30) 

where θ  is the momentum thickness and 0u  is the free stream velocity of the air. 
Both quantities are taken directly from the experiment and have values 

0.12 cmθ =  and 0 7.72 m / su = . The numerical results of the described problem 
have already been published in [Vertnik and Šarler, 2009], where the JL model 
with closure coefficient 1 1.45Cε =  was used. 
 

 
Figure  5.51: Schematics of the backward-facing step problem. 
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The computational domain of the backward facing step considers only the 
physical domain after the step, shown in Figure  5.52. At the initial state, the 
following uniform conditions are set: 0 0 0x yu u= = m/s, and 0 0 0.001k ε= = . 
The following boundary conditions are used: 

• At the inlet, the calculated profiles of xu , k , ε  and tμ  from the 
boundary layer simulation (BLS) over a flat plate are used, described in 
the next section. Velocity in the vertical direction yu  is equal to zero. 

• At the outlet and at the symmetry line: the same boundary conditions are 
used as in the 2D channel flow (see section  5.5.1). 

 

 
Figure  5.52: Computational domain of the backward-facing step problem. 

5.5.4.2 Boundary Layer Simulation over a Flat Plate 

In order to achieve the same inlet conditions as in the experiment, the BLS over 
a flat plate is performed with the present method. The geometry for the BLS is 
shown in Figure  5.53, where the following boundary conditions are used: 

• At the inlet, the same boundary conditions are used as in the 2D channel 
flow example (see Section  5.5.1). 

• At the bottom, 10H  before the leading edge of the plate, the symmetry 
boundary condition is set to provide a uniform profile at the leading 
edge. At the remaining 50H  of the bottom edge, the no-slip boundary 
conditions are set. 

• At the left and the top boundaries, the outlet boundary conditions are set. 
The desired Reθ  and the velocity profile of the Jović and Driver measurements 
are achieved with the simulation length of the flat plate 50L H= . The 101 81×  
node arrangement is used, with the refinement near the bottom edge. The results 
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of the BLS, obtained with the LS and the AKN model, are presented in Figure 
 5.54, where the velocity profile is plotted. 
 

 
Figure  5.53: Schematics of the geometry used for the BLS. 

 

 
Figure  5.54: Velocity profile at the inlet. Symbol × : measurements [Jović and Driver, 1994]. 

Solid line: present method with LS model. Dashed line: present method with AKN model. 

5.5.4.3 Numerical Results 

The calculations are performed first with the AKN model and at three different 
node arrangements: 201 71× , 201 91× , and 201 111×  (without 4 corner nodes). 
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The node arrangements in the domain are generated in such a way, that the 
number of nodes in the vertical direction in the free stream region ( 1.0yp ≥ ) is 
constant for all three arrangements and equal to 40. While the number of nodes 
in the step region ( 1.0yp < ) is changing, i.e. 29 for 201 71× , 49 for 201 91×  and 
69 for 201 111× . The node arrangement is generated with a refinement near the 
walls as presented in Figure  5.55. When using the AKN model, the refinement 
level 1b  is equal to 1.8  in all three arrangements, while 2b  is different in each 
arrangement: 1.6 for 201 71× , 1.4 for 201 91×  and 1.2 for 201 111× . The levels 
are different in order to keep the time step value equal to 310− s. A detailed view 
of the 201 71×  node arrangement is shown in Figure  5.56. The obtained grid 
convergence is presented in Figure  5.57, where the skin friction at the bottom 
wall is plotted. We also try to use denser discretization in the horizontal direction 
with 251 and 301 nodes, but we obtained the results without any improvements. 
When using the LS model, the refinement of the node arrangement near the 
bottom wall is enhanced to get the stable profile of the skin friction. For the 
201 111×  node arrangement, the refinement level 1 2.2b =  is acceptable. With 
this refinement level, the time step is reduced to 42.5 10−⋅ s. 
The results are compared with the measurements [Jović and Driver, 1994] (JD), 
with the results obtained by the DNS of turbulent flow [Le et al., 1997], and with 
the results obtained by Fluent. Calculations with the present method are 
performed with LS and AKN turbulence models. 
 

 
Figure  5.55: Node refinement schematics. 
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Figure  5.56: A detailed view of the 201 71×  node arrangement. Points: interior nodes. Circles: 

boundary nodes.  

 
In Fluent, the calculations are performed with the non-uniform mesh with 80000 
finite volumes ( 400 200×  quadrilateral finite volumes) with a similar refinement 
near the walls as in our model. With this very fine discretization, a reasonable 
mesh-independence of the results has been achieved. Only the AKN turbulence 
model is used. However, Fluent has the ability to use the LS model, but it has 
implemented its modified version, without D  and E  source terms in the 
transport equations for k  and ε , respectively (see equations (2.83) and (2.84)). 
Because of these modifications, this is not the original model by Launder and 
Sharma [Launder and Sharma, 1974], and thus we did not use it in the present 
dissertation. The same boundary conditions and material properties are set as in 
the LRBFCM calculations. 
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Figure  5.57: Skin friction at the bottom wall obtained with three different node arrangements: 

Solid line: 201 71× . Dashed line: 201 91× . Dash-doted line: 201 111× .  

 
The calculated velocity profile xu , normalized by the inlet velocity in the 
upstream channel x0u , is compared with the results obtained by other methods at 
different /x H  positions. For better insight into the obtained results, the 
normalized velocity profile xu  at each /x H  position is plotted as a separate 
figure: at / 4x H =  in Figure  5.58, at / 6x H =  in Figure  5.59, at / 10x H =  in 
Figure  5.60, at / 15x H =  in Figure  5.61 and at / 19x H =  in Figure  5.62. Below 
each figure, the normalized numerical and experimental velocity values xu are 
also tabulated in Tables  5.12,  5.13,  5.14,  5.15 and  5.16. The differences between 
all methods and experiment are more clearly visible from the tabulated values. 
There are several reasons to explain these differences. The prevailing one is 
because of the use of different turbulence models, where each model has its own 
advantages and disadvantages. The DNS results are most accurate, since the N-S 
equation is directly solved. The prediction with the LS model is very good in the 
range between the position of the step and at / 4x H = . Around the fluid 
separation downward the step, especially around the reattachment position, the 
LS model is losing its accuracy. The reasons are in the D  and E  source terms in 
the transport equations for k  and ε , respectively. They both include second 
order derivatives, which are very sensitive in the separation regions. This is the 
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reason why Fluent does not use these terms. With the AKN model, we obtained 
over-prediction in the range before the reattachment position and an under-
prediction in the remaining region (after the reattachment position). However, 
the results with the AKN model of the present method and Fluent are in 
excellent agreement. The calculated velocity field of the whole computational 
domain is presented with the generated streamlines, plotted in Figure  5.63. 
The important quantity in the backward-facing step simulations is the 
reattachment position. The reattachment position is obtained based on the 
horizontal velocity xu  at the first inner point, closest to the bottom wall. The 
reattachment is at the position, where the velocity xu  is equal to zero. The 
second approach is based on the skin friction, defined by the following equation 

 
2
0

2 w
f

x

C
u

τ
ρ

= , (5.31) 

where wτ  and 0xu  are the wall shear stress at the bottom wall and the inlet 
velocity in the upstream channel, respectively. The reattachment is at the 
position, where the skin friction is equal to zero. The later approach is used in 
the present dissertation. With the LS model we got the position at / 6.64x H = , 
while with the AKN model at / 6.14x H = . The related reattachment positions 
obtained by experiment and other authors are represented in Table  5.11. The skin 
friction, calculated by equation (5.31), is also presented in Figure  5.64 for the 
AKN model and in Figure  5.65 for the LS and JL models. In both figures, the 
skin friction from the DNS results and the experimental measurements are 
plotted as well. 
 
Table  5.11: Reattachment position. 

 
turbulence 
model 

reattachment position- /x H  

experiment JD / 6.00±0.15 
present method LS 6.64 
present method AKN 6.14 
DNS / 6.28 
Fluent AKN 6.20 
[Bredberg, 2001] JL 6.17 
[Bredberg, 2001] LS+YAP 6.83 
[Bredberg, 2001] AKN 5.65 
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Figure  5.58: The normalized velocity xu  at / 4x H = . Solid line: present with AKN model. 

Dashed line: present with LS model. Blue ο: Fluent with AKN model. Δ: DNS. Red *: JD. 

 
Table  5.12: The normalized velocity xu  at / 4x H = . 

 
experiment 

JD 
DNS Fluent 

AKN 
present 
AKN 

present 
LS 

0.025 -0.0764 -0.1164 -0.0983 -0.0861 -0.1167 
0.097 -0.1373 -0.1647 -0.0944 -0.0921 -0.1498 
0.194 -0.1192 -0.1314 -0.0641 -0.0613 -0.1319 
0.388 -0.0233 -0.0299 0.0163 -0.0148 -0.0631 
0.582 0.1321 0.1230 0.1206 0.1244 0.0464 
0.776 0.3368 0.3153 0.2675 0.2730 0.2164 
0.970 0.5181 0.5129 0.4519 0.4586 0.4648 
1.164 0.6723 0.6857 0.6476 0.6487 0.6945 
1.358 0.7811 0.7928 0.7709 0.7682 0.7994 
1.552 0.8420 0.8537 0.8389 0.8369 0.8637 
1.746 0.8860 0.9012 0.8940 0.8914 0.9158 
1.940 0.9158 0.9433 0.9371 0.9332 0.9567 
2.134 0.9417 0.9730 0.9568 0.9545 0.9760 
2.425 0.9559 0.9816 0.9637 0.9627 0.9782 
2.910 0.9534 0.9770 0.9676 0.9672 0.9780 
3.880 0.9598 0.9716 0.9730 0.9730 0.9783 
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Figure  5.59: The normalized velocity xu  at / 6x H = . Solid line: present with AKN model. 

Dashed line: present with LS model. Blue ο: Fluent with AKN model. Δ: DNS. Red *: JD. 

 
Table  5.13: The normalized velocity xu  at / 6x H = . 

 
experiment 

JD 
DNS Fluent 

AKN 
present 
AKN 

present 
LS 

0.025 0.0104 -0.0002 0.0114 0.0158 -0.0343 
0.049 0.0207 0.0083 0.0343 0.0330 -0.0406 
0.097 0.0337 0.0257 0.0565 0.0565 -0.0345 
0.194 0.0933 0.0583 0.0865 0.0868 -0.0093 
0.388 0.1930 0.1471 0.1515 0.1524 0.0734 
0.582 0.3303 0.2657 0.2400 0.2416 0.1929 
0.776 0.4715 0.4073 0.3544 0.3569 0.3457 
0.970 0.5842 0.5560 0.4936 0.4964 0.5225 
1.164 0.6995 0.6783 0.6462 0.6457 0.6844 
1.358 0.7694 0.7656 0.7580 0.7551 0.7802 
1.552 0.8199 0.8258 0.8223 0.8202 0.8407 
1.746 0.8614 0.8727 0.8738 0.8696 0.8888 
1.940 0.8847 0.9122 0.9090 0.9046 0.9236 
2.134 0.9041 0.9343 0.9228 0.9218 0.9385 
2.425 0.9158 0.9416 0.9304 0.9309 0.9436 
2.910 0.9210 0.9426 0.9379 0.9387 0.9479 
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Figure  5.60: The normalized velocity xu  at / 10x H = . Solid line: present with AKN model. 

Dashed line: present with LS model. Blue ο: Fluent with AKN model. Δ: DNS. Red *: JD. 

 
Table  5.14: The normalized velocity xu  at / 10x H = . 

 
experiment 

JD 
DNS Fluent 

AKN 
present 
AKN 

present 
LS 

0.025 0.1386 0.1386 0.1344 0.1325 0.1395 
0.049 0.1891 0.2073 0.2073 0.1965 0.1839 
0.097 0.2733 0.2636 0.2482 0.2427 0.2098 
0.194 0.3264 0.3086 0.2805 0.2752 0.2429 
0.388 0.3938 0.3697 0.3298 0.3250 0.3075 
0.582 0.4715 0.4370 0.3874 0.3832 0.3829 
0.776 0.5492 0.5135 0.4577 0.4544 0.4705 
0.970 0.6218 05949 0.5412 0.5386 0.5670 
1.164 0.7047 0.6774 0.6371 0.6347 0.6661 
1.358 0.7629 0.7505 0.7383 0.7348 0.7552 
1.552 0.8070 0.8079 0.8141 0.8093 0.8193 
1.746 0.8458 0.8524 0.8593 0.8537 0.8606 
1.940 0.8730 0.8811 0.8832 0.8805 0.8847 
2.134 0.8821 0.8951 0.8916 0.8928 0.8941 
2.425 0.8925 0.9006 0.8977 0.9002 0.8993 
2.910 0.9015 0.9024 0.9048 0.9075 0.9053 
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Figure  5.61: The normalized velocity xu  at / 15x H = . Solid line: present with AKN model. 

Dashed line: present with LS model. Blue ο: Fluent with AKN model. Δ: DNS. Red *: JD. 

 
Table  5.15: The normalized velocity xu  at / 15x H = . 

 
experiment 

JD 
DNS Fluent 

AKN 
present 
AKN 

present 
LS 

0.025 0.1451 0.1714 0.1756 0.1756 0.1982 
0.049 0.2500 0.2698 0.2806 0.2671 0.2826 
0.097 0.3497 0.3549 0.3432 0.3358 0.3344 
0.194 0.4054 0.4154 0.3825 0.3750 0.3709 
0.388 0.4547 0.4717 0.4261 0.4192 0.4232 
0.582 0.5065 0.5192 0.4681 0.4618 0.4751 
0.776 0.5492 0.5692 0.5157 0.5101 0.5314 
0.970 0.6218 0.6239 0.5703 0.5654 0.5923 
1.164 0.6891 0.6782 0.6320 0.6279 0.6566 
1.358 0.7344 0.7332 0.7015 0.6979 0.7222 
1.552 0.7746 0.7845 0.7780 0.7736 0.7852 
1.746 0.8135 0.8275 0.8453 0.8389 0.8397 
1.940 0.8394 0.8602 0.8733 0.8708 0.8729 
2.134 0.8562 0.8792 0.8815 0.8828 0.8819 
2.425 0.8692 0.8882 0.8866 0.8895 0.8859 
2.910 0.8705 0.8894 0.8922 0.8954 0.8902 
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Figure  5.62: The normalized velocity xu  at / 19x H = . Solid line: present with AKN model. 

Dashed line: present with LS model. Blue ο: Fluent with AKN model. Δ: DNS. Red *: JD. 

 
Table  5.16: The normalized velocity xu  at / 19x H = . 

 
experiment 

JD 
DNS Fluent 

AKN 
present 
AKN 

present 
LS 

0.025 0.1399 0.1798 0.1846 0.1859 0.1994 
0.049 0.2616 0.2892 0.3021 0.2885 0.3051 
0.097 0.3860 0.3852 0.3779 0.3704 0.3786 
0.194 0.4585 0.4509 0.4233 0.4156 0.4192 
0.388 0.5052 0.5061 0.4663 0.4591 0.4680 
0.582 0.5453 0.5457 0.5028 0.4962 0.5117 
0.776 0.5868 0.5859 0.5419 0.5358 0.5569 
0.970 0.6399 0.6316 0.5852 0.5799 0.6049 
1.164 0.6930 0.6801 0.6335 0.6289 0.6554 
1.358 0.7332 0.7256 0.6873 0.6834 0.7076 
1.552 0.7811 0.7693 0.7473 0.7438 0.7602 
1.746 0.8303 0.8078 0.8137 0.8094 0.8111 
1.940 0.8614 0.8397 0.8654 0.8617 0.8565 
2.134 0.8834 0.8646 0.8780 0.8789 0.8779 
2.425 0.8964 0.8836 0.8834 0.8863 0.8826 
2.910 0.8990 0.8879 0.8887 0.8919 0.8865 
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a) 

 
b) 

 
Figure  5.63: The streamlines calculated with the LS (a) and AKN (b) model. 

 

 
Figure  5.64: The skin friction at the bottom wall with AKN model. Solid line: present method. 

Blue ο: Fluent. Δ: DNS. Red *: JD. 
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Figure  5.65: The skin friction at the bottom wall with LS and JL models. Solid line: present 

method with LS model. Blue ο: [Bredberg, 2001] with JL model. Δ: DNS. Red *: JD. 
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6 Simulation of the Continuous 
Casting of Steel 

The last chapter is dedicated to the numerical model of the continuous casting of 
steel. The model characteristics and assumptions are first explained in details. 
Next, the geometry of the casting machine is presented, with the procedure of 
the node arrangement generation. The boundary conditions are elaborated. The 
numerical model is validated by the results obtained with Fluent, where the 
simplified geometry and material properties are used. The comparison is 
analyzed on the basis of selected velocity and temperature profiles, and velocity 
and temperature fields. In the last section, various simulations with thermo-
physical properties obtained by the JMatPro, and with the real process 
parameters, taken from the casting machine are performed. The effects of 
various process parameters on the velocity and temperature field are analyzed.  

6.1 Model Characteristics and Assumptions 

The following characteristics and assumptions are considered in the present 
model: 

• The continuous casting operates at steady state. 
• A real curved 2D geometry of the casting machine in Štore Steel 

company is considered. This assumption is not a good realistic 
approximation for a billet caster since 3D simulations should be used. 
But the discretization of the 3D geometry leads to a node arrangement 
with a very large number of nodes. In order to get the solution with such 
a node arrangements in a reasonable computational time, the numerical 
model should be modified to run on a parallel network of computers. 

• The molten steel behaves as an incompressible Newtonian fluid. 
• The thermo-physical properties of the steel are considered as a function 

of temperature, calculated by the JMatPro. The density is assumed to be 
constant and equal for both phases, i.e. the solid and the liquid phase. Its 
value is taken from that at the solidus temperature, also obtained by the 
JMatPro. The dynamic viscosity and the thermal expansion coefficient of 
the molten steel are fixed to 0.006 (Pa s) and 410− K−1, respectively. 
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• The boundary conditions for the temperature field are taken from the 
already developed simulation system for Štore Steel casting machine 
[Šarler et al., 2005]. 

• The heat release due to the solid-solid transformation is not taken into 
account. 

• The solidification in a mushy zone is assumed to be as columnar-
dendritic, and acts as a porous media. The velocity of the solid phase is 
constant, equal to the casting speed (speed of the rigid body). No 
equiaxed grains are assumed to float in the melt. 

• The mixture-continuum model is used for deriving the conservation 
equations for mass, momentum, energy, and for equations of the 
turbulence model. This means that at each location in the mushy zone, 
the material is treated as a mixture, occupied simultaneously by all 
phases and all constituents. A detailed explanation and the derivation of 
the mixture model is presented in Chapter  2. 

6.2 Geometry and Node Arrangement 

The casting machine is composed of the mould, the secondary cooling system 
and the rolls. The present numerical model of the continuous casting process 
involves only the first two parts, as shown in Figure  6.1. The shape of the casted 
billet in the casting direction is an arc of a circle with radius 0 6r = m, measured 
from the centre of a circle to the outer side of the mould. The position of the 
centre point of a circle, according to the origin of the selected coordinate system 
(see Figure  6.1), is at 6.0mx =  and 0.0my = . The geometry of the SEN is 
presented in Figure  6.2. Its geometrical shape is a hollow cylinder (tube). The 
meaning of each dimension and its value of the casting machine and the SEN is 
represented in Table  6.1. The same values are used for generating node 
arrangements in the present numerical model. Note that the tubular SEN is a 2D 
model, whereas the billet is modelled as an infinitely broad slab. 
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Figure  6.1: Considered geometry schematics of the continuous casting machine. 
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Figure  6.2: Geometry of the SEN with relevant dimensions. 

 
Table  6.1: The dimensions of the Štore Steel continuous casting machine. 

dimension description value (m) 

mL  length of the mould 0.8000 

sL  length of the secondary cooling system 1.0000 

ba  billet dimension 0.1400 

1d  outer diameter of the SEN 0.0650 

2d  inner diameter of the SEN 0.0350 

SENp  position of the SEN 0.0725 

levelL  steel level depth 0.1500 

depthL  submerging depth of the SEN 0.0900 

R
 

outer radius of the casting machine 6.0000 

 
The node generation for a non-curved geometry is easy to handle, while special 
care should be considered in curved geometry. Theoretically, the meshless 
methods allow the solution of the PDE on a scattered node arrangement. This 
was already analysed by many authors on a relatively very simple examples, i.e. 
heat transfer in a square cavity [Lee et al., 2003]. However, for such a complex 
geometry and also physical problem of the casting process, we did not generate a 
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random node arrangement, but rather use an automatic orthogonal grid generator 
with the open-source software package Gridpak (Version 5.3, 
“http://marine.rutgers.edu/po/gridpak.html”). Gridpak is a package written in 
Fortran language, and creates an orthogonal grid based on the available 
boundary information. First, we generate a node arrangement for each boundary, 
and then pass the coordinates of the generated boundary node arrangements into 
the Gridpak solver, which returns the coordinates of the interior nodes. An 
example of the generated node arrangement used in the present dissertation, is 
shown in Figures  6.3 and  6.4. It is refined near the walls, around the SEN and 
near the end of the mould. More nodes are generated in the regions between the 
SEN and walls along the whole billet, where also the mushy zone exists. Based 
on the comparison with Fluent and experience from the numerical results in the 
previous chapter, we came up with the node arrangement with 57637 nodes. The 
arrangement is optimized in such a way that the time step value is kept large as 
much as possible without jeopardizing the stability and accuracy of the solution.  
 

 
Figure  6.3: Node arrangement in the mould and around the SEN. 
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Figure  6.4: A detailed view of the node arrangement at the end of the mould. 

6.3 JMatPro Thermo-Physical Properties 

The thermo-physical properties of steel are calculated with the JMatPro. The 
following properties are included: thermal conductivity, specific heat, enthalpy 
and liquid fraction. They are imported by reading the export (.dat) file, which is 
generated by the export function in the JMatPro. For an example, the thermal 
conductivity, specific enthalpy, liquid fraction and specific heat for C45 steel 
grade (see composition in Table  6.3) are plotted in the Figures  6.5 to  6.8, 
respectively. 
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Figure  6.5: Thermal conductivity of the steel grade C45. 

 

 
Figure  6.6: Enthalpy of the steel grade C45. 

 



 Simulation of the Continuous Casting of Steel 

 

148 

 
Figure  6.7: Liquid fraction of the steel grade C45. 

 
It is found out that the specific heat needs to be modified before using it in the 
present numerical calculations. In the JMatPro calculations, where the 
solidification appears, the latent heat is also considered in the model for specific 
heat. The specific heat is then modified by re-calculating it in the interval 
between the solidus and liquidus temperature by using the linear function. The 
specific heat is also modified by removing the peaks (releasing heats) where the 
solid-solid transformations occur. Solid-solid transformations are bellow 1200K. 
In that range, the values of the specific heat are calculated using the linear 
function between 299 K and 1200K.  
To demonstrate the modifications, the difference between the original and the 
modified specific heat for the steel grade C45 is presented. In Figure  6.8 the 
original one and in Figure  6.9 the modified one are plotted, respectively. 
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Figure  6.8: Specific heat of the steel grade C45 obtained by the JMatPro. 

 

 
Figure  6.9: Modified specific heat of the steel grade C45 used in the simulations. 
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6.4 Initial Conditions 

The initial condition for the velocity field is set in the same way as presented in 
the Section  2.7, i.e. by solving the potential field. 
The initial temperature field is set to a constant value, equal to the casting 
temperature. 
The uniform profiles for the turbulent kinetic energy and the dissipation rate are 
set, equal to 3

0 10k −= m2/s2 and 3
0 10ε −= m2/s3. 

6.5 Boundary Conditions 

The boundary conditions for the velocity components, the turbulent kinetic 
energy, the dissipation rate, and the temperature are defined in this section. For 
the temperature, the boundary conditions are taken from an already developed 
and validated simulation system in the Štore Steel company [Šarler et al., 2005]. 
The simulation system was validated based on the temperature measurements on 
the billet surface by the pyrometer [Vertnik and Šarler, 2004c], installed on the 
continuous casting machine, and by the thermovision measurements with the 
high-speed thermograph camera FLIR ThermoVision SC6000HS [Gjerkeš et al., 
2009]. Figure  6.10 shows an example of the validation, where the comparison of 
the measured and simulated temperature in the middle of the cast steel billet 
surfaces is represented. 
 
The boundary conditions for the velocity components and variables of the 
turbulence model are graphically represented in Figure  6.11. Their discussion is 
as follows: 

I - Inlet 

At the inlet, the profiles of the vertical velocity, the turbulent kinetic energy, and 
the dissipation rate are pre-calculated with a 2D channel flow solver (see Section 
 5.5.1). A 41 101×  node arrangement with level refinement 1.5b =  is used. The 
time step is equal to 57.5 10t −Δ = ⋅ s. The inlet velocity is calculated from the 
mass balance with the following equation 

 0
2

cast bu a
u

d

⋅= , (6.1) 

where castu , ba  and 2d  are standing for the casting velocity, billet dimension and 
inlet diameter of the SEN, respectively. Here, we represent the results for the 
casting velocity 1.75  m/min and the billet dimension 0.140  m. The results are 
represented in Figures  6.13,  6.14 and  6.15 as the vertical velocity profile, the 
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non-dimensional turbulent kinetic energy, and non-dimensional dissipation rate, 
respectively. 

O - Outlet 

At the outlet, the flow is assumed to be fully developed. The gradients in the 
normal direction of the velocity field, the turbulent kinetic energy, and the 
dissipation rate are zero. 

SW - stationary wall 

At the stationary wall, the no-slip boundary conditions are set. The velocity 
components, the turbulent kinetic energy, and the dissipation rate all set to zero. 

MW - moving wall 

The velocity is prescribed, equal to the withdrawal velocity in the casting 
direction. This velocity is changing as a function of radius. It is equal to the 
prescribed casting speed at the outer side (left wall), where the radius is 6  m. 
For other nodes, with radius ranging from 6 5.86÷ m, the withdrawal velocity wu  
is calculated by the following equation 

 0wu rω= ⋅ , (6.2) 

where 0ω  is an angular velocity at the outer side and r  is a radius, measured 
from the centre of a circle to the node. The circle centre is defined in the Section 
 6.2. An angular velocity at the outer side is calculated as 

 0
0

castu

r
ω = ; 0 6 mr = . (6.3) 

FS - free surface 

At a free surface (free-stream flow), the boundary conditions are the same as at 
the outlet, except for the vertical velocity component, which value is set to zero. 
 
The boundary conditions for the temperature field (see Figure  6.12) are as 
follows: 

D - Dirichlet 

The temperature is prescribed and constant, equal to the casting temperature. 

N - Neumann 

The Neumann boundary conditions at the outer and inner side of the billet are 
prescribed with the heat fluxes in the mould and secondary cooling system. In 



 Simulation of the Continuous Casting of Steel 

 

152 

the mould, the heat flux is calculated by the following equation [Šarler et al., 
2005] 

 ( )0 1 ,min ,max ,minm mol mol mol
cast

L
hfl Q Q C C C

u

⎛ ⎞
⎡ ⎤= − + −⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
, (6.4) 

where 6
0 2.68 10Q = ⋅ W/m2, 6

1 0.335 10Q = ⋅ W/(m2s1/2), ,min 0.5molC = , 

,max 1.5molC = . In equation (6.4), L  is the billet length, measured from the top of 
the free surface. In the secondary cooling system, shown in Figure  6.16, the heat 
flux is calculated as 

 ( )sc sc schfl h T T= − , (6.5) 

where sch  and scT  is the heat transfer coefficient and temperature of the cooling 
water, respectively. The heat transfer coefficient is calculated by the following 
equation [Hardin et al., 2003; Šarler et al., 2005] 

 
[ ]0.55 1 0.0075

1570
3.25

sc
sc sch Q

θ−
= � W/(m2K), (6.6) 

where scQ�  and scθ  are representing the spray cooling flux in l/(m2s) and 
temperature of the cooling water in °C, respectively. A typical heat flux along 
the billet is plotted in Figure  6.17. 
 
NO - Neumann at the outlet 
At the outlet, the Neumann boundary condition is set. The gradient of the 
temperature in the normal direction is set to zero. 
 
NFS - Neumann at the free surface 
At the free surface, the boundary condition is the same as the Neumann 
boundary condition at the outlet. 
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Figure  6.10: Comparison of the measured (triangles) and simulated (continuous line) 

temperature in the middle of the cast steel billet surfaces. 

 

 
Figure  6.11: Boundary conditions for the velocity field. Characters represent: I-inlet, SW-

stationary wall, FS-free surface, MW-moving wall and O-outlet. 
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Figure  6.12: Boundary conditions for the temperature field. Characters represents: D-Dirichlet, 

N-Neumann, NFS-Neumann at the free surface and NO-Neumann at the outlet. 

 

 
Figure  6.13: Velocity profile yu  at the SEN outlet. 
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Figure  6.14: Non-dimensional turbulent kinetic energy at the SEN outlet. 

 

 
Figure  6.15: Non-dimensional dissipation rate at the SEN outlet. 
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Figure  6.16: Spray systems in the Štore Steel billet caster. 

 

 
Figure  6.17: The heat flux at the surface. Solid black line: outer side. Red dashed line: inner 

side. 
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6.6 Numerical Examples 

6.6.1 Simplified Model and Comparison with Fluent 

The developed numerical model is verified by comparison with commercial 
software Fluent. Simplified boundary conditions and physical properties are used 
in order to reduce the unnecessary complexity of the verification process. The 
following simplifications are used in the geometry and boundary conditions: 

• The steel level depth is set to 0levelL = m. The SEN depth remains the 
same, i.e. 0.9depthL = m. 

• The boundary conditions are simplified only at the outer and inner sides 
of the casting machine. They are changed to the Robin type, with the 
constant heat transfer coefficient in the mould 2000mh = W/(m2K) and in 
the secondary cooling system 800sh = W/(m2K). 

The material properties are constant and equal for all phases. They are presented 
in Table  6.2. The casting speed and the casting temperature are equal to 

1.75castu = m/min and 1800castT = K, respectively. The inlet velocity of the 
molten steel in the SEN is 0 0.11667yu = − m/s, which corresponds to Re 4900=  
( 2dΔ =� , see equation (5.10)). The node arrangement with 70861  nodes is 
generated in the same way as described in Section  6.2. The time step is set to 

42.5 10t −Δ = ⋅ s. The morphology constant in the Darcy’s source terms is set to 
81.6 10C = ⋅ m−2. (in Fluent 610 (N·s·m−4) as the mushy zone constant). 

 
Table  6.2: Simplified material properties.  

property value 

ρ  7200 kg/m3 

λ  30 W/(m K) 

pc  700 J/(kg K) 

ST  1680K 

LT  1760K 

mh  250000 J/kg 

Lμ  0.006 Pa⋅s 

Tβ  
41 10−⋅ 1/K 
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For Fluent solver, the mesh with 139200  quadrilateral cells is generated in 
Gambit software. The mesh is refined near the walls and around the SEN similar 
as in our numerical model. The generated mesh is represented in Figure  6.18, 
where the upper part of the mould with SEN is shown. The SIMPLE algorithm is 
chosen for the velocity-pressure coupling and the AKN turbulence model is set 
for the turbulence model. Fluent uses a simplified single-phase physical model to 
solve the fluid flow problems with the solidification. The involved equations 
have the same form as for the liquid phase, with additional Darcy’s term in the 
momentum equations to account for the solidification effects. The momentum 
equations of the continuum mixture model are in the case of the constant density 
of all phases practically the same as in a single-phase model in Fluent. The only 
difference between our mixture model and a single-phase model in Fluent is 
found in the energy equation, where the convection term in the mixture 
formulation is a summation of the liquid and solid variables, multiplied by the 
liquid and solid fraction, respectively, i.e. ( )S S S L L Lu h u hρ ρ∇⋅ + . While in 
Fluent, the convection term is a function of the single-phase variables, i.e. 

( )uhρ∇⋅ . The time-averaging procedure of the convection term also brings 
differences in the resulting turbulent heat fluxes. Some differences of the heat 
transfer phenomena in the mushy zone are then anticipated, while in the pure 
liquid and pure solid zone, the equations of both formulations are the same. 
The results are represented as profiles in the radial cross-section at different 
positions along the billet. The positions are measured as arc length from the top 
of the continuous casting machine. In Figures  6.19- 6.22 the absolute velocity is 
represented, calculated with the present model and Fluent. The comparison 
shows very good agreement between both numerical models and methods. Of 
course, there are some differences, mainly because of using different turbulence 
models in each numerical model. We also represent the temperature profile in 
Figures  6.23- 6.26 at the same locations as is presented for the absolute velocity. 
We arrive with the similar conclusions as for the absolute velocity, except at the 
regions near the wall, where large temperature gradients exist. Those differences 
are expected, since large heat fluxes are prescribed at the walls. However, we 
can get better agreement between both approaches by using a higher level of 
refinement near the walls. But on the other hand, finer arrangements require 
smaller time step, which can drastically increase the computational time. 
Another reason of observing these differences is found to be in the turbulent heat 
flux, which is different due to the differences in the formulations of the energy 
equation. In Figure  6.27 the temperatures at the surface along the billet are 
plotted, where the mentioned differences can be used to explain the mismatch of 
approximately 25 K between the results of the present method and Fluent. 
Additional differences in Figure  6.27 are found in the secondary cooling system, 
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where much less meshless nodes are used as finite volumes in the Fluent. 
Definitely, better accuracy can be achieved in this region by using more nodes, 
but this leads to larger computational time to get the steady-state solution. With 
the present numerical method, the steady-state solution is achieved 
approximately in three days on platform HP xw9300 Workstation (see Section 
 5.1), starting from the initial conditions presented in Section  2.7. While in 
Fluent, the steady-state solution is obtained approximately in five days on the 
same platform. The computational time in Fluent can be reduced by finding an 
optimal value of the relaxation factors, or by using the standard -k ε  turbulence 
model. 
For a visual comparison, the absolute velocity and temperature fields are drawn. 
The absolute velocity is shown in Figure  6.29, where both results are drawn 
side-by-side. The shape of the liquid jet and the position of the re-circulating 
zones, obtained with the present method, are in a very good agreement with 
Fluent. In this figure, we also observe some anomaly at the end of the 
computational domain. The contours indicate that the length of the 
computational domain should be larger to satisfy the assumptions of the fully 
developed flow at the outlet. We repeated the simulation with a larger domain, 
i.e. 2.8 m, to justify the above claims. Figure  6.30 represents a comparison of the 
absolute velocity field between the simulations at different computational 
lengths. No differences are observed between both results, only at the outlet 
region, where the solution has no significance. The same conclusions are made 
for the temperatures at the surface along the billet, shown in Figure  6.28. To 
keep the computational time in the reasonable limits, the computational domain 
in all further simulations remains 1.8m. The temperature field is shown in 
Figure  6.31, where the liquidus and solidus lines are plotted as well. We observe 
small instabilities of the temperature field around the jet, obtained by Fluent 
(centre picture in Figure  6.31). We tried to achieve better results by reducing the 
under-relaxation factors for the momentum equation and equations for the 
turbulent quantities, i.e. the turbulent kinetic energy and the dissipation rate. 
Latter on, we changed the discretization of the equations from the Second-Order 
upwind to Third-Order MUSCL. With the above tryouts, we did not get any 
improvements. However, with changing the turbulence model from LRN-AKN 
model to the standard -k ε , the instabilities disappear (right picture in Figure 
 6.31). But, with the standard -k ε  model, the separation and reattachment 
positions are much different then in the case with LRN models. Despite the 
discussed instabilities, we perform the comparison with the results obtained with 
the AKN turbulence model, since the solution still converges to the steady-state. 
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Figure  6.18: Mesh generated with the Gambit. A detail in the mould. 
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Figure  6.19: Solid lines: absolute velocity at the meniscus. Dashed lines: in the radial cross-

section at the arc length 0.2 m. Black: present method. Blue: Fluent. 

 

 
Figure  6.20: Solid lines: absolute velocity in the radial cross-section at the arc length 0.4 m. 

Dashed lines: at the arc length 0.6 m. Black: present method. Blue: Fluent. 
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Figure  6.21: Solid lines: absolute velocity in the radial cross-section at the arc length 0.8 m. 

Dashed lines: at the arc length 1.0 m. Black: present method. Blue: Fluent. 

 

 
Figure  6.22: Solid lines: absolute velocity in the radial cross-section at the arc length 1.2 m. 

Dashed lines: at the arc length 1.4 m. Black: present method. Blue: Fluent. 
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Figure  6.23: Solid lines: temperature profile at the meniscus. Dashed lines: in the radial cross-

section at the arc length 0.2 m. Black: present method. Blue: Fluent. 

 

 
Figure  6.24: Solid lines: temperature profile in the radial cross-section at the arc length 0.4 m. 

Dashed lines: at the arc length 0.6 m. Black: present method. Blue: Fluent. 
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Figure  6.25: Solid lines: temperature profile in the radial cross-section at the arc length 0.8 m. 

Dashed lines: at the arc length 1.0 m. Black: present method. Blue: Fluent. 

 

 
Figure  6.26: Solid lines: temperature profile in the radial cross-section at the arc length 1.2 m. 

Dashed lines: at the arc length 1.4 m. Black: present method. Blue: Fluent. 
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Figure  6.27: Temperature of the surface along the billet. Solid lines: outer side. Dashed lines: 

inner side. Black: present method. Blue: Fluent. 

 

 
Figure  6.28: Temperature of the surface along the billet with the present method. Black lines: 

billet length 1.8 m. Red lines: billet length 2.8 m. Solid lines: outer side. Dashed lines: inner 

side. 

 
 



 Simulation of the Continuous Casting of Steel 

 

166 

 
Figure  6.29: Absolute velocity field in the billet of length 1.8 m. Left: present model. Right: 

Fluent. Contours represent values between 0 m/s and 0.137 m/s with step 0.00685 m/s. 
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Figure  6.30: Absolute velocity field in the billet. Left: billet length 2.8 m. Right: billet length 

1.8 m. Contours represent values between 0 m/s and 0.137 m/s with step 0.00685 m/s. 

 



 Simulation of the Continuous Casting of Steel 

 

168 

 
Figure  6.31: Temperature field in the billet. Left: present model. Center: Fluent-AKN. Right: 

Fluent-standard -k ε . Red line: liquidus temperature. Blue line: solidus temperature. Isotherms 

represent temperatures between 1680 K and 1800 K with step 5 K. 

 



Numerical Examples  

 

169 

6.6.2 Simulation of the C45 Steel Grade 

Simulations of the velocity and temperature fields in the billet of the C45 steel 
grade with the real process parameters, used in the Štore Steel continuous 
casting machine are presented. The material properties are taken from JMatPro, 
and they are graphically represented in Section  6.3. The chemical composition of 
the steel is represented in Table  6.3. The calculated material properties are 
exported into DAT format file, from which the properties are loaded into our 
numerical model. The thermal expansion Tβ  and dynamic viscosity μ  are 
constant and taken from the previous test. The process parameters for the 
mentioned steel grade are taken directly from the Štore Steel technological 
program, which are believed to be the best known optimal process parameters of 
the casting process. The actual values are given in Table  6.4. 
The procedure of the node arrangement generation is already presented in 
Section  6.2, where the generated node arrangement is shown in Figures  6.3 and 
 6.4. The morphology constant in the Darcy’s source terms is set to 

81.6 10C = ⋅ m-2. The absolute velocity field is shown in Figures  6.32 and  6.33. 
The molten steel flows from the SEN into the mould in a vertical direction. Just 
under the SEN, the liquid jet of the steel starts to obey the curved geometry of 
the casting machine. A flow separation occurs, which causes the molten steel to 
move upwards. The upward flow moves around the SEN to the meniscus, and 
then turns into downward direction. We can observe from Figure  6.33, that 
larger amount of the molten steel is flowing upward between the SEN and the 
inner side of the mould. The reason is in the position and the geometry of the 
SEN, which pour the molten steel onto the outer side of the mould and leaves 
more space for upward flow near the inner side of the mould. Under the mould, 
the flow direction of the liquid core almost completely obeys the curvature of the 
casting machine. The flow separation of the molten steel generates several re-
circulating zones. Their size and position are shown in the Figure  6.34, where 
the streamlines are plotted. The streamlines with red colour represent the upward 
flow, and the streamlines with the blue colour the downward flow. 
The temperature field is presented in Figures  6.35 and  6.36, where also the 
contours of the solidus and liquidus temperatures are plotted. The size of the 
mushy zone is very small, since the selected material C45 solidifies over a small 
temperature range, i.e. 80≈ K. Also the liquid fraction, shown in Figure  6.7, 
indicates very rapid solidification. From Figures  6.35 and  6.36, higher 
temperatures near the inner side are observed. The reason is in the flow 
phenomena in the mould, where a larger amount of the molten steel flows 
upwards near the inner side. An actual temperature difference between the inner 
and the outer side of the billet is shown in Figure  6.37. 
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An important safety parameter for the engineers in the casting plant is the shell-
thickness at the end of the mould. Its value can be obtained from the liquid 
fraction, plotted in Figure  6.38. Thickness at the outer side is equal 0.12 m, and 
at the inner side 0.09 m. 
The results of this test are used further as the reference solution in analyzing the 
effects of various process parameters. 
  
Table  6.3: Composition of the C45 steel grade. 

 Al Cr Cu Mn Mo Ni 

wt % 0.0275 0.2000 0.1250 0.5500 0.0500 0.2000 

 Si V C P S  

wt % 0.2750 0.0250 0.4600 0.0150 0.0125  

 
Table  6.4: Process parameters of the Štore Steel continuous casting machine. 

property description value 

castu  casting speed 1.75m/min 

castT  casting temperature 1534 °C 

wq�  flow rate in wreath spray cooling system 23l/min 

sq�  flow rate in first spray cooling system 53 l/min 
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Figure  6.32: Absolute velocity field in the billet. Each line in the legend represents a contour 

level. 
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Figure  6.33: Absolute velocity field in the mould. Each line in the legend represents a contour 

level. 
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Figure  6.34: Streamlines in the mould. Blue lines: downward flow. Red lines: upward flow. 
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Figure  6.35: Temperature field in the billet. Each line in the legend represents a contour level. 

Blue contour line: solidus temperature. White contour line: liquidus temperature. 
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Figure  6.36: Temperature field in the mould. Each line in the legend represents a contour level. 

Blue contour line: solidus temperature. White contour line: liquidus temperature. 
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Figure  6.37: Temperature along the surface of the billet. Solid line: outer surface. Dashed line: 

inner surface. 

 

 
Figure  6.38: Liquid fraction profile in the radial cross-section at the end of the mould. 
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6.6.2.1 Sensitivity of the Darcy’s Constant 

The morphology constant in the Darcy’s source terms greatly influences the final 
solution of the velocity and temperature fields. If the value of the constant is 
very large, the velocity in the mushy zone quickly becomes equal to the casting 
speed. This means that the pores of the permeable structure are very small and 
prevent the liquid material to move through the structure. The size of the pores is 
defined as the distance between the secondary dendrite arms.  
In this test, the effect of the Darcy’s constant on the velocity and temperature 
field is analysed. The reference solution is solved with the 81.6 10C = ⋅ m−2. The 
related results are represented in the previous test. We repeated the same 
simulation with the Darcy’s constant 91.6 10C = ⋅ m−2 and 101.6 10⋅ m−2. 
The Darcy’s term in the momentum equation prevents the fluid flow in the 
mushy zone to move in the upward or other directions and forces the liquid 
phase to move with the casting speed in the casting direction. The Darcy’s term 
becomes stronger or dominant if the Darcy’s constant is enhanced, and can 
prevail over other body forces in the momentum equation, such as buoyancy 
force. In Figure  6.39, the absolute velocity field at different Darcy’s constant is 
presented. The differences in the flow behaviour of the liquid jet can be 
observed, which is at 101.6 10C = ⋅ m−2 more oriented and extended in the casting 
direction as in the case with 81.6 10C = ⋅ m−2. Due to the extension of the liquid 
jet, the temperature field in the liquid core is higher, as shown in Figure  6.40. 
The opposite effects can be found for the surface temperature along the billet, as 
shown in Figure  6.41. The surface temperature is decreasing with the increased 
Darcy’s constant. The reason is in the mushy zone, where a larger amount of the 
material is moving in the casting direction with the casting speed.  
However, because the mushy zone is relatively small, the effect of the Darcy’s 
constant is also very moderate. It is hard to say which value of the constant is 
more appropriate due to the lack of detailed knowledge of solidification 
phenomena in the mushy zone. 
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Figure  6.39: Absolute velocity field in the mould as a function of the Darcy’s constant. 

Left: 81.6 10C = ⋅ m−2. Centre: 91.6 10C = ⋅ m−2. Right: 101.6 10C = ⋅ m−2. 
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Figure  6.40: Temperature field in the mould as a function of the Darcy’s constant. Left: 

81.6 10C = ⋅ m−2. Centre: 91.6 10C = ⋅ m−2. Right: 101.6 10C = ⋅ m−2. 
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Figure  6.41: Surface temperature along the billet as a function of the Darcy’s constant. Black: 

81.6 10C = ⋅ m−2. Red: 91.6 10C = ⋅ m−2. Blue: 101.6 10C = ⋅ m−2. Solid lines: outer side. Dashed 

lines: inner side. 

6.6.2.2 Simulation at Different Casting Speed 

One of the most important process parameters in the continuous casting is the 
casting speed, which means the drawing speed of the strand through the casting 
machine. Among other process parameters, finding the optimal value of the 
casting speed is a crucial part for each steel grade. Its optimal value is usually a 
compromise between the highest production rate and the required quality of the 
casted billet. The engineers in the steel plant are trying to increase the production 
rate of the casting process, but they are limited by the desired quality of the steel. 
However, the casting speed is a process parameter, which can be controlled 
during the process, and can be used for regulation of the casting process. This 
means that, if one of the process parameters, which cannot be controlled during 
the process (such as the casting temperature of the molten steel), a compensation 
can be made by changing the casting speed. The effect of the casting speed with 
increasing and decreasing its value by 0.1m/min is analysed. 
In Figure  6.42, the absolute velocity field in the mould as a function of the 
casting speed is shown. With increasing of the casting speed, the liquid jet is 
extended in the casting direction. Because of the extension of the liquid jet, the 
velocity of the upward flow is higher. Also, the flow separation occurs at lower 
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positions, and therefore larger re-circulating zones are obtained. Those effects 
can be seen in Figure  6.43, where the streamlines are plotted. 
The variations in the casting speed have a strong effect on the temperature field 
in the billet, shown in Figure  6.44. With the increased casting speed, the smaller 
heat flux between the steel and the mould is presented, and therefore the 
temperature at the surface is higher. The surface temperatures along the billet are 
plotted in Figure  6.45. The opposite effect is observed for the shell thickness 
(see Figure  6.46), where a larger thickness is obtained at the lower casting speed. 
 

  
Figure  6.42: Absolute velocity field in the mould as a function of the casting speed. Left: 

0.0275castu = m/s (1.65 m/min). Centre: 0.02916castu = m/s (1.75 m/min). Right: 

0.03083castu = m/s (1.85 m/min). 
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Figure  6.43: Streamlines in the mould as a function of the casting speed. Left: 0.0275castu = m/s 

(1.65 m/min). Centre: 0.02916castu = m/s (1.75 m/min). Right: 0.03083castu = m/s (1.85 m/min). 
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Figure  6.44: Temperature field in the mould as a function of the casting speed. Left: 

0.0275castu = m/s (1.65 m/min). Centre: 0.02916castu = m/s (1.75 m/min). Right: 

0.03083castu = m/s (1.85 m/min). 
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Figure  6.45: Surface temperature along the billet as a function of the casting speed. Black: 

0.0275castu = m/s (1.65 m/min). Red: 0.02916castu = m/s (1.75 m/min). Blue: 

0.03083castu = m/s (1.85 m/min). Solid lines: outer side. Dashed lines: inner side. 

 

 
Figure  6.46: Liquid fraction profile in the radial cross-section at the end of the mould as a 

function of the casting speed. Black: 0.0275castu = m/s (1.65 m/min). Red: 0.02916castu = m/s 

(1.75 m/min). Blue: 0.03083castu = m/s (1.85 m/min). 
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6.6.2.3 Simulation at Different Casting Temperature 

The casting temperature, i.e. the temperature of the molten steel pouring from 
the SEN, is a process parameter, changing between the casting processes, and 
can very hardly be controlled and kept constant during the process. However, 
this parameter has a strong effect on the velocity and temperature fields in the 
mould. The results, obtained with the increased and decreased casting 
temperature by 10K are presented. 
In Figures  6.47 and  6.48, the absolute velocity field and streamlines in the mould 
are shown, respectively. We can observe that the casting temperature has 
influence on the velocity field in the mould. For example, if the casting 
temperature is raised, the solidification starts (when the temperature is equal to 
the liquidus temperature) later than in the case with the reference casting 
temperature (see Figures  6.49 and  6.51). This results in the expanded liquid core 
and lower velocity of the molten steel in the liquid core, compared to the 
reference test case. The expansion of the liquid core and its effect on the 
temperature field are very well visible in Figure  6.49. The surface temperatures 
are shown in Figure  6.50, where the temperatures are higher due to the 
expansion of the liquid core. The influence on the shell thickness at the end of 
the mould is presented in Figure  6.51. 
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Figure  6.47: Absolute velocity field in the mould as a function of the casting temperature. Left: 

0 10cast castT T= − K. Centre: reference castT . Right: 0 10cast castT T= + K. 
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Figure  6.48: Streamlines in the mould as a function of the casting temperature. Left: 

0 10cast castT T= − K. Centre: reference castT . Right: 0 10cast castT T= + K. 
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Figure  6.49: Temperature field in the mould as a function of the casting temperature. Left: 

0 10cast castT T= − K. Centre: reference castT . Right: 0 10cast castT T= + K. 
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Figure  6.50: Surface temperature along the billet as a function of the casting temperature. Black: 

0 10cast castT T= − K. Red: reference castT . Blue: 0 10cast castT T= + K. Solid line: outer side. Dashed 

line: inner side. 

 

 
Figure  6.51: Liquid fraction profile in the radial cross-section at the end of the mould as a 

function of the casting temperature. Black: 0 10cast castT T= − K. Red: reference castT . Blue: 

0 10cast castT T= + K. 
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6.6.2.4 Simulation at Different SEN Depth 

The last simulation represents the influence of the SEN depth on the velocity and 
temperature fields in the mould. The depth of the SEN is changed for 0.02 m in 
the upward and downward directions. The absolute velocity field and the 
streamlines in the mould are shown in Figures  6.52 and  6.53, respectively. The 
whole velocity field remains almost unchanged, but repositioned in the vertical 
direction according to the SEN depth. The same behaviour is presented for the 
temperature field (see Figure  6.54). Therefore, in the case with increased SEN 
depth, the liquid steel is pouring more onto the outer side of the billet than in the 
case with the smallest SEN depth. This results in a larger temperature difference 
between the inner and the outer surface, shown in Figure  6.55. The shell 
thickness as a function of the SEN depth is plotted in Figure  6.56, where 
practically no differences are obtained. 
 

  
Figure  6.52: Absolute velocity field in the mould as a function of the SEN depth. Left: 

0.07depthL = m. Centre: 0.09depthL = m. Right: 0.11depthL = m. 
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Figure  6.53: Streamlines in the mould as a function of the SEN depth. Left: 0.07depthL = m. 

Centre: 0.09depthL = m. Right: 0.11depthL = m. 
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Figure  6.54: Temperature field in the mould as a function of the SEN depth. Left: 

0.07depthL = m. Centre: 0.09depthL = m. Right: 0.11depthL = m. 
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Figure  6.55: Surface temperature along the billet as a function of the casting temperature. Black: 

0.07depthL = m. Red: 0.09depthL = m. Blue: 0.11depthL = m. Solid lines: outer side. Dashed lines: 

inner side. 

 

 
Figure  6.56: Liquid fraction profile in the radial cross-section at the end of the mould as a 

function of the casting temperature. Black: 0.07depthL = m. Red: 0.09depthL = m. Blue: 

0.11depthL = m. 
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7 Summary and Conclusions 

7.1 Summary of the Main Contributions 

The numerical method based on the meshless LRBFCM is developed for solving 
the incompressible turbulent flow and the heat transfer inside a continuously cast 
steel billet. The solid-liquid phase-change phenomena are modelled by the 
single-domain mixture continuum model [Bennon and Incropera, 1987], where 
the mushy zone is treated as a porous media. The velocity-pressure coupling of 
the incompressible fluid is performed by the fractional step method, where the 
resulting pressure equation is solved globally through the direct sparse-matrix 
solver. The turbulent flow is considered by using the LRN -k ε  turbulence 
model, which also includes additional terms due to the solidification effects in a 
mushy zone. The transport equations of the turbulence model are solved 
decoupled from the mass and momentum equations. The explicit time 
discretization is used in the involved mass, momentum, energy, k  and ε  
equations. 
The meshless method, i.e. LRBFCM, is based on the local collocation with the 
MQ-RBFs, where the free parameter is fixed and constant for each influence 
domain. The influence domain of the observed node is generated by searching 
the four optimal neighbour nodes, which are the closest one to the observed node 
and fulfils the criteria of calculating the derivatives in all directions of the 
selected coordinate system. 
The present dissertation can be summarized by the following contributions: 

• The presented meshless LRBFCM was already used in the previous 
works [Šarler and Vertnik, 2006; Vertnik and Šarler, 2006a; Vertnik et 
al., 2006; Vertnik, 2007; Vertnik and Šarler, 2009a; Vertnik and Šarler, 
2009b; Vertnik and Šarler, 2009c] for solving various transport problems. 
In the present dissertation, its applicability is extended to more complex 
physical problems. In order to keep its simplicity, locality, and 
explicitness, a lot of efforts have been used to select a proper velocity-
pressure coupling algorithm for solving the incompressible turbulent 
flow problems in closed and open arrangements. A fractional step 
method is chosen, since it is found to be very robust for solving the above 
problems, and was already used by the conventional mesh and also 
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meshless methods. The next stage is to solve a pressure Poisson equation, 
which solution is needed as a part of the fractional step method. The 
solution is obtained globally through the sparse-matrix formulation [Lee 
et al., 2003]. This formulation is for the first time used in connection 
with the complex fluid flow problems and large node arrangements. The 
fractional step method is further extended to cope with the steady-state 
incompressible turbulent flows. Additional transport equations of the 
turbulence model are solved decoupled from the velocity and temperature 
field, without any inner iterations.  

• The developed numerical method is tested on a two benchmark tests with 
the laminar incompressible flow, i.e. the natural convection in a square 
cavity and the flow through a backward-facing step. Both numerical 
examples are used to test the implementation of the fractional step 
method in different flow arrangements and the second one particularly 
for testing the inflow-outflow boundary conditions. The first test is also 
important due to the fully coupled problem between the heat and the fluid 
flow. The calculations are performed at various Ra  numbers, ranging 
from moderate 610  to a very high value 810 . The backward-facing step 
problem is a standard bench-mark test problem, which includes the flow 
separation and reattachment. It is performed in the present dissertation 
for various Re  numbers, i.e. 300-800 , based on the step height. The 
results of both the tests are compared with other numerical results, 
obtained by the conventional mesh methods. 

• The main focus of the present dissertation is in using the LRBFCM for 
numerical modelling of the turbulent flows. To verify the implementation 
of the selected EVMs, the following numerical examples are performed: 
a 2D channel flow, a 2D channel flow with heat transfer, combined 
forced and natural convection flow in a 2D vertical channel, and 
turbulent flow over a backward facing step. Three LRN turbulence 
models are implemented, i.e. JL, LS and AKN, while the main attention 
is given on the LS and AKN models. The first two examples are chosen 
in order to test the proper implementation of the mentioned LRN models, 
while the last two examples are very important in the connection with the 
continuous casting process. They both include similar physical 
phenomena as observed in the continuous casting process, i.e. combined 
forced and natural convection, a flow separation and reattachment. To 
verify the obtained numerical results, a comparison analysis is performed 
based on the available DNS data, experimental data, and the results 
obtained by the conventional mesh methods. 
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• The developed numerical model of the continuous casting of steel is 
described in detail. This involves the spatial discretization, the initial 
conditions, and the description of the boundary conditions for the 
velocity and temperature fields. Due to the lack of the benchmark tests 
for such a complex physical problem, the model is validated by 
comparison with the numerical results, obtained by the commercial 
software Fluent. The physical model is simplified by taking the constant 
thermo-physical properties, and simplified boundary conditions. A 
comparison analysis involves: the temperature and the velocity field 
inside a billet, and the temperature and the velocity profiles in the radial 
cross-section at various positions along the billet. After validation, the 
simulation is performed for C45 steel grade, with thermo-physical 
properties calculated with the commercial data base JMatPro. The 
boundary conditions are taken from the already developed simulation 
system of the Štore Steel casting machine. Real process parameters are 
considered, which are used in the Štore Steel company for C45 steel 
grade. The obtained results are further used as a reference solution for 
analyzing the effects of the numerical and process parameters on the 
velocity and temperature field inside the billet. The morphology constant 
of the porous media is considered as the numerical parameter, while the 
casting speed, the casting temperature, and the SEN depth as the process 
parameters. With the above analyses, the expected behaviour of the 
developed numerical model is approved. 

7.2 Technological Relevance 

The developed numerical model of the continuous casting of steel is found to be 
a very important tool for expanding the technologically relevant capabilities of 
the already developed simulation systems [Vertnik and Šarler, 2002; Vertnik and 
Šarler, 2004a; Vertnik and Šarler, 2004b; Vertnik and Šarler, 2006b; Vertnik and 
Šarler, 2006c; Vertnik and Šarler, 2006d] in the Štore Steel company and steel 
industry in general. The developed simulation system is based on the thermal 
numerical model, in which the velocity field is assumed to be constant and equal 
to the casting speed. These models are appropriate for optimizing the process 
parameters based on the calculated metallurgical length, shell thickness at the 
end of the mould, and surface temperature before the straightening. Despite the 
powerful futures of the already developed thermal model approved in practice, 
the developed thermo-fluid model with solidification can be used for simulation 
of the following additional technologically relevant problems:  
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• Tracking the non-metalic inclusions inside a mould. 
The inclusions can flow upward to the top surface of the molten steel, or 
can be trapped inside the mushy zone. What happens with the inclusions 
mainly depends on the size and position of the calculated re-circulating 
zones, and the resulting upward flow field. It is important to design the 
velocity field which moves the inclusions towards the top surface of the 
molten steel. If the inclusions are trapped in the mushy zone, they can 
later produce cracks in further processes, such as rolling, and reduce the 
quality of the final product. 

• Designing the optimal geometry of the SEN. 
The velocity field in the mould greatly depends on the geometry of the 
SEN. Its optimal design can be obtained based on the water models, 
where the PIV or Laser Doppler Velocimetry (LDV) techniques are used 
to measure the velocity field. However, the experimental facility of the 
water model is expensive to construct, and the effects of the solidification 
phenomena on the convection can not be considered. The developed 
numerical model can greatly reduce the costs of the design procedure for 
finding the optimal geometry of the SEN. The main reasons are: the 
geometry modifications can easily be applied, and the solidification 
phenomena are considered. 

• Improving the macrosegregation pattern in the strand. 
It is already discussed in Chapter  1, that the macrosegregation affects the 
final quality of the product. The segregation pattern of the particular 
solute element in the mould can be obtained by using additional transport 
equations for solute, which can be discretized in the same way as the 
transport equation for energy (see Section  4.4). 

7.3 Conclusions and Future Work 

The following conclusions can be summarized: 
• The LRBFCM is capable of approximating all kinds of derivatives, such 

as first, second and mixed ones, needed for solving various PDEs. 
However, the obtained accuracy strongly depends on the number of 
neighbouring nodes in the influence domain and on the free parameter of 
the MQ-RBFs. Their effects on the accuracy were already discussed in 
our previous works [Šarler and Vertnik, 2006; Vertnik, 2007], and they 
are not repeated in the present dissertation. Therefore, the local 
collocation is made with five nodes in the influence domains (the 
observed node and four neighbours), and with the constant scaled free 
parameter, equal to 32  for each influence domain. We need to modify 
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the searching procedure for finding the optimal neighbourhood nodes in 
the present dissertation. The most problematic node arrangements are 
those with very high levels of refinement near the walls. The solution of 
this problem is solved by searching the nodes not just the closest one, but 
also to find at least one node in each quadrant of the local coordinate 
system. The sparse matrix, used for solving the pressure field, is 
generated with the same influence domains as is used for local 
collocation. So, five nodes in each influence domain and using MQ-
RBFs with constant scaled free parameter 32 . We did not made any 
analysis about how the number of nodes in influence domains affects the 
solution accuracy of the sparse-matrix. This is left for future work. 
However, the comparison in the numerical example of the backward-
facing step with the laminar fluid flow shows excellent accuracy of the 
calculated pressure field. It is worth to mention, that instead of the 
collocation, the WLS approximation can also be used to approximate the 
solution. The WLS method is very useful when approximating step-like 
functions, where the collocation some times does not produce good 
results. On the other hand, WLS method introduces several new 
difficulties: more nodes have to be used in the influence domains, 
corresponding weight function has additional free parameters, the 
matrices are larger and more complex to generate and solve. However, in 
the future, we should also try to implement the WLS method to see if we 
can get any improvements. The advantages of the LRBFCM are its 
simplicity, simple inclusion of different physics, accuracy, similar code 
for 2D and three-dimensional problems, no integrations are involved, and 
straightforward applicability in non-uniform node arrangements. Due to 
its locality and explicit time stepping, the method appears very suitable 
for parallelization. 

• The developed numerical method is capable of solving various laminar 
incompressible fluid flow problems. Two numerical examples, which are 
representing the classical benchmark tests for verifying numerical 
methods. The comparison analyses show a very good agreement with 
other reference results. In the example of the backward-facing step, we 
demonstrated the solution on a non-uniform node arrangement with 
randomly repositioned nodes. The solution is obtained with the 
reasonable accuracy. Theoretically, the meshless methods should 
perform well on any kind of scattered node arrangements, but for 
physically complex problems, such kind of node arrangements should be 
avoided. 
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• The developed numerical method is capable of solving the 
incompressible turbulent flow problems. In the present dissertation, the 
LRN -k ε  turbulence models are focused, which have advantages over 
the standard -k ε  models. The LRN models involve damping functions, 
which are capable of reproducing the near wall behaviour of the 
boundary layer. But, in order to achieve this, a very fine node 
arrangement has to be used near the wall, i.e. 1y+ ≤ . Also, some of the 
LRN models, such as JL and LS, can become unstable due to the 
involved additional source terms. This source terms include the second 
and mixed derivatives of the velocity, which can produce numerical 
stiffness. Such problems are encountered in the backward-facing step 
example, where the large velocity gradients occur around the flow 
separation. Unstable skin friction and over-estimated reattachment length 
are the consequences. We believe that the LRBFCM is the main reason 
of the underlying instabilities. However, the results are greatly improved 
by increasing the number of the nodes in the step region. The commercial 
software package Fluent is using the modified LS model without those 
terms and different boundary conditions for ε  to get rid of the numerical 
stiffness. But, this is not any more the original LS model, where the 
closure coefficients and damping functions are generated with involved 
additional source terms. The AKN model is far more stable and very 
appropriate for flow separations and reattachments, but its damping 
functions include the wall variable *y , which depends on the normal 
distance to the nearest wall. If we are dealing with a pure liquid phase, 
than the wall distance is rather simple to calculate. However, when 
dealing with the solidification problems, this model is not so appropriate, 
since it is hard to define the nearest wall (which is somewhere in the 
mushy zone), and also the boundary conditions at the wall for ε  are not 
zero. While on the other hand, the damping functions in the LS model 
depend only on the Ret  and the boundary condition for k  and ε  are of 
the Dirichlet type with zero value. Therefore, this model is a far more 
simple to implement for the solidification problem, since both k  and ε  
become automatically zero in the mushy zone. For future needs, also 
other EVMs, such as -k ω  [Bredberg, 2001] should be implemented. 

• The numerical model of the continuous casting of steel is developed. The 
real curved geometry of the Štore Steel billet caster is considered, 
modelled in 2D. The LS turbulence model is used to calculate the 
turbulent flow inside the mould. The reason, why this model is chosen, is 
above discussed. A sensitivity study of turbulence models on the flow 
field is not made. However, it is well known [Lan et al., 1997; Thomas et 
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al., 2001] that the choice of turbulence models influence the prediction of 
the flow field. In future, it is worth to include some other turbulence 
models (standard -k ε , AKN, -k ω , etc.). A 3D model implementation is 
foreseen in the future, since the billet is square and therefore the resulting 
fluid flow pattern depends also on the fluid flow behaviour near the 
corners of the mould. However, the discretization of the 3D geometry is 
far more complex than for the 2D, and the number of the nodes increases 
strongly. The verification of the developed numerical model is performed 
by comparison with the results obtained by Fluent. We do not expect an 
excellent agreement, since a simplified single-phase formulation is used 
in Fluent. Also, in Fluent, the AKN turbulence model is chosen. Despite 
those differences, the global picture of the obtained velocity and 
temperature fields are approximately and reasonably the same. Also, the 
comparison of the velocity and temperature profiles at various positions 
along the billet indicates a correct implementation of the numerical 
model. There is no doubt, that we have a great confidence in using the 
developed numerical model for further practical analysis. After 
verification, only one steel grade is simulated, i.e. C45, with the real 
process parameters, boundary conditions and realistic thermo-physical 
material properties. It is hard to say if the calculated velocity and 
temperature fields indicate the real situation in the casting process. The 
reason is in the lack of knowledge about fluid flow and solidification 
phenomena in the mould, since it is almost impossible at the present to 
measure the velocity and the temperature during the casting process. 
However, pretty much the same temperature profiles at the billet surface 
are obtained when compared with the already developed thermal 
numerical model in the Štore Steel company. This gives us additional 
courage for using the numerical model in further investigations. The 
obtained results of the C45 steel grade are used for analyzing the effects 
of the variable process parameters on the temperature and the velocity 
field in the billet. The main reason of the performed analysis is in testing 
the behaviour of the developed numerical model. In future, the model can 
be extended to cope with a 3D geometry. This requires the modification 
of the developed numerical model for running it on a computer network 
(i.e. cluster). 

• The modelling of turbulence in the mushy zone is still an open question, 
since the turbulence models are developed and adjusted usually for 
problems with a pure liquid. Also the closure coefficients and damping 
functions, which close the turbulence model, are generated based on the 
experiments and DNS data for pure liquid. It is doubtful if these models 
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are applicable for the solidification problems, such as continuous casting 
of steel, where the fluid flow in the mushy zone is also turbulent. The 
mushy zone is usually composed by a porous media and a slurry region. 
In the present dissertation, the slurry region is not considered, but the 
whole mushy region is treated as a porous media. In the literature, the 
turbulent flow in a porous media has not been studied extensively, even 
of its practical and theoretical importance. The most common model for 
macroscopic turbulence is the -k ε  model, constructed in the same way 
as for the pure liquid flow [Antohe and Lage, 1996]. The model is 
constructed from the momentum equation for the porous media, where 
additional terms, such as Darcy, buoyancy, etc., produce also additional 
terms in the resulting k  and ε  equations. It is not known how these 
terms affect the closure coefficients and the damping functions of the 
turbulence models, which were developed only for the pure liquid 
problems. However, in the continuous casting process, the mushy region 
in the mould is usually very small compared to the pure liquid and the 
pure solid regions, and therefore the discussed uncertainties should not 
affect the velocity field in the pure liquid region. Definitely, there is a 
future need on experimental data with turbulent flow in a porous media, 
and the subsequent development of the turbulence models for such 
particular cases. In addition to this, there is also a need for the standard 
benchmark test on numerical modelling of turbulent flow in continuous 
casting. Such a benchmark has been recently proposed [Vertnik et al., 
2010]. 
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Appendix A  

A.1 Analytical Solution of the Convective-Diffusive 
Phase-Change Problem 

The exact closed form solution for checking convective-diffusive solid-liquid 
phase-change problems appears to exist only for a relatively simple 1D steady-
state class of problems with uniform velocity field. The solution used by Pardo 
and Weckman [Pardo and Weckman, 1986] for checking their one-domain 
FEM-based numerical method belongs to this class of problems. Pardo and 
Weckman’s solution for equal and constant thermal properties of the phases has 
been generalized by [Šarler and Kuhn, 1998a] to cope with the generally 
different and constant thermal properties of the solid 0Sλ , 0Sc  and liquid 0Lλ , 

0Lc  phase. The extended analytical solution is particularly useful because it 
allows one to check the proper response of the numerical method regarding the 
temperature dependence of the material properties. The respective test case is 
defined as follows: The domain Ω  is described by the Cartesian coordinate 

x x xp p p− +< < . The boundary conditions at xp−  and at xp+  are of the Dirichlet 
type with uniform temperatures T T −

Γ Γ=  and T T +
Γ Γ= . The material moves with 

the constant uniform velocity S L= =u u u  with components 0x =u u . The 
boundary temperatures and the isothermal melting temperature are related by 

MT T T− +Γ Γ
< < . The liquid phase thus occupies the domain between xp−  and the 

phase-change interface boundary at Mxp , and the solid phase the domain 
between Mxp  and xp+ . The corresponding exact temperature distribution in phase 
℘ has been found [Šarler and Kuhn, 1998b] to be 
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with α℘  denoting the thermal diffusivity of the phase ℘; the four constants are 
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The position of the phase-change interface boundary is determined from the 
transcendental equation 
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It is in the present dissertation solved by the simple bisection. 
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