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Modelling of Microstructure Formation in Metals by a Novel 
Point Automata Method. 

 

Abstract 
 

The research described in this dissertation is focused on the numerical 
simulation and analysis of the mesoscopic and microscopic models coupled with 
the heat transfer calculations which are able to predict the grain structure 
formation and the dendritic growth occurring during solidification of metals. The 
grain structure formation model is applied to Equiaxed to Columnar Transition 
(ECT) and Columnar to Equiaxed Transition (CET) of steel billet in Continuous 
Casting (CC). The dendritic growth model is applied to simulation of thermally 
driven dendritic structures in pure aluminium. 
First a 2D meso-macroscopic model was described and developed to predict the 
grain structure ((ECT) and (CET)) in the CC steel billets. The model predicts 
well the temperature field in the Štore Steel CC machine. The macroscopic 
model is designed to be able to calculate the steady temperature distribution in 
the continuously cast billet as a function of the following process parameters: 
billet dimension, steel grade, casting temperature, casting velocity, primary, and 
two secondary cooling systems flows, pressures, temperatures, type and quantity 
of the casting powder, and the (non)application of the radiation shield and 
electromagnetic stirring. The Bennon-Incropera mixture continuum formulation 
is used for the physical model, solved by the recently developed LRBFCM.  The 
macroscopic heat transfer model is solved by the meshless technique by using 
Local Radial Basis Function Collocation Method (LRBFCM). 
The Cellular Automata (CA) and novel Point Automata (PA) techniques are 
used to solve the mesoscopic model. In the CA method the calculations are done 
on the regular cell distribution. The nucleation is modelled through a continuous 
dependency of the nucleation density on temperature by the Gaussian 
distribution. Different nucleation parameters are used at the boundary and in the 
bulk region of the billet. The growth and impingement stages are modelled by 
the Kurz, Giovanola, Trivedi (KGT) model. The CA method is based on the 
Nastac’s definition of neighbourhood and newly introduced four different 
neighbourhood configurations. A novel neighbourhood configuration of the PA 
method has been chosen which contains random points within circle with radius 
of neighbourhood centred around the reference point. In the novel approach the 
CA cells have been replaced by the nodes randomly located on the domain. The 
irregular node arrangement is achieved in practice as a random selection of 
points from the centres of CA cells. It is constructed from the regular CA cell 
distributions by randomly taking away certain percentage of the points. The 
differences in numerical implementation of the classical LRBFCM-CA and the 



novel LRBFCM-PA are compared. The ECT/CET model parameters were 
adjusted in order to obtain the experimentally determined actual 140 mm x 140 
mm billet ECT and CET positions of the heat 46352 with the alloy 51CrMoV4 
in the Štore Steel company. A systematic procedure is outlined for adjusting of 
the model data with the industrial experiment. The influence of the variation of 
different parameters on calculated grain structure is demonstrated. Calculations 
are done for the square billets of the dimension 140 mm (and 180 mm x 180 
mm). Fixed input parameter of the model represents the macroscopic 
temperature field. All other grain structure physical model parameters are varied, 
such as: the surface and the bulk area, mean nucleation undercooling, standard 
deviation of undercooling, maximum density of nuclei, Gibbs-Thomson 
coefficient, diffusion coefficient in the liquid, slope of the liquidus line, initial 
carbon concentration. The computational parameters, such as the node 
arrangement size and the time step are constant.  
Simulations have been carried out for nominal casting conditions, reduced 
casting temperature, reduced casting speed, for different dimensions of the 
square billet 140 mm x 140 mm (and 180 mm x 180 mm) and steel grades 
(51MoCr4, 51CrV4 and 25MoCr4). The dimensions of the three characteristic 
zones: chill, columnar and equiaxed, measured in the industry were compared to 
the simulated results for five heats with different casting speeds and four 
different casting temperatures. The simulated positions of ECT/CET compare 
well to Baumann prints. Proper response of the multiscale model with respect to 
the experimentally observed grain structure from the industrial process is 
proved.  
In this dissertation, a novel LRBFCM-PA approach is for the first time 
demonstrated for prediction of the grain structure which occurs during the CC of 
steel by coupling the macro and mesoscopic models. It is shown that the PA 
method offers a simple and powerful approach of cellular simulations. It is 
shown that both methods are able to qualitatively and quantitatively model a 
diverse range of solidification phenomena.  
The second 2D microscopic model was described and developed for the 
prediction of dendritic grain structures formed during the solidification of pure 
metals. It is physically described by the heat conduction and phase change 
kinetics. The deterministic heat transfer model is solved by the Finite Difference 
Method (FDM). The governing microstructure equations are solved by the 
stochastic CA and PA methods. The stochastic model receives temperatures 
from the deterministic model and the deterministic model receives the solid 
fraction for the stochastic model. The solid fraction calculations are performed 
on the regular CA or random PA nodes and then fed back to the FDM nodes in 
order to update the temperature field. The stochastic model includes calculations 
of the interface temperature, curvature, Gibbs-Thomson coefficient and crystal 
growth velocity. The models account for two anisotropies: thermodynamic 



anisotropy related to the crystal orientation calculated through the Gibbs-
Thomson coefficient and the kinetic anisotropy which takes into the 
consideration the crystal growth direction and the preferential orientation. The 
CA approach is established on quadratic cells and Neumann neighbourhood. The 
PA approach is established on randomly distributed points and neighbourhood 
configuration, similar as appears in meshless methods. The random node 
arrangement is in the dissertation generated from the regular CA mesh. In order 
to construct the irregular node arrangement the CA cell centres are displaced to 
quasi-random positions on the computational domain.  
The potentiality of the FDM-CA and FDM-PA models are demonstrated through 
the predictions of the typical dendritic forms. Numerical examples are done for 
the square domain of dimension 350 µm with Neumann boundary conditions. 
Fixed input parameters of the dendritic model represent the material properties 
for the pure aluminium, cell size, average Gibbs-Thomson coefficient and 
anisotropy coefficients for the CA/PA methods.  
In the CA method the numerical results are prepared for the following varied 
input parameters: thermal fluctuations, curvature calculation radius and Gibbs-
Thomson coefficient. Subsequently, we present simulation of the growth process 
simulated by the CA method for seven four branched dendrites growing 
simultaneously at orientations 0° and 45° .  
In the PA method the dendritic growth is simulated with the same and different 
types of random node arrangements. Several cases are prepared for ten different 
orientations and with three different more or less random node arrangements. 
Next, dendritic growth is simulated by including the randomness growth 
correction factor responsible for the correction in lengths of the primary 
branches as compared with the CA method. Finally, we present the growth 
process simulated by the PA method for seven dendrites growing simultaneously 
at the same orientations as for the CA model and at random orientations. 
It is shown that the random grid computing appears to be a promising way for 
solving problems that can not be achieved by applying the conventional CA 
method. The developed numerical LRBFCM-PA method is found to be 
applicable for simulating more proper dimensions of chill, columnar and 
equiaxed zones. The different density of nucleuses across the domain of interest 
allows to model the appropriate dimensions of the central region which is 
usually difficult to predict. For the FDM-CA method, the significant problem 
exists in the Cartesian grid structures. It is well know that the classical CA 
methods have a tendency to deform the results by introducing the anisotropy 
associated with the network of cells. Consequences are that dendrites tend to 
grow only in the grid direction. A successful solution for this problems is 
presented. A novel FDM-PA method is able to resolve the preferred 
crystallographic orientation-mesh orientation problem. It is shown that by using 
the random node arrangement the dendrites are able to grow in any direction. 
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Modeliranje formiranja mikrostrukture v kovinah z n ovo 
točkovno metodo celičnih avtomatov.  
 

Povzetek 
 

Raziskava, opisana v tej disertaciji, je usmerjena v numerično simuliranje in 
analizo mezoskopskih in mikroskopskih modelov sklopljenih z izračuni prenosa 
toplote. Modeli omogočajo napoved formiranja strukture zrn in dendritov med 
strjevanjem kovin. Model tvorbe zrn je uporabljen za izračun prehodov iz 
enakoosnih v stebričaste (Equiaxed to Columnar Transition ECT) in iz 
stebričastih v enakoosne strukture (Columnar to Equiaxed Transition CET) v 
jeklenih gredicah pri kontinuiranem litju (Continuous Casting CC). Model rasti 
dendritov je uporabljen pri simulaciji toplotno gnanih dendritskih struktur v 
čistem aluminiju. 
Dvodimenzionalni mezo-makroskopski model je najprej opisan in razvit za 
napoved strukture zrn (ECT in CET) v kontinuirano litih jeklenih gredicah. 
Model dobro napove temperaturno polje v primeru naprave za kontinuirno litje 
podjetja Štore Steel. Makroskopski model je narejen tako, da lahko izračuna 
ustaljeno temperaturno porazdelitev v kontinuirno liti gredici v odvisnosti od 
naslednjih procesnih parametrov: dimenzij gredice, kvalitete jekla, začetne 
temperature ulivanja, hitrosti ulivanja, primarnega in sekundarnega hladilnega 
toka, tlaka, temperature, tipa in količine livnega praška ter uporabe oziroma 
neuporabe radiacijskega ščita in elektromagnetnega mešanja. Kot fizikalni 
model je uporabljen model kontinumske mešanice Bennona in Incropere, ki je 
bil rešen z uporabo pred kratkim razvite metode radialnih baznih funkcij z 
lokalno kolokacijo (Local Radial Basis Function Collocation Method, 
LRBFCM). Makroskopski model je bil rešen z brezmrežno tehniko z uporabo 
lokalne kolokacije na podlagi radialnih baznih fukncij. Pri reševanju 
mezoskopskega modela sta bili uporabljeni tehnika celičnih avtomatov (Cellular 
Automata CA) in nova tehnika točkovnih avtomatov (Point Automata PA). Pri 
CA metodi izračuni potekajo na regularni distribuciji celic. Nukleacija je 
modelirana z zvezno odvisnostjo nukleacijske gostote od temperature po 
Gaussovi porazdelitvi. Različni nukleacijski parametri so uporabljeni na robu in 
v notranjem območja gredice. Faza rasti in zadevanje mej sta modelirani z 
modelom Kurz, Giovanola, Trivedi (KGT). 
Metoda CA je osnovana na Nastacovi definiciji soseščine in na novo vpeljanih 
štirih različnih konfiguracijah soseščin. Izbrana je nova konfiguracija soseščin 
metode točkovnih avtomatov. Ta vsebuje naključne točke znotraj kroga z radiem 
soseščine, centriranega okoli referenčne točke. V novem pristopu so bile CA 
celice zamenjane z naključno porazdeljenimi točkami v domeni. Neregularna 
porazdelitev točk je v praksi ustvarjena z naključno izbiro točk iz centralnih celic 
metode CA. Konstruirana je iz regularne celice z naključnim izključevanjem 



določenega deleža točk. Narejena je primerjava numeričnih implementacij 
klasične LRBFCM-CA in nove LBRFCM-PA. Modelski parametri ECT/CET so 
nastavljeni tako, da dobimo eksperimentalno določene položaje ECT in CET za 
gredice 140 mm x 140 mm šarže 46352 jekla s podjetja Štore steel. Zasnovan je 
sistematični postopek prilagoditve modelskih podatkov glede na industrijske 
eksperimente. Predstavljen je vpliv variacije različnih parametrov na izračunane 
strukture zrn. Izračuni so narejeni za gredici kvadratnega profila dimenzij 140 
mm x 140 mm in 180 mm x 180 mm. Fiksni vhodni parameter je makroskopsko 
temperaturno polje. Vsi ostali fizikalni parametri strukture zrn se spreminjajo: 
površinsko in notranje območje, povprečna nukleacija, podhladitev, standardna 
deviacija podhladitve, največja gostota jeder, Gibbs-Thomsonov koeficient, 
difuzijski koeficient kapljevine, naklon likvidus linije, začetna koncentracija 
ogljika). Numerični parametri, kot sta porazdelitev točk in časovni korak, so 
konstantni. 
Simulacije so bile narejene pri nominalnih pogojih ulivanja, zmanjšani 
temperaturi ulivanja, zmanjšani hitrosti ulivanja, za različne dimenzije gredic 
140 mm x 140 mm and (180 mm x 180 mm) in različne kvalitete jekel 
(51MoCr4, 51CrV4 in 25MoCr4). Dimenzije treh karakterističnih con: gašena, 
stebričasta in enakoosna, izmerjene v industrijskem procesu so primerjane z 
izračuni simulacij za pet šarž pri različnih hitrostih ulivanja in štirih različnih 
temperaturah ulivanja. 
Simulirani položaji ECT/CET dobro sovpadajo z Baumannovimi odtisi. Potrjen 
je pravilen odziv večnivojskega modela v povezavi z eksperimentalno 
določenimi strukturami zrn v industriji. 
V tej disertaciji je nov LRBFCM-PA pristop prvič uporabljen za napoved 
strukture zrn, ki nastanejo pri CC jekla preko sklopitve makro in mezoskopskega 
modela. Prikazano je, da je PA metoda preprosto in močno orodje za celične 
simulacije. Prikazano je, da sta obe metodi sposobni kvalitativno in kvantitativno 
modelirati raznolik spekter pojavov strjevanja. 
Dvodimenzionalen mikroskopski model je opisan in razvit za napoved 
dendritskih struktur zrn, ki nastanejo pri strjevanju čistih kovin. Fizikalno je 
opisan s prevajanjem toplote in s kinetiko fazne preobrazbe. Deterministični 
model prenosa toplote je rešen z uporabo metode končnih razlik (Finite 
Difference Method, FDM). Enačbe za opis mikrostrukture so rešene s 
povezanima stohastičnima metodama celičnih in točkovnih avtomatov. 
Stohastični model dobi temperaturno polje iz determinističnega modela, 
deterministični model pa dobi delež trdne faze iz stohastičnega modela. Izračuni 
stohastičnega modela so izdelani na regularni porazdelitvi točk v modelu 
celičnih avtomatov, oziroma naključni porazdelitvi točk v modelu točkovnih 
avtomatov ter prevedeni nazaj na točke v modelu končnih razlik v skladu z 
izračunanim temperaturnim poljem. Stohastični model vsebuje izračune mejne 
temperature, ukrivljenosti, Gibss-Thomsonovega koeficienta in hitrosti rasti 



kristalov. Model vključuje dve vrst anizotropije. Termodinamična anizotropija je 
povezana s kristalno orientacijo izračunano preko Gibbs-Thomsonovega 
koeficienta. Kinetična anizotropija upošteva smer rasti kristala in preferenčno 
smer. CA pristop je vzpostavljen na kvadratnih celicah in Neumannovih 
soseščinah. PA pristop je vzpostavljen na naključni porazdelitvi točk in soseščin, 
podobno kot se pojavlja v brezmrežnih metodah. Naključna porazdelitev točk je 
v tej disertaciji generirana iz regularne CA mreže, tako da so CA centri 
premaknjeni na kvazi-naključne pozicije na računski domeni. Potencial modelov 
FDM-CA in FDM-PA je prikazan z napovedjo tipičnih dendritskih oblik. 
Numerični primeri so izvedeni na kvadratnih domenah dimenzij 350 µm z 
Neumannovimi robnimi pogoji. Fiksni vhodni parametri dendritskih modelov 
predstavljajo snovne lastnostni za čisti aluminij, velikost celic, povprečen Gibbs-
Thomsonov koeficient in koeficiente anizotropije za metodi CA/PA. Pri metodi 
CA so numerični izračuni narejeni za kombinacijo naslednjih različnih vhodnih 
podatkov: termičnie fluktuacije, radij ukrivljenosti in Gibbs-Thomsonov 
koeficient. Na koncu je predstavljena simulacija procesa rasti z metodo CA za 
sedem dendritov s štirimi primarnimi vejami, ki rastejo vzporedno med 0° in 
45° . 
Pri metodi PA je dendritska rast simulirana z enakim in različnimi tipi naključno 
generiranih distribucij točk. Več testov je pripravljenih za deset različnih 
orientacij in s tremi različnimi bolj ali manj naključnimi porazdelitvami točk. 
Dendritska rast je simulirana z upoštevanjem korekcijskega faktorja dolžin 
primarnih vej, ki je odgovoren za pravilno dolžino primarnih vej glede na 
izračunane z metodo CA. Na koncu so predstavljeni rezultati procesa rasti z 
metodo PA za primer sedmih dendritov, ki rastejo vzporedno, najprej z enakima 
orientacijama kot za model CA in nato pri naključnih orientacijah.  
Pokazano je, da je računanje z naključnimi položaji točk obetaven pristop k 
reševanju problemov, ki jih ni moč rešiti s konvencionalno CA metodo. Na novo 
razvita metoda LRBFCM-PA je uporabna za izboljšane simulacije dimenzij 
gašenih, stebričastih in enakoosnih con. Različne gostote nukleacijskih jeder po 
območju omogočajo natančnejše računanje dimenzij centralnega enakoosnega 
območja, kar je v splošnem zapleteno napovedati. Pri metodi FDM-CA obstaja 
velik problem kartezijeva mreža. Znano je, da klasična CA metoda teži k 
popačenju rezultatov preko anizotropije povezane z usmeritvijo računske mreže. 
Posledično dendriti rastejo samo v smeri mreže. Predstavljena je uspešna rešitev 
tega problema. Z novo metodo FDM-PA je možno rešiti problem orientacije 
kristala glede na mrežo. Predstavlja se, da je z razvito naključno porazdelitvijo 
računskih točk možno doseči, da dendriti lahko rastejo v vse smeri. 
 
 
 



Klju čne besede 
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nukleacije, KGT model rasti, metoda celičnih avtomatov, metoda točkovnih 
avtomatov, metoda radialnih baznih funkcij z lokalno kolokacijo, metoda 
končnih razlik. 
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1 Introduction 

Manufacturing processes such as ingot casting, Continuous Casting (CC), 
atomization, welding, soldering, etc. involve melting and solidification as an 
important stage of the process [Flemings, 1974; Beckermann, 2002; Dantzig and 
Rappaz, 2009; Fredriksson and Akerlind, 2010; Oldfield, 1966]. The thermal and 
solutal conditions that prevail during the process and the thermodynamic and 
kinetic constraints of the material determine the final microstructure of the 
product. The mechanical or functional properties and the microstructure of 
various phases in turn dictate the performance of the final component. Prediction 
of microstructure evolution in solidification is an important key factor in 
controlling solidification structures. However, it is difficult to predict the 
structure features because they are determined through the complicated 
solidification mechanisms. Solidification phenomena involve many physical 
phenomena such as heat and mass diffusion, dendritic morphology, capillary 
effects, etc. These phenomena interact with each other and predominate at 
different length scales [Stefanescu, 2009]. It is well known that in order to 
control this formation in practise means understanding the connection between 
process parameters and microstructure evolution. The understanding of such 
physical relation can only be complete in case it can be explained 
mathematically and this mathematical representation of the process is called a 
model. Numerical modelling of the solidification in metallic alloys received a 
great interest with the development of computing technology and algorithms.  
• The macroscale. This scale is of the order of millimeter to meter and the 
macro-features of castings such as shrinkage cavities, macrosegregation due to 
fluid flow, cracks and casting dimensions are predicted. 
• The microscale. This scale is of the order of micrometer to millimeter. The 
features predicted in this scale include the grain size distribution, dendritic 
features, phase distribution, microsegregation and porosity. The mechanical 
properties of final product are directly influenced by these micro level features. 
• The nano scale. This scale is of the order of nanometers. Nanoscale processing 
of materials includes techniques such as rapid solidification, plasma processing, 
chemical vapor deposition. 
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There is a growing interest in computational modelling of the microstructure 
level in order to be able to predict the properties of the product and optimize its 
production with respect to productivity, quality and environmental impact. The 
properties of the product can be calculated through a combination of the 
macroscopic and microscopic models. The macroscopic models calculate the 
relations between the process parameters and the macroscopic variables, such as 
temperatures, concentrations, and velocities on the scale of the process (casting, 
rolling, heat treatment,…). The microscopic models calculate the relations 
between the macroscopic variables and the microstructure (grain size, grain 
concentration, grain stresses and strains,…). In general, solidification growth 
morphologies of metals can be divided into two primary groups: single-phase 
primary structures, which may be globular, cellular, and/or dendritic and poly-
phase morphologies, such as eutectics. These morphologies, alone or in 
combination, comprise most solidification microstructures, and have been in the 
focus of numerous numerical and theoretical studies. 
In the dissertation we first give an overview and literature survey of 
computational modelling of solidification processes at a macro/meso and micro 
levels. Further chapters are focused on modelling microstructure evolutions. 
 

1.1 Modelling of Microstructure  

Researchers have observed, analyzed, and modelled microstructural evolution 
for over a century [Asta et al., 2009]. The advances in computer technology and 
numerical methods have made it possible to analyze transport phenomena  to a 
high level of details. 
In the past two decades, the fundamental understanding of solidification 
microstructures has vastly improved mainly due to: development of 
mathematical models and simulation techniques, aided by powerful computers, 
and development of refined experimental techniques with better visualization 
and characterization of microstructural development, thereby providing useful 
data to validate the models. The experimental techniques, analytical models and 
numerical models have been developed to help understand the evolution of grain 
growth in solidification of alloys. A lot of experimental work has been reported 
on the grain morphology of transparent materials [Bruncko et al., 2003;  
Mathiesen and Arnberg, 2006; Haghighat and Taheri, 2007; Atamanenko et al., 
2007]. Many complex models have been developed to predict texture, 
misorientation distribution and grain size distribution of a final rolled or 
extruded product [Raabe et.al., 2004]. But there are still many difficulties 
remaining. Microstructural evolution is a many variable and a multiscale 
problem and even simple phenomena are still not well understood. Due to the 
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difficulty of directly incorporating topological features into mathematical models 
there has been increasing interest in using computer simulation to study and 
predict the microstructure evolution in a range of technologically important 
materials. A progress of that knowledge has, in turn, developed various kinds of 
deterministic and stochastic models to predict the evolution of microstructures in 
solidification.  
Computational simulations of evolving microstructures have been performed for 
approximately half a century, beginning with Fullman [Fullman, 1952], who 
simulated grain growth in a polycrystal. He did all his calculations manually and 
his model is referred to as vertex model. Later Soares et al. [Soares et al., 1985] 
and Kawasaki et al. [Kawasaki et al., 1989] improved his model by modifying 
the equation for the velocity of the vertex. Their complete equation of motion 
states that the vertex does not always move in the direction of the line tension 
resultant at its position. The most common micro models for microstructural 
evolution are nowadays: Potts models [Potts, 1952], front tracking models, 
Vertex models [Weaire and Kermode, 1983], Phase Field Methods (PFM), 
Monte Carlo (MC) [Anderson et al., 1984; Anderson et al., 1984], Random 
Walker (RW) [Chorin,1973], and Cellular Automata (CA) [Raabe, 2002]. 
Unfortunately, each of these models has some advantages and some restrictions 
as well. In this work only three areas, where the most significant advancements 
have taken place, are shortly introduced: principles atomistic calculations, 
deterministic modelling of the temporal microstructure evolution by PFM and 
stochastic methods by MC and CA. The basic characteristic of these models 
have been summarized from the article [Chen et al., 2001].  
First-principles atomistic calculations. First principles atomistic calculations 
[Gosalvez et al., 2008], based on density-functional theory, do not rely on 
empirical input and hence are predictive in nature. These methods yield 
quantities related to the electronic structure and the total energy of a given 
system, and may be used to accurately predict zero temperature phase stabilities 
of alloys and compounds. By combining first-principles techniques with the 
statistical mechanics methods one opens the possibility of exploring, without any 
fitting parameters, thermodynamics phenomena such as phase transformation 
temperatures and phase diagrams. Furthermore, these approaches are applicable 
to any phases of a given alloy system, not only the equilibrium phases. Hence, 
first-principles techniques can provide a method to obtain properties of 
metastable phases, which are often crucial to mechanical properties (e.g., 
strengthening precipitates) but are difficult to isolate and study experimentally. 
Deterministic models. Deterministic models treat space, time and other 
variables in continua, and the outcome of the calculation is fully determined by 
the boundary and initial conditions. These models bring an identical solution 
each time, for a given set of calculation conditions and can be very useful 
predictive tools. These models are usually based on continuum modelling where 
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partial differential equations are derived. The conservation equations are solved 
to predict phase motion, solid/liquid interface motion and shrinkage of the 
casting. Analytical models describing dendrite tip characteristics [Hunt, 1979; 
Kurz and Fisher, 1981] and eutectics fall into this category. 
In this group, recent modelling approach, the PFM, is being used extensively to 
simulate dendritic, eutectic and peritectic microstructures [Fan and Chen, 1997; 
Chen, 2002]. PFM are known as one of the most adequate deterministic models 
for directly simulating the dendritic growth morphology. In this method, two 
conservation equations - the heat or solute diffusion equation and the PFM 
diffusion equation are solved to track the phase field variable. The PFM variable 
represents the solid or liquid phase and the interface is tracked implicitly through 
the solution of the two parabolic equations. However, PFM are presently limited 
to qualitative simulation of a single dendrite or a very small calculation domain 
due to the large computational capacity needed. In order to study the interactions 
of the dendritic growth in many grains in a solidifying mushy region, a large 
calculation domain has to be considered, which surely will be a very difficult 
task in the phase field methods. Some mesoscopic models for dendritic growth 
are currently under development. Steinbach et al. [Steinbach et al., 1998] used a 
novel mesoscopic simulation technique to describe the non-steady growth of 
several equiaxed dendritic grains into a supercooled melt of a pure substance. 
However, it is clear that their model cannot account for the topology and texture 
evolution of a typical columnar structure.  
Deterministic models suffer from several limitations. As the complexity of the 
physical system increases, the analytical models require many assumptions and 
are unable to capture the behavior of the real physical system. In the 
deterministic models the grains are assumed to remain spherical even in the 
strong thermal gradient, columnar structures and Equiaxed to Columnar 
Transition (ECT) and Columnar to Equaixed Transition (CET) are usually not 
accounted for, the competition occurring among grains belonging to the 
columnar zone and the associated evolution of their crystallographic texture are 
not described at all [Gandin et al., 1995]. For these reasons the simulations of 
the grain structure formation has been approached using stochastic models which 
have been developed over the past several years. 
Stochastic models. In stochastic models, the physical phenomena are described 
by using random numbers. As a consequence, the outcome of a simulation can 
vary among each simulation. The MC, RW and CA method have been usually 
applied to the prediction of macroscopic grain structures. The MC method has 
been used to predict the solid-state transformation such as recrystallization or 
grain growth, whilst the CA model that accounts for the dendritic growth 
kinetics has been applied to simulate the solidification grain structures and the 
CET. 



Application of CA to Modelling of Microstructure 

 

5 

The first MC procedure model was developed by Anderson et al. [Anderson et 
al., 1984] for the prediction of grain growth in solid. This method is based on 
minimization of the interfacial energy (between liquid/solid or between two 
different grains) and by allowing transition between two states according to the 
randomly generated numbers. By using this method, Spittle and Brown [Spittle 
and Brown, 1989] were able to produce computed two-dimensional 
solidification grain structures, in particular the selection of grains in columnar 
zone and the CET transition. The microstructures were similar to the observed 
experimental microstructures. However, these methods suffer from a lack of 
physical basis. Although they qualitatively demonstrate some phenomena, such 
as the effect of solute saturation or melt superheat, they cannot be 
straightforwardly used for quantitative analysis of the effects of various physical 
phenomena. In particular they do not account easily for the growth kinetics of 
dendrite tips and for the preferential growth directions of the dendrite. 
CA were first introduced by von Neumann in 1951 [von Neumann, 1951], and 
later on in 1986 by Wolfram [Wolfram, 2002] to a broader scientific public. CA 
method is based upon the consideration of physical mechanisms on nucleation, 
growth kinetics of a dendrite tip, and crystallographic orientations. Furthermore, 
the mechanisms of competitive dendritic growth, embeded directly in the CA 
algorithm are still under development. So that the CA model can quantitatively 
carry out the time-dependent simulation for microstructure evolution, in which 
the individual grains are identified and their shapes and sizes can be shown 
graphically. A series of studies using the CA model have been reported by Hong 
et al. [Cho and Hong, 1997; Lee and Hong, 1997] on the simulation of 
solidification structures in squeeze casting and planar flow casting as well as on 
the prediction of the deflection behaviour of columnar grains solidified in a 
flowing melt. A detailed introduction to the CA method is given in Chapter 3. 
 

1.2 Application of CA to Modelling of Microstructure  

In the last decade, several numerical models, which can solve complicated 
transport phenomena and phase transformation under different boundary and 
initial conditions, were developed to calculate various microstructure features of 
solidifying materials such as grain growth. Application of the CA models, for 
simulation of the different phenomena in materials, has been significantly 
increased these days. This approach is known especially in the fields of 
solidification [Rappaz, 1989; Rappaz and Gandin, 1993; Raabe, 2004], dynamic 
and static recrystallization [Hurley and Humphreys, 2003;  Kumar et al.,1998; 
Hasselbarth and Gobel, 1991; Raabe, 2001], phase transformation [Spittle and 
Brown, 1994], grain refinement  [Janssens et al., 2007], dendritic growth [Brown 
et al., 1994; Spittle and Brown, 1995; Gandin and Rappaz, 1997; Gandin, 2001] 
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and micro-shear band and shear band propagation [Kugler and Turk, 2006]. CA 
method has been successfully used in the simulation of solidification 
microstructure evolution. The main asset of the CA based methods is their 
ability for a close correlation between the microstructure and the mechanical 
properties during both micro- and meso-scale simulations. The advantages are 
that they combine the simplicity and scalability of a switching model with a 
physical dynamics model [Raabe, 2002]. They are based on less complicated 
algorithms, simpler for design, implementation and more useful for visualization 
when compared to known PFM(s). 
Rappaz and Gandin [Rappaz and Gandin, 1993] were the pioneering researchers 
who developed the CA model for modelling microstructure in which nucleation 
and growth kinetics could be considered and grain structure with certain shapes 
and size were predicted. Gandin and Rappaz [Gandin and Rappaz, 1994; Gandin 
and Rappaz, 1997] simulated the grain structure by coupling the CA technique 
for the grain growth with the Finite Element Method (FEM) solver for the heat 
flow (FEM-CA). Later Spittle and Brown [Spittle and Brown, 1995] coupled the 
CA with a Finite Difference Method (FDM-CA) for solute diffusion during the 
solidification of casting to predict its structure.  In their model, the status of an 
individual cell has only two states, solid or liquid, giving a stepped motion of the 
interface. Nastac [Nastac, 1999] applied a continuous variable front tracking 
technique, allowing a smooth evolution of solid fraction within each growing 
cell. These models not only allow the resolution of grain envelopes, but also of 
the detailed dendritic structure and solute interactions at the advancing front. 
Using the model based on the CA technique, Lee and co-workers [Wang et al., 
2003; Dong and Lee, 2005] simulated microstructure evolution during 
solidification process for many materials. And they even developed a model 
coupling the nucleation and growth of pores and grains [Atwood and Lee, 2003]. 
These achievements make it possible to model the microstructure evolution of 
casting solidification process by combining CA with FDM and CA with FEM 
[Wang et al., 2003; Dong and Lee, 2005; Atwood and Lee, 2003; Brown, 1998; 
Jarvis et al., 2000; Gandin et al., 1996; Gandin and Rappaz, 1997]. However, the 
understanding of solidification process and related microstructures is very 
complicated. This is because it is affected by many interacting phenomena on 
different scales [Rettenmayr and Buchmann, 2006]. Experiments that allow 
direct visualization of microstructure formation are difficult to perform.  
Among all of the numerical approaches fos studing the microstructure evolution 
the CA modelling and the PFM modelling [Qin and Wallach, 2003] are the most 
popular and widely used. In this dissertation we focus on the CA approach for 
modelling microstructure formation. A considerable progress on solidification 
microstructure simulation [Boettinger et al., 2000; Lorbiecka et al., 2009; 
Lorbiecka and Šarler, 2010a; Miodownik, 2002] has been made by the CA 
approach. The difficulty in developing the CA growth algorithm is that it has to 
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reflect the specific features of the solidifying material. During the growth 
processes of grains the crystallographic orientation axes of different grains have 
different divergence angles with respect to the coordinate system. It is well know 
that the classical CA methods have a tendency to deform the results by 
introducing the anisotropy associated with the network of cells.  Consequences 
are that they tend to grow only in the grid direction [Zhan at al., 2008]. It does 
not matter which orientation will be chosen it will always shift the dendrite with 
respect to the grid axis. In this case the growth stage is difficult to simulate by 
the CA method. It is because the configuration of the CA mesh has a direct 
influence on simulated structure and shape. Anderson [Anderson et al., 1984] 
and later Spittle and Brown [Spittle and Brown, 1989] used a hexagonal, rather 
than the standard square 2D lattice in order to better represent the grain 
anisotropy. But in general even now it is still difficult to properly model the 
preferred crystallographic orientation.  
Rappaz and Gandin solved this crystallographic orientation problem [Gandin 
and Rappaz, 1997] by employing 2D decentered and 3D decentered octahedron 
CA growth algorithms, developed and coupled with FE heat flow solver which 
turns out to be complicated. One of their criteria used to validate the CA 
dendritic growth algorithm is to reproduce the shape of a single grain envelope. 
The observation of transparent substances like cyclohexanol or succinonitrile has 
shown that this envelope has an octahedral shape. Based on this observations the 
CA growth algorithm for modelling dendritic growth was designed to reproduce 
such envelopes. The model demonstrates its stability to account for different 
crystallographic orientations and growth kinetics parameters.  
Here a simpler approach to this problem, represented by the novel Point 
Automata (PA) [Lorbiecka and Šarler, 2009, Lorbiecka and Šarler, 2009, 
Lorbiecka and Šarler, 2009] method is demonstrated. A novel concept of random 
cellular grid or irregular cellular grid presented in this dissertation follows the 
CA concept and is able to solve the mentioned crystallographic orientation 
problem. A basic feature of this method is to distribute nodes randomly in the 
domain instead of using regular cells, which leads to different distances between 
the nodes and different neighbourhood configurations for each of them. The 
method is described in Chapter 3. Janssens published the first concept of PA to 
the simulation of recrystalization and grain growth but with very limited 
numerical examples [Janssens, 2003; Janssens, 2010; Janssens et al., 2007]. In 
2003 [Janssens, 2003]. Janssens represented the capability of the irregular CA 
for modelling the evolution of a microstructure transformation including volume 
and curvature driving pressures and in 2004 Janssens et al. [Janssens et al., 
2004] presented a hybrid model combining it within diffusion. Lorbiecka et al. 
[Lorbiecka et al., 2009] were the first who coupled the classical CA method with 
a meshless method instead of the FEM or FDM. This concept has not been 
previously used in solidification problems. They successfully predicted the grain 
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structure in CC of steel. Subsequently, they replaced the CA method by the PA 
method in the same physical system [Lorbiecka and Šarler, 2009] and 
demonstrated the suitability of the PA method for transitions (ECT, CET) in 
steel billets and dendritic structures. The preliminary results of the dendritic 
growth based on the PA approach have been presented in [Lorbiecka and Šarler, 
2009].  
This approach is explained and evaluated in details in the present dissertation 
where we numerically discuss a simple physical model which can simulate 
micro-structure formations. The developed numerical models have the capability 
to simulate the grain structure ECT/CET on the mesoscale and the dendritic 
growth on the microscale. 
 

1.3  Dissertation Goals and Performed Work 

The principal goal of present dissertation is to develop a simulation tool, based 
on the classical CA method and a novel PA method for modelling the grain 
structure [Rappaz et al., 1993; Yamazaki et al., 2006] in solidification by using 
the coupled stochastic mesoscopic and macroscopic physical models, and 
validation of the model results with the experimental results. The following two 
numerical models were developed in order to be able to simulate the 
microstructure formations:  
(1) the position of  ECT/CET which occur during the CC of steel, 
(2) thermal dendritic growth of pure metals.  
The calculations were in both classes of processes done by the conventional CA 
method with rectangular polygon mesh structure and by the newly developed PA 
approach  based on the irregular positions of the nodes (see Chapters 5 and 6). 
  
Ad.1: Mesoscopic model to simulate ECT and CET (see Chapters 5 and 7). This 
numerical model was developed for the simulation of the solidification grain 
structure formation ECT/CET during the CC process of steel billets (Figure 1.1). 
The mesoscopic model encompasses three theoretical stages occurring during 
the solidification: nucleation, growth and impingement. The CA microstructure 
model is combined with the macroscopic heat transfer simulator. The heat 
transfer model is solved by the meshless technique by using the Local Radial 
Basis Function Collocation Method (LRBFCM) [Šarler et al., 2006]. Related 
simulator calculates the temperatures for the steel billet for the selected alloy 
which need to be transferred to the mesoscopic CA model over the time. The CA 
model is based on the Nastac’s definition of neighbourhood [Nastac, 2004], 
Gaussian nucleation rules [Lee and Hong, 1997] and Kurz-Giovanola-Trivedi 
(KGT) growth model [Kurz, Giovanola and Trivedi, 1986; Kurz and Fisher, 
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1998]. Finally, the CA algorithm for ECT/CET has been replaced by the PA 
method. The transition rules are described and the numerical results presented. 
The numerical results are performed for the classical LRBFCM-CA and the 
novel LRBFCM-PA approach. For the both methods all numerical results have 
been carried out for the nominal casting conditions 1530 KcastT =  and 

1.75castV = m/min, for the steel billet of heat 46352 from Štore Steel 

[http://www.store-steel.si/] with dimension 140 mm x 140 mm and alloy type 
51CrMoV4. In the present study the mesoscopic model parameters have been 
adjusted with respect to the experimental data. The sensitivity study of the 
microstructure mode, solved by the LRBFCM-CA method has been introduced 
with respect to the nucleation parameters and simplified neighbourhood 
configuration, casting temperature and casting speed. Proper response of the 
multiscale model with respect to the measured grain structures in the Štore Steel 
company, has been demonstrated.  
In Appendix 1 several additional simulations are presented for assessment of the 
influence of casting parameters on the dimension of three characteristic zones: 
chill, columnar and equaixed and compare with the database of measurements 
from the Štore Steel. The Baumann prints of billet with dimension 140 mm and 
180 mm, are represented.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Schematics of the ECT and CET occurring during the CC of steel with three 
characteristic zones (chill, columnar and equiaxed one). 
 
The available measurements casting correspond to speed range from 0.9 m/min 
to 1.75 m/min and casting temperature range from 1520 K to 1550 K. According 
to the received samples, the influence of macro input parameters, for the 
formation of grain structures during the CC of steel, were studied. From the 
technical reports [Manojlović, 2007; Manojlović, 2008] the following heats were 
analyzed: 48695 3/I, 48695 3/III, 48807 3/II and 48807 3/IV for the different 
casting speeds and 46484/1, 46484/3, 46693/1 and 46693/3 for the different 
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casting temperatures. Other measurements (18 out of 32) were rejected because 
of the bad quality of the samples or not entirely known casting parameters.  
For the PA method all numerical results have been carried out for the nominal 
heat 46352 with dimension alloy 140 mm x 140 mm and alloy (see Table A.1). 
The sensitivity study has been done for the following two parameters: for the 
different values of radius of neighbourhood HR  and different structures of 

random grids. The input parameters have been adjusted with respect to the 
experimental data. Finally prepared numerical result for the same macro and 
micro input parameters for the CA and PA method have been compared to the 
experimental data for the heat 46352. 
The results of this part of the dissertation have been published in [Lorbiecka et 
al., 2009; Lorbiecka and Šarler, 2009; Lorbiecka and Šarler, 2009; Lorbiecka 
and Šarler, 2010a]. 
The main goal of this part of this dissertation is a development of the numerical 
model which predicts the ECT/CET occurring during the CC of steel with 
respect to the measurements data. 
 
Ad.2: Microscopic model to simulate thermally driven dendritic growth of pure 
metals (see Chapters 6 and 7). The second numerical model represents a simple 
physical system where one or more thermal dendrites grow from the 
undercooled melt at a predefined position and orientation (Figure 1.2). In order 
to predict the dendritic structure, the solution was combined with the 
deterministic model for calculation of the temperature field. The stochastic 
model includes calculations of the interface temperature, curvature, Gibbs-
Thomson coefficient which takes into account the thermodynamic anisotropy 
related to the crystal orientation and crystal growth velocity which accounts for 
the kinetic anisotropy by taking into the consideration the crystal growth 
direction and the preferential crystallographic orientation. The stochastic model 
receives temperatures from the deterministic model and the deterministic model 
receives the solid fraction for the stochastic model. The heat transfer model is 
solved by the FDM on the regular nodes. The value of the temperature is send to 
the CA cell which is located exactly in the middle of four FDM nodes. In each 
time step the nodal values of temperature, based on the status of solid fraction 
from the CA level of calculations, are updated. The CA method, used to solve 
the governing equations for dendritic growth, has been in this dissertation 
replaced by the novel PA method. The differences in implementation are 
presented and discussed.  
The dendritic morphologies were calculated by the classical FDM-CA and the 
novel FDM-PA approaches. All numerical results were prepared for the same 
material properties (pure aluminium). The dendritic growth process is simulated 
by the conventional CA method without and with random fluctuations. For the 
CA method the thermal fluctuations are included into the calculations of growth 
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velocity. In the PA method, where the calculations are done on the random node 
arrangement, the random fluctuations replaced by the random positions of the 
nodes. No other fluctuations are needed. For the FDM-CA method a sensitivity 
study of radius of neighbourhood, Gibbs-Thomson coefficient and thermal 
fluctuations, is performed. 

For the FDM-PA method the dendritic growth process is first simulated with the 
same random node arrangement denoted (PA-(A)) for ten crystallographic 
orientations and then with different random node arrangements (PA-(B), PA-(C), 
PA-(D)) for three crystallographic orientations. Finally the dendritic growth is 
simulated with different randomness of the node arrangement 0.10=ε , 0.25=ε  
and 0.49=ε . 

For the same input parameters the dendritic growth process is simulated by the 
CA and PA methods at orientation considering to the principal axes of the 
Cartesian coordinate system. The lengths of x  and y  branches are different in 
both cases. This is due to the influence of the random node arrangement in the 
PA method and subsequent variable distances between the nodes. The growth 
process is then simulated by including the randomness growth correction factor 
responsible for the agreement in the lengths of both branches obtained by the CA 
and PA methods. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: Dendritic structures. Left: single dendrite, right: several dendrites growing 
simultaneously. 
 
The results of this part of the dissertation have been published in [Lorbiecka and 
Šarler, 2009; Lorbiecka and Šarler, 2009; Lorbiecka and Šarler, 2010b; 
Lorbiecka and Šarler, 2010c]. 
The main goal of this part of the dissertation is a development of the numerical 
model which simulates thermally driven dendritic growth of pure metals from 
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the undercooled melt at a predetermined positions and orientations by the novel 
PA method. 
 

1.4 Overview of the Dissertation 

• In Chapter 2 a review of the main physical phenomena, occurring in 
solidification of metallic alloys, is presented. In the first part we give an 
overview of the nucleation models following the description of the growth 
process. Subsequently, the derivation of the KGT model which is used in the 
mesoscopic calculations, is presented.  

• In Chapter 3 the definition and application of the CA method is presented. In 
the second part of the chapter we give an introduction to the novel PA method. 
The comparison of two methods is given in detail. 

• In Chapter 4 we first list the common problems occurring during the CA 
modelling. Next the application of the regular CA and irregular CA method 
(PA method) for modelling the recrystallization is discussed. The Janssens 
concept of the PA method to simulation of grain growth is shortly presented. 
Only his theoretical part of the novel method is given, without any numerical 
examples. 

• In Chapter 5 the development of a new simulation tool for modelling the grain 
structure in solidification processes is described. In this chapter we present the 
numerical mesoscopic model which is designed to be able to simulate the 
positions of the ECT and CET. First the procedures responsible for coupling 
the macroscopic heat transfer model with the mesoscopic model are 
demonstrated in details. Then the attention is focused on the governing 
mesoscopic equations which are solved by the classical CA method and by the 
novel PA method. The differences in numerical implementation of both 
approaches are presented. 

• In Chapter 6 we give an overview of the numerical model which can simulate 
the dendritic forms during the solidification of a pure substance from its 
supercooled melt. The coupling scheme of the explicit FDM with the CA and 
PA method is presented. In addition the solution of governing equations by the 
FDM-CA and FDM-PA method is given. 

• In Chapter 7 many numerical examples of the two developed models are 
presented. The calculations are in both cases done by the conventional CA 
method with rectangular polygon mesh structure and then by the newly 
developed PA approach, based on the irregular positions of the nodes. Each set 
of the results is accompanied with a detailed discussion. 

• Finally, Chapter 8 represents the summary of the achievements and future 
directions as well as possible improvements of the models. 
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2 Introduction to the Solidification 
Theory  

Control of solidification microstructure is an important aspect for the control of 
the properties and quality of final casting products in modern casting technology.  
Computational prediction of microstructure evolution in solidification of alloys 
is a key factor in controlling solidification microstructure. In modelling the 
microstructure evolution two perspectives can be taken into the consideration: 
the physical aspect, which means the quantitative understanding of physical 
phenomena and the practical aspect which is very important application of 
solidification models into practice.  
The basic theories of the solidification process are well described by Flemings 
[Flemings, 1974], Kurz and Fischer [Kurz and Fischer, 1998], Dantzig and 
Rappaz [Dantzig and Rappaz, 2009]. Solidification represents a phase 
transformation where a liquid turns into a solid when it is cold enough. It starts 
when the melt cools and reaches the liquidus temperature. The rate of this 
phenomena is mainly determined by the rate of heat extraction from the system, 
the driving force for nucleation and the growth of crystals from undercooling. 
The main purpose of this process is in generation of temporal and spatial 
movement of the liquid/solid interface. In order to model the solidification the 
attention is on theoretical description of the solidification stages: nucleation and 
growth. These mechanisms have been the focus of many researchers and many 
theories were suggested [Gandin et al., 1995]. The theoretical part of this 
phenomena is reviewed and represented in this chapter. 
 
Nucleation stage (formation of tiny solid nuclei) is described in Chapter 2.1 and 
growth stage of these nuclei, which finally makes up the final solidified 
structure, is described in Chapter 2.2. 

2.1 Nucleation Stage 

Nucleation is the process which initiates the formation of new phases and is a 
general phenomenon in multiphase system. The fundamental concepts of 
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nucleation are in the focus of such diverse fields as thermodynamics, metallurgy, 
physical chemistry, solid state physics, surface science, atmospheric physics, 
geophysics, etc. From the thermodynamics point of view, a necessary condition 
for formation of the nucleus in the melt is that it must be undercooled, i.e. it 
needs a temperature that is lower than the melting point MT  or the liquidus 

temperatureLT . The first step of metal solidification is the formation of tiny, 

stable, solid nuclei at various positions and orientations in the melt, which in 
advance start to grow and become crystals (grains). When the temperature of the 
liquid reaches the assumed undercooling the movements of the atoms in the 
liquid phase decrease and some small nuclei form (Figures 2.1 and 2.2). 
Nucleation is an important aspect of microstructure evolution. It affects 
solidification under-cooling, heat evolution during solidification and the final 
number of grains. Different types of nuclei available in the melt can be the result 
of the following processes: 
 
1. Homogeneous nucleation 
2. Heterogeneous nucleation 
3. Dynamic nucleation 
 
Ad.1 
It implies that the growth initiates on substrates having the same chemistry as the 
solid. It is not common in casting alloys. 
 
Ad.2 
It implies that the growth initiates on substrates having different chemistry as the 
solid. Two distinct models, based on the heterogeneous nucleation theory, have 
been developed. These are continuous and instantaneous nucleation models.  
The continuous model assumes a continuous dependency of the number of 
nucleuses N  on temperature. Some relations need to be provided to correlate the 
nucleation velocity /N t∂ ∂ with the under-cooling T∆  or with the temperature. 
A procedure is carried on to determine the final number of nuclei. 
The instantaneous model assumes that the new nucleuses generate at the 
determinate nucleation temperatureMT . Again, in addition the empirical relation 

needs to be added with respect to the under-cooling temperature or cooling rate, 
to correlate the final amount of nucleuses. A schematic comparison of these two 
nucleation models is depicted in Figures 2.1 and 2.2. The equations of 
heterogeneous nucleation models include many fitting parameters, which need to 
be assumed or find experimentally. 
 
The most common forms of the continuous nucleation models are: 
 



Nucleation Stage 

 

15 

∆T

N

∆T

N s

N

1 

       nuclei grain

time

       nuclei grain

time

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Graphical representation of the continuous nucleation model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Graphical representation of the instantaneous nucleation model. 
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• Oldfield model [Oldfield, 1966] 

 ( ) 1
,

nN T
vs T

t t

−∂ ∂= − ∆
∂ ∂

 (2.1)

  

where v , s, T∆ , T , t , t∆  represent the two fitting parameters, the 
undercooling temperature, temperature, time and time step, respectively. 
 
• Maxwell and Hellawell model [Maxwell and Hellawell, 1975] 

 ( ) ( )
( )

1
2 2
exp ,stot i

p

wN
N N

t T T T

 ∂ = − − 
∂ ∆ − ∆  

θ
µ  (2.2) 

where stotN , iN , 2µ , pT , ( )1w θ , 1θ  represent the total density of nucleated 

crystals (fitting parameter), the number of nucleuses that have nucleated at time 
i , the nucleation frequency, the nucleation (periodic) temperature, the classic 
function of contact angle and the contact angle (fitting parameter), respectively. 
  
• Goettsch and Dantzig (quadratic distribution) model [Goettsch and Dantzig, 
1990] 

 ( ) ( ) ( )2

max
max min

3
,stotN

N r R r
R R

= −
−

 (2.3) 

where maxR , minR , r  represent the maximum grain size (fitting parameter), the 

minimum grain size (fitting parameter) and the given radius of nuclei, 
respectively. 
 
• Thevoz et al. model [Thevoz et al., 1989] 

 
( )

2

maxexp ,
2 2

stotN T TdN

d T T T

 ∆ − ∆= −  ∆ ∆ ∆ σ σπ
 (2.4) 

where T∆ , maxT∆ , Tσ∆  represent the average undercooling temperature, mean 

nucleation undercooling and the standard deviation, respectively. This model is 
used in Chapter 5 of this dissertation.  
 
The most common forms for the instantaneous nucleation models are: 
 
• Stefanescu et al. model [Stefanescu et al.,1990] 
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 ,c cN a b T= + ɺ  (2.5) 

where ca , cb , Tɺ  represent the experimental constants and the cooling rate, 

respectively. 
 
• Hunt model [Hunt, 1984] 

 ( )3stot N

N
N T T

t

∂ = −
∂

µ  (2.6) 

where 3µ  and NT  represent the Dirac delta function and the nucleation 

temperature, respectively. 
 
Ad.3 
The thermosolutal natural convection occuring in front of the columnar mushy 
zone imposes the dendritic fragmentation in the bulk liquid. It means that the 
nucleation of the equiaxed grains will depend not only from the heterogeneous 
substrates, but also on the crystal fragmentation as a result of the dynamic 
nucleation. This approach is physically more correct than the heterogeneous 
nucleation, but formulation of these mechanisms would require substantial 
efforts. 
 

2.2 Growth Stage 

The growth of crystals is the second stage of solidification, when the heat is 
extracted through the solid, and the freezing front is cooled below the 
equilibrium freezing point. The grain growth simulation encompasses the 
computation of velocity of solid/liquid interface at dendritic tip. Therefore, the 
definition of growth velocity at the dendritic tip is important to simulate the 
grain growth of metal solidification. Solidification growth morphologies can be 
divided into two primary groups: single-phase primary structures, which may be 
globular, cellular, and/or dendritic and poly-phase morphologies, such as 
eutectics [Kurz and Fisher, 1998]. These morphologies comprise most metallic 
solidification microstructures, and have been in focus of numerous numerical 
and theoretical studies [Dantzig and Rappaz, 2009]. Three growth forms are 
usually present in the solidification process: planar, cellular and dendritic 
(Figure 2.3). For a pure metal, as the driving force for solidification increases, 
the solidification front undergoes such transitions. When the liquid temperature 
is higher than the freezing point of the melt and the temperature gradient of the 
liquid is positive, the solidifying front is known as planar. At higher advance 
rates, the front develops deep into the liquid and spaces evenly over the front. 
Ahead of the advancing interface, the liquid develops a negative temperature 
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gradient. This is called cellular growth. At higher velocities still, the cells grow 
into rapidly advancing (looking like a tree complex) geometry forms called 
dendritic growth. 
The grain growth stage can be presented at least by two analytical models: KGT 
model and the Lipton-Kurz-Trivedi (LKT) model [Lipton et al., 1987b; Lipton et 
al., 1987a]. The first one represents the growth process with a positive 
temperature gradient in the liquid at the solid/liquid interface. LKT mode is able 
to predict the free dendritic growth into the undercooled melt where the 
temperature gradient in the liquid ahead of the solid/liquid interface is assumed 
to be negative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Schematics of the growth morphologies. Left: view from the front, right: view from 
the side. 
 
 
The growth stage can be described through the analogous theoretical models, 
which include these two important steps [Stefanescu, 2009]: 
 

1. Derivation of equation which describes the relationship between the scale 
of microstructure and the undercooling and the growth rate. 

 

 

 

Planar 
growth 

Cellular 
growth 
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growth 
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2. Choice of the criterion which permits the definition of relationship 
between the scale of microstructure and the undercooling or the growth 
rate. 

 
Regarding the first problem it is required to determine the expression for the heat 
and/or solute distribution. Second step described below can be satisfied by using 
one of the following two alternative growth criteria: 
 
A. Growth at the extremum, this is the maximum growth rate or the minimum 

undercooling. 
B. Growth at the limit of morphological stability. 
 
In the present dissertation the KGT model was applied (Chapter 5). In the 
Section 2.2.1 the derivation of the growth velocity equation is presented. 
 

2.2.1 Growth Kinetics of the Dendritic Tip 

2.2.1.1 Hemispherical Needle Approximation 

A cylinder with a hemispherical tip, growing along the axis, is the simplest 
approximation which can be made according to cope with the problem of 
dendritic tip growth. Figure 2.5 presents the cylinder with the cross section 

2
pA Rπ=  which grows in the time increment dt  and which is responsible for 

the rejection of solute. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: Concentration field for the dendrite having a parabolic shape. 
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Figure 2.5: Dendrite having a parabolic shape. 
 
The surface area of the cap 22hA Rπ=  determines the amount of radial solute 

diffusion. Fluxes, due to solute rejection 1J  and due to the diffusion in the liquid 

ahead of the tip 2J , can be identified [Stefanescu, 2009] 

 ( )1 ,p l sJ A V c c= −  (2.7) 

 2 ,l h
r R

dc
J D A

dr =

 = −  
 

 (2.8) 

where pA , V , lD , hA , sc  represent cross section of the cylinder, velocity (rate 

of the interface movements), diffusion coefficient in liquid, surface area of the 
cap and the concentration in the solid, respectively. 
Under steady state conditions, both fluxes must be equal, which results in 

 ( ) 2 ,l s l
R

dc
V c c D

dr
 − = −  
 

 (2.9) 

with 

 ,s lc c k=  (2.10) 

where k  represents the partition coefficient. 
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To find the composition gradient at the tip of the grain it is necessary to solve the 
steady state diffusion equation in radial coordinates with no tangential diffusion 

 
2

2

1
0.

d c dc

dr r dr
+ =  (2.11) 

The general solution of this equation is  

 1 2 / ,c c c r= +  (2.12) 

where 1c  and 2c  are constants, determined from the boundary conditions. By 

appling the following boundary condition  
 
at r → ∞   0c c=     then 1 0c c=  

at r R=    lc c=     then ( )2 0lc R c c= −  

 
we obtain 

 ( ) 0
02

,l
l

r R

c cdc R
c c

dr r R=

−   = − − = −      
 (2.13) 

where lc , 0c , R  represent the concentration in the liquid, initial concentration in 

the solute and dendritic tip radius, respectively. 
 
Finally, equation (2.9) tip can be rewritten to 

 0 .
2 (1 )

l

l l

c cVR

D c k

−=
−

 (2.14) 

Since the solutal supersaturation is  

 ( )
0

1 ,
1

l

l

c c

c k

−Ω =
−

 (2.15) 

and the solutal Peclet number is 

 Pe ,
2 l

VR

D
=  (2.16) 

where 1Ω , Pe represent the solutal saturation and the Peclet number, 

respectively. The solution of the equation (2.9) becomes 

 1Pe= Ω  (2.17)
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It shows that the velocity depends on tip radius R  and on supersaturation1Ω , 

which are the driving forces. The solution of this diffusion equation does not 
specify whether a dendrite will grow fast or slow, but only relates the tip 
curvature to the dendritic rate of propagation. In addition, the hemispherical cap 
does not grow only in x - direction, but also in R - direction.  
The main task is to calculate the growth rate as a function of the ratio of the 
change in concentration (or temperature) of the dendritic interface at the tip to 
the equilibrium concentration (or temperature). The ratio of these quantities is 
known as the solutal (thermal) supersaturation. The growth rate of the solid 
phase increases with the increase of the supersaturation. The heat and mass 
rejection rate, and therefore the growth rate, is influenced by the shape of the tip. 
At the same time the form of the tip is affected by the distribution of the solute 
and temperature fields. All these interactions make the development of exact 
theory for the dendritic growth velocity extremely complex [Kurz and Fisher, 
1998]. In order to overcome the complexity arising from the dendritic structure 
geometry, the dendritic shape is commonly described as the paraboloid of 
revolution as originally proposed by Papapetrou [Papapetrou, 1935].  
 

2.2.1.2 Paraboloid of Revolution 

According to the above presented problem the following solution is derived. To 
make the calculations simpler the dendritic shape is assumed to have a parabolic 
shape instead of a circular one. Papapetrou described the form of a dendritic 
crystal as a paraboloid of revolution with a fixed radius of curvature, growing at 
a constant velocity. Ivantsov [Ivantsov, 1947] was the first who described the 
growth of a paraboloid crystal. Ivantsov based his own classical transport 
analysis on a suggestion made originally by Papapetrou in 1935. He solved the 
related diffusion equation in co-moving paraboloidal coordinates, scaled by the 
only obvious length in the problem, the (unknown) tip radius of curvature.  
Two stability growth regimes can be defined: pure diffusion regime and the 
growth in the presence of fluid flow. Under steady state and in pure diffusion 
regime, the resolution of the temperature field ahead of the moving paraboloid of 
revolution interface leads to a relation between the supersaturation, the tip radius 
R  and the tip velocity V , according to the equation (2.18) 

 ( ) 1Pe .Iv = Ω  (2.18) 

Ivantsov assumed that all the energy released by solidification diffuses away 
from the isothermal paraboloidal crystal-melt interface via the melt phase. He 
obtained the following equation relating the growth for steady-state paraboloidal 
dendrites 
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 ( ) ( ) ( )1Pe Peexp Pe Pe ,Iv E=  (2.19) 

where ( )PeIv , ( )1 PeE  are the Ivantsov function and the exponential integral 

function, respectively.  
 
The exponential integral function is defined as 

 ( ) ( )
1

exp
.

x

z
E x dz

z

∞ −
= ∫  (2.20) 

There are several approximations of the integral function that can be used in 
numerical evaluation. In our calculation for the parabolic cylinder the following 
solution was applied 

 ( ) ( ) ( )Pe Pe exp Pe erfc Pe ,Iv = π  (2.21) 

where erfc is the complementary error function defined as 

 ( ) ( )22
exp .

z

x
erfc x dz

∞ −= ∫π
 (2.22) 

Equation (2.14) establishes the relationship between the tip velocity and radius. 
Hence, for the constant undercooling the relation RV is then constant  and 
means that either a dendrite with small radius will grow rapidly or one with a 
large radius will grow slowly. In order to calculate the resulting velocity of the 
tip radius, additional equation is required accordingly. Experimental work 
demonstrates that for each undercooling a unique value of tip velocity and radius 
needs to be obtained.  
 

2.2.1.3 KGT Model 

To find the additional equation it is necessary to find additional criteria that 
define the tip radius [Kurz, Giovanola and Trivedi, 1986; Kurz and Fisher, 
1998]: 
 

• the marginal stability criterion 
• the extremum criterion 
 

2.2.1.3.1 The Marginal Stability Criterion 
Several experiments indicate that the radius of curvature of the dendrite is 
approximately equal to the lowest wavelength perturbation of the tip. As 
proposed by Langer and Müller-Krumbhaar [Langer and Müller-Krumbhaar, 
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1987] the dendritic tip grows with a tip radius equal to the limit of stability 
which is known as the marginal stability criteria. Langer and Muller-Krumbhaar 
presented a linear stability analysis for Ivantsov parabola dendritic tip region. 
Movements of the parabolic shape in the system were caused by the interface 
energy. It was assumed that the dendritic radius is not stable in the regions 
smaller than predicted by the extremum criteria or larger than the certain critical 
value. At such a large radius a tip splitting will occur in order to decrease the 
radius. This largest radius is selected by the dendrite during the growth stage. 
Dendrites grow with the tip which size is limited by the marginal stability, 
following the equation 

 ,iR = λ  (2.23) 

where iλ  express the critical wavelength of the solid-liquid interface at the limit 

of stability.  

The wavelength of the marginally stable plane front is given by 

 2 ,c cmG GΓ = −ω ς  (2.24) 

with 

 
2

,
i

= πω
λ

 (2.25) 

 
( ){ }c 1/22

2
1 ,

1 4 / 1 2l i

k

D V k
= −

+ − +  

ς
π λ

 (2.26) 

 
( )1

,l
c

l

Vc k
G

D

− −
=  (2.27) 

where Γ , cG , G , cς  represent the Gibbs-Thomson coefficient, interface 

concentration gradient in the liquid, interface mean temperature gradient and 
stability parameter, respectively.  

At high Peclet numbers equation (2.25) reduces to 

 
2

.
Pec k

Γ= πς  (2.28) 

By applying liquid concentration 
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 ( )
0 ,

1 (1 ) Pel

c
c

k Iv
=

− −
 (2.29) 

the interface concentration gradient can be rewritten to 
 

 
( ) ( )

0(1 )
.

1 1 Pec

l

V k c
G

k Iv D

− −=
− −  

 (2.30) 

Finally, substituting this concentration gradient into the equation (2.23), one can 
obtain 

 

( ) ( )

1/2

0

2 .
(1 )

1 1 Pe c
l

R
V k c

m G
k Iv D

 
 Γ = − − − − −   

π
ς

 (2.31) 

Including the definition of Peclet number, according to the equation (2.16) and 
using Ivantsov’s solution for the transport problem, this relation can be 
expressed as 

 2
1 2 3 0,V V+ + =ζ ζ ζ  (2.32) 

with the following coefficients 1ζ , 2ζ and 3ζ  

 
2

1 2 2
,

Pe lD

Γ= πζ  (2.33) 

 [ ]
0

2

(1 )
,

1 (1 ) (Pe)
c

l

mc k

D k Iv

−=
− −

ςζ  (2.34) 

 3 .G=ζ  (2.35) 

In the directional growth the temperature gradient is determined by the external 
heat flow. Neglecting this effect (at low growth rates) on the diffusion field 
around the tip, the concentration gradient can be calculated using a flux balance 
at the dendritic tip. In our calculation it was set to zero ( 0G = ), as proposed by 
Kurz and Fisher [Kurz and Fisher, 1998; Yamazaki et al., 2006], what gives the 
absolute stability condition. It reduces the equation (2.32) for growth velocity as 
follows 

 2 1/ .V = −ζ ζ  (2.36) 
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2.2.1.3.2 The Extremum Criterion 
This criterion implies that growth stage takes place at the maximum possible 
velocity and at the minimum possible undercooling. These two assumptions are 
fulfilled by the velocity corresponding to the radius tip of the dendriteR . The 
expression for rate of interface movement V can be obtained for example for a 
perturbation driven only by the solutal and the curvature undercooling   

 ,c rT T T∆ = ∆ + ∆  (2.37) 

where cT∆ , rT∆  are solutal undercooling and the curvature undercooling, 

respectively.  

 ( )0 ,c lT m c c∆ = − −  (2.38) 

 
2

,rT
R

Γ∆ =  (2.39) 

where m  represents the slope of the liquidus line. 
 
Substituting these two undercooling temperatures into the total undercooling 
equation (2.37) we receive the following relation 

 ( )0

2
.lT m c c

R

Γ∆ = − +  (2.40) 

This equation transforms into  

 
( )

0
0

2
,

1 (1 ) Pe

c
T m c

k Iv R

  Γ∆ = − +  − − 
 (2.41) 

by assuming the equation (2.29). 

 
Presented KGT model was used in our calculations for modeling the ECT/CET 
transitions. 
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3 Cellular Automata and Point 
Automata Methods 

3.1 Literature Review 

The increasing importance of computers has lead to a new way of looking at the 
world. This point of view shows nature as a form of computation. Computers 
follow some rules. At each step the rules determine exactly what type of 
computation will be performed next. This behavior is an example of the 
automata system. Another type of the automata, that received a lot of attention 
during the last years, is CA. From one side it is a collection of colorful cells 
located in a grid which show us pretty pictures, but from another side this is an 
excellent tool which can be related to exciting new ideas and can solve many 
problems. By building appropriate rules for the cellular system we are able to 
simulate many kinds of complex behavior from any of the scientific and 
engineering fields. CA represents a discrete dynamical system with a long and 
illustrious history of study.  
First work in this field was done by the John von Neumann in 1951 [von 
Neumann, 1951], who was interested in the problem of machines (or automata) 
which are able to produce copies of themselves. He started considering how 
physical automata should be constructed to be able to produce the copies of 
themselves. The details of such construction were very complicated, and so 
following discussions with Stanislaw Ulam, von Neumann began to study a 
logical model of self-reproducing automata. His approach was a design for a 
Turing Machine implementation as a concept of CA using 29 states per cell and 
5 cells (often referred to now as von Neumann, see Figure 3.3) neighbourhood. 
His work was edited and published by his colleague Arthur Burks [von 
Neumann, 1966]. This simple discovery proves that CAs are able to simulate 
many phenomena. In the early 1970’s two dimensional CA named Game of Life 
was also able to perform any computation [Wainwright, 1974]. This algorithm, 
invented by John Conway became widely known. It actually employs very 
simple rules. It was proven that it can be also used to emulate a universal Turing 
Machine what was achieved by identifying propagating structures or 
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configurations of cell states. The discovery that a CA with only 2 states and 8 
transition rules could perform any computation was truly remarkable. 
During the early 1980’s Stephen Wolfram began a systematic investigation into 
these simplest CA approaches, one-dimensional CA with 3 neighbourhood size 
and two possible states. The lattice in this 1D version represents a line where the 
cells are updated based on their own state and their direct neighbors to the left 
and right side. As the neighbourhood size is 3, and the number of states is 2, 
there are 82 256= such CAs possibilities.  In 1983 Stefan Wolfran published the 
first in a series of papers dating from the 1980’s [Wolfram, 2002], systematically 
investigating very basic classes of CA which he named ‘elementary CA’. He 
described several other simple computational models which can be divided into 
four classes depending on their behavior. Wolfram's classification was the first 
attempt to classify the rules themselves. In order of complexity these classes are: 

• Class 1 - limit points.  
• Class 2 - limit cycle.  
• Class 3 - chaotic - "strange" attractor.  
• Class 4 - more complex behaviour, but capable of universal computation.  

Class 1 
CAs of Class 1 evolve to a uniform configuration of cell states, from almost any 
initial configuration. This state can be thought of in dynamical systems terms as 
a ‘point attractor’, or ‘limit point’. As one would suspect, the rules for Class 1 
CAs map from most or all possible neighbourhood configurations to the same 
new state. Initial lattice configurations do exist for some Class 1 CAs that lead to 
non-trivial cycles, but these are very rare. 
 
Class 2 
CAs of Class 2 evolve to produce simple stable or periodic configurations on the 
lattice, according to the initial lattice configuration. Changes of cell state in the 
initial configuration will only affect final cell states that are nearby (in 
comparison to the neighbourhood size). Class 2 CAs can be thought of as 
‘filters’ acting on the initial lattice configuration. The evolution of class 2 CAs to 
periodic configurations can be thought of as analogous to ‘limit cycles’ in 
dynamical systems terms. 
 
Class 3 
CAs of Class 3 evolve to a periodic, or chaotic, configurations from almost all 
initial lattice configurations. Over sufficient time, from any of initial states the 
statistical properties of the resulting configuration, such as proportion of non-
zero cells, converge to some value. Small changes in initial lattice configuration 
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lead to larger and larger changes in resulting configuration as time progresses, as 
is the case for chaotic dynamical systems. 
 
Class 4 
CAs of Class 4 evolve into propagating structures. In some sense Class 4 is 
‘between’ the purely chaotic behavior of Class 3, and the static behavior of Class 
2. Some authors [Waldrop, 1993] have made strong but vague arguments that 
complex systems are those ‘posed at the edge of order and chaos’. However 
there may be something in this view as, more concretely, some CAs in Class 4 
have been demonstrated to have a very special property, described in the next 
paragraph. 
 
It can be assumed that the CA method represents a new approach of modelling. 
The theory of CA is very rich, with simple rules and structures being capable of 
producing a great variety of unexpected behaviour. During the last years, this 
method has been studied in many scientific fields as in the computability theory, 
mathematics, theoretical biology, psychology and metallurgy.  
It must be emphasized that the subject of this dissertation is the application of 
the CA method to solve the mesoscopic evolution equations to be able to model 
the following transitions: ECT/CET and the dendritic formations during the 
growth stage. It is comprehensively described in the forthcoming chapters. 
 

3.2 Definition of CA Method 

This section presents the basic features of the CA method. What follows are the 
basic elements of the CA method: 
 
• n-D (n=1, 2, 3) space is divided into a discrete number of n-dimensional 

elements which are named cells (polygons and polyhedrons). 

• a state is assigned to each CA cell, 

• the neighbourhood configuration is defined deterministic or stochastic for each 
CA cell, 

• transition rules are defined which create a new state of the cell as a function of 
the states(s) of the cell(s) consisting of the previously defined local 
neighbourhood of the cell. 

 
Let’s take a look at these general descriptions in more details. In the vast 
majority of all previous science and engineering applications of CA, a regular 
2D rectangular cell structure (Figure 3.1) has been often used in the calculations 
with respect to the represented definition. These cells are defined by the finite 
number of states (different phase fraction, temperature, velocity). CA 
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yi n=

,i jc

discretisation is based on polygons and transition rules between polygons. A 
neighbourhood relationship is defined on this lattice which is divided into the 
square (or hexagonal) CA cells. Each cell can have its own neighbourhood 
configuration which is chosen during the evaluation. The state of a cell at time t  
is a function of the states of a finite number of cells (called its neighbourhood) at 
time 0t . At each time step, every cell updates its state using a transition rule 

based on the values in its neighbourhood. The initial state of the CA is defined, 
but then repeated synchronous application of the deterministic or stochastic 
transition rules (functions) to all cells in the lattice will lead to the evolution of 
the CA system while the new conditions are created. Many variations of the 
system exist. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Conventional CA model discretization. 
 
The above presented basic features of the CA system are commonly 
implemented in the literature.  In the present work an alternative solution to a 
common CA method is introduced. First the partitioning is not required to be a 
regular grid, in other words not all cells need to have the same shape or 
dimensions. The number of possible states does have to be finite. Finally, the 
neighbourhood definition could vary from cell to cell and from time to time. The 
state change rule does not necessarily need to be deterministic, what allows for 
the probabilistic CA application. These observations bring us to the development 
of the new non-uniform CA method.  In the present work this new concept is 
applied. The point (instead of cell) automata discretisation is presented which is 
now based on points and transition rules between the points, where instead of 
periodic distribution of the cells, the points are distributed randomly in the 
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domain (Figure 3.2). Basic idea of PA discretisation is to distribute nodes 
randomly which leads to different distances between the nodes and gives 
different neighbourhood configurations for each of them. The neighbourhood is 
now different for each point, therefore it must be stored for each node separately.  
While the new definition of neighbourhood is explained, irregular (also named 
random) PA cellular transitions rules can be used in exactly the same way as for 
the regular approach. In this sense the irregular CA model is not much different 
from the conventional one, despite bringing many advantages. 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 3.2: Random PA model discretization. 
 
What follows are the basic elements of this novel PA method: 
 
• the starting point is to distribute the PA nodes (not cells) randomly on the n-D 
computational domain, 

• a state is assigned to each PA node, 

• the neighbourhood configuration is defined for each node separately with 
respect to the selected neighbourhood points, 

• the neighbourhood of the node includes all random nodes whose positions are 
located in the domain of a circle in 2D (Figure 3.8) or sphere in 3D (Figure 3.10) 
with the radius HR . The number of the neighbours can vary locally. The 

transition rules are defined and they create a new state of the point as a function 
of the states(s) of the points(s) consisting the local neighbourhood configuration. 
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,i jc  

,i jc  

3.3 Typical CA Neighbourhood and PA Neighbourhood 
Definitions 

The basic element of the CA method is the cell. It is a memory element which 
stores states and supervises the process. These cells are arranged in a static state. 
To introduce dynamics into the system some rules need to be defined. The 'task' 
of these rules is to define the state of the cell for the next time as a function of  
dependence an the neighbouring cells. A basic definition of neighbourhood 
comes exactly from the classical CA approach which operates on the grid 
divided into the square cells. In the two dimensional square lattice there are 
many neighbourhood configurations possible. The most common definitions 
used for the conventional grid are depicted in Figures 3.3-3.6. For the random 
node arrangement we propose a definition of PA in which each point has a 
different neighbourhood configuration in the shape of a circle, during a 
computation (Figure 3.8). The cells are defined ,i jc  with i  the row number 

and j  the column number of the cell. The definition of the neighbourhood 
configuration is presented through the location of all neighbouring cells 
(depicted in the oval brackets under each configuration).  
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3: The von Neumann neighbourhood configuration with 4 neighboring cells. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4: The Moore neighbourhood configuration with 8 neighboring cells. 
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Figure 3.5: The modified Moore neighbourhood configuration with 6 neighboring cells  
(variant 1). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: The modified Moore neighbourhood configuration with 6 neighboring cells  
(variant 2). 
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Figure 3.7: A newly introduced neighbourhood configurations to model the grain growth 
evolution. 
 

}{, 1, , 1 1, , 1, , ,i j i j i j i j i jc c c c c+ + − −=

}{, , 1 1,,i j i j i jc c c+ −=

}{, 1, , 1,i j i j i jc c c− −=

}{, , 1 1,,i j i j i jc c c− +=

}{, 1, , 1,i j i j i jc c c+ +=
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Figure 3.8: Example of 2D PA neighbourhood configuration. 
 
 
 
 
 
 
 
 
 
 
Figure 3.9: Example of 3D CA neighbourhood configurations. Left: Moore, right: von 
Neumann.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.10: Example of 3D PA neighbourhood configuration. 
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4 Point Automata Advantages 

Irregular CA grid structure approach (also named PA method) was first proposed 
by Janssens [Janssens, 2003] to model the recrystallization process. It is based 
on the randomly distributed nodes instead of regular CA cells. A detailed 
definition of this approach has been already presented in the previous section. In 
this chapter we focus our attention on the reasons for numerical implementation 
of irregular CA for modelling: recrystallization, ECT/CET and dendritic growth.  
Random grid CA model for the simulation of the evolution of a materials 
microstructure during recrystallization, following the approach proposed by 
Janssens [Janssens, 2000], is introduced. He focused his attention to the typical 
problems that might occur when modelling grain boundary displacement. In his 
publications there are a few numerical results shown. Extended information is 
given with respect to the definition of the irregular CA.  
For modelling ECT/CET transitions and dendritic growth this novel approach 
represents an original formulation and solution described in Chapters 5 and 6. 
In Section 4.2 a simple algorithm for modelling recrystallization process is 
shown. The basic idea is first presented for the classical CA method and then for 
the novel PA method following the rules proposed by Janssens. The principal 
differences in implementations of both methods are explained.  
 

4.1 CA Problems  

CAs are attractive as a modelling framework that may provide a better 
understanding of meso-macro relations. However, many scientists reject the CA 
approach because the framework is far too simple or - far too idealized, to be an 
appropriate tool for modelling different involved processes. They argue 
[Yazdipour et al., 2007; Yazdipour et al., 2008] that the classical CA 
assumptions like discrete time, regular grid structures, finite sets of states etc. 
may make the approach so simplistic that it is questionable whether its results 
can be generalized beyond the particular framework. In CA definitions the 
discretization of the space is an essential aspect and influences the final results. 
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The science started to search for a new computational approach to overcome 
these problems. The novel random grid computing appears to be a promising 
trend for solving problems that can not be achieved by applying the classical CA 
definitions. The first publications on irregular CA are by Thieme-Martin 
[Thieme-Martin, 1999] in technical sciences and by Flache [Flache and 
Hegselmann, 2001] in general. Other research groups have published similar 
approaches for modelling recrystallization where the new definition of 
neighbourhood is used [Yazdipour et al., 2008]. Let us first discuss the 
objectives with which Janssens introduced the irregular CA’s. 
Recrystallization. The main reason why the PA method was applied for 
modelling the recrystallization is the heterogeneous nature of this process. In 
many cases local variations have a substantial influence on the recrystallization 
process and at the same time the heterogeneity of these local variations in the 
microstructure makes it difficult to include them in a statical model. Technique 
such as CA solves this problem by spatially resolving the microstructure. The 
main limitations are as follows. Till today the applications of CA have been 
limited mainly to the qualitative modelling. It is not entirely clear how the 
computational kinetics of the CA model relates the real world kinetics of 
recrystallization and grain growth. The conventional CA represent the 
equidistant cell distribution what is the main reason why the link to the space can 
not be made, obviously because the distances between the cells are not equal in 
all spatial directions due to their shape. Consequently, given the same conditions 
for driving force and mobility, the velocity for the grain boundary is 
directionally dependent on its relative orientation to the grid. It is also known 
that the shape of the neighbourhood, which is in the CA approach closely related 
to the grid, has a major influence on e.g. the way the grain boundaries move in 
the simulation of recrystallization. It shows that the automata grid directly 
influences the outcomes of the computation. The main motivation for a new 
approach was the possibility to break the coupling between the orientation of the 
periodic discretization grid and the orientation of the grain boundary. A solution 
to these problems is the use of the PA method. An additional advantage of the 
random grid is that, when the material is homogeneously deformed, it is still a 
random grid [Yazdipour et al., 2007]. The deformability of the grid is a 
necessary requirement to simulate the same as observed evolution of the 
microstructure. 
ECT/CET transitions. During the CC process of steel the three characteristic 
zones [Lorbiecka et al., 2009] can be distinguished: chill, columnar and 
equiaxed. The biggest problem which occurs during modelling of this 
phenomenon is the proper prediction of dimension of these three regions with 
respect to the industrial measurements. By using different nucleation models 
only, we are not able to influence directly the grain structure. In additional to the 
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nucleation models many other parameters need to be fit to the experimental 
results what usually takes a lot of efforts [Lorbiecka and Šarler, 2009]. 
By the novel PA method we can easily influence on the grain size by changing 
the density of nucleuses in the domain. Novel PA method offers an attractive 
alternative to the classical CA method because of the flexibility of node density 
and neighbourhood definition. The different density of nucleuses across the 
domain of interest allows us to model the appropriate dimensions of the central 
region which is usually difficult to predict. Proposed new method gives a more 
proper modelling of chill, columnar and equiaxed zones, respectively. 
In Chapter 5 the solution of the governing stochastic equations is first solved by 
the conventional CA approach and then by the novel PA approaches. The 
procedure responsible for generation of random node arrangement is explained 
as well (see Section 5.6.2.1). 
Dendritic growth . During the dendritic growth the crystallographic axes of 
grains have different orientations. It is commonly known that this process is 
difficult to simulate by the classical CA method. Mainly, because the 
configuration of the CA network has a direct influence on the simulated 
structures. The growth direction of the grain corresponds to the direction of the 
CA network not to the original crystallographic orientations of the nucleuses. 
This happens because in the CA growth the principal cell only affects nearest 
neighbors. This is not the case in the PA method. The first problem with growth 
on the Cartesian grid is that, despite the specified orientation, it can grow only 
along the grid axes. For the given rules of the of classical CA model, no other 
alternative exist. Even if any other orientation will be chosen, the dendrite will 
always switch to 0�  or 45�  with the evolution of the process. 
In order to solve this problem the novel PA method was for the first time applied 
for the dendritic growth calculations which are based on the CA rules already 
described in Chapter 3. A novel method is able to resolve the preferred 
crystallographic orientation problem. It is shown that when using the random 
node arrangement the dendrites are able to grow in any direction. In Chapter 6 
the solution at the governing stochastic equations is first presented for the CA 
method and then for the novel PA method. The procedure for generation of 
random node arrangement is explained as well (see Section 6.5.3). 
 

4.2 An Overview of Modelling the Recrystallization by 
the CA and PA Methods 

In this Section we present a general concept for modelling of recrystallization by 
the classical CA method. A detailed review of this process is beyond the scope 
of this dissertation. We discuss only the basic assumptions and method layout. 
The attention is focused on the important differences of both methods. 
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Recrystallization is a process through which are the deformed grains replaced by 
a new set of undeformed grains that nucleate and grow until the original grains 
have been entirely consumed. Recrystallization is usually accompanied by a 
reduction in the strength and hardness of a material and a simultaneous increase 
in the ductility. A precise definition of the process is difficult as the process is 
strongly related to several other processes, most notably recovery and grain 
growth. In some cases it is difficult to precisely define the point at which one 
process begins and another ends [Humphreys and Hatherly, 1996].  
 

4.3 CA Method for Recrystallization 

4.3.1 Modelling of the Nucleation Rate 

It  is well known that recrystallization occurs when the strain or the dislocation 
density in a deformed matrix reaches a critical level, which depends on the 
processing parameters such as temperature and strain rate. Two important stages 
that determine the microstucture of recrystallization are nucleation and grain 
growth. Both aspects are closely related to the dislocation density represented as 
the stored energy variation in the deformed grains. 
Several models for the rate of nucleation have been proposed. For detailed 
explanation see Ding and Guo [Ding and Guo, 2001]. In order to simplify the 
procedures two assumptions are usually proposed: 
1. Initial dislocation density is uniform and identical for all grains. When it 

reaches a critical value the nuclei for recrystallization will form on the grain 
boundary. 

2. Nucleation only occurs on the grain boundaries. 
 

4.3.1.1 Initial Microstructure 

In the CA method the calculated domain is divided into the regular square cells.  
During the recrystallization two different types of a CA cell are possible: the 
entire cell which represents a portion of the grain and it is associated with the 
fixed crystallographic orientation and the grain boundary cell which has a 
fraction of two grains with their respective orientations. The area of a grain is 
defined proportional to the number of the CA cells which fall inside the grain 
(see Figure 4.1). 
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Figure 4.1: Example of a 2D distribution of grains and CA cells. Different colors represent 
different grains with different orientations, respectively. 
 
 

4.3.2 Modelling of the Grain Growth Kinetics 

4.3.2.1 Neighbourhood Configuration 

In the 2D CA model, a von Neumann  neighbourhood configuration  is usually 
selected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: A definition of the neighbourhood configuration for the CA method. 
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4.3.2.2 Grain Boundary Migration 

In order to simulate the grain boundary movements the CA cells located at the 
grain boundary are identified first.  The driving force for growth comes from the 
difference between the dislocation densities of the grain and the matrix. 
Generally, the growth velocity V can be represented as a function of the grain 
boundary mobility bm  and the driving force dp   

 .b dV m p=  (4.1) 

In the context of modelling grain growth by the CA approach it is necessary to 
consider three different grain growth models [Janssens et al., 2004] in general 
• Curvature driven grain growth where the energy stored in the grain boundaries 
drives their motion. 
• Non-curvature driven grain growth in which energy is presented in some 
another form in the microstructure and the energy of the grain boundaries is 
negligible. 
• Mixed mode where the two modes appear simultaneously. 
 
Depending on the grain growth mode a different modification of the CA can be 
used to construct the algorithm based on the equation (4.1).  
For each CA cell located at the grain boundary the displacement is calculated in 
each time step by the equation [Raghavan and Sahay, 2007]   

 .b b dx m p t∆ = ∆  (4.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.3: Calculation of the grain boundary displacement in the boundary CA cell. 
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The grain boundary can move forward or backward depending on the sign of 

bx∆  in equation 4.2 (see Figure 4.3). The area taken by the boundary in a given 

cell is obtained from bx∆  and the angle of normal at the boundary. The 

transformation probability for a cell that lies within the growth region is defined 
with respect to the chosen neighbourhood configuration. When the number of 
grains decreases with increasing growth time, the grains with the same 
orientations will frequently connect to each other into a larger grain. A cell is not 
considered to be recrystallized until completely consumed by a moving 
boundary. It will change state (orientation and dislocation density) when it is 
entirely recrystallized.  
 

4.3.3 Transition Rules 

The presented algorithm for recrystallization is composed of the lattice of the 
CA cells that are updated simultaneously according to transition rules. The 
evolution of a CA cell is controlled by the cells that form the neighbourhood or 
surrounding of this cell.  
Modelling recrystallization can be decomposed into two steps. In the first one, 
the initial microstructure needs to generated through growth of randomly 
generated nuclei. The following simple transition rule is applied. A cell under 
consideration recrystallizes with 50 % probability if at least one of the 
neighbours from the chosen neighbourhood is recrystallized. Therefore, growing 
grains reach approximately globular shape [Kroc, 2002]. 
In the second step, the simulation is done by the sequential realization of the 
following three steps representing microstructural evolution of each cell during 
each time step:  
• evolution of the dislocation density,  
• recrystallization realized by the growth of grains when driving force exceeds a 

critical value, and  
• the nucleation of embryos of new grains.  
 
The transition rules control the cell state transformations between non-
recrystallized and recrystallized. Additionally, there are several internal variables 
describing each cell. These variables are part of the transition rules describing 
mechanisms leading to the recrystallization. 
 
• orientation which is identical for the whole cells located in each individual 

grain and determines the grain boundary energy, 
• dislocation density that represents the stored energy due to the previous 

deformation, 
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• grain boundary energy that would be zero for each two cells not located beside 
the grain boundaries in the same grain, 

• the color variable represents different grains. 
 
A recrystallization event will occur at a cell of interest under consideration of 
50% probability when the following conditions are fulfilled simultaneously: the 
cell of interest is situated at a grain boundary, the difference in dislocation 
density between the cell of interest and neighbouring cell belonging to different 
grain is greater than a critical value, the potential new configuration of the grain 
boundary is not an excluded one, a grain having lower dislocation density grows 
into a grain having a higher dislocation density. 
The mobility of a solid-state grain or phase boundary is determined by the 
atomistic mechanisms by which the boundary moves. Although uncertainty 
remains about the exact nature of these mechanisms, it is generally accepted that 
mobility strongly depends on the crystallographic misorientation between 
neighbouring grains. Misorientation depends on five independent variables, three 
to represent the orientation difference between the crystal lattices and two for the 
grain boundary plane, which represents a substantial parameter space 
misorientation constant [Janssens et al., 2006]. Mobile boundaries continue 
moving towards the point that they meet each other and a fully impinged 
microstructure is obtained. 
 
The above described basic transition rules reflect only the most simple 
understanding of recrystallization process. 
 

4.4 PA Method for Recrystallization 

A novel approach of random CA is not much different from the conventional 
CA. The two major changes implemented in the recrystallization algorithm 
connected with the initial distribution of grains and definition of the 
neighbourhood configuration is required. They are discussed below. 
 

4.4.1 Initial Microstructure 

For the PA method the initial microstructure has been generated by using the 
Voronoi tessellation technique [Watson, 1981], which is widely employed for 
constructing initial microstructures. The 2D space is randomly nucleated with 
points conforming to a specific crystal orientation. The space between any two 
points is bisected with a line, which is equidistant from both the points. Such 
lines are constructed between all the pairs of points, which eventually form the 
grain boundaries and the space divided by these lines forms the grains having the 
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orientation of the corresponding nucleus. In Figure 4.4 grains with different 
orientation generated by using the Voronoi tessellation have been shown. 
The irregular node arrangements with variation in the structure and the size of 
neighbourhoods between locations in the grid are the input micro-structure to the 
model. It can be seen that each point represents the cell. Because only points are 
used in calculations, the shapes of the grain sizes can easily be varied during the 
time. The recrystallization process starts with constructed initial microstructure, 
which contains a randomly distributed number of nodes, which are then assumed 
to grow according to the rules already described below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4: Example of irregular CA distribution of cells based on the Voronoi tessellation  
computed from the random distribution of points. Different colours represent different grains 
with different orientations.  
 

4.4.2 Neighbourhood Configuration 

To obtain even more realistic representation of the grain shape, the random CA 
neighbourhood was applied to model recrystallization process. As mentioned in 
the CA method, cells and neighbors are usually equi-distantly distributed over 
the space while in the random CA, the neighbourhood area depends on the 
neighbourhood radius. A neighbourhood of a random node includes all random 
nodes whose positions are contained within the circle with assumed radius (see 
Figure 3.8). As only random node coordinates are used in the calculations, 
shapes and size can easily be varied, even locally.  
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4.4.3 Grain Transition Rules and Grain Boundary Movements 

With the new definitions of the neighbourhood configuration and initial grain 
distribution the irregular CA method can be used exactly in the same way as the 
conventional CA method. The initial cell structure needs to be created following 
the Voronoi scheme from the predefined points. The grain boundary movements 
can be modelled following the same transition rules which are applied for the 
classical CA. The random nodes located within the new neighbourhood in the 
shape of circle need to be determined (see Figure 4.4). The transition rules and 
the general algorithm, already described in Section 4.3.3 for the classical CA 
method, can be used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5: A definition of the neighbourhood configuration for the irregular CA method. 
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5 Mesoscopic Model of ECT/CET  

The numerical model described in the present chapter consists of a stochastic 
mesoscopic model coupled with deterministic macroscopic model to predict the 
ECT/CET. The two main parts of this model are described in the next sections.  
The ECT/CET is frequently observed in the grain structures of cast metals. The 
phenomena have been investigated both theoretically and experimentally in the 
past decades [M’Hamdi et.al., 1998; Flood and Hunt, 1987; Flood and Hunt, 
1987; Gandin, 2000; Gandin, 2000; Rappaz and Gandin, 1993]. It is assumed 
that the transition occurs by different mechanisms when equiaxed grains block 
the growth of columnar grains. Casting of metallic alloys may exhibit either 
wholly columnar or entirely equiaxed grain structures depending on the alloy 
composition and the solidification conditions [Wang and Beckermann, 1994].  
The prediction of CET [Rappaz and Thevoz, 1987; Kurz et al., 2001] is of great 
interest for the evolution and design of the mechanical properties of solidified 
products. First analytical model of CET were proposed by Hunt [Hunt,1984] for 
unidirectional solidification under steady-state conditions. In this model 
equiaxed grains nucleate at the temperature less then or equal to the liquidus 
temperature and grow into the undercooled zone ahead of the growing columnar 
front. The front is blocked and CET transition takes place. Mathematical models 
following Hunt can be identified as deterministic either stochastic, when some 
random parameters are used. 
Wang and Beckerman [Wang and Beckerman, 1994] used the concept of the 
dendritic envelope to represents both the equiaxed and the columnar grains 
developing a numerical model to predict the CET in unidirectional transient 
solidification. M’Hamdi [M’Hamdi et.al., 1998; M’Hamdi et.al.,1999] modelled 
the heat transfer and columnar growth in the CC of multicomponent steel billet. 
Proposed algorithm was able to calculate the position of columnar front at steady 
state, which was described by the continuous function of the radial distance of 
the billet. The calculated columnar front shape was the result of strand 
movement and the growth kinetics of the columnar dendrites. This approach was 
combined with an equiaxed solidification model to predict the ECT/CET in the 
CC processes.   
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Stochastic models of the ECT/CET prediction [Spittle and Brown, 1989; Zhu 
and Smith, 1992] track the growth of each columnar and equiaxed grain, not 
only the columnar front alone. They predict the detailed grain structure in two 
and three dimensional solidification. The highly refined mesh is necessary to 
resolve all grains, usually demanding larger computational resource. Following 
the developments of stochastic models for solidification, Gandin and Rappaz 
[Gandin and Rappaz, 1994] developed CA-FEM which is a combination of the 
CA method to predict the grain structures and FEM to calculate the temperature 
field. Their CA-FEM model was extended to three dimensional problems in 
[Gandin et al., 1999].  
Modified CA models that resolve not only the envelope of the grain, as it is in 
the original CA models, but also the dendritic arms were developed, by 
increasing the number of the CA sites and the computational resources. 
Recently, Dong and Lee [Dong and Lee, 2005] proposed such modified CA 
models of ECT/CET in unidirectional solidification, showing that the equiaxed 
grains nucleated not ahead but also between the columnar grains.  
One of the principal goals of this dissertation represents the development of a 
new simulation tool for modelling the grain structure in solidification process. 
The numerical model is designed to outline only the dimension of chill, 
columnar and equiaxed zones (see Figure 5.1), rather than the detailed structure 
of each grain separately. The accurate size of the grains is not taken into the 
consideration because of the chosen calculated domain discretisation, which is 
too small to predict it in such details.  
In this chapter we present the numerical stochastic model which is designed to 
be able to simulate the positions of the ECT and CET in CC of steel. The 
governing equations of the macroscopic model are derived by the LRBFCM 
method and the numerical solution for mesoscopic model by the CA and PA 
methods is presented. 

5.1 Characteristic Zones of CC 

In CC three characteristic zones can be distinguished in terms of the size, shape 
and orientation of the grains, corresponding to the chill layer, columnar growth 
and equiaxed region, as demonstrated in Figure 5.1. They reveal to the following 
distinct regions (from the centre to the surface): 
 
• A central region of fine randomly oriented equiaxed grains. 
• An outer region of columnar grains, elongated normal to the ingot surface. 
• A third zone corresponding to the very fine chill crystals at the surface. 

 
In order to understand the formation of the structures it is necessary to consider 
various thermal, hydrodynamic and physical-chemical phenomena. The process 
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starts at mould wall where the first solid nuclei form. The sudden cooling 
produces a very thin layer of extremely fine grains at the surface, no more than a 
few millimetres thick, called the chill zone. The columnar zone in the middle is 
composed of the nuclei that nucleate in the chill layer and which grow with 
respect to the solidification front. Equiaxed crystals in the centre form in the 
liquid with random orientations and no preferred macroscopic growth direction. 
This implies that the liquid becomes undercooled, due to the heat conduction 
through the columnar layer. Growth of the equiaxed grains eventually stop the 
extension of the columnar zone. The origin of the nuclei that give rise to the 
equiaxed grains is still a subject of debate. Many authors believe that they can be 
formed  spontaneously in the liquid or by the fragmentation of the dendrites in 
the columnar zone [Durand-Charre, 2004].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1: Grain structure occurring during CC of steel (Štore Steel company). Billet of 
dimension 180 mm, 25MoCr4, 1545castT = K and 1.12castV = m/min. 

 
In case the fragmentation occurs the broken ends of the columnar dendrites can 
be entrained in the liquid by convection currents and can remain relatively stable 
if the temperature is not too high. The fragments may remelt in the solute 
enriched liquid. The respective proportions of the columnar and equiaxed zones 
depend on numerous factors. The most important is the temperature range 
between the liquidus and solidus which is determined by the alloy composition. 
In the industry an extended equiaxed zone in the centre is preferable. This 
simplifies further rolling and heat treatment operastions. 
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The developed numerical model is able to predict qualitatively and quantatively 
the dimension of the three zones with respect to the observed Bauman prints 
(Figure 5.1). The CA mesostructure model (Section 5.5) is combined with the 
macroscopic heat transfer calculations described in Section 5.3 and 5.4. 
 

5.2 CC Process 

CC process is used to solidify more than million tons of steel produced in the 
world. This process involves many complex interacting phenomena while 
molten steel is solidified into a semi-finished billets, blooms, or slabs for 
subsequent rolling in finishing mills. The scheme of the process is depicted in 
Figure 5.2.  
The ladle with molten steel is placed in a holder. From the ladle, the steel is 
tapped through a nozzle into the tundish. The tundish is an intermediate vessel 
designed to maintain a constant melt level and allows for flying ladle changes 
during the course of casting in a continuous process. CC takes place through a 
water-cooled mould that is open at the top and bottom. A casting powder is used, 
so that the steel will slide smoothly through the mould. Intensive water cooling 
of the mould side plates immediately gives the hot melt a hard shell of solidified 
steel. The cooled steel shrinks in volume as it is withdrawn from the underside 
of the mould in a long strand. The strand is continuously cooled on its arc-
shaped path down to the cutting station. At this stage, the steel is still hot and 
glowing, but is sufficiently solid to enable the strand to be cut with movable 
oxygen lances into pieces of several meters long. The final product of the CC 
process of the billet is depicted in Figure 5.1. The numerical model developed in 
the dissertation, was developed in order to investigate the grain structure for 
different dimensions of billet, different material properties and different casting 
parameters. In this dissertation all simulations were performed for the square 
billet of dimension 140 mm (Chapter 7) and 180 mm (Appendix A) and the 
spring steel grades 51CrMoV4 (Chapter 7) and 52CrMoV4 and 25MoCr4 
(Appendix A) typical for the Štore Steel billet cast. The main purpose of this 
model is to be able to simulate the mesostructure formation which occurs during 
the CC process. Comparisons between calculated positions of ECT and CET and 
measured in the industry are analyzed. We verified the numerical model by 
comparison of the measured transitions with the dimensions of simulated three 
zones: chill, columnar and equiaxed. The temperature profile can be obtained for 
any alloy and for different casting parameters (Figure 5.6) through the macro 
heat transfer model. These macro temperature fields represent the input data to 
the mesoscopic model. The detailed description of the macro heat transfer model 
[Vertnik and Šarler, 2002] is described in Sections 5.3 and 5.4 and Appendix 
A2. 
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Figure 5.2: Scheme of the CC of steel [Vertnik, 2010]. 
 
ECT/CET model is considered in this dissertation. It is physically described by 
the macroscopic heat transfer model and the mesoscopic model. The temperature 
field is solved by the LRBFCM and the mesoscopic equations by the stochastic 
CA and PA methods. 
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Figure 5.3: CC of steel: the ladle (Štore Steel company). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4: CC of steel: the tundish (Štore Steel company). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5: CC of steel: the billet (Štore Steel company). 
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5.3 Macroscopic Model 

The macroscopic model of the Štore Steel company is designed to be able to 
calculate the steady temperature distribution in the continuously cast billet as a 
function of the following process parameters: billet dimension, steel grade, 
casting temperature, casting velocity, primary, and two secondary cooling 
systems flows, pressures, temperatures, type and quantity of the casting powder, 
and the (non)application of the radiation shield and electromagnetic stirring. 
The Bennon-Incropera [Bennon and Incropera, 1987] mixture continuum 
formulation is used for the physical model, solved by the recently developed 
meshless LRBFCM [Šarler and Vertnik, 2006]. In this novel numerical method, 
the domain and boundary of interest are divided into overlapping influence 
areas. On each of them, the fields are represented by the multiquadrics radial 
basis function collocation on a related sub-set of nodes. Time-stepping is 
performed in an explicit way. The governing equations are solved in their strong 
form, i.e. no integrations are performed. The polygonization is not present and 
the method is practically independent on the problem dimension. The other 
possibility represents the local approximation by the moving least squares 
[Šarler et al., 2005] instead of interpolation. The characteristic of the model are 
represented as follows: 

5.3.1 Governing Equations of Macroscopic Model 

Consider a connected fixed domain Ω  with boundary ∂Ω  occupied by a liquid-
solid phase change material described with the temperature dependent density ρ  

of the phase ℘, temperature dependent specific heat at constant pressure pc , 

thermal conductivity λ , and the latent heat of the solid-liquid phase change L . 
The mixture continuum formulation [Bennon and Incropera, 1987] of the 
enthalpy conservation for the assumed system is 

 
( ) ( )

( ) ( )V V
s s s s l l l l

h vh
t

T vh f v h f v h

∂ + ∇ ⋅ =
∂
∇ ⋅ ∇ + ∇ ⋅ − −

�

� � �

ρ ρ

λ ρ ρ ρ
  (5.1) 

where ρ , h , L , λ , pc  represent the material density, specific enthalpy, specific 

latent of the solid-liquid phase change, thermal conductivity and specific heat, 
respectively.   
 



Mesoscopic Model of ECT/CET 

 

54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.6: Macro heat transfer simulator [Vertnik and Šarler, 2002; Šarler et al., 2005]. 
 
The second term on the right-hand side is a correction term, which needs to 
accommodate the mixture continuum formulation of the convective term. In 
continuation we neglect this term. In equation (5.1) the mixture density and the 
thermal conductivity are defined as  

 ,V V
s s l lf f= +ρ ρ ρ  (5.2) 

 ,V V
s s l lf f= +λ λ λ  (5.3) 
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where Vf℘ ,  represents the volume fraction of the phase ℘, The liquid volume 

fraction V
lf  might vary from 0 to 1 between solidus ST  and liquidus temperature 

LT . Mixture velocity is defined as 

 ( ) / ,V V
s s s l l lv f v f v= +� � �ρ ρ ρ  (5.4) 

and mixture enthalpy is defined as 

 .V V
s s l lh f L f L= +  (5.5) 

The constitutive temperature-enthalpy relationships are 

 ,
ref

T

s sT
h c dT= ∫  (5.6) 

 ( ) ( ) ,
S

T

l sT
h h T c c dT L= + − +∫  (5.7) 

with refT  standing for the reference temperature. The thermal conductivity and 

the specific heat of the phases can arbitrarily depend on temperature. 
 

5.3.2 Spatial Discretization 

The temperature field of a point in the billet is prescribed by the following three-
dimensional vector in the Cartesian coordinate system: 

 ,x y zx y z= + +p i i i  (5.8) 

where x , y , z  are the coordinates and xi , yi , zi  are base vectors. The z  

coordinate measures the length of the inner radius of the casting machine. This 
Cartesian coordinate system represents the flat geometry, which is the 
geometrical approximation of the real curved casting process (Figure 5.7). The 
origin of the z  coordinate coincides with the top side of the mould, and the base 
vector zi  coincides with the casting direction. The x  coordinate measures the 

width (west-east direction) of the billet, perpendicular to the casting direction. Its 
origin coincides with the centre of the billet. The y  coordinate measures the 
thickness (south-north direction) of the billet, perpendicular to the casting 
direction. Its origin coincides with the inner (south) side of the billet. According 
to the heat transfer phenomena of the CC of steel, the heat conduction in the 
casting direction might be roughly neglected. The z  coordinate is then 
parabolic, while the x  and y  coordinates are elliptic. The temperature field in 
the billet at a given time is described by the calculation of the cross-section 
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(called infinite slice) temperature field of the billet. In this way the temperature 
field at a given z  coordinate depends only on the slice history and its cooling 
intensity as a function of time. The slices form at the startz  longitudinal 

coordinate of casting and travel in the direction of the zi  base vector with the 

casting speed v . For calculating the cooling intensity of the slice as a function of 
time, we need the connection between the z  coordinate of the casting machine 
and the slice history t , which is in general 

 ( ) ( ), ,

i

t

start

t

z t v t dt z= +∫ ( ) ( ) ,zv t v t= ⋅ i�
 (5.9) 

where it  is the initial time of a slice. In the case when the casting speed and 

other process parameters are steady, we obtain the following simple connection 
between the z  coordinate of the casting machine and the slice history t  

 ( ) .start
i

z z
t z t

v

−= +  (5.10) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.7: Slice traveling schematics of the billet. 
 
In subsequent calculations we use the simple equation (5.10), since we assume 
the steady-state solution of the casting process. The prescribed simplified spatial 
discretization also simplifies the equation (5.1) by removing the convective 
terms. Thus the equation (5.1) transforms into transient equation, defined on x-y 
plane 

 ( ) ( ).h T
t

∂ = ∇ ⋅ ∇
∂

ρ λ  (5.11) 
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This simplified model is consistent with the models, introduced by [Louhenkilpi, 
1995]. 
 

5.3.3 Boundary Conditions 

The heat transport mechanisms in the mould take into account the heat transport 
mechanisms through the casting powder, across the air-gap (if it exists), to the 
mould surface, in the mould, and from the mould inner surface to the mould 
cooling water. The heat transport mechanisms in the secondary cooling zone 
take into account the effects of the casting velocity, strand surface temperature, 
spray nozzle type, spray water flow, temperature and pressure, radiation and 
cooling through the rolls contact. Different types of the rolls are considered 
(driving, passive, centrally cooled, externally cooled, etc.). The mentioned basic 
heat transfer mechanisms are modified with regard to running water and rolls 
stagnant water at relevant positions.  
Represented model is not in focus of this dissertation. Therefore a more 
elaborated step by step description and testing of the used LRBFCM solution 
procedure for temperature field is presented in [Šarler and Vertnik, 2006]. The 
use of the model in simulation system for CC of steel billets is given in [Šarler, 
et al., 2006]. The process parameters were taken directly from the process 
computer, installed on the casting machine. The thermo-physical material 
properties of the spring steel were calculated by the JMatPro software [Saunders 
et al., 2003].  
 

5.4 Coupling of the Mesoscopic and the Macroscopic 
Models 

The movement of the solid-liquid interface is governed by the evolution of the 
temperature field in the computational domain. The ECT/CET is modelled by a 
stochastic method to track the interface motion coupled to the determinate heat 
transfer calculations solved by the LRBFCM [Šarler and Vertnik, 2006]. A 
solution of the mesoscopic model based on the transition rules for the classical 
CA methods and PA method is described first. The flowchart of the calculations 
is given in Figure 5.8. Next the coupling scheme for LRBFCM-CA and 
LRBFCM-PA method is explained. 
The flowchart of the numerical solution for the ECT/CET model is presented: 
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Generation of the macro temperature field
(macro heat transfer calculation)

Transformation of under-cooling temperature from the
nodes to the micro CA cells

equations (5.12) - (5.13)

Nucleation stage
(Gaussian distribution equation (5.14) - (5.13))

Nucleation conditions

Assigning a random number and a random value of angle
for each micro CA cell.

Checking the probability condition
equation (5.21)

Selecting one of the neighbourhood configurations
(Tables 5.1-5.2, Figure 3.3-3.6)

Calculation the distance to the neighbouring cells with respect to the
received configuration and the location

equations (5.22) - (5.25)

Growth velocity calculations
equation (5.19)

Trapped neighbouring CA cells become solid

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8: Flowchart of the ECT/CET model. 
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3l
4l

_1macroT∆ _ 2macroT∆

_ 3macroT∆
_ 4macroT∆

microT∆

5.4.1 LRBFCM-CA and LRBFCM-PA Transfer of Temperature  

The described macroscopic model gives the information on the macroscopic 
temperature fields (Section 5.3). Temperature values are calculated on the macro 
nodes so they need to be interpolated for use in the mesoscopic CA and PA 
model. On the meso level of calculation the temperature of a CA cell (PA node) 
is influenced by its nearest four neighbouring macro calculation nodes (see 
Figure 5.9). Obtained values of temperatures are recalculated into the under-
cooling temperatures by using the following formulamacro L macroT T T∆ = − , where 

macroT  represents the macro node temperature, and then are interpolated for each 

micro CA cell (PA node) over time. In the present work the following simple 
interpolation formula is used to find the value of the temperature for each CA 
cell or PA node 

 
4 4

1 1

( ) / ,micro macro i i
i i

T T w w
= =

∆ = ∆∑ ∑  (5.12) 

 1exp( ),i iw l−=  (5.13) 

where microT∆ , macroT∆ , il  represent the undercooling temperature of the cell (or 

PA node), the undercooling temperature for the macro node from the macro heat 
transfer calculations and the distance to the nearest macro nodes, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9: Scheme of the transfer of temperature from the macroscopic to mezoscopic 
discretisation (circles represent the macro nodes, black square represents the CA cell). 
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Figure 5.10: Left: Relationship between the macro node arrangement and,  right: meso CA 
mesh. Solid circles in the macro node arrangement represent schematics of the corner, surface 
and bulk 5-noded domains of influence of the meshless method. 
 

5.5 Mesoscopic Model 

The following three processes take place on the mesoscopic level of calculation 
• Nucleation process 
• Growth process  
• Impingement: growth continues until the grains occupy the whole preliminary 

liquid region. 
 
These stages have been already discussed in details in Chapter 2. 
 

5.5.1 Nucleation Process 

The Gaussian nucleation model as defined in [Thevoz et al., 1989] and 
elaborated in [Lee and Hong, 1997] and already presented in Section 2.1, was 
applied in the mesoscopic model. If all nuclei of a certain class are active at a 
certain undercooling, it is natural to relate the nucleus density to the 
undercooling. Considering this argument, Thévoz et al. [Thevoz et al., 1989] 
proposed a statistical approach (called Gaussian distribution), which indicates a 
continuous dependency of N  on the temperature T . In our work, this 
heterogeneous continuous nucleation model was adopted in which two different 
Gaussian distributions were considered at the mould surface and in the bulk 
(Figure 5.11), respectively.  

 

0.5 cm 

0.5 cm 
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Figure 5.11: Surface and bulk area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12: Nucleation curves for the surface and bulk area. 
 
 
Nucleation starts at the surface layer and then moves from the mould with 
respect to the undercooling temperature. The position of the new grains is 
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chosen randomly according to the equations (5.14) and (5.15) and is related with 
the value of mean undercooling temperature. It is assumed that the highest 
occupancy of nucleuses is expected in the range of ( 3 Tσ− ∆ ) to ( 3 Tσ+ ∆ ), (Figure 

5.12).  
 

5.5.2 Growth Process 

The KGT [Kurz, Givoanola and Trivedi, 1986] model was used as the model of 
the growth kinetics.  The description and basic elements of the model have been 
already presented in Section 2.2.     
 

5.5.2.1 Numerical Treatment of the KGT Model 

For assumed Pe values, first the equation (2.21) which represents Ivantsov 
function and then equation (2.28) which represents the stability parameter, are 
calculated. Then the coefficients 1ζ  and 2ζ  of the growth velocity are 

calculated, following the equations (2.33) and (2.34), respectively. The velocity 
V and the dendritic tip R , can be obtained 

 1 2/V = −ζ ζ  (5.16) 

 

( ) ( )

1/2

0

2 .
(1 )

1 1 Pe c
l

R
V k c

m G
k Iv D

 
 Γ = − − − − −   

π
ς

 (5.17) 

Finally the undercooling temperatureT∆  is definedw 
 

 
( )

0
0

2
.

1 (1 ) Pe

c
T m c

k Iv R

  Γ∆ = − +  − − 
 (5.18) 

For each node the value of undercooling temperature macroT∆  from the macro 

heat transfer calculation, is known. Undercooling temperaturesT∆  (equation 
(5.18)), according to the above scheme, should be related with the interpolated 
undercooling temperatures microT∆  (equation (5.12)) in order to find the growth 

velocity for each node separately. This scheme would take too much time. To 
reduce the calculation time the following procedure is employed. A range of 
Peclet numbers from minPe  to maxPe need to be chosen to be able to compare the 

recalculated undercooling temperatures with those received from the macro heat 
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transfer calculations. In the present study we assume min maxPe 0.004,Pe 10= =  

with step Pe 0.002∆ = . The values of velocities ( ) ( )1
Pe ,..., Pe

n
V V  (equation 

(5.16)) and the undercooling temperatures ( ) ( )1
Pe ,..., Pe

n
T T∆ ∆  (equation 

(5.18)) are recalculated in advance. The least squares method is used to obtain 
the coefficients1γ , 2γ , 3γ  of the growth velocity equation (5.19). The values of 

three coefficients are determinate through the relation( ) 1T TX X X Y
−

using the 

values of ( )PeT∆ , ( )( )2
PeT∆ , ( )( )3

PeT∆  as matrix X of dimension [3x5000]  

and ( )PeV  as matrix Y of dimension [1x5000]. 

The growth velocity in each CA cell (or PA node) is then calculated thought the 
following formula 

 3 2
1 2 3( ) ( ) ( ) ( ),micro micro micro microV T T T T∆ = ∆ + ∆ + ∆γ γ γ  (5.19) 

where 

 ( )Pe, ,    for    =1,2,3,... .i microV T= ∆γ  (5.20) 

The same solution was proposed by [Yamazaki et al., 2006]. If some of the 
assumed parameters (material properties of the alloy) change, the coefficients in 
the relation (5.19) have to be modified as well.  
 

5.5.3 Impingement Process 

At the beginning all points are liquid. The nucleation process takes place in the 
mushy zone where the first grains nucleate and afterwards the growth stage 
occurs. The process is completed until the whole area is composed of the grains 
(solid). 
 

5.6 Solution of the Mesoscopic Model by the CA 

5.6.1 LRBFCM-CA  

Mesoscopic equations are numerically solved by the CA technique [Rappaz et 
al., 2003]. Conventional CA discretisation is generated first and a set of possible 
neighbourhood configurations is determined (see Table 5.1). Process starts with 
nucleation where the following conditions need to be checked: appropriate 
temperature T∆  in the micro cell and the probability condition (equation (5.21)). 
During each time step all cells are assigned a random number between 
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(0 1rand< < ) and a random computational angle θ  from 45 45θ− < < . The 
transformation from liquid to solid will occur only when rand p<  

 ( ) ( ) 2

max

1
exp / 2 .

2
p T T T

T
 = − ∆ − ∆ ∆
 ∆ σ

σ π
 (5.21) 

Once a cell is nucleated it grows with a preferential direction corresponding to 
its assigned orientation and with respect to the heat flow. Depending on the 
randomly chosen angle θ , the following neighbourhood configurations [Nastac, 
2004] are chosen: Neumann, Moore and modified Moore (Section 5.6.1.1), 
respectively (Figures 3.3-3.6). A new neighbourhood configuration is developed 
in this dissertation. It is shown in Figure 3.7, see Section 5.6.1.1. 
All of new nucleuses which arise from the ‘parent’ grow with different randomly 
chosen configuration which is fixed for them at the time step when they occur. 
For all „neighbours” of the treated nucleus, the value d is checked by using the 
formula 

 ( ) / ,d l t a= θ  (5.22) 

where 

 ( ) ( )
0

,
t

t

l t V T dt= ∆∫  (5.23) 

 2tan 1,a a= +θ θ  (5.24) 

where ot , a , θ  represents the initial time, the size of the cell and the 

crystallographic angle, respectively.  
 
 
 
 
 
 
 
 
 
Figure 5.13: The explanation of growth stage, see also Table 5.1. 
 
The ( )l t is the length of the moving solid-liquid interface trough the time 

0 0,t t t+ ∆ . The trapezoidal rule approximation technique was used to calculate 

the movements of the interface 
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If a neighbour is one of the four nearest east, north, west, south neighbours 
( 0θ °= ) then the equation (5.24) is reduced to a aθ = , but if neighbour is a 

corner neighbour ( 45θ °= ) then 2a aθ = .  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.14: Left: growth front will not reach the closest neighbour { }, 1, 1i j i jc c+ += - the cell will 

not be trapped 1d < ,  right: growth front will reach the closest neighbour { }, 1, 1i j i jc c+ += -the cell 

will be trapped 1d ≥ and becomes solid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.15: Left: growth front will not reach the closest neighbour { }, 1,i j i jc c+= . The cell will 

not be trapped 1d < , right: growth front will reach the closest neighbour { }, 1,i j i jc c+= . The cell 

will be trapped 1d ≥ and becomes solid. 
 
When 1d ≥ , the growth front of the solid reference cell can touch the centre of 
the neighbouring cell and then this cell transforms its state from liquid to solid 
[Zhu and Hong, 2001] (Figure 5.14-5.15). It is assumed that the growth is not 
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allowed to take place for more than a half of CA cell during each meso time 
step. This is assumed with a sufficient small time step. 
 

5.6.1.1 Neighbourhood Configuration and Mesh in the CA Method 

The probabilistic selection of presented neighbourhood configurations is based 
on the randomly chosen angle θ  as shown in Table 5.1. When 15 30θ− < <  
modified Moore are selected. Since two types of modified Moore (variant 1 and 
variant 2) are used in calculations, a further random selection of either one of  
the two types is chosen. This selection is arbitrary and based on the random 
number 0 1rand< <  that is generated for each CA cell. A schematic of the 
selection of neighbourhood configuration is seen in Table 5.1 and Table 5.2. 
 
Table 5.1: Selection of neighbourhood configuration based on probabilistic calculation of θ for 
Nastac configurations. 

θ ; 0 45θ≤ ≤  rand  Neighbourhood configuration 

30 45≤ ≤θ  - Figure 3.4 
0 15θ≤ ≤  - Figure 3.5 

15 30< ≤θ  0.5rand ≤  Figure 3.6 
15 30< ≤θ  0.5rand >  Figure 3.3 

 
Table 5.2: Selection of neighbourhood configuration based on probabilistic calculation of i  for 
newly introduced configurations. 

i  Neighbourhood configuration 

1 Figure 3.7 a 
2 Figure 3.7 b 
3 Figure 3.7 c 
4 Figure 3.7 d 
5 Figure 3.7 e 

 
Calculations of the temperature field are done for the regular square gird covered 
by macro nodes (Figure 5.10 (left)). Each square of four macro nodes includes 
625 meso CA cells. Relationship between macro field and meso CA mesh is 
presented in Figure 5.10. 
 

5.6.2 LRBFCM-PA 

The procedures are the same as for the CA method (Section 5.6.1). Nucleation 
takes place. Once a point nucleates it grows with respect to the heat flow and 
with respect to the ‘neighbourhood’ configuration which is now associated with 
the position of the neighbouring points which fall into a circle [Janssens, 2003; 
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HR
d

ia

ia
HR d

Janssens, 2000] with radius HR  (see Figure 3.8). It means that each point can 

contain different number and position of the neighbours, which gives various 
possibilities of neighbourhoods. The growth velocity is calculated according to 
the KGT model. For all neighbours of the treated point, general criterion d  is 
checked  

 ( ) / ,id l t a=  (5.26) 

where ia  ( i Ha R< ) represent different lengths from the central to the random 

points in the circular neighbourhood. When1d ≥ , the growing solid touches the 
centre of the neighbouring point and this point transforms its state from liquid to 
solid (Figures 5.16 - 5.17). 

 

 

 

 

 

 

 
 
 
 
Figure 5.16: Growth front will not reach the closest neighbour. The point will not be 
trapped 1d < . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.17: Growth front will reach the closest neighbour. The point will be trapped 1d ≥ and 
becomes solid. 
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5.6.2.1 Neighbourhood Configuration and Node Arrangement in the PA 
Method 

The novel neighbourhood configuration of the PA method has been chosen (see 
Figure 3.8) which contains points within circle with radius HR  centred on the 

reference point. Different dimensions of radius of neighbourhood can be chosen. 
Random PA discretization is always generated first.  
Calculations of the temperature field are done for the regular square node 
arrangements covered by the macro nodes (Figure 5.18 left). The irregular node 
arrangement is achieved in practice as a random selection of points from the 
centres of CA cells. It is constructed from the regular CA cell size by randomly 
taking away certain percentage of the points (Figure 5.18 right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.18: Left: Relationship between macro field and, right: PA node arrangement. Solid 
circles in the macro field represent schematics of the corner, surface and bulk 5-noded domains 
of influence of the meshless method. 
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6 Dendritic Growth Model 

This chapter represents a simple numerical model which can simulate the 
dendritic forms [Zhu and Hong, 2001; Nastac, 2004; Feng et al., 2002; Beltran-
Sanchez and Stefanescu, 2003] during the solidification of a pure substance from 
its supercooled melt. The developed algorithm can simulate dendritic growth 
with the predetermined position of nucleuses, i.e. the nucleation model is not 
presented. The solution is structured by the classical CA and a novel PA 
technique, already described in Chapters 3 and 4. In order to predict the dendritic 
structure, the stochastic CA or PA methods are combined with the heat transfer 
calculations to obtain the temperature and solid fraction fields [Lorbiecka and 
Šarler, 2010b; Lorbiecka and Šarler, 2010c]. The governing thermal equation 
was solved by the explicit FDM. 
 

6.1 Governing Equations  

Thermally induced dendritic growth is considered in this dissertation. It is 
physically described by the heat conduction and phase change kinetics. The 
stochastic model includes calculations of the interface temperature, curvature, 
Gibbs-Thomson coefficient. This coefficient takes into account the 
thermodynamic anisotropy related to the crystal orientation and crystal growth 
velocity which accounts for the kinetic anisotropy by taking into the 
consideration the crystal growth direction θ  and the preferential orientationdefθ . 

The stochastic model receives temperatures from the deterministic model and the 
deterministic model receives the solid fraction from the stochastic model. The 
heat transfer model is solved by the FDM on the regular nodes. The solid 
fraction calculations are done for the classical CA method and PA method with 
random node arrangement. 
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6.1.1 Temperature Field 

Consider a two dimensional domain Ω  with boundary ∂Ω  filled with a phase 
change material which consists of at least two phases, solid and liquid, separated 
by an interfacial region, which is usually very thin in pure substances. The 
thermal field in such a system is governed by the following equation [Xu et al., 
2008]  

 ( ) ( ).h T
t

∂ = ∇ ⋅ ∇
∂

ρ λ  (6.1) 

The specific enthalpy is constituted as 

 ,p lh c T f L= +  (6.2) 

where lf  represents the liquid fraction, respectively. All material properties are 

assumed constant for simulation simplicity. The solid and liquid fractions are 
defined as  a function of temperature 

 1,s lf f+ =  (6.3) 
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 (6.4) 

where sf  represents solid fraction. In case of pure substance are the solidus and 

the liquidus temperatures equal to the melting temperature MT . However, for the 

computational purposes a narrow melting interval is always present 

L M ST T T> > . The melting temperature MT  is defined as ( )1

2M S LT T T= + . 

We search for the temperature at time 0t t+ ∆ by assuming the initial conditions  

 ( ) ( )0, ; ,oT t T= ∈Ωp p p  (6.5) 

 ( ) ( )0 0, ; ,s sf t f= ∈Ωp p p  (6.6) 

(where p represents  the position vector) and Neumann boundary conditions 
 

 ( ) ( ), , ; , ,0 0

T
t F t t t t t

n

∂ = ∈∂Ω < ≤ + ∆
∂

p p p  (6.7) 
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where n  represents the normal on ∂Ω  and 0T , 0sf , F  represent known 

functions.  
 

6.2 Phase Change Kinetics 

6.2.1 Interface Undercooling 

The phase change situation can be achieved by undercooling a liquid below its 
melting or liquidus temperature. When a solid seed is placed in such an 
undercooled melt, solidification will be initiated. Due to crystal anisotropy and 
perturbations in the system, the growth of the solid from the seed will not be 
uniform and an equiaxed dendritic crystal will form. Solid-liquid interface is 
undercooled to the temperature fT  defined as [Gibbs, 1928; Saito et al., 1988; 

Nakagawa et al., 2006] 

 ,f MT T K= − Γ  (6.8) 

where K  is the interface curvature. 
 

6.2.2 Dendritic Growth Kinetics 

The growth process is driven by the local undercooling. The interface growth 
velocity is given by the classical sharp model [Shin and Hong, 2002] 

 ( ) ,, ; ,g K f s lV T T t∗  = − ∈Γ p pµ  (6.9) 

where Kµ , ,s lΓ  are the interface kinetics coefficient and the solid-liquid 

interface, respectively.  
Dendrites always grow in the specific orientations. Therefore, it is necessary to 
consider anisotropy in either the interfacial kinetics or surface energy (or both). 
The present model accounts for the anisotropy in both kinetics. 
 

6.2.3 Thermodynamic Anisotropy 

The Gibbs-Thomson coefficient can be evaluated [Krane et al., 2009] by taking 
into account the thermodynamic anisotropy related to the crystal orientation and 
type as follows 

 ( )1 cos ,t defS  Γ = Γ − −  
δ θ θ  (6.10) 
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where S , θ , defθ , tδ , Γ  represent factors which control the number of 

preferential directions of the material’s anisotropy ( 0S =  for the isotropic case, 
4S =  for four fold anisotropy and so on), growth angle (angle between 

they coordinate and the line that connects the center of the mass of the dendrite 

and point at ,s lΓ , see Figure 6.1, the preferential orientation, thermodynamic 

anisotropy coefficient and the average Gibbs - Thomson coefficient,  
respectively. 
 

6.2.4 Kinetic Anisotropy 

The crystal growth velocity is calculated according to the crystal orientation by 
taking into the consideration the crystal growth direction θ  and the preferred 
orientation defθ . The crystal growth velocity follows the equation [Shin and 

Hong, 2002] 

 ( ) ( )( )*
,, 1 cos ; ,g k def s lV V t S = + − ∈Γ

 
p pδ θ θ  (6.11) 

where kδ  represents the degree of the kinetic anisotropy, respectively.  

 

6.3 Coupling Scheme 

The movement of the solid-liquid interface is governed by the evolution of the 
temperature field in the computational domain (Figure 6.3) and the phase change 
kinetics.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Calculation domain of the dendritic growth. 
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The dendritic structures are modelled by the stochastic method to track the 
interface motion coupled to the deterministic heat transfer calculations. We first 
describe the solution of the temperature field based on the FDM and 
subsequently the transition rules for the CA (PA) methods for calculation of the 
solid fraction field. The flowchart of the calculations is given in Figure 6.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2: Flowchart of the thermal field and solid fraction calculations. 
 

6.4 Solution of the Temperature Field 

A square domain with a side l  is considered. The solution for the temperature 
field is performed by the simple explicit FDM. The number of points in FDM 
mesh in xandy directions is xyN . The total number of FDM grid points is 2xyN - 

4, since the four corner nodes are not considered. A uniform FDM discretization 
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is made with mesh distance ( )/ 1xyx y a l N∆ = ∆ = = −  as seen in Figure 6.3 

(top). Solution of the temperature field in the domain nodes is thus 

 

( ) ( )

( ) ( ) ( )

2
, 0 , 0 1, 0 , 0 1,

2

0 , 1 0 , 0 , 1 , 0 ,

( 2 /

2 / ) ,

i j i j i j i j i j
p

i j i j i j s i j s i j
p

t
T T T T T x

c

L
T T T y f f

c

− +

− +

∆  = + − + ∆ + 

 − + ∆ + −
 

λ
ρ

 (6.12) 

for 2,3,..., 1xyi N= −  and 2,3,..., 1xyj N= − . 

 
The boundary nodes are calculated (the Neumann boundary conditions are set to 

0F = W/m2) as: west side: 1, 2,j jT T=  for 2,..., 1xyj N= − . East side: 

, 1,xy xyN j N jT T −=  for 2,..., 1xyj N= − . North side: , , 1i N i NT T −=  for 2,..., 1xyi N= − . 

South side:  ,1 ,2i iT T=  for 2,..., 1xyi N= −  where 0 ,s i jf , 0 ,i jT , 0 1,i jT + , 

0 1,i jT − , 0 , 1i jT + , 0 , 1i jT −  are initial solid fraction, initial temperature in the FDM 

central, east, west, north and south nodes, respectively. 
 

6.5 Solution of the Solid Fraction Field 

We now define and discuss the elements of the classical CA and the novel PA 
solutions in details.  
 

6.5.1 Definition of Mesh and Neighbourhood Configuration  

Square cells with length / xyx y a l n∆ = ∆ = =  where 1xy xyn N= −  represents the 

number of cells in x  andy directions are considered in the CA approach. In the 
PA approach the square is divided in uniformly or nonuniformly distributed 
nodes and the cells are not defined. 
 

6.5.2 Mesh and Neighbourhood in the CA Method 

The conventional square mesh structure is applied in CA calculations. It 
represents a square domain covered by the CA cells , ,,CA i j CA i jx y  located exactly 

in the middle of four FDM nodes, as it is depicted in Figure 6.3 (middle).  
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Figure 6.3: Schematics of space discretization. Top: FDM nodes with 21xyN = , middle: CA 

cells with 20xyn = , bottom: PA nodes for 20xyn = . 
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 , 1,

1
,

2CA i, j FDM i j FDM i jx x x + = +   (6.13) 

 , , 1

1
.

2CA i, j FDM i j FDM i jy y y + = +   (6.14) 

The von Neumann neighbourhood (Figure 3.3) that takes into account only the 
closest neighbours is used in the regular cell structures. 
 

6.5.3 Mesh and Neighbourhood in the PA Method 

For the novel PA method the random node arrangement is in the dissertation 
generated from the regular CA mesh. To construct the random node arrangement 
the CA cell centres are displaced to randomly quasi positions , ,,PA i j PA i jx y on the 

computational domain (see Figure 6.3, bottom).  

 

 

 

 

 

 

 

 
Figure 6.4: Schematic representation of the relationship between FDM nodes (4 corners), CA 
cell (centre) and the random PA node. 
 
The displacement of each CA centre is assumed to be possible only in the square 
area defined by the four FDM nodes. The following procedure is applied 

 [ ], , 2 1 ,PAi j CAi jx x rand= + −ε  (6.15) 

 [ ], , 2 1 ,PAi j CAi jy y rand= + −ε  (6.16) 

where 
i, jPAx , 

i, jPAy ,ε  represent coordinates of  PA nodes and the scaling value 

0 0.49ε≤ ≤ , respectively. It must be emphasized that the PA procedure is 
established on the random nodes in general. The heat transfer calculations are 
performed on the regular FDM nodes, which are explained in Section 6.8.  

,
,

i, j i jPA PAx y

,
,

i, j i jCA CAx y

, 1
,

i, j+1 i jFDM FDMx y
+ 1, 1

,
i+1, j+1 i jFDM FDMx y

+ +
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,

i, j i jFDM FDMx y
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The PA node grows with respect to the heat flow and with respect to the 
‘neighbourhood’ configuration which is now associated with the position of the 
neighbouring PA nodes which fall into a circle [Janssens, 2000; Janssens, 2003] 
with radius HR  in 2D or a sphere in 3D. It means that each PA node can in case 

of the random node arrangement contain different number and position of the 
neighbours, which give various possibilities of neighbourhood configurations for 
each node. 
 

6.6 Curvature Calculations 

The interface curvature is approximated by the counting cell procedure 
developed by Sasikumar and Sreenivasan [Sasikumar and Sreenivasan, 1994].  
 

6.6.1 Calculation of Curvature in the CA Method 

The expression for curvature K  is given by the formula [Krane et al., 2009] 

 
21

1 ,s CA

t CA

N
K

a N

 
= −  

 
 (6.17) 

where s CAN  and t CAN  are the number of solid CA cells whose centres fall inside 

the circle of assumed radius cR  and the total number of CA cells whose centres 

fall inside the circle, respectively (see Figure 6.5). 
 

6.6.2 Calculation of Curvature in the PA Method 

The expression for curvature in PA is derived from the expression of curvature 

in CA method by assuming the average node distance a  instead of a . 

 
21

1 ,s PA

t PA

N
K

Na

 
= −  

 
 (6.18) 

where s PAN , t PAN  are the number of solid PA nodes inside the circle of 

assumed radius cR  and the total number of PA nodes inside the circle, 

respectively (see Figure 6.6). 
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Figure 6.5: Scheme showing a circle sample with 2cR a=  for calculating the curvature in the 

conventional CA method (example: 8s CAN =  and 12t CAN = ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6: Scheme showing a circle sample with 2cR a=  for calculating the curvature in the 

random PA method (example: 7s PAN =  and 11t PAN = ). 
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The curvature of both methods has been calculated and compared on a circular 
solid fraction arrangement with radius 10R =  µm, depicted in Figure 6.7. Two 
different types of cR  have been chosen ( 1cR = µm and 5cR =  µm). It can be 

concluded that with the higher radius cR  the value of K  becomes almost the 

same as in the conventional CA approach. This was depicted in Figure 6.8 and 
Figure 6.9, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7: Scheme of the area used to compare the curvature calculations by the CA and PA 
methods. 10R = µm and 1a = µm. Green area represents solid, white area represents liquid. 
 

 
Figure 6.8: Calculated curvature with the CA method and PA-(A) method 

( )0.49ε = for 1cR = µm and 1a a= = µm with respect to the data depicted in Figure 6.7. The 

node arrangement of CA and PA is given in Table 7.6. 
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,i jV

 

 
Figure 6.9: Calculated curvature with the CA method and PA-(A) method ( )0.49ε =  for 

5cR = µm and 1a a= = µm with respect to the data depicted in Figure 6.7. The node 

arrangement of CA and PA is given in Table 7.6. 
 
 

6.7 Phase Change  

The crystal growth velocity is calculated according to the crystal orientation. The 
envelope of the grain can be expressed by the equation (6.11) which is depicted 
in Figure 6.10. Once a CA cell (or PA node) becomes solid it starts to grow with 
respect to the ‘neighbourhood’ configuration. Each of the CA cell (or the 
random node) can have two possible states: liquid or solid. The CA cell (or PA 
node) becomes solid through the growth process. The change of solid fraction of 
the CA cell or PA node is calculated from the crystal growth velocity. 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10: Schematic representation of the shape function (parameters see Table 7.3). 
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For all neighbours of treated solid CA cell (or solid PA node), general criterion 
d  is checked which is represented by the equations (5.22) and (5.25). 
For the dendritic growth the Neumann neighbourhood configuration is used. If a 
neighbour is one of the four nearest east, north, west, south neighbours then in 
the CA method this distance becomes ia a=  (Figure 5.15). In the PA method 

ia ( )i Ha R<  represents the different distances to the neighbouring PA nodes 

which fall into the circle with radius HR . When d a≥  or id a≥  (Figure 5.14 

(left), Figure 5.15 (left) and Figure 5.17) the growing solid touches the centre of 
the neighbouring CA cell or PA node and this cell/node transforms its state from 

liquid 0sCAf = ( )0s PAf =  to solid 1sCAf = ( )1s PAf = . 

 

6.8 FDM-PA-FDM Transfer of Temperature and Solid 
Fraction 

6.8.1 FDM-CA/PA Transfer of Temperature 

The obtained values of temperature on regular FDM grid (equation (6.12)) are in 
each time step transferred to the CA mesh (random PA grid arrangement) 
according to scheme in Figure 6.2. The following simple interpolation formula is 
used in the present calculations 

 ( )
4

, , 1 1 1, 1 2 1, 3 , 4
1

/ .PAi j i j i j i j i j i
j

T T l T l T l T l l+ + + +
=

= + + + ∑  (6.19) 

 
 
 
 
 
 
 
 
 
 
 
Figure 6.11: Relationship between four FDM nodes and a CA cell (left) and PA node (right) for 
calculation of the temperature. 
 

In case of FDM-CA the equation (6.19) reduces to  
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 ( ), , 1 1, 1 1, , / 4,CAi j i j i j i j i jT T T T T+ + + += + + +  (6.20) 

where ,PA i jT , ,CA i jT and il  represent the temperature of the PA node, the 

temperature for the center CA cell and the distances to the nearest four FDM 
nodes, respectively. The calculation is repeated in each time step (see Figure 
6.2). 

6.8.2 CA/PA-FDM Transfer of Solid Fraction 

The temperature field at time 0t t+ ∆  is calculated from the regular FDM mesh. 

Then these values are recalculated to all CA cells according to the equation 
(6.20) or PA nodes equation (6.19). Afterwards the PA procedures take place 
(see Section 6.2). The output information from this level of calculation is the 
value of solid fraction for all CA cells ,s CAi jf  or random PA nodes ,s PAi jf  which 

have to be transferred to the FDM nodes to be able to calculate the new values of 
temperature (Figure 6.12).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.12: Relationship between FDM node and four neighbouring PA nodes or CA cells for 
transfer of the solid fraction. 
 
The following equation is applied 

 
4

, , 1 1 1, 1 2 1, 3 , 4
1

( ) / .s i j s PAi j s PAi j s PAi j s PAi j i
i

f f l f l f l f l l+ + + +
=

= + + + ∑  (6.21) 

In case of FDM-CA the equation (6.21) reduces to  

 , , 1 1, 1 1, ,( ) / 4,s i j s CAi j s CAi j s CAi j s CAi jf f f f f+ + + += + + +  (6.22) 

where ,s i jf  and s PAf  represent the solid fraction for the FDM nodes and for the 

PA nodes, respectively. 
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7 Numerical Results 

In this chapter the numerical results of modelling the grain structures and 
dendritic growth are obtained by the solution procedures presented in Chapters 5 
and 6. The accuracy of presented algorithms is being first tested for the 
conventional grid structures where the problem is solved by the classical CA 
technique. These solutions of the governing equations are replaced by the novel 
PA method where the node arrangement is generated randomly for both models. 
The definitions of both approaches have been already given in Chapter 3 and 4. 
Here the numerical results of the two models are presented and discussed.  
 

7.1 Numerical Results of the ECT/CET by the CA 
Method 

The numerical examples are solved by the LRBFCM on the macroscopic level 
and CA/PA methods on the mesoscopic level. The sensitivity study for the input 
parameters is prepared on both levels of calculations what is detailed presented 
in next part of this section. 
Initial conditions. Mesoscopic model is combined with the macro heat transfer 
calculations, which are already described in Sections 5.3 and 5.4.1. Macroscopic 
model gives the temperature information in 4120 axial positions as the input data 
to the meso model. On the macro level of calculations the only parameter which 
influences the mesoscopic model is the value of local undercooling macroT∆  

which is interpolated to CA cells or PA nodes. All input data to the ECT/CET 
model are presented in Figure 7.3. Material properties for heat 46352 from štore 
Steel company are calculated from the JMatPro software [Saunders et al., 2003], 
see Table 7.1. Fixed nucleation parameters are presented in Table 7.2. 
LRBFCM-CA/PA distretization . Each axial position has a billet dimension 
140 mm x 140 mm (or 180 mm x 180 mm) and the size of each macro cell is 0.5 
cm. There are 841 macro nodes at each axial position in 140 mm x 140 mm 
(Figure 7.1-7.2) and 1369 in 180 mm x 180 mm. One macro node includes 625 
CA cells. 
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Time step. Two time-step loops are used in the program: macro loop with time 
step 0.3 s and meso loop with time step 1.5 µs.  
Numerical implementation. Macroscopic simulator takes about 3 minutes to 
prepare the macro temperature fields, while the microscopic simulation takes 
approximately 6 hours on a standard PC with 3 GHz and 1024 RAM. The 
information connected with one CA cell (position in the domain, angle, CA 
configuration, time of generation) and all cells (amount of nucleuses, generated 
at the surface and in the bulk areas) are stored in a file for each micro time step. 
During the simulation the results can be observed on the screen, and afterwards 
post-processed. The described multiscale model was coupled only in the 
direction from macro to meso calculations. This means that the meso 
calculations do not effect the macro calculations. 
 
Table 7.1: Growth model parameters (heat 46352). 

Symbol Unit Value 
Steel grade parameters 

k  1 0.370 
Γ  Km 71.9x10−  

lD  m2/s 82.0x10−  

0c  % 0.51 
m  1 30−  

LT  K 1755.01 
 
From the measurement data prepared by the Štore Steel company, the 
51CrMoV4 heat (Reference case) spring steel was chosen for the basis for 
analysis of the influence of the input parameters on the meso and macro part of 
the model. Simulations with different values show that changing some of the 
parameters can strongly affect the final appearance of the mesostructure. 
The following cases have been prepared: 

• On the meso level a nucleation parameter (mean nucleation 
undercooling, standard deviation) and neighbourhood configurations 
(Nastac’s neighbourhood and simplified neighbourhood configuration) 
sensitivity study is prepared for the heat 46352 (castT = 1530 K, castV =  

1.75 m/min, dimension 140 mm x 140 mm), see Figures 7.8-7.9 and 
Figure 7.10. 

• The model parameters are adjusted in order to obtain the experimentally 
determined actual billet ECT and CET positions for the chosen 46352 
heat. A systematic procedure is outlined for adjustment of the model data 
with the Baumann print (Figure 7.11). 

• On the macro level the influence of changeable macro parameters are 
checked. The simulations are prepared for the Reference case with lower 
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casting temperature castT = 1500 K and lower casting velocity castV = 1 

m/min, see Figure 7.12. 
• Finally, the calculations are prepared for different casting speeds and 

casting temperatures for heats 48695 3/1 (castT = 1524 K, castV =  0.95 

m/min, dimension 180 mm), 48695 3/1 ( castT = 1529 K, castV =  1.15 

m/min, dimension 180 mm) and 46693/1 ( castT = 1555 K, castV =  

1.10m/min, dimension 180 mm), see Figures 7.13-7.15. 
 

7.1.1 Mesoscopic Model Input Parameters 

The input data to the mesoscopic model (Figure 7.7) have a tremendous 
influence on the final grain distribution. A sensitivity study has been performed 
[Lorbiecka and Šarler, 2008], to study this influence and to adjust the model 
parameters to the experimental values accordingly.  
 

7.1.1.1 Nucleation Parameters Sensitivity Study 

It is shown in Figures 7.8 and 7.9 that the parameters of nucleation model most 
strongly influence the final grain structure results. They determine the number of  
the possible generated nucleuses in the surface and bulk areas. Increasing the 
range of maxT∆  parameter for the bulk the calculated area is widen and the 

number of new grains drastically arise. Variations of the Tσ∆ , brings to the 

opposite situation what is represented in the examples. It was shown that the best 
results, with respect to experimental data, are received in the range of value Tσ∆  

from 1.25 K to 2.25 K for the bulk and around 0.2 K for the surface area. The 
smaller values of surface nucleation parameters as well as the thickness of 
surface area bring a smaller number of grains generated at the borders and 
finally the thinner chill zone. In presented examples 0.5 cm was assumed for the 
surface area what fits to the observed case.  

7.1.1.2 Neighbourhood Configuration Sensitivity Study 

To check the influence of the neighbourhood configuration, an analysis of an 
alternative simplified approach to the Nastac’s neighbourhood configuration was 
made (Figures 3.3-3.6). Simulations were prepared with the same nucleation 
parameters as for the Nastac’s neighbourhood configurations and for the 
simplified one. New approach reduces the time of calculations from four hours 
to only two. It results in a smaller central zone, because a lower number of 
grains arise. The simplified neighbourhood is more sensitive to the variations of 

Tσ∆ for the surface area, what results in longer columnar forms, which could not 
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be noticed using the Nastac’s configuration (Figure 7.8). From this study one can 
conclude that the model is also very sensitive to the choice of the neighbourhood 
configuration. It means that the nucleation parameters need to be adjusted to the 
experimental data and neighbourhood configuration. 
Mesh size and time step sensitivity study. It was deduced also that the mesh 
size should be 200 µm as it brings the stable results which fit to the experimental 
observations. The same conclusion was made according to the meso time step, 
because many variations did not have positive influence on the final structure. 
The optimal value of 1.5 µs was chosen to combine well with the macro heat 
transfer calculations and to receive the more precise grain morphology.  
 

Figure 7.1: Centerline temperatures along the casting direction (reference case). 
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Figure 7.2: Corner temperatures along the casting direction (reference case). 
 

 
Figure 7.3: Centerline temperatures along the casting direction (reduced casting temperature) 
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Figure 7.4: Corner temperatures along the casting direction (reduced casting temperature). 

 
 

Figure 7.5: Centerline temperatures along the casting direction (reduced casting speed). 
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Figure 7.6: Corner temperatures along the casting direction (reduced casting speed). 
 

 
Figure 7.7: Input data to the  ECT/CET model. 
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Table 7.2: Variable parameters of Gaussian distribution for the Nastac’s configuration and 
simplified configuration of the meso model (Figures 7.8 and 7.9). 
 

SYMBOL UNIT 
CASE 

I 
CASE 

II 
CASE 

III 
CASE 

IV 
CASE 

V 
CASE 

VI 
Varied parameters 

For the bulk area 

maxT∆  K 30 30 30 7.00 15 30 

Tσ∆  K 1.25 1.75 2.25 1.75 1.75 1.75 

Fixed parameters 

For the surface area 

maxT∆  K 0.60 0.60 0.60 0.60 0.60 0.60 

Tσ∆  K 0.20 0.20 0.20 0.20 0.20 0.20 

meso cell 
size 

µm 200 200 200 200 200 200 

meso time 
step 

µs 1.50 1.50 1.50 1.50 1.50 1.50 

 
 

7.1.2 Macroscopic Model Input Parameters  

The sensitivity study of casting parameters was analyzed according to the 
experimental Baumann prints received from the Štore Steel Company from 
Slovenia. Experimental tests were analyzed to be able to estimate the dimensions 
of three zones (chill, columnar and equiaxed) for the different value of casting 
speed and temperature (see Appendix A1). Several experimental results were 
chosen for the analysis. They prove that even small changes of casting speed 
(from 0.95 m/min to 1.15 m/min) strongly influence on the extension of the 
central zone (Figure 7.13). For the higher speed the columnar forms become 
shorter and start to break which gives bigger equiaxed zone (Figure 7.12 and 
7.15). On the Baumann print, the fragmentation can be easily observed. The 
same situations can be noticed for the strong changes of casting temperature 
(from 1500 K to 1550 K). The simulated results fit to the experimental samples 
and indicate exactly the same trend (Figure 7.12). Several examples for different 
billet dimensions and casting parameters are presented in Appendix 1. Measured 
Baumann prints are compared with the simulated results. 
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   CASE III            CASE VI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       

 
Figure 7.8: Calculated billet microstructures as a function of the changeable micro parameters 
(see Table 7.1 and 7.2) for the Nastac’s neighbourhood configuration (see Figures 3.3-3.6), heat 
46352 with dimension 140 mm x 140 mm. 
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Figure 7.9: Calculated billet microstructures as a function of the changeable micro parameters  
for the simplified neighbourhood configuration (see Figure 3.7), heat 46352 with dimension 140 
mm x 140 mm. 
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Figure 7.10: Comparison of two different neighbourhood configurations. Left: Nastac’s 
neighbourhood, right: simplified one for the same nucleation and growth parameters (CASE VI). 
 

140mm 
 

 
 
 
 
 
140mm 
 
 
 
 
 
 
 
 
Figure 7.11: Baumann print of the 51CrMoV4 spring steel (see Table A.2), ECT between chill 
and columnar (dashed line) and CET transition between columnar and central zone (dotted line). 
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Figure 7.12: Characteristic mesostructure of the heat 46352 after some periods of time for the 
following casting parameters. Left: castT = 1500 K, castV = 1.75 m/min (periods of time: 1 min, 2 

min, 3 min, 4 min, 5 min, 5 min 33 s from the top to the bottom), middle: castT =1530 °C, castV = 

1.75 m/min  (periods of time: 1 min, 2 min, 3 min, 4 min, 5 min, 5 min 55 s from the top to the 
bottom), right: castT = 1530 °C, castV  = 1.00 m/min  (periods of time: 1 min, 2 min, 3 min, 4 min, 

4 min 36 s from the top to the bottom). 
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7.1.2.1 Simulated Results for Variable Casting Parameters 

 
chill zone 2%,       chill zone 2%, 

columnar zone 50 %,       columnar zone 44 %, 
equiaxed zone 48 %       equiaxed zone 56 % 

 
Figure 7.13: Left: Baumann print of the 51CrMoV4 spring steel (see Table A.2), castT = 1525 

K, castV =  0.95 m/min, dimension 180 mm, right: simulated result. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
chill zone 2%,        chill zone 2% 

columnar zone 63 %,        columnar zone 62 %, 
equiaxed zone 37%           equiaxed zone 37% 

 
Figure 7.14: Left: Baumann print of the 51CrMoV4 spring steel (see Table A.2), castT = 1529 K, 

castV = 1.15 m/min, dimension 180 mm, right: simulated example. 
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chill zone 2%,      chill zone 2%, 

columnar zone 47 %,      columnar zone 47 %, 
equiaxed zone 51 %      equiaxed zone 51 % 

 

Figure 7.15: Left: Baumann print of the 51CrMoV4 spring steel (see Table A.2), castT = 1550 K, 

castV = 1.10 m/min, dimension 180 mm, right: simulated example. 

 

7.2 Numerical Results of the ECT/CET by the PA 
Method 

In this chapter the results obtained with the PA method are presented. This 
apporach was implemented for modelling the position of ECT/CET. The 
mesostructure equations are solved according to the procedures described in 
Chapter 4. As for the CA method the same heat 46352 (Figure 7.11 left) was 
chosen to analyze the influence of the changeable input data for the meso and 
macro parameters. Simulations of PA demonstrated in Figures 7.16-7.21, are 
prepared for exactly the same physical input parameters as for the conventional 
CA method (see Table 7.1). They are finally compared with the CA result. 
The following cases have been simulated: 

• On the meso level the calculations with different node arrangements and 
curvature calculation radius cR  are presented for the heat 46352 (castT = 

1530 K, castV =  1.75 m/min, dimension 140 mm), see Figures 7.16 -7.21. 

• The model parameters are adjusted in order to obtain the experimentally 
determined actual billet ECT and CET positions for chosen 46352 heat. 
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A systematic procedure is outlined for adjustment of the model data with 
the Baumann print (Figure 7.16). 

• Finally the CA and PA results are compared, see Figure 7.21. 
 

7.2.1 A Sensitivity Study of Meso Input Parameters  

The regular CA cell size is 200 µm. The irregular grid includes 490.000 CA 
cells. Random grid is generated from the regular CA cell size 600 µm by 
randomly taking away certain percentage (90 % or 70 %) of the regularly 
positioned points. According to that  the number  of 490000 micro CA cells is 
reduced to 54756 points on the computational domain. 
The neighbourhood configuration of the PA method has been chosen to contain 
points within circle with radius HR  ( 31.2x10− m or 33.0x10− m) centred around 

the reference point. Several cases for different radius and node arrangements are 
shown are depicted in Figures 7.17-7.20. It is noticed that the reduction of the 
number of micro cells which take part in the calculations, the central (equiaxed) 
zone becomes larger, while the columnar zone is seen only slightly. This can be 
modified by changing the radius of the neighbourhood. Larger the value of HR  

is chosen the wider columnar forms can be observed (Figure 7.18). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.16: Left: Baumann print, right: simulated result with the PA method. Black circle 
represents approximate position of CET (51CrMoV4). 
 
The maximum radius should be kept aroundHR = 33.6x10− m, otherwise the 

columnar structures become distorted (waved). The calculation time grows with 
smaller radius. Process always starts with nucleation first, followed by a growth 
stage. Each new grain can start to grow only if the two conditions (temperature 
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and probability) are satisfied. Neighbourhoods with a larger number of points 
have higher probability that at least one of the points will nucleate as well as a 
higher probability that in the growth process not only one of the neighbouring 
points will be converted to solid. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.17:  Simulated grain structure ECT and CET of the billet by PA method, 

31.2x10HR −= m, node density 90 % of CA grid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.18: Simulated grain structure ECT and CET of the billet by PA method, 

33.0x10HR −= m, node density 90 % of CA grid. 

 
It turns out that by using PA some points might not take part in the process. To 
avoid this problem, an extra procedure is added, which checks the position of the 
possible ‘left-out’ nodes which are after identification converted to solid. In our 
previous work [Lorbiecka and Šarler, 2009], where the conventional CA 
approach was employed, a sensitivity study of the input parameters was 



Numerical Results of the ECT/CET by the PA Method 

 

99 

discussed. As a result of this study (Figure 7.11-right), a perfect fit of the CA 
parameters to the experimentally observed microstructure (Figure 7.11-left) of a 
billet of dimension 140 mm x 140 mm and steel grade 51CrMoV4 was found. 
We add the PA results in this study as well (see Figure 7.16-right). The input 
parameters are for both cases the same as in Figure 7.7. It can be seen that the 
two different methods give similar results. 
In this chapter, a new PA approach has been demonstrated for prediction of the 
grain structure which occurs during the CC of steel. PA method offers a simple 
and powerful approach of cellular simulations. It was shown that both methods 
are able to qualitatively and quantitatively model a diverse range of 
solidification phenomena in almost the same calculation time. 
PA method offers an attractive alternative to classical CA method, because of its 
flexibility of node density and neighbourhood definition. The density of the 
nodes can in principle vary across the domain of interest and the neighbourhood 
can be defined in a flexible way. The new approach has thus theoretical 
advantages of allowing a more proper and versatile modelling of ECT and CET 
transformations. Very promising and interesting results according to the various 
neighbourhood configurations and density of points have been shown. It was 
also shown that the PA method gives compatible results with the conventional 
CA method when using the same nucleation and growth physics (Figure 7.21). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.19: Simulated grain structure ECT and CET of the billet by PA method, 

31.2x10HR −= m, node density 70  % of the CA grid. 
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Figure 7.20: Simulated grain structure ECT and CET of the billet by PA method, 

33.0x10HR −= m, node density 70 % of CA grid. 

 

 
Figure 7.21: Simulated results. Left: conventional CA method, right: PA method. Black circle 
represents approximate position of CET. 
 
 

7.3 Numerical Results of the Dendritic Growth  

In this chapter the results of the numerical model that was developed for 
modelling the dendritic growth are presented. The dendritic growth is modelled 
by the classical CA method and PA method based on algorithms described in 
Chapter 6. The problem definition and discretization are given in Section 7.3.2. 
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The numerical results of the CA method are prepared for the following set of 
input parameters: thermal fluctuations, curvature calculation radius and Gibbs-
Thomson coefficient. Finally, the growth process for several dendrites growing 
simultaneously at orientations 0� and 45�  is presented. The results are presented 
in Section 7.3.2. 
In Section 7.3.3 the dendritic growth is simulated by the PA method with the 
same PA-(A) and different types of random node arrangements PA-(A), PA-(B), 
PA-(C), PA-(D) that differ in the initial seed for generation of the random 
numbers that is used in the node arrangement generator (see equations (6.15) and 
(6.16)). Calculations are prepared for different orientations and with different 
randomness of the node arrangement 0.1ε = , 0.25ε =  and 0.49ε = .  
Next, dendritic growth is simulated by including the randomness growth 
correction factor responsible for the correction in lengths of the primary 
branches as compared with the CA method. Finally, we present the growth 
process simulated by the PA method for seven dendrites growing simultaneously 
at the same orientations as for the CA model and at random orientations. 
 

7.3.1 Problem Definition and Discretization 

The numerical examples are solved by the FDM based temperature calculations 
and CA or PA based solid fraction calculations.  
 
Initial conditions.  Simplified material properties for pure aluminium [Kammer, 
1999] are used in all numerical examples. They are summarized in Table 7.3. 
The process starts from the predetermined solid seed position in one or multiple 
CA cells (or PA nodes) with the following initial conditions of temperature 
933.45K 1.5K−  and solid fraction 1sf = . All other CA cells or PA nodes are 

assumed to be liquid 0sf = . All FDM nodes have initial temperature 770.23K. 

The initial and boundary conditions 0F =  W/m2 are the same in all simulations.  
FDM and CA/PA distretization. The computational domain of the square with 

350l = µm and uniform discretization 701xyN = is used. FDM and CA methods 

are always constructed on a regular node arrangement in the present study 
(Section 7.3.2).  In the PA approach the random node arrangement needs to be 
constructed. The PA approach was first tested with the predetermined node 
arrangement PA-(A), and then with different types of random node 
arrangements: PA-(B), PA-(C), PA-(D), respectively (Section 7.3.3).  
 
 
 
 
 



Numerical Results 

 

102 

350 µm
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Initial solid crystals 933.45-1.5 K

Supercooled melt 770.23 K
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Figure 7.22: Geometry and initial conditions. 
 
Time step. The time step used in FDM calculation of the temperature field is 
limited by the formula [Zhu and Hong, 2001] 
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 (7.1) 

whereα represents the thermal diffusivity. For the calculations of the solid 
fraction field by the CA and PA method the following relation is used [Daming 
et al., 2004] for assuming stability 
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where η  and maxV  represent the positive constant less then 1 and the maximum 

growth velocity of all interface cells, respectively. 
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Time step DensitySpecific heat Latent heat
Thermal

conductivity

Initial positions of solid CA cell(s) or PA node(s)
Initial temperature and fraction

MODEL

Thermal field calculations

Phase change kinetics

Dendritic structures

Cell size
Anisotropy
coefficients

Radius of
curvature

Average Gibbs
Thomson
coefficient

Time step

Phase change kinetics

Heat transfer model

Node
distribution

Melting
temperature

Numerical implementation. The model was coded in Fortran. The CPU time of 
the simulations presented in dendritic growth varies form 10 to 15 minutes. The 
solid CA cell or PA node are graphically presented by coloured pixels which can 
be observed on the screen during the simulation. 
The dendritic morphologies were first calculated by the classical CA method 
based on the numerical model described in Sections 6.2 and 6.5. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 7.23: Structure of the dendritic growth model. 
 

7.3.2 Simulated Results by the CA Method 

In this section many cases corresponding to variation of  input parameters are 
shown. Important  input data to the model are analyzed below. We analyse the 

response of the FDM-CA method with respect to the varied of ∗λ , cR , Γ  and 

defθ  in this section. It can be assumed that these parameters strongly influence 

the solutions. The respective figures are 7.24-7.28. 

•   From CASE 1 to CASE 3 the dendritic growth was simulated by the CA 
method without and with random fluctuations.  

•  CASE 4 represents the dendritic growth simulated by the CA method at 
orientation 45� . 
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• From CASE 5 to CASE 6 the dendritic growth was simulated by the CA 
method for different values of curvature radius cR . 

•  From CASE 7 to CASE 8 the dendritic growth was simulated by the CA 
method for different values of the average Gibbs-Thomson coefficient. 

• Finally, Figure 7.29 represents seven dendrites growing simultaneously at 
orientations 0�  and 45�  as the CA grid in constructed. Their exact orientation 
and position are given in Table 7.5. 

 
 
Table 7.3: Nominal parameters used in simulations. 

Symbol Value Unit 
ρ  2700 kg/m3 

MT  933.45 K 

ST  933.45-1.5 K 

LT  933.45+1.5 K 
λ  210 W/mK 

pc  955.56 J/kgK 

L  259259.26 J/kg 
η  0.222 1 

Γ  71.6x10−  Km 

tδ  0.3 1 

kδ  0.75 1 
S  4 1 

cR  1.5 µm 

HR  2 µm 

kµ  2 m/sK 

FDMt∆  
106.82x10−  s 

l  350 µm 

xyn  700 
PA nodes/ 
CA cells 

xyN  701 FDM nodes 
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Table 7.4: Parameters varied in the calculations with FDM-CA method.  

CASE λ∗  
[-] 

cR  

[ cell] 
Γ  

[Km] 
defθ  

[°] 
method 

CASE 1 0 1 71.6x10−  0�  CA 

CASE 2 0.05 1 71.6x10−  0�  CA 

CASE 3 0.5 1 71.6x10−  0�  CA 

CASE 4 0.05 1 71.6x10−  45�  CA 

CASE 5 0.05 4 71.6x10−  0�  CA 

CASE 6 0.05 12 71.6x10−  0�  CA 

CASE 7 0.05 1 51.6x10−  0�  CA 

CASE 8 0.05 1 51.6x10−  0�  CA 
 
 
Table 7.5: Initial positions and orientations of nucleuses for simulation with the FDM-CA 
method (see Figure 7.29). 

nucleus ,x y position [µm] orientation [deg] 
1 120, 290 45 
2 150, 550 0  
3 300, 100 0  
4 350, 350  0  
5 410, 550 45 
6 500, 150  0  
7 570, 380 45 

 

7.3.2.1 Discussion of the Results 

Grid size and time step. The grid size of the square domain should be 0.5 µm as 
it is fine enough to resolve the dendritic tip radius. The same conclusion was 
made according to the time step. For the stability of the coupled FDM-CA/PA 
procedure a minimum of CAt∆  and FDMt∆ was used. For the CA method all 

depicted results of simulations are shown for 0�  and 45�  (one example) 
orientations after 1500 time steps of the length 106.82x10FDMt −∆ = s, i.e after   

61.02x10− s. The example where several dendrities are growing simultaneously at 
orientations 0�  and 45�  is presented after 350, 700, 1500 and 2500 time steps, 
i.e. after 72.39x10− s, 74.77x10− s, 61.02x10− s and 61.71x10−  s, respectively. 
Thermal fluctuations. In order to avoid the symmetric shape of the dendrite in 
the conventional CA approach some fluctuations need to be introduced into the 
calculations. The following equation is commonly applied 1 randψ λ∗= + . 
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Thermal noises are usually presented by putting the random fluctuations ψ  into 
the calculations of latent heat, undercooling temperature or velocity [Voller, 
2008]. It this work we use them in the velocity calculations V V= xψ . The 
effect of increased random fluctuations was studied. Figure 7.24 represents the 
morphologies of dendrites for different values of ∗λ . The number of secondary 
dendritic branches grow with growing ∗λ  as seen in Figure 7.24. 
Curvature calculation radius. To analyze the influence of the calculation 
curvature radius the several different values of cR  (Figure 6.3) have been 

attended. For cR =3 the results are similar to cR =4. Smaller values of curvature 

calculation radius brings more branches. The analyses of curvature calculation 
radius are presented in Figure 7.27. 
Average Gibbs Thomson coefficient. The effect of the variation in the average 
Gibbs-Thomson coefficient on the evolution of dendritic structure during the 
growth stage is shown on Figure 7.24. The value of coefficient which is used in 

the calculations, is the normal value for aluminium ( 71.6x10−Γ = Km). 
Insignificant branching takes place for the case of higher Γ (Figure 7.28 
(bottom)).  
Anisotropy calculations. In the basic approach of CA the grid anisotropy is 
always a problem in the sense that whatever orientation is assigned first to a 
dendrite, the final dendritic growth orientation always shifts towards 0°or 45°as 
solidification proceeds, due to division of the computational domain into 
horizontal and vertical mesh structure. In our calculations the orientation of the 
dendrite is aligned with grid direction by two preferential growth 
orientations: 0defθ = °  and 45defθ = °  (Figure 7.26). Simulated results show that 

this model is able to reproduce most of the dendritic features. The classical 
FDM-CA mode is converted to FDM-PA model in the next section. 
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Figure 7.24: Simulated dendritic growth for a single dendrite at orientation 0defθ = �  by the CA 

method with different fluctuations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.25: Vertical cross section of the temperature field for Case 2 at y =175 µm. 

l  

l  

CASE 3 

0defθ = �  
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l  

l  

45def = �θ  
 

CASE 4 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.26: Simulated dendritic growth for a single dendrite at orientation 45defθ = �  by the CA 

method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

l  

l  

CASE 5 
 

0defθ = �  
 



Numerical Results 

 

110 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.27: Effect of different curvature calculation radius 4cR = and 12cR = cell size (from the 

top to the bottom). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CASE 6 
 

0defθ = �  
 

l  

l  

l  

l  

0defθ = �  
 

CASE 7 
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Figure 7.28: Effect of different values of the average Gibbs-Thomson coefficient 

51.6x10−Γ = Km and 61.6x10−Γ =  Km (from the top to the bottom). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

l  

l  

0defθ = �  
 

CASE 8 
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   (1)                 (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
   (3)                             (4) 

 
Figure 7.29: Seven dendrites growing simultaneously at orientations 0� and 45�  after (1) 350, 

(2) 700, (3) 1500 and (4) 2500 time steps of the length 106.82x10− s.  FDM-CA solution 
procedure, see Table 7.5. 
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7.3.3 Simulated Results by the PA Method 

The dendritic morphologies were in this section calculated by the FDM-PA 
approach. The simulations have been performed by issues the data presented in 
Table 7.6. 
•   From CASE 9 to CASE 18 the dendritic growth process is simulated by the 
PA method with the same random node arrangement denoted (PA-(A)) for the 
following ten orientations 

0defθ = � , 5defθ = � , 10defθ = � , 15defθ = � , 20defθ = � , 25defθ = � , 30defθ = � ,

35defθ = � , 40defθ = � , 45defθ = � . 

• From CASE 19 to CASE 27 the dendritic growth is simulated by the FDM-
PA method with different random node arrangements (PA-(B), PA-(C), PA-(D)) 
for the following orientations  

5defθ = � , 15defθ = � , 30defθ = � . 

• From CASE 28 to CASE 33 the dendritic growth process is simulated by the 
FDM-PA method with different randomness of the node arrangement 

0.10ε = , 0.25ε =  and 0.49ε = , for the following 5defθ = �  and 30defθ = �  

orientations.  

• From CASE 34 to CASE 36 the dendritic growth is simulated by the FDM-
PA method including the randomness growth correction factor responsible for 
the correction in the lengths of thexandy branches for different random node 
arrangements (PA-(B)-F, PA-(C)-F, PA-(D)-F). 

• CASE 2 where the dendritic growth is simulated by the conventional FDM-
CA method with random fluctuations is compared to the CASE 9 and 34 where 
the dendritic growth process is simulated by the PA method with and without 
correction randomness growth correction factor. 

• Finally, Figures 7.40 and 7.41 represent seven dendrites growing 
simultaneously at orientations 0� , 45�  and  orientations 5� , 10� , 12� , 22� , 27� , 
31� , 40� . The randomness growth criteria factor has been included. 

The results have been arranged and represented in the following way. The FDM-
PA calculations with different orientations are depicted in Figure 7.30 based on 
the same node arrangements. The lengths of the dendritic branches of these 
calculations are depicted in Figure 7.31. Then Figures 7.33-7.35 show the FDM-
PA results with the varied random node arrangement for a single dendrite with 

5defθ = ° , 15defθ = °and 30defθ = ° , respectively. The length of the dendritic 

branches of theses calculations are depicted in Figure 7.32. Figure 7.36 and 
Figure 7.37 represent dendritic growth for a single dendrite with 5defθ = °and 

30defθ = °  for different node arrangement randomness. Finally, the simulations 
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are shown for the conventional CA approach with random fluctuations in Figure 
7.39 (top) and for the same input data for the PA method, with and without 
randomness growth correction factor, Figure 7.39 (middle and bottom) (see 
discussion in the next paragraph). 
 
Table 7.6: Parameters varied  in the calculations with PA method. 

CASE defθ  

[°] 

∗λ  
[-] 

ε  
[-] 

 
method 

CASE 9 0°  0  0.49 PA-(A) 
CASE 10 5°  0  0.49 PA-(A) 
CASE 11 10°  0  0.49 PA-(A) 
CASE 12 15°  0  0.49 PA-(A) 
CASE 13 20°  0  0.49 PA-(A) 
CASE 14 25°  0  0.49 PA-(A) 
CASE 15 30°  0  0.49 PA-(A) 
CASE 16 35°  0  0.49 PA-(A) 
CASE 17 40°  0  0.49 PA-(A) 
CASE 18 45°  0  0.49 PA-(A) 
CASE 19 5°  0  0.49 PA-(B) 
CASE 20 5°  0  0.49 PA-(C) 
CASE 21 5°  0  0.49 PA-(D) 
CASE 22 15°  0  0.49 PA-(B) 
CASE 23 15°  0  0.49 PA-(C) 
CASE 24 15°  0  0.49 PA-(D) 
CASE 25 30°  0  0.49 PA-(B) 
CASE 26 30°  0  0.49 PA-(C) 
CASE 27 30°  0  0.49 PA-(D) 
CASE 28 5°  0  0.10 PA-(A) 
CASE 29 5°  0  0.25 PA-(A) 
CASE 30 5°  0  0.49 PA-(A) 
CASE 31 30°  0  0.10 PA-(A) 
CASE 32 30°  0  0.25 PA-(A) 
CASE 33 30°  0  0.49 PA-(A) 
CASE 34 0°  0.05 0.49 CA 
CASE 35 0°  0  0.49 PA-(A) 
CASE 36 0°  0  0.49 PA-(A)-F 

 



Numerical Results of the Dendritic Growth 

 

115 

Table 7.7: Initial positions and orientations of nucleuses for simulation with the FDM-PA 
method (see Figure 7.40). 

nucleus ,x y position [µm] orientation [deg] 

1 120, 290  45 
2 150, 550  0  
3 300, 100  0  
4 350, 350  0  
5 410, 550 45 
6 500, 150  0  
7 570, 380 45 

 
Table 7.8: Initial positions and orientations of nucleuses for simulation with the FDM-PA 
method (see Figure 7.41). 

nucleus ,x y position [µm] orientation [deg] 

1 120, 290 12 
2 150, 550 27 
3 300, 100 22 
4 350, 350  5 
5 410, 550  31 
6 500, 150 40 
7 570, 380 10 

 

7.3.3.1 Discussion of the Results 

Grid size and time step. Exactly the same assumptions as for the CA method 
concerning the grid size and the time step were applied. For the PA method all 
depicted results of simulations are shown for different orientations after 1500 
time steps of the length 106.82x10FDMt −∆ = s, so after 61.02x10− s. The examples 

with several dendrites growing simultaneously at orientations 0� ,45�  and with 
different orientations are presented after 350, 700, 1500 and 2500 time steps, so 
after 72.39x10− s, 74.77x10− s, 61.02x10− s and 61.71x10− s, respectively. 
Thermal fluctuations. In the PA approach it is not necessary to involve any 
fluctuations. In the novel method, the calculations are done on the random node 
arrangement. This substitutes the random fluctuations what can be observed on 
all of the performed simulations. 
Radius of neighbourhood. In the two dimensional square lattice there are many 
neighbourhood configurations possible. For the random node arrangement the 
new configuration of the PA method has been chosen which contain points 
within circle with radius HR  cantered from the reference point. Larger the value 

of HR  is chosen more dendritic and irregular structures can be seen. Here 
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opposite to the CA approach, where the closest neighbourhood configuration is 
being analyzed a more extended area of neighbours needs to be taken into the 
consideration. The radius of neighbourhood should be kept at a minimum of 1.5 
µm in case of 0.5a = µm.  
Generation of random node arrangement. The orientations of crystallographic 
branches of different dendrites have different orientations in general. It is 
commonly recognized that this process is difficult to simulate by the classical 
CA method since the dendrite will always switch to 0�  or 45�  direction during 
the growth. Our testing is thus primarily focused on the growth of the dendrite at 
different orientations by the novel PA method. Simulated examples are for the 
random node arrangements PA-(A),…, PA-(F) presented in Figures 7.33-7.35, 
respectively. They show that when employing the PA method any of the 
orientations can easily be achieved. Results show that the proper growth 
direction is always observed with increasingly random ( 0.49ε → ) node 
arrangement, see equations (6.15) and (6.16). 
Randomness growth correction factor. For the same input parameters the 
dendritic growth process was simulated by the CA method with random 
fluctuations and by the PA method with and without randomness growth 
correction factor for the orientation 0defθ = �  (see CASE 2 and CASE 9). The 

lengths of x  and y  branches were different in both methods. This is due to the 
influence of the random node arrangement and subsequent variable distances 
between the nodes. In the CA method the same value of a  is taken while for the 
PA method this distances are different and might vary between 
maximum 2x y aε∆ = ∆ = and minimum ( )2 1x y aε∆ = ∆ = − . It can be concluded 

that the differences in the length between x  and y  directions with respect to the 
random node arrangement are almost constant and kept below 5%≈ . The 
standard deviation was calculated for the x  and y  lengths of the dendritic arms 
and for the ratio between them (see Figures 7.31 and 7.32). The following 
features can be summarized from Table 7.9. The average length of the dendrite 
at ten different orientations and some random node arrangement with 0.49ε =  is 
152.8± 5.18 µm. The average length of the dendrite is calculated with four 
different random node arrangement for the fixed angles 5° , 15° and 30°  is 
153.37± 5.39 µm, 156.12± 6.44 µm and 151.75± 5.36 µm, respectively. From 
this data one can conclude that the errors caused by the rotation of the dendrite 
are at the same order as the errors cussed by different random node 
arrangements. Figure 7.36 and Figure 7.37 demonstrate that when reducing 
ε from 0.49 to 0.1 the PA starts to behave like the CA and the proper simulation 
of the dendrite is not possible. We are too close to the classical node structure in 
such case and CA limitations appear. To achieve the same dendrite length in PA 
method as in the CA method, an empirical factor, which multiplies the calculated 
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velocity in the PA method, was added in the code. It can be shown that putting 
randomness growth correction factor 1.25, (for the random node arrangementε = 
0.49) in the PA calculations, the primary branches will have the same length in 
both methods (see Figure 7.38). The factor was included into the calculations of 
the movements of interface in equations (5.23) and (5.25). 
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CASE 13 

20defθ = �  

l  

l  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CASE 12 

15defθ = �  

l  

l  



Numerical Results 

 

120 

CASE 15 

30defθ = �  

l  

l  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CASE 14 

25defθ = �  

l  

l  



Numerical Results of the Dendritic Growth 

 

121 

CASE 16 

35defθ = �  

l  

l  

l  

l  

CASE 17 

40defθ = �  
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l  

l  

CASE 18 

45defθ = �  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.30: Simulated dendrites with different orientations by the PA method for the same PA-
(A) random node arrangement. 
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Figure 7.31: The lengths of the dendritic branches in x  and y directions for  ten orientations, 

random node arrangement PA-(A), (see Figure 7.30). 
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Figure 7.32: The lengths of the dendrite branches in x  and y  directions at different orientations 

5defθ = � , 15defθ = �  and 30defθ = �  (from the top to the bottom), for the random node 

arrangements (see Figures 7.33-7.35). 
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Table 7.9: The lengths of dendritic branches in x  and y  directions with respect to the random 

node arrangements. 
 

/x y   
average 
length 
ratio 
[-] 
 

σ   
standard 
deviation 

of 
/x y  

[-] 

R 
E 
S 
U 
L 
T 
S 

 
method 

x  
branch 
length 
[µm] 

 

y  
branch 
length 
[µm] 

 

ratio of 
primary 
dendrite 

arms 
/x y  

[-] 

average 
length 

of 
xandy  
[µm] 

σ   
standard 
deviation 

of 
lenght 
[µm] 

5�  PA-(A) 148.0 154.0 0.961 

5�  PA-(B) 160.0 150.0 1.066 
 

0.982 
 

0.057 

5�  PA-(C) 145.0 155.0 0.935 

5�  PA-(D) 155.0 160.0 0.968 

153.37 5.39 

15�  PA-(A) 154.0 160.0 0.962 

15�  PA-(B) 160.0 150.0 1.066 
 

1.032 
 

0.049 

15�  PA-(C) 155.0 145.0 1.068 

15�  PA-(D) 165.0 160.0 1.031 

156.12 6.44 

30�  PA-(A) 160.0 157.0 1.019 

30�  PA-(B) 151.0 145.0 1.041 
 

1.033 
 

0.010 

30�  PA-(C) 155.0 150.0 1.033 

30�  PA-(D) 151.0 145.0 1.041 

151.75 5.36 

0�  PA-(A) 160.0 154.0 1.038 

5�  PA-(A) 148.0 154.0 0.961 

10�  PA-(A) 142.0 148.0 0.959 

15�  PA-(A) 154.0 160.0 0.962 

20�  PA-(A) 160.0 148.0 1.081 

 
 
 
 
 

0.980 

 
 
 
 
 

0.041 

25�  PA-(A) 154.0 148.0 1.040 

30�  PA-(A) 160.0 157.0 1.019 

35�  PA-(A) 154.0 148.0 1.040 

40�  PA-(A) 157.0 151.0 1.039 

45�  PA-(A) 151.0 148.0 1.020 

152.8 5.18 
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CASE 20 
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CASE 22 

15defθ = �  

l  

l  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.33: Simulated dendritic growth at orientation 5� with different random node 
arrangements: PA-(B), PA-(C), PA-(D). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CASE 21 

5defθ = �  
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Figure 7.34: Simulated dendritic growth at orientation 15�  with different random node 
arrangements: PA-(B), PA-(C), PA-(D). 
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CASE 25 

30defθ = �  
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l  
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CASE 27 

30defθ = �  

l  

l  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.35: Simulated dendritic growth at orientation 30�  with different random node 
arrangements: PA-(B), PA-(C), PA-(D). 
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CASE 28 

5defθ = �  
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CASE 29 
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CASE 30 

5defθ = �  

l  

l  

CASE 31 

30defθ = �  

l  

l  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.36: Simulated dendritic growth at orientation 5defθ = °  for the different node 

arrangements randomness 0.1, 0.25, 0.49ε ε ε= = = . 
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CASE 32 

30defθ = �  

l  

l  

l  

l  

CASE 33 

30defθ = �  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.37: Simulated dendritic growth at orientation 30def = °θ  for different node arrangement 

randomness 0.1, 0.25, 0.49ε ε ε= = = . 
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CASE 34 
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l  

0�  with randomness growth correction factor 

CASE 35 

l  

l  

0�  with randomness growth correction factor 
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CASE 36 

l  

l  

0�  with randomness growth correction factor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.38: Simulated dendritic growth by the PA method with randomness growth correction 
factor 1.25 for PA-(B)-F, PA-(C)-F, PA-(D)-F  node arrangements (from the top to the bottom). 
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Figure 7.39: Simulated dendritic growth by the CA method, PA method and PA method with 
randomness growth correction factor (from the top to the bottom). 
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Figure 7.40: Seven dendrites growing simultaneously at orientations 0� and 45�  (see Tables 7.3 

and 7.8) after (1) 350, (2) 700, (3) 1500 and (4) 2500 time steps of the length 106.82x10− s by the 
FDM-PA method (such a simulation is not possible with the FDM-CA method). 
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Figure 7.41: Seven dendrites growing simultaneously at different orientations (see Table 7.7) 
after (1) 350, (2) 700, (3) 1500 and (4) 2500 time steps of the length 106.82x10− s by the FDM-
PA method. 
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8 Summary and Conclusions  

8.1 Summary of the Main Contributions 

The principal goal of the present dissertation was to develop a simulation tool 
for modelling the grain structure in solidification by using the coupled 
mesoscopic and macroscopic models and validation by the experimental results 
as well as to be able to simulate the dendritic growth on the micro level of 
calculations. Two numerical models were developed to be able to simulate the 
solidification structure at different levels. The calculations were in both cases 
done by the conventional CA method with rectangular polygon mesh structure 
and by the newly developed PA approach, based on the irregular positions of the 
nodes. The differences in numerical implementation of the classical CA, and the 
new PA microstructure models were discussed. Usefulness of the novel 
approach has been demonstrated. The present dissertation can be summarized by 
the following contributions:    
 

8.1.1 ECT/CET Macro-Mesoscopic Model 

• A coupled multiscale model was developed first to predict the nucleation, 
growth and final grain structure (ECT and CET) of the CC steel billets. 
The physical model is composed of the macroscopic heat transfer model 
of the CC process solved by the meshless LRBFCM method and the 
mesoscopic model solved by the CA and PA methods. The undercooling 
temperatures received from the macroscopic heat transfer simulator for 
chosen alloy, are interpolated to the mesoscopic level for the regular CA 
cells (or random PA nodes) before the calculations start. On the meso 
level the processes of nucleation, growth and impingement of the grains 
are modelled as follows: (I) the nucleation is modelled through a 
continuous dependency of the nucleation density on temperature by the 
Gaussian distribution. Different nucleation parameters are used at the 
boundary and in the bulk region. (II) The growth and impingement are 
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modelled by the KGT model. The CA method is based on the Nastac’s 
and simplified neighbourhoods, while for the PA method the 
neighbourhood in the shape of circle is used. The governing numerical 
equations were first solved by the LRBFCM-CA method and then 
converted to the novel LRBFCM-PA method. 

 
• Numerical examples are done for square billets of the dimension 140 mm 

and 180 mm. Several related industrial examples are collected in 
Appendix 1. Fixed input parameter of the model represents the 
macroscopic temperature field obtained from the Štore Steel billet 
simulation system. All other grain structure physical model parameters 
are varied, such as: the surface and the bulk area, mean nucleation 
undercooling, standard deviation of undercooling, maximum density of 
nuclei. The sensitivity study of these parameters were presented through 
the numerical results. The influence of the variation of the principal 
macroscopic heat transfer parameters (casting temperature and casting 
speed) on calculated grain structure is shown as well. 
In the dissertation the ECT/CET model parameters were adjusted in order 
to obtain the experimentally determined actual billet ECT and CET 
positions of the heat 46352 for the alloy properties 51CrMoV4 (Al: 0.02, 
Cr: 1.05, Cu: 0.125, Mn: 0.9, Mo: 0.025, Ni: 0.1, Si: 0.275, V: 0.155, C: 
0.51, P: 0.0125, S: 0.0275 wt%). A systematic procedure is outlined for 
adjusting of the model data with the experiment.  
Many measurements from the Štore Steel alloyed for different alloys and 
casting temperatures and casting speeds were analysed (see Appendix1). 
The dimensions of the three characteristic zones: chill, columnar and 
equiaxed were compared to the simulated examples. The following heats 
for different casting parameters are analyzed. Different casting 
temperatures:  

� heat 48695 3/I for the alloy properties 51CrMoV4 (Al: 0.02, Cr: 
1.05, Cu: 0.125, Mn: 0.9, Mo: 0.025, Ni: 0.1, Si: 0.275, V: 0.155, 
C: 0.51, P: 0.013, S: 0.027 wt%). 

� heat 48695 3/III for the alloy properties 51CrMoV4 (Al: 0.02, Cr: 
1.05, Cu: 0.125, Mn: 0.9, Mo: 0.025, Ni: 0.1, Si: 0.275, V: 0.155, 
C: 0.51, P: 0.013, S: 0.027 wt%). 

� heat 48807 3/II for the alloy properties 51CrMoV4 (Al: 0.027, Cr: 
1.05, Cu: 0.125, Mn: 0.9, Mo: 0.200, Ni: 0.125, Si: 0.275, V: 
0.095, C: 0.00, P: 0.015, S: 0.013 wt%). 
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� 48807 3/IV for the alloy properties 51CrMoV4 (Al: 0.027, Cr: 
1.05, Cu: 0.125, Mn: 0.9, Mo: 0.200, Ni: 0.125, Si: 0.275, V: 
0.095, C: 0.00, P: 0.015, S: 0.013 wt%). 

 
and different casting speeds:  

� 46484/1 for the alloy properties 52 CrMoV4 (Al: 0.027, Cr: 1.05, 
Cu: 0.125, Mn: 0.9, Mo: 0.200, Ni: 0.125, Si: 0.275, V: 0.095, C: 
0.00, P: 0.015, S: 0.013 wt%). 

� 46693/1 for the alloy properties 25MoCrV4 (Al: 0.027, Cr: 1.05, 
Cu: 0.125, Mn: 0.750, Mo: 0.225, Ni: 0.100, Si: 0.180, V: 0.025, 
C: 0.00, P: 0.015, S: 0.013 wt%). 

� 46693/3 for the alloy properties 25MoCrV4 (Al: 0.027, Cr: 1.05, 
Cu: 0.125, Mn: 0.750, Mo: 0.225, Ni: 0.100, Si: 0.180, V: 0.025, 
C: 0.00, P: 0.015, S: 0.013 wt%). 

 

8.1.2 Dendritic Growth Model 

• The aim of the dendritic growth model is the simulation of thermally 
induced liquid-solid dendritic growth in two dimensions by a coupled 
deterministic continuum mechanics heat transfer model and a stochastic 
localized phase change kinetics model that takes into account the 
undercooling, curvature, kinetic and thermodynamic anisotropy. The 
stochastic model receives temperature information from the deterministic 
model and the deterministic model receives the solid fraction information 
from the stochastic model. The heat transfer model is solved on a regular 
grid by the standard explicit FDM. The phase-change kinetics model is 
solved by the classical CA approach and a novel PA approach. The CA 
approach is established on quadratic cells and the Neumann 
neighbourhood. The PA approach is established on randomly distributed 
points and neighbourhood configuration, similar as appears in meshless 
methods. Both methods provide same results in case of regular PA node 
arrangements and neighbourhood configuration with five points.  

• Numerical examples are done for square domain of dimension 350 µm 
with Neumann boundary conditions. Fixed input parameter of the 
dendritic model represent the material properties for the pure aluminium, 
cell size, average Gibbs-Thomson coefficient and anisotropy coefficients 
for the CA/PA methods. In the CA method the numerical results are 
prepared for the following varied input parameters: thermal fluctuations, 
curvature calculation radius and Gibbs-Thomson coefficient. Finally, the 
growth process was simulated by the CA method for seven four branched 
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dendrites growing simultaneously at orientations 0� ,45�  and by the PA 
method at the same orientations as for the CA model and additionally at 
random orientations. 

 

8.2 Technological Relevance 

The developed numerical model for simulating grain growth structures during 
the CC of steel is found to be a very important tool for extending the 
technologically relevant capabilities of the already developed simulation system 
[Šarler and Vertnik, 2002] in the Štore Steel company and steel industry in 
general. These models are appropriate for optimizing the process parameters. 
Despite the powerful futures of the already developed thermal model, approved 
in practise, the developed meso-macro model can be used for simulation of the 
grain growth process which seems to be a technologically relevant problem. The 
main scientific achievement of the dissertation is a development of an entirely 
new generation of PA methods. This method can be used in grain growth and 
dendritic growth modelling. The main characteristic of the new approach are: 

• No need for mesh generation or polygonisation. Only the node 
arrangement has to be generated, but without any geometrical connection 
between the nodes. 

• In the new PA method the governing equations are solved with respect to 
the location of points (not polygons) on the computational domain.  

• PA method offers a simple and powerful approach of CA type 
simulations. It was shown that both methods are able to qualitatively 
simulate a diverse range of solidification phenomena at approximately 
the same CPU time. 

• Straightforward node refinement possibility. 
• Straightforward extension to 3D. 

 

8.3 Conclusions and Future Work 

The computational modelling is one of the tools which increasingly helps the 
engineers to better understand the influence of different process parameters on 
the details of microstructure. With the help of computational modelling it is able 
to dissect the microstructure in space and in its evolution in time, and can, for 
example, perform different parameter studies to decide how to ameliorate the 
manufacturing process.  
We construct two numerical models defining the underlying physics of the 
different sub-processes that influence on microstructure evolution. Our models 
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are capable of simulating the evolution of the grain growth formation using the 
underlaying laws of physics as the input data.  
 
The following conclusions can be summarized: 

• The developed numerical model for prediction of grain strictures is 
capable to predict the position of ECT/CET transitions with a very good 
agreement to the experimental data from the Štore Steel company. It is 
shown that the measurements are very important aspect during the 
verification of the numerical model. The novel PA approach is 
successfully implemented to the ECT/CET model. The advantage of the 
PA method is its simplicity, simple transitions and straightforward 
applicability in non-uniform mesh structure. 

 
• In this dissertation, a new PA approach is the first time demonstrated for 

prediction of the grain structure which occurs during the CC of steel. It is 
shown that the PA method offers a simple and powerful approach of 
cellular simulations. It is shown that both methods used are able to 
qualitatively and quantitatively model a diverse range of solidification 
phenomena in almost the same calculation time. PA method offers an 
attractive alternative to the classical CA method, because of its flexibility 
of node density and neighbourhood definition. The density of the nodes 
can in principle vary across the domain of interest and the neighbourhood 
can be defined in a flexible way what establish a very promising CA 
computational environment. 

 
• The new approach always brings some disadvantages. For the ECT/CET 

model we need to be careful when choosing the dimension of radius of 
the neighbourhood. To small or too high value will bring distorted forms 
of the columnar grains. A sensitivity study needs to be done. Any of the 
newly developed neighbourhood configurations for the CA and PA 
methods has been subject to comprehensive verification tests. The reason 
for this is that there is a high probability that some of the nucleuses will 
not take part in the growth stage. There will be to many left cells (points) 
on the domain what will not give a reliable sight of microstructure. There 
is also a possibility that the code might never complete calculations.  

 
• It is shown that the novel PA method can also be successfully used for 

calculation of the dendrites in any preferential direction. The novel 
approach is developed and introduced in this work to circumvent the 
mesh anisotropy problem, associated with the classical CA method. 
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Dendritic structures are in the CA approach sensitive on the relative 
angle between the cell structure and the preferential crystal growth 
direction which is not physical. The use of FDM-PA method instead of 
FDM-CA method implies transfer of the results from the regular FDM 
mesh to the irregular PA node arrangements and vice versa. This is not 
the case in the classical FDM-CA method. A replacement of the FDM 
method with a meshless [Atluri, 2004; Liu and Gu, 2005; Šarler et al., 
2005; Šarler and Vertnik, 2006] method that is able to directly cope with 
irregular node arrangement is underway. 

 
• The radius of neighbourhood has to be chosen carefully. To small or too 

high value will bring distorted dendritic forms. The second important 
aspect is the generation of the random node arrangement. The 
randomness of PA nodes is required in order to be able to rotate the 
dendrites, otherwise we are too close to the conventional CA approach. 

 
 

• The efforts of the future work should be focused on: 
- Inclusion of the species diffusion. 
- The thermal and the solutal dendritic growth should be coupled. 
- Deformation of grains due to mechanical forces. 
- Calculating of the recrystallization processes in addition to the 

solidification. 
- The ECT/CET model should be upgraded by including the 

concentration field received from the measurements from the 
industry. The influence of the concentration to the formation of 
equiaxed and columnar grains should be analyzed. 
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Appendix A  

A.1 Database of Measurements from Štore Steel 
Company 

 
Four Technical Reports from the Slovenian Štore Steel company were received.  
 
1. Influence of casting speed on the grain structure [Manojlović, 2008]. 
2. Influence of casting speed on the grain structure [Manojlović, 2007]. 
3. Research on grain morphology (casting temperature and casting speed) 

[Manojlović, 2008].  
4. Influence of EMS on the grain structure [Manojlović, 2008]. 
 
 
From these measurements, the positions of ECE/CET transformations for the 
different casting parameters were determined. The results were divided into four 
groups according to the received reports. From all the measurements we choose 
only few examples which are believed to be of the good quality. First one 
46352_1 represents the example from the Chapter 7, where the sensitivity. The 
following alloys were analyzed: 48807 3/II, 48807 3/IV, 48695 3/II, 48695 3/IV, 
and for the different casting speeds and 46484/1, 46693/1 and 46693/3 for the 
different casting temperatures. For all Baumann prints the centre and corner 
cross sections of the temperature fields are prepared.  
Finally the chosen measurements were compared with the simulated result 
prepared for the conventional grid structure using Nastac’s neighbourhood 
configuration (following procedures from Chapter 5).  
Mesoscopic CA model was studied and refined in order to obtain a good 
agreement with the measurement observations. The simulated positions of 
ECT/CET transformation fit to the industrial examples.  
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Table A.1: Database of measurements from Štore Steel company. 

Alloy Material castV  

[m/min] 
castT  

[K] 

Dimension 
[m] 

Simulation 

48807 3/II 52CrMoV4 0.95 1522 0.180 Figure A2 
48807 3/IV 52CrMoV4 1.15 1520 0.180 Figure A3 
48695 3/I 51CrMoV4 0.95 1524 0.180 Figure A7 

48695 3/III 51CrMoV4 1.15 1529 0.180 Figure A9 
48696 3/I 51CrMoV4 0.95 1523 0.180 * 
48696 3/II 51CrMoV4 1.05 1521 0.180 * 
48696 3/III 51CrMoV4 1.15 1520 0.180 * 

48939/1 51CrV4 0.95 1531 0.180 * 
48939/2 51CrV4 1.15 1531 0.180 * 
48938/1 51CrV4 0.95 1530 0.180 * 
48938/2 51CrV4 1.15 1530 0.180 * 

Reference 
Case 46352 

51CrMoV4 1.65 1530 0.140 Figure A1 

46484/1 52CrMoV4 1.05 1522 0.180 Figure A11 
46484/3 52CrMoV4 1.05 1520 0.180 * 
46693/1 25MoCr4 1.12 1545 0.180 Figure A13 
46693/3 25MoCr4 1.12 1550 0.180 Figure A15 
46392/1 51CrV4 1.05 1529 0.180 * 
46392/3 51CrV4 1.05 1528 0.180 * 
46340/1 51CrV4 1.08 1522 0.140 * 
46340/3 51CrV4 1.08 1529 0.140 * 
46342/1 51CrV4 1.80 1527 0.140 * 
46342/3 51CrV4 1.80 1528 0.140 * 
46352/3 51CrV4+Mo 1.75 1531 0.140 * 
46379/1 52CrMoV4 1.10 1520 0.180 * 
46379/3 52CrMoV4 1.10 1517 0.180 * 
46381/1 50CrV4 1.10 1516 0.180 * 
46381/3 50CrV4 1.10 1519 0.180 * 
46391/1 51CrV4 1.07 1527 0.180 * 
46391/3 51CrV4 1.07 1528 0.180 * 

50644/3-1 51 CrV4   0.180 Figure A17 
50644/3-2 51 CrV4   0.180 Figure A18 

 
* bad quality of measurements or entirely unknown casting parameters. 
 
Table A.2: Material properties - compositions 

Heat/ 
compositions 

Al Cr Cu Mn Mo Ni Si V C P S 

46352 0.02 1.05 0.125 0.9 0.025 0.1 0.275 0.155 0.51 0.0125 0.0275 
48695 3/1 0.02 1.05 0.125 0.9 0.025 0.1 0.275 0.155 0.51 0.013 0.027 
48695 3/III 0.02 1.05 0.125 0.9 0.025 0.1 0.275 0.155 0.51 0.013 0.027 
48807 3/II 0.027 1.05 0.125 0.9 0.200 0.125 0.275 0.095 0.00 0.015 0.013 
48807 3/IV 0.027 1.05 0.125 0.9 0.200 0.125 0.275 0.095 0.00 0.015 0.013 

46484/1 0.027 1.05 0.125 0.9 0.200 0.125 0.275 0.095 0.00 0.015 0.013 
46693/1 0.027 1.05 0.125 0.750 0.225 0.100 0.180 0.025 0.27 0.015 0.013 
46693/3 0.027 1.05 0.125 0.750 0.225 0.100 0.180 0.025 0.27 0.015 0.013 
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Figure A.1: Left: Baumann print, right: simulated result for steel 51CrMoV4, dimension 140 
mm, 1530castT = K and 1.75castV = m/min  (Reference case, heat 46352). 
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Figure A.2: Centerline and corner temperatures along the casting direction (heat 46352). 
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Figure A.3: Left: Baumann print, right: simulated result for steel 51CrV4+Mo, dimension 180 
mm, castT = 1522 K and castV = 0.95 m/min. 
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Figure A.4: Centerline and corner temperatures along the casting direction (heat 48807 3/II). 
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Figure A.5: Left: Baumann print, right: simulated result for steel 51CrV4+Mo, dimension 180 
mm, castT = 1520 K and castV = 1.15 m/min . 
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Figure A.6: Centerline and corner temperatures along the casting direction (heat 48807 3/IV). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix A  

 

155 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.7: Left: Baumann print, right: simulated result for steel 51CrV4+Mo, dimension 180 
mm, 1524castT = K and 0.95castV = m/min.   
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Figure A.8: Centerline and corner temperatures along the casting direction (heat of 48695 3/I). 
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Figure A.9: Left: Baumann print, right: simulated result for steel 51CrV4+Mo, dimension 180 
mm, castT = 1525 K and castV = 1.15 m/min. 
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Figure A.10: Centerline and corner temperatures along the casting direction (heat 48695 3/III). 
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Figure A.11: Left: Baumann print, right: simulated result for steel 52CrMoV4o, dimension 180 
mm, castT = 1522 K and castV = 1.05 m/min. 
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Figure A.12: Centerline and corner temperatures along the casting direction (heat 46484/1). 
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Figure A.13: Left: Baumann print, right: simulated result for steel 25MoCr4, dimension 180 
mm, castT = 1545 K and castV = 1.12 m/min. 
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Figure A.14: Centerline and corner temperatures along the casting direction (heat 46693/1).  
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Figure A.15: Left: Baumann print, right: simulated result for steel 25MoCr4, dimension 180 
mm, castT = 1550 K and castV = 1.12 m/min. 
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Figure A.16: Centerline and corner temperatures along the casting direction (heat 46693/3). 
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Influance of EMS on the final microstructure  (report  Štore, 19.12.2008) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.17: Baumann print for steel 51CrV4, dimension 180 mm, with EMS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.18: Baumann pront for steel 51CrV4, dimension 180 mm, without EMS. 
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A.2 Meshless Solution Procedure of the Macroscopic 
Heat Transfer Model 

 
The solution procedure follows developments in publications [Šarler and 
Vertnik, 2006] and [Lorbiecka et al., 2009] We seek for mixture temperature at 
time 0t t+ ∆  by assuming known initial temperature, velocity field, and boundary 

conditions at time 0t . The initial value of the temperature ( ),T tp  at a point with 

position vector p  and time 0t  is de fined through the known function 0T  

 

 ( ) ( )0, ; .T t T= ∈Ω + ∂Ωp p p  (A1) 

The boundary ∂Ω  is divided into not necessarily connected parts 
D N R∂Ω = ∂Ω ∪ ∂Ω ∪ ∂Ω  with Dirichlet, Neumann and Robin type boundary 

conditions, respectively. At the boundary point p  with normal ∂Ωn  and time 

0 0t t t t≤ ≤ + ∆ , these boundary conditions are defined through known functions 
DT∂Ω , NT∂Ω , RT∂Ω , R

refT∂Ω  

 ; ,D DT T∂Ω= ∈∂Ωp  (A2) 

 ; ,N NT T
n ∂Ω

Γ

∂ = ∈∂Ω
∂

p  (A3) 

 ( ); ,R R R
refT T T T

n ∂Ω Γ
Γ

∂ = − ∈∂Ω
∂

p  (A4) 

The numerical discretization of equation (A1), using explicit (Euler) time 
discretization has the form 
 

 
( ) ( )0 0

0 0

h h h
T

t t

∂ −≈ = ∇ ⋅ ∇
∂ ∆
ρ ρ ρ λ  (A5) 

From equation (A1)  the unknown function value lh  in domain node lp  can be 

calculated as 

 ( )2
0 0 0 0 0

0 0

,l l l l l l

t
h h T k T

c

∆= + ∇ ⋅∇ + ⋅∇λ
ρ

 (A6) 
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The spatial derivatives in equation (A5) are approximated by the LRBFCM. In 
the LRBFCM, the representation of unknown function value over a set of l N  (in 

general) non-equally spaced nodes ; 1,2,...,l n ln N=p  is made in the following 

way 

 ( ) ( )
1

,
l K

l k l k
k=

≈∑p pφ ψ α  (A7) 

where l kψ  stands for the shape functions, l kα  for the coefficients of the shape 

functions, and l K  represents the number of the shape functions. The left lower 

index on entries of equation (4.18) represents the influence domain (subdomain 
or support) l ω  on which the coefficients l kα  are determined. The influence 

domains l ω  can in general be contiguous (overlapping) or non-contiguous (non-

overlapping). Each of the influence domains l ω  includes l N  nodes of which 

l NΩ  can in general be in the domain and l NΓ  on the boundary, i.e. 

l l lN N NΩ ∂Ω= + . The total number of all nodes np  is equal N N NΩ ∂Ω= +  of 

which NΓ  are located on the boundary and NΩ  are located in the domain. The 

influence domain of the node l p  is defined with the nodes having the nearest 

1l N −  distances to the node l p . The five nodded 5l N =  influence domains are 

used in this paper. The coefficients are calculated by the collocation 
(interpolation). 
Let us assume the known function values l nφ  in the nodes l np  of the influence 

domain l ω . The collocation implies 

 ( ) ( )
1

.
l N

l n l k l n l k
k=

=∑p pφ ψ α  (A8) 

For the coefficients to be computable, the number of the shape functions has to 
match the number of the collocation points l lK N= , and the collocation matrix 

has to be non-singular. The system of equation (4.19)  can be written in a matrix-
vector notation 

 ( ) ( ); , .l l l l kn l k l n l n l n= = =ψ α p pψ ψ φ φΦΦΦΦ  (A9) 

The coefficients lα  can be computed by inverting the system  

 1
l l l

−=α ψ Φ.Φ.Φ.Φ.  (A10) 
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By taking into account the expressions for the calculation of the coefficients lα , 

the collocation representation of temperature ( )φ p  on subdomain l ω  can be 

expressed as 

 ( ) ( ) -1
l kn

1 1

ψ .
l lN N

l k l n
k n= =

≈∑ ∑p pφ ψ φ  (A11) 

The first partial spatial derivatives of ( )φ p  on subdomain l ω  can be expressed 

as 

 ( ) ( ) -1
l kn

1 1

ψ ; , .
l lN N

l k l n
k n

x y
p p= =

∂ ∂≈ =
∂ ∂∑ ∑p p

ς ς

φ ψ φ ς  (A12) 

The second partial spatial derivatives of ( )φ p  on subdomain l ω  can be 

expressed as 

 
( ) ( )

2 2
-1

l kn
1 1

ψ ;

, , .

l lN N

l k l n
k np p p p

x y

= =

∂ ∂≈
∂ ∂

=

∑ ∑p p
ς ξ ς ξ

φ ψ φ

ς ξ
 (A13) 

The radial basis functions, such as multiquadrics, can be used for the shape 
functions 

 ( ) ( ) 1/22 2 ,l k l kr c = + p pψ  (A14) 

where c  represents the shape parameter. The explicit values of the involved first 
and second derivatives of ( )kψ p  are 

 ( )
( )1/ 22 2

l k
l k

l k

p p

p r c

ς ς

ς

ψ
−∂ =

∂ +
p , , ,x y=ς  (A15) 

 ( ) ( )
( )

22 22

3/ 22 2 2

l k l k

l k

l k

r p p c

p r c

ς ς

ς

ψ
− − +∂ =

∂ +
p , , ,x y=ς  (A16) 
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