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Modelling of Microstructure Formation in Metals by a Novel
Point Automata Method.

Abstract

The research described in this dissertation is deduon the numerical
simulation and analysis of the mesoscopic and reeapic models coupled with
the heat transfer calculations which are able tedipt the grain structure
formation and the dendritic growth occurring dursddidification of metals. The
grain structure formation model is applied to Egathto Columnar Transition
(ECT) and Columnar to Equiaxed Transition (CET}¥tafel billet in Continuous
Casting (CC). The dendritic growth model is appliedsimulation of thermally
driven dendritic structures in pure aluminium.

First a 2D meso-macroscopic model was describeddamdloped to predict the
grain structure ((ECT) and (CET)) in the CC stedets. The model predicts
well the temperature field in the Store Steel CCcmze. The macroscopic
model is designed to be able to calculate the gteadperature distribution in
the continuously cast billet as a function of tleolwing process parameters:
billet dimension, steel grade, casting temperattasting velocity, primary, and
two secondary cooling systems flows, pressurespeeatures, type and quantity
of the casting powder, and the (non)applicationthed radiation shield and
electromagnetic stirring. The Bennon-Incropera mgtcontinuum formulation
is used for the physical model, solved by the rédgeteveloped LRBFCM.The
macroscopic heat transfer model is solved by thehfess technique by using
Local Radial Basis Function Collocation Method (LIREM).

The Cellular Automata (CA) and novel Point Autom@®2) techniques are
used to solve the mesoscopic model. In the CA naethe calculations are done
on the regular cell distribution. The nucleatiommedelled through a continuous
dependency of the nucleation density on temperatwye the Gaussian
distribution. Different nucleation parameters asediat the boundary and in the
bulk region of the billet. The growth and impingerhstages are modelled by
the Kurz, Giovanola, Trivedi (KGT) model. The CA thed is based on the
Nastac’s definition of neighbourhood and newly odiuced four different
neighbourhood configurations. A novel neighbourhcodfiguration of the PA
method has been chosen which contains random paitits circle with radius
of neighbourhood centred around the reference plirthe novel approach the
CA cells have been replaced by the nodes randaybteéd on the domain. The
irregular node arrangement is achieved in praciisea random selection of
points from the centres of CA cells. It is consteacfrom the regular CA cell
distributions by randomly taking away certain petege of the points. The
differences in numerical implementation of the sieal LRBFCM-CA and the



novel LRBFCM-PA are compared. The ECT/CET modelapaaters were
adjusted in order to obtain the experimentally aeteed actual 140 mm x 140
mm billet ECT and CET positions of the heat 4635th\he alloy 51CrMoV4
in the Store Steel company. A systematic proce@uneitlined for adjusting of
the model data with the industrial experiment. Tifeience of the variation of
different parameters on calculated grain structsirdgemonstrated. Calculations
are done for the square billets of the dimensio@ ¥n (and 180 mm x 180
mm). Fixed input parameter of the model represethis macroscopic
temperature field. All other grain structure phgsimodel parameters are varied,
such as: the surface and the bulk area, mean tiodaadercooling, standard
deviation of undercooling, maximum density of nucl&ibbs-Thomson
coefficient, diffusion coefficient in the liquidjape of the liquidus line, initial
carbon concentration. The computational parametstgsh as the node
arrangement size and the time step are constant.

Simulations have been carried out for nominal ogsttonditions, reduced
casting temperature, reduced casting speed, fderelft dimensions of the
square billet 140 mm x 140 mm (and 180 mm x 180 ramj steel grades
(51MoCr4, 51CrV4 and 25MoCr4). The dimensions & three characteristic
zones: chill, columnar and equiaxed, measureddrirntlustry were compared to
the simulated results for five heats with differesdsting speeds and four
different casting temperatures. The simulated wostof ECT/CET compare
well to Baumann prints. Proper response of theisadle model with respect to
the experimentally observed grain structure frore thdustrial process is
proved.

In this dissertation, a novel LRBFCM-PA approach fig the first time
demonstrated for prediction of the grain structuhéch occurs during the CC of
steel by coupling the macro and mesoscopic modiels. shown that the PA
method offers a simple and powerful approach ofulzl simulations. It is
shown that both methods are able to qualitativelg guantitatively model a
diverse range of solidification phenomena.

The second 2D microscopic model was described awkloped for the
prediction of dendritic grain structures formed idgrthe solidification of pure
metals. It is physically described by the heat cmtidn and phase change
kinetics. The deterministic heat transfer modeddklved by the Finite Difference
Method (FDM). The governing microstructure equadicsre solved by the
stochastic CA and PA methods. The stochastic moelsdives temperatures
from the deterministic model and the deterministiodel receives the solid
fraction for the stochastic model. The solid franticalculations are performed
on the regular CA or random PA nodes and then &tk bo the FDM nodes in
order to update the temperature field. The stochastdel includes calculations
of the interface temperature, curvature, Gibbs-Témmcoefficient and crystal
growth velocity. The models account for two anigptes: thermodynamic



anisotropy related to the crystal orientation clamd through the Gibbs-
Thomson coefficient and the kinetic anisotropy whid¢akes into the
consideration the crystal growth direction and pieferential orientation. The
CA approach is established on quadratic cells asuhtann neighbourhood. The
PA approach is established on randomly distribygtethts and neighbourhood
configuration, similar as appears in meshless nasthd’he random node
arrangement is in the dissertation generated fl@régular CA mesh. In order
to construct the irregular node arrangement thec€lAcentres are displaced to
guasi-random positions on the computational domain.

The potentiality of the FDM-CA and FDM-PA modelg atemonstrated through
the predictions of the typical dendritic forms. Nemgal examples are done for
the square domain of dimension 350 um with Neumawmumdary conditions.
Fixed input parameters of the dendritic model reg@n¢ the material properties
for the pure aluminium, cell size, average Gibbsimkon coefficient and
anisotropy coefficients for the CA/PA methods.

In the CA method the numerical results are prep&medhe following varied
input parameters: thermal fluctuations, curvatuakewdation radius and Gibbs-
Thomson coefficient. Subsequently, we present stiar of the growth process
simulated by the CA method for seven four branchieshdrites growing

simultaneously at orientatior® and 45 .

In the PA method the dendritic growth is simulatéth the same and different
types of random node arrangements. Several casgsepared for ten different
orientations and with three different more or lessdom node arrangements.
Next, dendritic growth is simulated by includingetirandomness growth
correction factor responsible for the correction lengths of the primary
branches as compared with the CA method. Finally, present the growth
process simulated by the PA method for seven disdgrowing simultaneously
at the same orientations as for the CA model amdratom orientations.

It is shown that the random grid computing appé¢arse a promising way for
solving problems that can not be achieved by applythe conventional CA
method. The developed numerical LRBFCM-PA methodfasnd to be
applicable for simulating more proper dimensions abill, columnar and
equiaxed zones. The different density of nucleasesss the domain of interest
allows to model the appropriate dimensions of teatmal region which is
usually difficult to predict. For the FDM-CA methothe significant problem
exists in the Cartesian grid structures. It is welbw that the classical CA
methods have a tendency to deform the results togdincing the anisotropy
associated with the network of cells. Consequeresthat dendrites tend to
grow only in the grid direction. A successful sadat for this problems is
presented. A novel FDM-PA method is able to resole preferred
crystallographic orientation-mesh orientation pewbl It is shown that by using
the random node arrangement the dendrites arg¢aptew in any direction.
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Modeliranje formiranja mikrostrukture v kovinah z n ovo
tockovno metodo cekénih avtomatov.

Povzetek

Raziskava, opisana v tej disertaciji, je usmerjgnaumeréno simuliranje in
analizo mezoskopskih in mikroskopskih modelov sk&ph z izr&uni prenosa
toplote. Modeli omogéajo napoved formiranja strukture zrn in dendritoedn
strjevanjem kovin. Model tvorbe zrn je uporablijea zraun prehodov iz
enakoosnih v steliaste (Equiaxed to Columnar Transition ECT) in iz
stebrtastih v enakoosne strukture (Columnar to Equiaxeghdition CET) v
jeklenih gredicah pri kontinuiranem litju (Contirnuse Casting CC). Model rasti
dendritov je uporabljen pri simulaciji toplotno gmla dendritskih struktur v
cistem aluminiju.

Dvodimenzionalni mezo-makroskopski model je najpppjsan in razvit za
napoved strukture zrn (ECT in CET) v kontinuirarnith|jeklenih gredicah.
Model dobro napove temperaturno polje v primeruraag za kontinuirno litje
podjetja Store Steel. Makroskopski model je narepio, da lahko izfaina
ustaljeno temperaturno porazdelitev v kontinuirrio dredici v odvisnosti od
naslednjih procesnih parametrov: dimenzij gredikealitete jekla, z&etne
temperature ulivanja, hitrosti ulivanja, primarnegasekundarnega hladilnega
toka, tlaka, temperature, tipa in kofie livnega praska ter uporabe oziroma
neuporabe radiacijskegith in elektromagnetnega meSanja. Kot fizikalni
model je uporabljen model kontinumske meSanice Bearin Incropere, ki je
bil reSen z uporabo pred kratkim razvite metodeataith baznih funkcij z
lokalno kolokacijo (Local Radial Basis Function (©chtion Method,
LRBFCM). Makroskopski model je bil reSen z breznm@zehniko z uporabo
lokalne kolokacije na podlagi radialnin baznih fakn Pri reSevanju
mezoskopskega modela sta bili uporabljeni tehnéd&rh avtomatov (Cellular
Automata CA) in nova tehnika dkovnih avtomatov (Point Automata PA). Pri
CA metodi izr&uni potekajo na regularni distribuciji celic. Nu&@ja je
modelirana z zvezno odvisnostjo nukleacijske gestotl temperature po
Gaussovi porazdelitvi. Razhi nukleacijski parametri so uporabljeni na robu in
v notranjem obm&a gredice. Faza rasti in zadevanje mej sta maieliz
modelom Kurz, Giovanola, Trivedi (KGT).

Metoda CA je osnovana na Nastacovi definiciji sé&s&Sin nha novo vpeljanih
Stirih razliénih konfiguracijah sosél. Izbrana je nova konfiguracija so&es
metode tékovnih avtomatov. Ta vsebuje nakipe take znotraj kroga z radiem
sose8ine, centriranega okoli refer&me take. V novem pristopu so bile CA
celice zamenjane z nakf§jno porazdeljenimi ttkami v domeni. Neregularna
porazdelitev tok je v praksi ustvarjena z nakdjuo izbiro t@&k iz centralnih celic
metode CA. Konstruirana je iz regularne celice Kljo&nim izklju¢evanjem



dolotenega deleza &&. Narejena je primerjava numémih implementacij
klasikne LRBFCM-CA in nove LBRFCM-PA. Modelski parameCT/CET so
nastavljeni tako, da dobimo eksperimentalno &ehe polozaje ECT in CET za
gredice 140 mm x 140 mm SarZe 46352 jekla s paedfgtijre steel. Zasnovan je
sistemaitni postopek prilagoditve modelskih podatkov glede industrijske
eksperimente. Predstavljen je vpliv variacije rash parametrov na izéanane
strukture zrn. Izréuni so narejeni za gredici kvadratnega profila dimgel140
mm X 140 mm in 180 mm x 180 mm. Fiksni vhodni pagten je makroskopsko
temperaturno polje. Vsi ostali fizikalni paramestrukture zrn se spreminjajo:
povrSinsko in notranje obni@, povpréna nukleacija, podhladitev, standardna
deviacija podhladitve, naj¢@m gostota jeder, Gibbs-Thomsonov koeficient,
difuzijski koeficient kapljevine, naklon likvidusinije, zatetna koncentracija
ogljika). Numeréni parametri, kot sta porazdelitevékoin ¢asovni korak, so
konstantni.

Simulacije so bile narejene pri nominalnih pogojiiivanja, zmanjSani
temperaturi ulivanja, zmanjSani hitrosti ulivanga razléne dimenzije gredic
140 mm x 140 mm and (180 mm x 180 mm) in tami kvalitete jekel
(51MoCr4, 51CrV4 in 25MoCr4). Dimenzije treh karalsticnih con: gasena,
stebrtasta in enakoosna, izmerjene v industrijskem proes primerjane z
izracuni simulacij za pet Sarz pri raahih hitrostih ulivanja in Stirih razinih
temperaturah ulivanja.

Simulirani polozaji ECT/CET dobro sovpadajo z Banmavimi odtisi. Potrjen
je pravilen odziv veénivojskega modela v povezavi z eksperimentalno
doloc¢enimi strukturami zrn v industriji.

V tej disertaciji je nov LRBFCM-PA pristop piuporabljen za napoved
strukture zrn, ki nastanejo pri CC jekla preko pkiee makro in mezoskopskega
modela. Prikazano je, da je PA metoda preprostmadno orodje za celne
simulacije. Prikazano je, da sta obe metodi spadakatitativno in kvantitativno
modelirati raznolik spekter pojavov strjevanja.

Dvodimenzionalen mikroskopski model je opisan inzvi za napoved
dendritskih struktur zrn, ki nastanejo pri strjejpadistin kovin. Fizikalno je
opisan s prevajanjem toplote in s kinetiko fazneoprazbe. Determinigtii
model prenosa toplote je reSen z uporabo metodenkonrazlik (Finite
Difference Method, FDM). Erke za opis mikrostrukture so reSene s
povezanima stohastima metodama ceéhih in tatkovnih avtomatov.
Stohastini model dobi temperaturno polje iz determirisiga modela,
deterministtni model pa dobi delez trdne faze iz stoltm&tga modela. Iztani
stohastinega modela so izdelani na regularni porazdelibek tv modelu
celicnih avtomatov, oziroma nakkni porazdelitvi ték v modelu tékovnih
avtomatov ter prevedeni nazaj nake v modelu koénih razlik v skladu z
izracunanim temperaturnim poljem. Stohastimodel vsebuje iztane mejne
temperature, ukrivljenosti, Gibss-Thomsonovega ike&fta in hitrosti rasti



kristalov. Model vklj&uje dve vrst anizotropije. Termodinaina anizotropija je
povezana s kristalno orientacijo iZmmano preko Gibbs-Thomsonovega
koeficienta. Kinetina anizotropija upoSteva smer rasti kristala infggestno
smer. CA pristop je vzpostavljen na kvadratnih aa@ii in Neumannovih
sose8&inah. PA pristop je vzpostavljen na nakhuporazdelitvi ték in sosedin,
podobno kot se pojavlja v brezmreznih metodah. Na&k& porazdelitev tk je

v tej disertaciji generirana iz regularne CA mreiako da so CA centri
premaknjeni na kvazi-nakime pozicije na raunski domeni. Potencial modelov
FDM-CA in FDM-PA je prikazan z napovedjo tfpih dendritskih oblik.
Numerini primeri so izvedeni na kvadratnin domenah dinje850 um z
Neumannovimi robnimi pogoji. Fiksni vhodni paranmedendritskin modelov
predstavljajo snovne lastnostni&ati aluminij, velikost celic, povpken Gibbs-
Thomsonov koeficient in koeficiente anizotropije reatodi CA/PA. Pri metodi
CA so numexini izracuni narejeni za kombinacijo naslednjih réamalh vhodnih
podatkov: terminie fluktuacije, radij ukrivljenosti in Gibbs-Thomsov
koeficient. Na koncu je predstavljena simulacijagasa rasti z metodo CA za
sedem dendritov s Stirimi primarnimi vejami, ki tgje vzporedno med in
45 .

Pri metodi PA je dendritska rast simulirana z emaki razlinimi tipi nakljuéno
generiranih distribucij k. Ve¢ testov je pripravljenih za deset r&niih
orientacij in s tremi razthimi bolj ali manj nakljgnimi porazdelitvami tek.
Dendritska rast je simulirana z upoStevanjem kajelkega faktorja dolzin
primarnih vej, ki je odgovoren za pravilno dolZipsimarnih vej glede na
izracunane z metodo CA. Na koncu so predstavljeni rauftrocesa rasti z
metodo PA za primer sedmih dendritov, ki rastejporedno, najprej z enakima
orientacijama kot za model CA in nato pri nakhih orientacijah.

Pokazano je, da je ¢qananje z nakljgnimi polozaji t&k obetaven pristop k
reSevanju problemov, ki jih ni nidaesiti s konvencionalno CA metodo. Na novo
razvita metoda LRBFCM-PA je uporabna za izboljSamaulacije dimenzij
gaSenih, stebfastih in enakoosnih con. Razle gostote nukleacijskih jeder po
obmaju omoga@ajo natatinejSe raunanje dimenzij centralnega enakoosnhega
obmaja, kar je v sploSnem zapleteno napovedati. ProchiédEDM-CA obstaja
velik problem kartezijeva mreza. Znano je, da KkKiasi CA metoda tezi k
popaenju rezultatov preko anizotropije povezane z ugmjer racunske mreze.
Posledéno dendriti rastejo samo v smeri mreZe. Predstaalje uspesSna reSitev
tega problema. Z novo metodo FDM-PA je mozno rgditiblem orientacije
kristala glede na mreZo. Predstavlja se, da jezvittanakljuno porazdelitvijo
racunskih t&k mozno dos#&, da dendriti lahko rastejo v vse smeri.
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1 Introduction

Manufacturing processes such as ingot casting, idenis Casting (CC),
atomization, welding, soldering, etc. involve mmadtiand solidification as an
important stage of the process [Flemings, 1974k8enann, 2002; Dantzig and
Rappaz, 2009; Fredriksson and Akerlind, 2010; @Idfi1966]. The thermal and
solutal conditions that prevail during the processl the thermodynamic and
kinetic constraints of the material determine ti@alf microstructure of the
product. The mechanical or functional propertiesl dhe microstructure of
various phases in turn dictate the performancéefihal component. Prediction
of microstructure evolution in solidification is amportant key factor in
controlling solidification structures. However, i$ difficult to predict the
structure features because they are determinedughrahe complicated
solidification mechanisms. Solidification phenomem&olve many physical
phenomena such as heat and mass diffusion, dendrarphology, capillary
effects, etc. These phenomena interact with eablerocand predominate at
different length scales [Stefanescu, 2009]. It illvknown that in order to
control this formation in practise means understandhe connection between
process parameters and microstructure evolutiom Uiderstanding of such
physical relation can only be complete in case #&n cbe explained
mathematically and this mathematical representatiothe process is called a
model. Numerical modelling of the solidification metallic alloys received a
great interest with the development of computirapt®logy and algorithms.

* The macroscale. This scale is of the order of médber to meter and the
macro-features of castings such as shrinkage eayithacrosegregation due to
fluid flow, cracks and casting dimensions are priedl.

» The microscale. This scale is of the order of mmueter to millimeter. The
features predicted in this scale include the gmire distribution, dendritic
features, phase distribution, microsegregation potbsity. The mechanical
properties of final product are directly influendegthese micro level features.

* The nano scale. This scale is of the order of naers. Nanoscale processing
of materials includes techniques such as rapidlificition, plasma processing,
chemical vapor deposition.



2 Introduction

There is a growing interest in computational madgllof the microstructure
level in order to be able to predict the propertéshe product and optimize its
production with respect to productivity, qualitydaenvironmental impact. The
properties of the product can be calculated throaglcombination of the
macroscopic and microscopic models. The macroscomidels calculate the
relations between the process parameters and tbeseapic variables, such as
temperatures, concentrations, and velocities ors¢hé of the process (casting,
rolling, heat treatment,...). The microscopic modekculate the relations
between the macroscopic variables and the micrisi® (grain size, grain
concentration, grain stresses and strains,...). emgé, solidification growth
morphologies of metals can be divided into two priyngroups: single-phase
primary structures, which may be globular, cellumd/or dendritic and poly-
phase morphologies, such as eutectics. These mogw®, alone or in
combination, comprise most solidification microstures, and have been in the
focus of numerous numerical and theoretical studies

In the dissertation we first give an overview anterature survey of
computational modelling of solidification process#sa macro/meso and micro
levels. Further chapters are focused on modellirgastructure evolutions.

1.1 Modelling of Microstructure

Researchers have observed, analyzed, and modeildstructural evolution
for over a century [Astat al, 2009]. The advances in computer technology and
numerical methods have made it possible to andhaesport phenomena to a
high level of details.

In the past two decades, the fundamental undeisigndf solidification
microstructures has vastly improved mainly due tevelopment of
mathematical models and simulation techniques,daimepowerful computers,
and development of refined experimental techniquék better visualization
and characterization of microstructural developmémereby providing useful
data to validate the models. The experimental teci@s, analytical models and
numerical models have been developed to help utashelshe evolution of grain
growth in solidification of alloys. A lot of expeniental work has been reported
on the grain morphology of transparent materialsufiBko et al, 2003;
Mathiesen and Arnberg, 2006; Haghighat and TaRé6,7; Atamanenket al,
2007]. Many complex models have been developed redig texture,
misorientation distribution and grain size disttibn of a final rolled or
extruded product [Raabet.al, 2004]. But there are still many difficulties
remaining. Microstructural evolution is a many wahte and a multiscale
problem and even simple phenomena are still not welerstood. Due to the
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difficulty of directly incorporating topological &ures into mathematical models
there has been increasing interest in using compieulation to study and
predict the microstructure evolution in a rangetethnologically important
materials. A progress of that knowledge has, in,tdeveloped various kinds of
deterministic and stochastic models to predicte@ution of microstructures in
solidification.

Computational simulations of evolving microstruetsihave been performed for
approximately half a century, beginning with FulmgFullman, 1952], who
simulated grain growth in a polycrystal. He didla@B calculations manually and
his model is referred to as vertex modelter Soaregt al. [Soarest al, 1985]
and Kawasaket al. [Kawasakiet al, 1989] improved his model by modifying
the equation for the velocity of the vertex. Theimplete equation of motion
states that the vertex does not always move irditeetion of the line tension
resultant at its position. The most common microdei® for microstructural
evolution are nowadays: Potts models [Potts, 19§2ht tracking models,
Vertex models [Weaire and Kermode, 1983], Phaséd Ridethods (PFM),
Monte Carlo (MC) [Andersoret al, 1984; Andersoret al, 1984], Random
Walker (RW) [Chorin,1973], and Cellular Automata AIC[Raabe, 2002].
Unfortunately, each of these models has some aglgastand some restrictions
as well. In this work only three areas, where tlesnsignificant advancements
have taken place, are shortly introduced: prinsipomistic calculations,
deterministic modelling of the temporal microstwret evolution by PFM and
stochastic methods by MC and CA. The basic chatatiteof these models
have been summarized from the article [Caeal.,2001].

First-principles atomistic calculations. First principles atomistic calculations
[Gosalvezet al, 2008], based on density-functional theory, do not rely on
empirical input and hence are predictive in natufbese methods yield
guantities related to the electronic structure #mel total energy of a given
system, and may be used to accurately predictteenperature phase stabilities
of alloys and compounds. By combining first-prineg techniques with the
statistical mechanics methods one opens the pbigsdfiexploring, without any
fitting parameters, thermodynamics phenomena ssciphase transformation
temperatures and phase diagrams. Furthermore, éippseaches are applicable
to any phases of a given alloy system, not onlyetpeailibrium phases. Hence,
first-principles techniques can provide a method dotain properties of
metastable phases, which are often crucial to nmechla properties (e.g.,
strengthening precipitates) but are difficult tola&tde and study experimentally.
Deterministic models Deterministic models treat space, time and other
variables in continua, and the outcome of the datmn is fully determined by
the boundary and initial conditions. These modelagoan identical solution
each time, for a given set of calculation condsicemd can be very useful
predictive tools. These models are usually basedootinuum modelling where
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partial differential equations are derived. The ssmation equations are solved
to predict phase motion, solid/liquid interface motand shrinkage of the
casting. Analytical models describing dendrite ¢hmaracteristics [Hunt, 1979;
Kurz and Fisher, 1981] and eutectics fall into tasegory.

In this group, recent modelling approach, the PEWeing used extensively to
simulate dendritic, eutectic and peritectic microstures [Fan and Chen, 1997,
Chen, 2002]. PFM are known as one of the most adeqgleterministic models
for directly simulating the dendritic growth morpbgy. In this method, two
conservation equations - the heat or solute difusequation and the PFM
diffusion equation are solved to track the phaskel fvariable. The PFM variable
represents the solid or liquid phase and the aterfs tracked implicitly through
the solution of the two parabolic equations. Howe?&M are presently limited
to qualitative simulation of a single dendrite ovexy small calculation domain
due to the large computational capacity neededrder to study the interactions
of the dendritic growth in many grains in a solig mushy region, a large
calculation domain has to be considered, whichlguwdl be a very difficult
task in the phase field methods. Some mesoscopieisdor dendritic growth
are currently under development. Steinbachl. [Steinbaclet al, 1998] used a
novel mesoscopic simulation technique to descritee rfon-steady growth of
several equiaxed dendritic grains into a supercbabelt of a pure substance.
However, it is clear that their model cannot acédanthe topology and texture
evolution of a typical columnar structure.

Deterministic models suffer from several limitasorAs the complexity of the
physical system increases, the analytical modejsime many assumptions and
are unable to capture the behavior of the real ipalyssystem. In the
deterministic models the grains are assumed to iresgherical even in the
strong thermal gradient, columnar structures andiid&gd to Columnar
Transition (ECT) and Columnar to Equaixed Trangit{(€ET) are usually not
accounted for, the competition occurring among rgrabelonging to the
columnar zone and the associated evolution of trgstallographic texture are
not described at all [Gandiet al, 1995]. For these reasons the simulations of
the grain structure formation has been approachkex) stochastic models which
have been developed over the past several years.

Stochastic modelsin stochastic models, the physical phenomena eserithed
by using random numbers. As a consequence, themetof a simulation can
vary among each simulation. The MC, RW and CA meathave been usually
applied to the prediction of macroscopic grain dtes. The MC method has
been used to predict the solid-state transformagioch as recrystallization or
grain growth, whilst the CA model that accounts tbe dendritic growth
kinetics has been applied to simulate the solidifon grain structures and the
CET.
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The first MC procedure model was developed by Andersbal. [Andersonet
al., 1984]for the prediction of grain growth in solid. Thisethod is based on
minimization of the interfacial energy (betweenuidysolid or between two
different grains) and by allowing transition betwd®o states according to the
randomly generated numbers. By using this methpdtl&and Brown [Spittle
and Brown, 1989] were able to produce computed dimzensional
solidification grain structures, in particular teelection of grains in columnar
zone and the CET transition. The microstructuressvgemilar to the observed
experimental microstructures. However, these methafer from a lack of
physical basis. Although they qualitatively demoaitst some phenomena, such
as the effect of solute saturation or melt supdrhehey cannot be
straightforwardly used for quantitative analysidloé effects of various physical
phenomena. In particular they do not account edsilythe growth kinetics of
dendrite tips and for the preferential growth dil@ts of the dendrite.

CA were first introduced by von Neumann in 1951qweumann, 1951], and
later on in 1986 by Wolfram [Wolfram, 2002] to aobder scientific public. CA
method is based upon the consideration of physmsdhanisms on nucleation,
growth kinetics of a dendrite tip, and crystallqgue orientations. Furthermore,
the mechanisms of competitive dendritic growth, eddal directly in the CA
algorithm are still under development. So that @ model can quantitatively
carry out the time-dependent simulation for mianasiure evolution, in which
the individual grains are identified and their sbmand sizes can be shown
graphically. A series of studies using the CA mddele been reported by Hong
et al. [Cho and Hong, 1997; Lee and Hong, 1997] on thaukition of
solidification structures in squeeze casting arhat flow casting as well as on
the prediction of the deflection behaviour of cohan grains solidified in a
flowing melt. A detailed introduction to the CA red is given in Chapter 3.

1.2 Application of CA to Modelling of Microstructure

In the last decade, several numerical models, wiah solve complicated
transport phenomena and phase transformation wfifferent boundary and
initial conditions, were developed to calculatei®as microstructure features of
solidifying materials such as grain growth. Apptioa of the CA models, for
simulation of the different phenomena in materidias been significantly
increased these days. This approach is known edlyedn the fields of

solidification [Rappaz, 1989; Rappaz and Gandi®31Raabe, 2004], dynamic
and static recrystallization [Hurley and Humphre®803; Kumaret al,1998;

Hasselbarth and Gobel, 1991; Raabe, 2001], phassftrmation [Spittle and
Brown, 1994], grain refinement [Janssetsl, 2007], dendritic growth [Brown
et al, 1994, Spittle and Brown, 1995; Gandin and Raph82y7; Gandin, 2001]
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and micro-shear band and shear band propagatiogigKand Turk, 2006]. CA
method has been successfully used in the simulatbnsolidification
microstructure evolution. The main asset of the Ba#sed methods is their
ability for a close correlation between the micresture and the mechanical
properties during both micro- and meso-scale sitimria. The advantages are
that they combine the simplicity and scalability afswitching model with a
physical dynamics model [Raabe, 2002]. They areedbams less complicated
algorithms, simpler for design, implementation amare useful for visualization
when compared to known PFM(s).

Rappaz and Gandin [Rappaz and Gandin, 1993] werpitimeering researchers
who developed the CA model for modelling microstoue in which nucleation
and growth kinetics could be considered and grairciire with certain shapes
and size were predicted. Gandin and Rappaz [GamtirRappaz, 1994; Gandin
and Rappaz, 1997] simulated the grain structuredupling the CA technique
for the grain growth with the Finite Element Meth@EM) solver for the heat
flow (FEM-CA). Later Spittle and Brown [Spittle arfgtown, 1995] coupled the
CA with a Finite Difference Method (FDM-CA) for adk diffusion during the
solidification of casting to predict its structurén their model, the status of an
individual cell has only two states, solid or liqugiving a stepped motion of the
interface. Nastac [Nastac, 1999] applied a contisueariable front tracking
technique, allowing a smooth evolution of solidctran within each growing
cell. These models not only allow the resolutiorgcdin envelopes, but also of
the detailed dendritic structure and solute intgwas at the advancing front.
Using the model based on the CA technique, Leecandorkers [Wanget al,
2003; Dong and Lee, 2005] simulated microstruct@eolution during
solidification process for many materials. And theyen developed a model
coupling the nucleation and growth of pores andnhgrpAtwood and Lee, 2003].
These achievements make it possible to model tleostructure evolution of
casting solidification process by combining CA wEbM and CA with FEM
[Wanget al, 2003; Dong and Lee, 2005; Atwood and Lee, 2@8wn, 1998;
Jarviset al, 2000; Gandiret al, 1996; Gandin and Rappaz, 1997]. However, the
understanding of solidification process and relatetrostructures is very
complicated. This is because it is affected by miatgracting phenomena on
different scales [Rettenmayr and Buchmann, 200&peEments that allow
direct visualization of microstructure formatioreatifficult to perform.

Among all of the numerical approaches fos studhegrhicrostructure evolution
the CA modelling and the PFM modelling [Qin and &eh, 2003] are the most
popular and widely used. In this dissertation weutoon the CA approach for
modelling microstructure formation. A consideralpi@gress on solidification
microstructure simulation [Boettingest al., 2000; Lorbieckaet al, 2009;
Lorbiecka and Sarler, 2010a; Miodownik, 2002] harb made by the CA
approach. The difficulty in developing the CA grbvalgorithm is that it has to
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reflect the specific features of the solidifying tevéal. During the growth
processes of grains the crystallographic orientagixes of different grains have
different divergence angles with respect to thedioate system. It is well know
that the classical CA methods have a tendency formethe results by
introducing the anisotropy associated with the oekwof cells. Consequences
are that they tend to grow only in the grid dirent{Zhanat al., 2008]. It does
not matter which orientation will be chosen it valivays shift the dendrite with
respect to the grid axis. In this case the growdigesis difficult to simulate by
the CA method. It is because the configurationh®#f CA mesh has a direct
influence on simulated structure and shape. AndefAndersonet al., 1984]
and later Spittle and Brown [Spittle and Brown, @P8sed a hexagonal, rather
than the standard square 2D lattice in order tdebetepresent the grain
anisotropy. But in general even now it is stillfidifilt to properly model the
preferred crystallographic orientation.

Rappaz and Gandin solved this crystallographicntaieon problem [Gandin
and Rappaz, 1997] by employing 2D decentered and&f@ntered octahedron
CA growth algorithms, developed and coupled with Heat flow solver which
turns out to be complicated. One of their critensed to validate the CA
dendritic growth algorithm is to reproduce the shap a single grain envelope.
The observation of transparent substances likeohgelanol or succinonitrile has
shown that this envelope has an octahedral shasedBon this observations the
CA growth algorithm for modelling dendritic growttas designed to reproduce
such envelopes. The model demonstrates its stabaitaccount for different
crystallographic orientations and growth kinetiesgmeters.

Here a simpler approach to this problem, represgeiteg the novel Point
Automata (PA) [Lorbiecka and Sarler, 2009, Lorbacknd Sarler, 2009,
Lorbiecka and Sarler, 2009] method is demonstratatbvel concept of random
cellular grid or irregular cellular grid presentgdthis dissertation follows the
CA concept and is able to solve the mentioned alggfraphic orientation
problem. A basic feature of this method is to distie nodes randomly in the
domain instead of using regular cells, which le@addifferent distances between
the nodes and different neighbourhood configuratitor each of them. The
method is described in Chapter 3. Janssens pudbliigefirst concept of PA to
the simulation of recrystalization and grain growbht with very limited
numerical examples [Janssens, 2003; Janssens, 2&x$senst al, 2007]. In
2003 [Janssens, 2003]. Janssens represented thieilitgf the irregular CA
for modelling the evolution of a microstructurertséormation including volume
and curvature driving pressures and in 2004 Jaesseal [Janssen®t al,
2004] presented a hybrid model combining it witdiffusion. Lorbieckaet al.
[Lorbieckaet al, 2009] were the first who coupled the classical i@é&thod with

a meshless method instead of the FEM or FDM. Thbiscept has not been
previously used in solidification problemhey successfully predicted the grain
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structure in CC of steel. Subsequently, they regulabe CA method by the PA
method in the same physical system [Lorbiecka amdle§ 2009] and

demonstrated the suitability of the PA method fansitions (ECT, CET) in

steel billets and dendritic structures. The praliany results of the dendritic
growth based on the PA approach have been presienfieorbiecka and Sarler,
2009].

This approach is explained and evaluated in detaithe present dissertation
where we numerically discuss a simple physical rhadgich can simulate

micro-structure formations. The developed numenicatiels have the capability
to simulate the grain structure ECT/CET on the meeale and the dendritic
growth on the microscale.

1.3 Dissertation Goals and Performed Work

The principal goal of present dissertation is toedep a simulation tool, based
on the classical CA method and a novel PA methadnfodelling the grain

structurgRappazet al, 1993; Yamazaket al, 2006] in solidification by using
the coupled stochastic mesoscopic and macroscopysiqgal models, and
validation of the model results with the experina¢mesults. The following two

numerical models were developed in order to be ablesimulate the

microstructure formations:

(2) the position of ECT/CET which occur during th€ Gf steel,

(2) thermal dendritic growth of pure metals.

The calculations were in both classes of procedsese by the conventional CA
method with rectangular polygon mesh structuretanthe newly developed PA
approach based on the irregular positions of tues (see Chapters 5 and 6).

Ad.1: Mesoscopic model to simulate ECT and G&de Chapters 5 and 7). This
numerical model was developed for the simulatiorth&f solidification grain
structure formation ECT/CET during the CC procdssteel billets (Figure 1.1).
The mesoscopic model encompasses three theorstagggs occurring during
the solidification: nucleation, growth and impingemh The CA microstructure
model is combined with the macroscopic heat transfeulator. The heat
transfer model is solved by the meshless techniyuasing the Local Radial
Basis Function Collocation Method (LRBFCM) [Sarker al, 2006]. Related
simulator calculates the temperatures for the didlelt for the selected alloy
which need to be transferred to the mesoscopic Gdainover the time. The CA
model is based on the Nastac’s definition of nemgithood[Nastac, 2004],
Gaussian nucleation rules [Lee and Hong, 198 Kurz-Giovanola-Trivedi
(KGT) growth model[Kurz, Giovanola and Trivedi, 1986; Kurz and Fisher
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1998]. Finally, the CA algorithm for ECT/CET hasebereplaced by the PA
method. The transition rules are described anadneerical results presented.

The numerical results are performed for the classidiRBFCM-CA and the
novel LRBFCM-PA approach. For the both methodsalherical results have

been carried out for the nominal casting conditiofis, =1530 K and
V.. =1.75m/min, for the steel billet of heat 46352 from $toSteel

cast

[http://www.store-steel.di/with dimension 140 mm x 140 mm and alloy type
51CrMoV4. In the present study the mesoscopic mpdehameters have been
adjusted with respect to the experimental data. 3éesitivity study of the
microstructure mode, solved by the LRBFCM-CA metlnad been introduced
with respect to the nucleation parameters and #iegbl neighbourhood
configuration, casting temperature and casting cap@eoper response of the
multiscale model with respect to the measured gtirctures in the Store Steel
company, has been demonstrated.

In Appendix 1 several additional simulations aresgnted for assessment of the
influence of casting parameters on the dimensiothi&e characteristic zones:
chill, columnar and equaixed and compare with thtalhse of measurements
from the Store Steel. The Baumann prints of billigh dimension 140 mm and
180 mm, are represented.
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Figure 1.1: Schematics othe ECT and CET occurring during the CC of stedhvthree
characteristic zones (chill, columnar and equiaceg).

The available measurements casting correspondetedsange from 0.9 m/min
to 1.75 m/min and casting temperature range frod036to 1550 K. According
to the received samples, the influence of macraitinparameters, for the
formation of grain structures during the CC of kteeere studied. From the
technical reports [Manojlo¥j 2007; Manojlou, 2008]the following heats were
analyzed: 48695 3/I, 48695 3/lll, 48807 3/l anaB@8 3/IV for the different
casting speeds and 46484/1, 46484/3, 46693/1 a6834% for the different
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casting temperatures. Other measurements (18 d@®)oivere rejected because
of the bad quality of the samples or not entirglpkn casting parameters.

For the PA method all numerical results have beened out for the nominal
heat 46352 with dimension alloy 140 mm x 140 mm alhaly (see Table A.1).
The sensitivity study has been done for the folimyviwo parameters: for the
different values of radius of neighbourhodg], and different structures of

random grids. The input parameters have been adjusith respect to the
experimental data. Finally prepared numerical tegul the same macro and
micro input parameters for the CA and PA methodehla®en compared to the
experimental data for the heat 46352.

The results of this part of the dissertation hagerbpublished in [Lorbiecket
al., 2009; Lorbiecka and Sarler, 2009; Lorbiecka aade$, 2009; Lorbiecka
and Sarler, 2010a].

The main goal of this part of this dissertatiomidevelopment of the numerical
model which predicts the ECT/CET occurring durirge tCC of steel with
respect to the measurements data.

Ad.2: Microscopic model to simulate thermally driven deincl growth of pure
metals(see Chapters 6 and 7). The second numerical nnegetsents a simple
physical system where one or more thermal dendrgeswv from the
undercooled melt at a predefined position and tatean (Figure 1.2). In order
to predict the dendritic structure, the solution swaombined with the
deterministic model for calculation of the temparat field. The stochastic
model includes calculations of the interface terapee, curvature, Gibbs-
Thomson coefficient which takes into account thermiodynamic anisotropy
related to the crystal orientation and crystal growelocity which accounts for
the kinetic anisotropy by taking into the considiera the crystal growth
direction and the preferential crystallographiceatation. The stochastic model
receives temperatures from the deterministic madel the deterministic model
receives the solid fraction for the stochastic nhodlbe heat transfer model is
solved by the FDM on the regular nodes. The vafuibetemperature is send to
the CA cell which is located exactly in the middiiefour FDM nodes. In each
time step the nodal values of temperature, basetthestatus of solid fraction
from the CA level of calculations, are updated. T3% method, used to solve
the governing equations for dendritic growth, haserb in this dissertation
replaced by the novel PA method. The differencesiniplementation are
presented and discussed.

The dendritic morphologies were calculated by tlassical FDM-CA and the
novel FDM-PA approaches. All numerical results wprepared for the same
material properties (pure aluminium). The dendmgiowth process is simulated
by the conventional CA method without and with ramdfluctuations. For the
CA method the thermal fluctuations are includea itite calculations of growth



Dissertation Goals and Performed Work 11

velocity. In the PA method, where the calculatians done on the random node
arrangement, the random fluctuations replaced byréimdom positions of the
nodes. No other fluctuations are needed. For thelHIA method a sensitivity
study of radius of neighbourhood, Gibbs-Thomsonffament and thermal
fluctuations, is performed.

For the FDM-PA method the dendritic growth procissirst simulated with the
same random node arrangement denoted (PA-(A)) dar drystallographic
orientations and then with different random nodarsgements (PA-(B), PA-(C),
PA-(D)) for three crystallographic orientationsn&lly the dendritic growth is
simulated with different randomness of the nodarayjement =0.10,£ =0.25
and € = 0.49.

For the same input parameters the dendritic grgasbicess is simulated by the
CA and PA methods at orientation considering to phi@cipal axes of the
Cartesian coordinate system. The lengthxadnd y branches are different in
both cases. This is due to the influence of thelwemnode arrangement in the
PA method and subsequent variable distances bettieenodes. The growth
process is then simulated by including the rand@smggowth correction factor
responsible for the agreement in the lengths df batanches obtained by the CA

and PA methods.

K,

Figure 1.2: Dendritic structures. Left: single dendrite, riglgeveral dendrites growing
simultaneously.

The results of this part of the dissertation hagerbpublished in [Lorbiecka and
Sarler, 2009; Lorbiecka and Sarler, 2009; Lorbieckad Sarler, 2010b;
Lorbiecka and Sarler, 2010c].

The main goal of this part of the dissertation dexelopment of the numerical
model which simulates thermally driven dendritiowth of pure metals from
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the undercooled melt at a predetermined positioisagientations by the novel
PA method.

1.4 Overview of the Dissertation

* In Chapter 2 a review of the main physical phenameoccurring in
solidification of metallic alloys, is presented. the first part we give an
overview of the nucleation models following the chgstion of the growth
process. Subsequently, the derivation of the KGT™ehavhich is used in the
mesoscopic calculations, is presented.

* In Chapter 3 the definition and application of & method is presented. In
the second part of the chapter we give an intradadd the novel PA method.
The comparison of two methods is given in detail.

* In Chapter 4 we first list the common problems ogog during the CA
modelling. Next the application of the regular CAdarregular CA method
(PA method) for modelling the recrystallization dsscussed. The Janssens
concept of the PA method to simulation of grainvgtois shortly presented.
Only his theoretical part of the novel method igegi, without any numerical
examples.

* In Chapter 5 the development of a new simulatiah tor modelling the grain
structure in solidification processes is descridadhis chapter we present the
numerical mesoscopic model which is designed tcalbe to simulate the
positions of the ECT and CET. First the proceduesponsible for coupling
the macroscopic heat transfer model with the megwsc model are
demonstrated in details. Then the attention is deduon the governing
mesoscopic equations which are solved by the clalsSiA method and by the
novel PA method. The differences in numerical impatation of both
approaches are presented.

* In Chapter 6 we give an overview of the numericaldai which can simulate
the dendritic forms during the solidification of pure substance from its
supercooled melt. The coupling scheme of the exptioM with the CA and
PA method is presented. In addition the solutiogaferning equations by the
FDM-CA and FDM-PA method is given.

* In Chapter 7 many numerical examples of the twoeltgped models are
presented. The calculations are in both cases bdgnihe conventional CA
method with rectangular polygon mesh structure #@meh by the newly
developed PA approach, based on the irregulariposiof the nodes. Each set
of the results is accompanied with a detailed disicun.

* Finally, Chapter 8 represents the summary of tHeemements and future
directions as well as possible improvements oftloelels.



2 Introduction to the Solidification
Theory

Control of solidification microstructure is an impant aspect for the control of
the properties and quality of final casting produotmodern casting technology.
Computational prediction of microstructure evolatim solidification of alloys
is a key factor in controlling solidification migtiucture. In modelling the
microstructure evolution two perspectives can benainto the consideration:
the physical aspect, which means the quantitativeerstanding of physical
phenomena and the practical aspect which is venoitant application of
solidification models into practice.

The basic theories of the solidification process w&ell described by Flemings
[Flemings, 1974], Kurz and Fischer [Kurz and Fis¢chE998], Dantzig and
Rappaz [Dantzig and Rappaz, 2009]. Solidificatiogpresents a phase
transformation where a liquid turns into a solidenht is cold enough. It starts
when the melt cools and reaches the liquidus teatyer. The rate of this
phenomena is mainly determined by the rate of &emaction from the system,
the driving force for nucleation and the growthooystals from undercooling
The main purpose of this process is in generatibnemporal and spatial
movement of the liquid/solid interface. In ordernmdel the solidification the
attention is on theoretical description of the difikation stages: nucleation and
growth. These mechanisms have been the focus of negearchers and many
theories were suggested [Gandh al, 1995]. The theoretical part of this
phenomena is reviewed and represented in this ehapt

Nucleation stage (formation of tiny solid nucled)described in Chapter 2.1 and
growth stage of these nuclei, which finally makgs the final solidified
structure, is described in Chapter 2.2.

2.1 Nucleation Stage

Nucleation is the process which initiates the fdiomaof new phases and is a
general phenomenon in multiphase system. The fuadth concepts of

13
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nucleation are in the focus of such diverse figlsishermodynamics, metallurgy,
physical chemistry, solid state physics, surfacdense, atmospheric physics,
geophysics, etc. From the thermodynamics pointi@irya necessary condition
for formation of the nucleus in the melt is thaimtust be undercooled, i.e. it
needs a temperature that is lower than the mefiimgt T,, or the liquidus

temperatur@, . The first step of metal solidification is the rigaition of tiny,

stable, solid nucleat various positions and orientations in the m&hjch in
advance start to grow and become crystals (graiegn the temperature of the
liquid reaches the assumed undercooling the movesmanthe atoms in the
liquid phase decrease and some small nuclei forrguf€s 2.1 and 2.2).
Nucleation is an important aspect of microstruct@eolution. It affects
solidification under-cooling, heat evolution durisglidification and the final
number of grains. Different types of nuclei avaiéain the melt can be the result
of the following processes:

1. Homogeneous nucleation
2. Heterogeneous nucleation
3. Dynamic nucleation

Ad.1
It implies that the growth initiates on substrdtesing the same chemistry as the
solid. It is not common in casting alloys.

Ad.2

It implies that the growth initiates on substrdtasing different chemistry as the
solid. Two distinct models, based on the heterogeseucleation theory, have
been developed. These amntinuousandinstantaneousiucleation models.

The continuous model assumes a continuous dependd#gnthe number of
nucleusesN on temperature. Some relations need to be provaedrrelate the
nucleation velocityoN /0t with the under-coolingAT or with the temperature.
A procedure is carried on to determine the finahbar of nuclei.

The instantaneous model assumes that the new Bseeslegenerate at the
determinate nucleation temperattjye Again, in addition the empirical relation

needs to be added with respect to the under-cotdimgerature or cooling rate,
to correlate the final amount of nucleuses. A sctencomparison of these two
nucleation models is depicted in Figures 2.1 and. Zhe equations of

heterogeneous nucleation models include manydipgrameters, which need to
be assumed or find experimentally.

The most common forms of tleentinuous nucleation modedse:
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nuclei grain

AT

Figure 2.1: Graphical representation of the continuous nuieanodel.

nuclei grain

time

Figure 2.2: Graphical representation of the instantaneous atiole model.
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 Oldfield model [Oldfield, 1966]

P ~vs(AT)" —, (2.1)

where v, s, AT, T, t, At represent the two fitting parameters, the
undercooling temperature, temperature, time and §tap, respectively.

* Maxwell and Hellawell model [Maxwell and Hellawell975]

N _ [ _w(g)
E_(Nsmt Ni):uz eXp{ ATZ(Tp —AT)] ' (2.2)

where Ny, N;, #,, T,, w(8,), 6 represent the total density of nucleated

crystals (fitting parameter), the number of nuct=uthat have nucleated at time
i, the nucleation frequency, the nucleation (pedpdemperature, the classic
function of contact angle and the contact anglir(§j parameter), respectively.

» Goettsch and Dantzig (quadratic distribution) md@aettsch and Dantzig,
1990]

3N )
N(r)=——=—~(Ru~T1) (2.3)
( (Rnax - |%ﬂin)
whereR .., R,,, I represent the maximum grain size (fitting parametae

minimum grain size (fitting parameter) and the giveadius of nuclei,
respectively.

» Thevozet al. model [Thevozt al., 1989]

B — 2
dN Nstot AT_AT
= exp-| ———nex | 2.4
d(AT) 2maT, F}{ AT, 2 } 9

where AT, AT, AT, represent the average undercooling temperaturan me

nucleation undercooling and the standard deviatiespectively. This model is
used in Chapter 5 of this dissertation.

The most common forms for thestantaneous nucleation modelse:

» Stefanescet al. model [Stefanescet al,1990]
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N=a +hT, (2.5)

where a_, b, T represent the experimental constants and the ngpotite,
respectively.

e Hunt model [Hunt, 1984]

oN

= = Nyoutls (T—Ty) (2.6)

where g, and T, represent the Dirac delta function and the nuideat
temperature, respectively.

Ad.3

The thermosolutal natural convection occuring mnfrof the columnar mushy
zone imposes the dendritic fragmentation in thek bhigjuid. It means that the

nucleation of the equiaxed grains will depend ndiy drom the heterogeneous
substrates, but also on the crystal fragmentat®ra aesult of the dynamic
nucleation. This approach is physically more cdriban the heterogeneous
nucleation, but formulation of these mechanisms ldowequire substantial

efforts.

2.2 Growth Stage

The growth of crystals is the second stage of gmladion, when the heat is
extracted through the solid, and the freezing frasmtcooled below the
equilibrium freezing point. The grain growth simiid&@ encompasses the
computation of velocity of solid/liquid interface dendritic tip. Therefore, the
definition of growth velocity at the dendritic tig important to simulate the
grain growth of metal solidification. Solidificatiogrowth morphologies can be
divided into two primary groups: single-phase pniynstructures, which may be
globular, cellular, and/or dendritic and poly-phas®rphologies, such as
eutectics [Kurz and Fisher, 1998]. These morphe®giomprise most metallic
solidification microstructures, and have been inuf® of numerous numerical
and theoretical studies [Dantzig and Rappaz, 200Biee growth forms are
usually present in the solidification process: plancellular and dendritic
(Figure 2.3). For a pure metal, as the driving éofar solidification increases,
the solidification front undergoes such transitionghen the liquid temperature
is higher than the freezing point of the melt ane temperature gradient of the
liquid is positive, the solidifying front is knowas planar. At higher advance
rates, the front develops deep into the liquid apdces evenly over the front.
Ahead of the advancing interface, the liquid depsl@ negative temperature
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gradient. This is called cellular growth. At higheglocities still, the cells grow
into rapidly advancing (looking like a tree complegeometry forms called
dendritic growth.

The grain growth stage can be presented at leastdpnalytical models: KGT
model and the Lipton-Kurz-Trivedi (LKT) model [Lipn et al, 1987b; Liptonet
al.,, 1987a]. The first one represents the growth E®ceith a positive
temperature gradient in the liquid at the solidfithinterface. LKT mode is able
to predict the free dendritic growth into the urmbeled melt where the
temperature gradient in the liquid ahead of theddmuid interface is assumed
to be negative.

Planar
growth Lo
Cellular
growth LiGUID
Lo o L L L
Dendritic L teaas LiguID
Lo L pdnds
Lodlo Ll

Figure 2.3 Schematics of the growth morphologies. Left: vieant the front, right: view from
the side.

The growth stage can be described through the gmasotheoretical models,
which include these two important steps [Stefane2609]:

1. Derivation of equation which describes the relatlop between the scale
of microstructure and the undercooling and the ginaate.
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2. Choice of the criterion which permits the definitiof relationship
between the scale of microstructure and the undéngpor the growth
rate.

Regarding the first problem it is required to detiere the expression for the heat
and/or solute distribution. Second step descrilEddvib can be satisfied by using
one of the following two alternative growth criteri

A. Growth at the extremum, this is the maximum grovette or the minimum
undercooling.
B. Growth at the limit of morphological stability.

In the present dissertation the KGT model was edp(iChapter 5). In the
Section 2.2.1 the derivation of the growth velo@guation is presented.

2.2.1 Growth Kinetics of the Dendritic Tip
2.2.1.1 Hemispherical Needle Approximation

A cylinder with a hemispherical tip, growing alotige axis, is the simplest
approximation which can be made according to copi® the problem of
dendritic tip growth. Figure 2.5 presents the ajdin with the cross section

A, = 77TR? which grows in the time incrementt and which is responsible for
the rejection of solute.

c

Co ' X

Figure 2.4: Concentration field for the dendrite having a pal& shape.
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Figure 2.5 Dendrite having a parabolic shape.

The surface area of the caly = 27R* determines the amount of radial solute
diffusion. Fluxes, due to solute rejectidn and due to the diffusion in the liquid
ahead of the tipl,, can be identified [Stefanescu, 2009]

J=AV(c-¢g), 2.7)

J, =—Dﬂh(3—fj : (2.8)

r=R

where A, V, D, A, ¢, represent cross section of the cylinder, velogiye

of the interface movements), diffusion coefficiemtliquid, surface area of the
cap and the concentration in the solid, respegtivel
Under steady state conditions, both fluxes mugtdpal, which results in

V(G -g) =—2D(3—fj , (2.9)

R
with
¢, =6k (2.10)

wherek represents the partition coefficient.
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To find the composition gradient at the tip of tirain it is necessary to solve the
steady state diffusion equation in radial coordisatith no tangential diffusion

d’c 1dc
—+=-—=0. 2.11
dr® rdr (2.11)
The general solution of this equation is
c=qg+cl/r, (2.12)

where ¢, and ¢, are constants, determined from the boundary condit By
appling the following boundary condition

atr - o c=g, thenc, = ¢,
atr=R  c=g¢ thenc, =R(¢ - ¢)
we obtain

] _
&ﬁj_:ﬂﬁgm_%ﬂ:_&ﬁﬁ' 2.13)

wherec, ¢,, R represent the concentration in the liquid, inibahcentration in
the solute and dendritic tip radius, respectively.

Finally, equation (2.9) tip can be rewritten to

ZADRN© 1-k)

Since the solutal supersaturation is

_ GG
Q= : (2.15)
G (1-K)
and the solutal Peclet number is
pe= 'R (2.16)
2D,

where Q,, Pe represent the solutal saturation and the Peclehbeu
respectively. The solution of the equation (2.9drees

Pe=Q, (2.17)
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It shows that the velocity depends on tip radiRisand on supersaturati€n,

which are the driving forces. The solution of thliffusion equation does not
specify whether a dendrite will grow fast or slott only relates the tip

curvature to the dendritic rate of propagationadidition, the hemispherical cap
does not grow only irx- direction, but also irR- direction.

The main task is to calculate the growth rate dsnation of the ratio of the

change in concentration (or temperature) of theddeo interface at the tip to

the equilibrium concentration (or temperature). Tago of these quantities is
known as the solutal (thermal) supersaturation. grewvth rate of the solid

phase increases with the increase of the supeasiatur The heat and mass
rejection rate, and therefore the growth ratenfisiénced by the shape of the tip.
At the same time the form of the tip is affectedtbg distribution of the solute
and temperature fields. All these interactions mtie development of exact
theory for the dendritic growth velocity extremedgmplex [Kurz and Fisher,

1998]. In order to overcome the complexity arisfrgm the dendritic structure

geometry, the dendritic shape is commonly describsdthe paraboloid of

revolution as originally proposed by Papapetropfpetrou, 1935].

2.2.1.2 Paraboloid of Revolution

According to the above presented problem the fatgvsolution is derived. To
make the calculations simpler the dendritic shapgssumed to have a parabolic
shape instead of a circular one. Papapetrou deskciie form of a dendritic
crystal as a paraboloid of revolution with a fixedlius of curvature, growing at
a constant velocity. Ivantsov [Ilvantsov, 1947] whs first who described the
growth of a paraboloid crystal. Ivantsov based &wen classical transport
analysis on a suggestion made originally by Papapeh 1935. He solved the
related diffusion equation in co-moving parabolbidaordinates, scaled by the
only obvious length in the problem, the (unknowp)radius of curvature.

Two stability growth regimes can be defined: purudion regime and the
growth in the presence of fluid flow. Under steadgte and in pure diffusion
regime, the resolution of the temperature fieldaahef the moving paraboloid of
revolution interface leads to a relation betweendhpersaturation, the tip radius
R and the tip velocity/ , according to the equation (2.18)

Iv(Pe)=Q, (2.18)

lvantsov assumed that all the energy released hifgmmtion diffuses away

from the isothermal paraboloidal crystal-melt ifaee via the melt phase. He
obtained the following equation relating the grovidh steady-state paraboloidal
dendrites
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Iv(Pe)= Peexp P ( Pe (2.19)

where Iv(Pe), E, (Pe) are the Ivantsov function and the exponentialgrite
function, respectively.

The exponential integral function is defined as

00

E (X) :jmdz (2.20)

z

X

There are several approximations of the integrattfon that can be used in
numerical evaluation. In our calculation for thegieolic cylinder the following
solution was applied

v(Pe =Peexp Pe efd He (2.21)

where erfc is the complementary error function defined as

erfc( x) = % [Fexd ™z (2.22)
]T X

Equation (2.14) establishes the relationship betvikertip velocity and radius.
Hence, for the constant undercooling the relati®w is then constant and
means that either a dendrite with small radius gitw rapidly or one with a
large radius will grow slowly. In order to calcwgathe resulting velocity of the
tip radius, additional equation is required accogti. Experimental work
demonstrates that for each undercooling a uniglee\a tip velocity and radius
needs to be obtained.

2.2.1.3 KGT Model

To find the additional equation it is necessary ital fadditional criteria that
define the tip radius [Kurz, Giovanola and TrivedB86; Kurz and Fisher,
1998]:

» the marginal stability criterion
» the extremum criterion

2.2.1.3.1 The Marginal Stability Criterion

Several experiments indicate that the radius oWature of the dendrite is
approximately equal to the lowest wavelength péesdtion of the tip. As
proposed by Langer and Miller-Krumbhaar [Langer atidller-Krumbhaar,
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1987] the dendritic tip grows with a tip radius ebwo the limit of stability
which is known as the marginal stability critedi@nger and Muller-Krumbhaar
presented a linear stability analysis for Ivantgarabola dendritic tip region.
Movements of the parabolic shape in the system waused by the interface
energy. It was assumed that the dendritic radiusotsstable in the regions
smaller than predicted by the extremum criteriéaager than the certain critical
value. At such a large radius a tip splitting vaticur in order to decrease the
radius. This largest radius is selected by the denduring the growth stage.
Dendrites grow with the tip which size is limited lthe marginal stability,
following the equation

R=A, (2.23)

where A express the critical wavelength of the solid-ldjinterface at the limit
of stability.

The wavelength of the marginally stable plane fisrgiven by

W’T =mG¢, -G (2.24)
with

_2r

w= 3 (2.25)
2k
¢ =1- N1z , (2.26)
{1+[471DI 1(AV)] } -1+ X

G, _ V(1=K (2.27)

DI

where ', G,, G, ¢, represent the Gibbs-Thomson coefficient, interface

concentration gradient in the liquid, interface meaamperature gradient and
stability parameter, respectively.

At high Peclet numbers equation (2.25) reduces to
. =—. (2.28)

By applying liquid concentration
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o

= : 2.29
“TIs @-k)Iv(Pq (2:29)

the interface concentration gradient can be resvritb
VA-Kg (2.30)

C. = [1-(1-k) Iv(Pd]D

Finally, substituting this concentration gradiemtbi the equation (2.23), one can
obtain

1/2

_ r
R=2 =V | (2.31)

(k)P0

Including the definition of Peclet number, accoglio the equation (2.16) and
using Ivantsov’'s solution for the transport problethis relation can be
expressed as

V2, +V(,+{,=0, (2.32)

with the following coefficients],, {,andd,

T
$1 ~PeD? (2.33)
_ mg(1-Kg,
2= D, [1- (1-k)Iv(Pe]’ (2:34)
¢, =G. (2.35)

In the directional growth the temperature gradiesrdetermined by the external
heat flow. Neglecting this effect (at low growthtes) on the diffusion field

around the tip, the concentration gradient canddeutated using a flux balance
at the dendritic tip. In our calculation it was setzero G =0), as proposed by
Kurz and Fisher [Kurz and Fisher, 1998; Yamazdkal, 2006], what gives the
absolute stability condition. It reduces the equa(2.32) for growth velocity as
follows

V=-0,10: (2.36)
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2.2.1.3.2 The Extremum Criterion

This criterion implies that growth stage takes plat the maximum possible
velocity and at the minimum possible undercoolifigese two assumptions are
fulfilled by the velocity corresponding to the raditip of the dendrit®. The
expression for rate of interface movem&htan be obtained for example for a
perturbation driven only by the solutal and thevature undercooling

AT = AT, +AT, (2.37)

where AT,, AT, are solutal undercooling and the curvature unadgirg,
respectively.

AT, =-m(G- ¢), (2.38)
2r

AT =—, 2.39

TR (2.39)

wherem represents the slope of the liquidus line.

Substituting these two undercooling temperaturés the total undercooling
equation (2.37) we receive the following relation

20

AT =m(g - ¢)+E. (2.40)
This equation transforms into
- Go 2r
AT = - —, 2.41
m(q’ 1—(1—k)|v(P@j+ R (2.41)

by assuming the equation (2.29).

Presented KGT model was used in our calculationmfudeling the ECT/CET
transitions.



3 Cellular Automata and Point
Automata Methods

3.1 Literature Review

The increasing importance of computers has leadrtew way of looking at the
world. This point of view shows nature as a formcomputation. Computers
follow some rules. At each step the rules determemactly what type of
computation will be performed next. This behavigr an example of the
automata system. Another type of the automata,rdived a lot of attention
during the last years, is CA. From one side it isoflection of colorful cells
located in a grid which show us pretty pictured, foom another side this is an
excellent tool which can be related to exciting neeas and can solve many
problems. By building appropriate rules for theldal system we are able to
simulate many kinds of complex behavior from any tbé scientific and
engineering fields. CA represents a discrete dyoalngystem with a long and
illustrious history of study.

First work in this field was done by the John voeusann in 1951 [von
Neumann, 1951], who was interested in the problémaxchines (or automata)
which are able to produce copies of themselvesstdged considering how
physical automata should be constructed to be tblgroduce the copies of
themselves. The details of such construction weng xomplicated, and so
following discussions with Stanislaw Ulam, von Neamnm began to study a
logical model of self-reproducing automata. His raagh was a design for a
Turing Machine implementation as a concept of Chg29 states per cell and
5 cells (often referred to now as von Neumann,FSgere 3.3) neighbourhood.
His work was edited and published by his colleagArghur Burks [von
Neumann, 1966]. This simple discovery proves thAs @re able to simulate
many phenomena. In the early 1970’s two dimensi@fahamed Game of Life
was also able to perform any computation [Wainwtridi®74]. This algorithm,
invented by John Conway became widely known. lua@tf employs very
simple rules. It was proven that it can be alsaluseemulate a universal Turing
Machine what was achieved by identifying propagatistructures or

27
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configurations of cell states. The discovery th& A with only 2 states and 8
transition rules could perform any computation Wwab/ remarkable.

During the early 1980’s Stephen Wolfram began &esyatic investigation into
these simplest CA approaches, one-dimensional GA Svneighbourhood size
and two possible states. The lattice in this 1ieer represents a line where the
cells are updated based on their own state anddreict neighbors to the left
and right side. As the neighbourhood size is 3, taednumber of states is 2,

there are2® = 256such CAs possibilities. In 1983 Stefan Wolfran Igi®ed the
first in a series of papers dating from the 198@slfram, 2002], systematically
investigating very basic classes of CA which he edrfelementary CA’. He
described several other simple computational moghish can be divided into
four classes depending on their behavior. Wolfrastassification was the first
attempt to classify the rules themselves. In oad@omplexity these classes are:

Class 1- limit points.

Class 2- limit cycle.

Class 3- chaotic - "strange™ attractor.

Class 4- more complex behaviour, but capable of universahputation.

Class 1

CAs of Class 1 evolve to a uniform configurationcefl states, from almost any
initial configuration. This state can be thoughtioflynamical systems terms as
a ‘point attractor’, or ‘limit point’. As one woulduspect, the rules for Class 1
CAs map from most or all possible neighbourhoodfigoinations to the same

new state. Initial lattice configurations do exXwmt some Class 1 CAs that lead to
non-trivial cycles, but these are very rare.

Class 2

CAs of Class 2 evolve to produce simple stableesiogic configurations on the
lattice, according to the initial lattice configtim. Changes of cell state in the
initial configuration will only affect final cell tates that are nearby (in
comparison to the neighbourhood size). Class 2 €&s be thought of as
‘filters’ acting on the initial lattice configuratn. The evolution of class 2 CAs to
periodic configurations can be thought of as amaliegto ‘limit cycles’ in
dynamical systems terms.

Class 3

CAs of Class 3 evolve to a periodic, or chaotiqfgurations from almost all

initial lattice configurations. Over sufficient temfrom any of initial states the
statistical properties of the resulting configusati such as proportion of non-
zero cells, converge to some value. Small changestial lattice configuration
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lead to larger and larger changes in resultingigardition as time progresses, as
is the case for chaotic dynamical systems.

Class 4

CAs of Class 4 evolve into propagating structutassome sense Class 4 is
‘between’ the purely chaotic behavior of Classr®] the static behavior of Class
2. Some authors [Waldrop, 1993] have made strorigvédgue arguments that
complex systems are those ‘posed at the edge e @mdd chaos’. However
there may be something in this view as, more cdelgtesome CAs in Class 4
have been demonstrated to have a very special pyppkescribed in the next
paragraph.

It can be assumed that the CA method represengsvaapproach of modelling.

The theory of CA is very rich, with simple rulesdastructures being capable of
producing a great variety of unexpected behaviBuring the last years, this
method has been studied in many scientific fiekl;ahe computability theory,

mathematics, theoretical biology, psychology andathegy.

It must be emphasized that the subject of thisediaBon is the application of

the CA method to solve the mesoscopic evolutioratgas to be able to model
the following transitions: ECT/CET and the dendriformations during the

growth stage. It is comprehensively described enftiithcoming chapters.

3.2 Definition of CA Method

This section presents the basic features of ther@fod. What follows are the
basic elements of the CA method:

* n-D (n=1, 2, 3) space is divided into a discretenhar of n-dimensional
elements which are named cells (polygons and pdiyimes).

* a state is assigned to each CA cell,

* the neighbourhood configuration is defined deterstimor stochastic for each
CA cell,

* transition rules are defined which create a netesifthe cell as a function of
the states(s) of the cell(s) consisting of the jmesly defined local
neighbourhood of the cell.

Let's take a look at these general descriptionsniore details. In the vast
majority of all previous science and engineeringligptions of CA, a regular
2D rectangular cell structure (Figure 3.1) has baften used in the calculations
with respect to the represented definition. Thesls @are defined by the finite
number of states (different phase fraction, tentpeea velocity). CA
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discretisation is based on polygons and transitidas between polygons. A
neighbourhood relationship is defined on this dattwhich is divided into the
square (or hexagonal) CA cells. Each cell can h&ésseown neighbourhood
configuration which is chosen during the evaluatibime state of a cell at time
is a function of the states of a finite number elfsc(called itsneighbourhooy at
timet,. At each time step, every cell updates its staiegua transition rule

based on the values in its neighbourhood. Thealrstate of the CA is defined,
but then repeated synchronous application of therehenistic or stochastic
transition rules (functions) to all cells in thdtiee will lead to the evolution of
the CA system while the new conditions are creakdny variations of the
system exist.

Figure 3.1: Conventional CA model discretization.

The above presented basic features of the CA syséeen commonly
implemented in the literature. In the present warkalternative solution to a
common CA method is introduced. First the partitignis not required to be a
regular grid, in other words not all cells need have the same shape or
dimensions. The number of possible states does toabe finite. Finally, the
neighbourhood definition could vary from cell tdl@nd from time to time. The
state change rule does not necessarily need teteenunistic, what allows for
the probabilistic CA application. These observatibning us to the development
of the new non-uniform CA method. In the preseptkithis new concept is
applied. The point (instead of cell) automata disation is presented which is
now based on points and transition rules betweenpthnts, where instead of
periodic distribution of the cells, the points atistributed randomly in the
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domain (Figure 3.2). Basic idea of PA discretisatis to distribute nodes

randomly which leads to different distances betwélem nodes and gives

different neighbourhood configurations for eachttdm. The neighbourhood is
now different for each point, therefore it mustdbered for each node separately.
While the new definition of neighbourhood is expku, irregular (also named
random) PA cellular transitions rules can be useexactly the same way as for
the regular approach. In this sense the irregukam@del is not much different

from the conventional one, despite bringing manyaathges.

i=n

X

Figure 3.2 Random PA model discretization.

What follows are the basic elements of this novehfethod:

* the starting point is to distribute the PA nodest (ells) randomly on the n-D
computational domain,

* a state is assigned to each PA node,

» the neighbourhood configuration is defined for eaxide separately with

respect to the selected neighbourhood points,

* the neighbourhood of the node includes all randothes whose positions are
located in the domain of a circle in 2D (Figure)38sphere in 3D (Figure 3.10)
with the radius R,. The number of the neighbours can vary locallye Th

transition rules are defined and they create a state of the point as a function
of the states(s) of the points(s) consisting tlwallaeighbourhood configuration.
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3.3 Typical CA Neighbourhood and PA Neighbourhood
Definitions

The basic element of the CA method is the cells b memory element which
stores states and supervises the process. Thésareshrranged in a static state.
To introduce dynamics into the system some rulesi te be defined. The 'task’
of these rules is to define the state of the amlitifie next time as a function of
dependence an the neighbouring cells. A basic itiefinof neighbourhood
comes exactly from the classical CA approach whogerates on the grid
divided into the square cells. In the two dimenalosquare lattice there are
many neighbourhood configurations possible. The tnomsnmon definitions
used for the conventional grid are depicted in F@gu3.3-3.6. For the random
node arrangement we propose a definition of PA mclv eachpoint has a
different neighbourhood configuration in the shaple a circle, during a
computation (Figure 3.8). The cells are defingd with i the row number

andj the column number of the cell. The definition &k tneighbourhood

configuration is presented through the location af neighbouring cells
(depicted in the oval brackets under each configurp

6, ={Guy 6100y G

Figure 3.3: The von Neumann neighbourhood configuration witre#gghboring cells.

HE\ .

Cl,j ={q+1,j -1 (i:+1j ’ p+]j,+1’ iC],+ 1’iC—j1,+ 2i C—jl, i Qj 1- 1 jC,— }1

Figure 3.4 The Moore neighbourhood configuration with 8 neigtihg cells.
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G, :{qm y Grgjen B e Gy 0iCp - ri?,—}

Figure 3.5 The modified Moore neighbourhood configuratiothné neighboring cells
(variant 1).

G ={ G+ G Py en €1 G miGin }

Figure 3.6: The modified Moore neighbourhood configuration witheighboring cells
(variant 2).
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c G, ={ G 6100 by G-

G 6, ={6,m 6]

Fi P e 0 R

i :{9—1,1’%-1}
G G Z{Q,j—v Q+1j}
CI Cl,j ={q+1,j '(i:j+1}

Figure 3.7: A newly introduced neighbourhood configurations tadeidhe grain growth
evolution.
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]
] ]
]
¢ ={eilr-r],, <R
Figure 3.8 Example of 2D PA neighbourhood configuration.
G ik Gk

Figure 3.9: Example of 3D CA neighbourhood configurations. L&fbore, right: von
Neumann.

i¢J<R'}

¢ ={cir-r

Figure 3.10:Example of 3D PA neighbourhood configuration.
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4 Point Automata Advantages

Irregular CA grid structure approach (also namednihod) was first proposed
by Janssens [Janssens, 2003] to model the redizatiah process. It is based
on the randomly distributed nodes instead of reg@a cells. A detailed
definition of this approach has been already prieskim the previous section. In
this chapter we focus our attention on the reasmnsumerical implementation
of irregular CA for modelling: recrystallization(H/CET and dendritic growth.
Random grid CA model for the simulation of the exMmn of a materials
microstructure during recrystallization, followintihe approach proposed by
Janssens [Janssens, 2000], is introduced. He fddusettention to the typical
problems that might occur when modelling grain kamg displacement. In his
publications there are a few numerical results shd#xtended information is
given with respect to the definition of the irreguCA.

For modelling ECT/CET transitions and dendritic wtlo this novel approach
represents an original formulation and solutiorcdbsd in Chapters 5 and 6.

In Section 4.2 a simple algorithm for modelling mestallization process is
shown. The basic idea is first presented for tagsital CA method and then for
the novel PA method following the rules proposedJaynssens. The principal
differences in implementations of both methodsext@ained.

4.1 CA Problems

CAs are attractive as a modelling framework thaty npmovide a better
understanding of meso-macro relations. However,ynsarentists reject the CA
approach because the framework is far too simplefartoo idealized, to be an
appropriate tool for modelling different involvedropesses. They argue
[Yazdipour et al, 2007; Yazdipouret al, 2008] that the classical CA
assumptions like discrete time, regular grid strted, finite sets of states etc.
may make the approach so simplistic that it is tioeable whether its results
can be generalized beyond the particular framewbrkCA definitions the
discretization of the space is an essential agpetinfluences the final results.

37
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The science started to search for a new computdti@pproach to overcome
these problems. The novel random grid computingeargpto be a promising
trend for solving problems that can not be achidwedpplying the classical CA
definitions. The first publications on irregular CAre by Thieme-Martin
[Thieme-Martin, 1999] in technical sciences and Blache [Flache and
Hegselmann, 2001] in general. Other research grbwaps published similar
approaches for modelling recrystallization wheree thew definition of
neighbourhood is used [Yazdipowt al, 2008]. Let us first discuss the
objectives with which Janssens introduced the ila@gCA's.

Recrystallization. The main reason why the PA method was applied for
modelling the recrystallization is the heterogerseoature of this process. In
many cases local variations have a substantialanfie on the recrystallization
process and at the same time the heterogeneityesetlocal variations in the
microstructure makes it difficult to include thema statical model. Technique
such as CA solves this problem by spatially resgjvihe microstructure. The
main limitations are as follows. Till today the &pations of CA have been
limited mainly to the qualitative modelling. It isot entirely clear how the
computational kinetics of the CA model relates tieal world kinetics of
recrystallization and grain growth. The conventlo@A represent the
equidistant cell distribution what is the main i@asvhy the link to the space can
not be made, obviously because the distances betiheecells are not equal in
all spatial directions due to their shape. Consetiyegiven the same conditions
for driving force and mobility, the velocity for ¢h grain boundary is
directionally dependent on its relative orientationthe grid. It is also known
that the shape of the neighbourhood, which isénGA approach closely related
to the grid, has a major influence on e.g. the Weygrain boundaries move in
the simulation of recrystallization. It shows thie automata grid directly
influences the outcomes of the computation. Thennmaotivation for a new
approach was the possibility to break the couptietyveen the orientation of the
periodic discretization grid and the orientatiortled grain boundary. A solution
to these problems is the use of the PA method. dititianal advantage of the
random grid is that, when the material is homogeaslodeformed, it is still a
random grid [Yazdipouret al, 2007]. The deformability of the grid is a
necessary requirement to simulate the same as veldsasvolution of the
microstructure.

ECT/CET transitions. During the CC process of steel the three charatiter
zones [Lorbieckaet al, 2009] can be distinguished: chill, columnar and
equiaxed. The biggest problem which occurs duringdetling of this
phenomenon is the proper prediction of dimensiohete three regions with
respect to the industrial measurements. By usifiigrdnt nucleation models
only, we are not able to influence directly theigrstructure. In additional to the
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nucleation models many other parameters need tbt he the experimental
results what usually takes a lot of efforts [Lodbi@and Sarler, 2009].

By the novel PA method we can easily influence twa grain size by changing
the density of nucleuses in the domain. Novel PAhae offers an attractive
alternative to the classical CA method becauséefflexibility of node density
and neighbourhood definition. The different densify nucleuses across the
domain of interest allows us to model the appraperdimensions of the central
region which is usually difficult to predict. Progexd new method gives a more
proper modelling of chill, columnar and equiaxeaes, respectively.

In Chapter 5 the solution of the governing stodbasguations is first solved by
the conventional CA approach and then by the nd&®#&l approaches. The
procedure responsible for generation of random ravdEngement is explained
as well (see Section 5.6.2.1).

Dendritic growth. During the dendritic growth the crystallograplages of
grains have different orientations. It is commoklyown that this process is
difficult to simulate by the classical CA method. aMly, because the
configuration of the CA network has a direct infiae on the simulated
structures. The growth direction of the grain cspends to the direction of the
CA network not to the original crystallographic emtations of the nucleuses.
This happens because in the CA growth the prinapllonly affects nearest
neighbors. This is not the case in the PA methde. first problem with growth
on the Cartesian grid is that, despite the specifigentation, it can grow only
along the grid axes. For the given rules of thelagsical CA model, no other
alternative exist. Even if any other orientatiorllwe chosen, the dendrite will

always switch ta0" or 45 with the evolution of the process.

In order to solve this problem the novel PA methas for the first time applied
for the dendritic growth calculations which are dzh®n the CA rules already
described in Chapter 3. A novel method is able dsolve the preferred
crystallographic orientation problem. It is showratt when using the random
node arrangement the dendrites are able to graamyndirection. In Chapter 6
the solution at the governing stochastic equatierfirst presented for the CA
method and then for the novel PA method. The praeedor generation of
random node arrangement is explained as well (setd® 6.5.3).

4.2 An Overview of Modelling the Recrystallization by
the CA and PA Methods

In this Section we present a general concept fatetiog of recrystallization by
the classical CA method. A detailed review of thiscess is beyond the scope
of this dissertation. We discuss only the basiamgdions and method layout.
The attention is focused on the important diffee=naf both methods.
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Recrystallization is a process through which asedéformed grains replaced by
a new set of undeformed grains that nucleate aod¢ gntil the original grains
have been entirely consumed. Recrystallization ssally accompanied by a
reduction in the strength and hardness of a matand a simultaneous increase
in the ductility. A precise definition of the pra=eis difficult as the process is
strongly related to several other processes, motbty recovery and grain
growth. In some cases it is difficult to precisélgfine the point at which one
process begins and another ends [Humphreys aneéitigth996].

4.3 CA Method for Recrystallization

4.3.1 Modelling of the Nucleation Rate

It is well known that recrystallization occurs whthe strain or the dislocation
density in a deformed matrix reaches a criticalkelewhich depends on the
processing parameters such as temperature anad igttei Two important stages
that determine the microstucture of recrystallmatare nucleation and grain
growth. Both aspects are closely related to thiechgion density represented as
the stored energy variation in the deformed grains.

Several models for the rate of nucleation have bhg®posed. For detailed

explanation see Ding and Guo [Ding and Guo, 20Dl prder to simplify the

procedures two assumptions are usually proposed:

1. Initial dislocation density is uniform and identidar all grains. When it
reaches a critical value the nuclei for recrystation will form on the grain
boundary.

2. Nucleation only occurs on the grain boundaries.

4.3.1.1 Initial Microstructure

In the CA method the calculated domain is divid&d the regular square cells.

During the recrystallization two different types @fCA cell are possible: the
entire cell which represents a portion of the grama it is associated with the
fixed crystallographic orientation and the grainubdary cell which has a
fraction of two grains with their respective oriatidons. The area of a grain is
defined proportional to the number of the CA ce&llsich fall inside the grain

(see Figure 4.1).
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Figure 4.1: Example of a 2D distribution of grains and CA selDifferent colors represent
different grains with different orientations, respeely.

4.3.2 Modelling of the Grain Growth Kinetics
4.3.2.1 Neighbourhood Configuration

In the 2D CA model, a von Neumann neighbourhoatfigaration is usually
selected.

<
<

Figure 4.2: A definition of the neighbourhood configuration thie CA method.
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4.3.2.2 Grain Boundary Migration

In order to simulate the grain boundary movememesGA cells located at the
grain boundary are identified first. The drivingyde for growth comes from the
difference between the dislocation densities of grain and the matrix.
Generally, the growth velocity can be represented as a function of the grain
boundary mobilitym, and the driving forcep,

V=m,p. (4.1)

In the context of modelling grain growth by the @pproach it is necessary to
consider three different grain growth models [Jansst al, 2004] in general
 Curvature driven grain growth where the energyeston the grain boundaries
drives their motion.

* Non-curvature driven grain growth in which energy gresented in some
another form in the microstructure and the enerfyjyhe grain boundaries is
negligible.

* Mixed mode where the two modes appear simultangousl

Depending on the grain growth mode a different riication of the CA can be
used to construct the algorithm based on the equédi.1).
For each CA cell located at the grain boundarydisplacement is calculated in
each time step by the equation [Raghavan and Sahay]

Ax, =m, pAt (4.2)
Grain 2
\
\

DX,

! —

/—-§ \ Grain
boundary
Grain 1 —

Figure 4.3: Calculation of the grain boundary displacemenhaloundary CA cell.
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The grain boundary can move forward or backwardeddmg on the sign of
Ax, in equation 4.2 (see Figure 4.3). The area taketid boundary in a given

cell is obtained fromAx, and the angle of normal at the boundary. The

transformation probability for a cell that lies it the growth region is defined
with respect to the chosen neighbourhood configpmatVhen the number of
grains decreases with increasing growth time, thang with the same
orientations will frequently connect to each otimto a larger grain. A cell is not
considered to be recrystallized until completelynmaned by a moving
boundary. It will change state (orientation andadiation density) when it is
entirely recrystallized.

4.3.3 Transition Rules

The presented algorithm for recrystallization isnpmsed of the lattice of the

CA cells that are updated simultaneously accordmmgransition rules. The

evolution of a CA cell is controlled by the cellsat form the neighbourhood or

surrounding of this cell.

Modelling recrystallization can be decomposed im0 steps. In the first one,

the initial microstructure needs to generated thhowgrowth of randomly

generated nuclei. The following simple transitiaeris applied. A cell under

consideration recrystallizes with 50 % probabilify at least one of the

neighbours from the chosen neighbourhood is realtizsd. Therefore, growing

grains reach approximately globular shape [Kro€220

In the second step, the simulation is done by #tuential realization of the

following three steps representing microstruct@ablution of each cell during

each time step:

* evolution of the dislocation density,

* recrystallization realized by the growth of gramisen driving force exceeds a
critical value, and

* the nucleation of embryos of new grains.

The transition rules control the cell state transfations between non-

recrystallized and recrystallized. Additionallygtke are several internal variables
describing each cell. These variables are parhefttansition rules describing

mechanisms leading to the recrystallization.

* orientation which is identical for the whole celtxated in each individual
grain and determines the grain boundary energy,

« dislocation density that represents the stored ggnelue to the previous
deformation,



44 Point Automata Advantages

* grain boundary energy that would be zero for eaahdells not located beside
the grain boundaries in the same grain,

* the color variable represents different grains.

A recrystallization event will occur at a cell aftérest under consideration of
50% probability when the following conditions ardfilled simultaneously: the
cell of interestis situated at a grain boundary, the differencediglocation
density between the cell of interestd neighbouring cell belonging to different
grain is greater than a critical value, the potmniew configuration of the grain
boundary is not an excluded one, a grain havingtadislocation density grows
into a grain having a higher dislocation density.

The mobility of a solid-state grain or phase bouwpda determined by the
atomistic mechanisms by which the boundary movdghofgh uncertainty
remains about the exact nature of these mechanisimgienerally accepted that
mobility strongly depends on the crystallographigsarientation between
neighbouring grains. Misorientation depends on findependent variables, three
to represent the orientation difference betweerctistal lattices and two for the
grain boundary plane, which represents a substam@aameter space
misorientation constant [Janssees al, 2006]. Mobile boundaries continue
moving towards the point that they meet each o#mat a fully impinged
microstructure is obtained.

The above described basic transition rules reflecly the most simple
understanding of recrystallization process.

4.4 PA Method for Recrystallization

A novel approach of random CA is not much differ&éoim the conventional
CA. The two major changes implemented in the reatyzation algorithm
connected with the initial distribution of grainsnda definition of the
neighbourhood configuration is required. They asewussed below.

4.4.1 Initial Microstructure

For the PA method the initial microstructure hasrbgenerated by using the
Voronoi tessellation technique [Watson, 1981], whis widely employed for
constructing initial microstructures. The 2D spaseandomly nucleated with
points conforming to a specific crystal orientatidime space between any two
points is bisected with a line, which is equidisttiom both the points. Such
lines are constructed between all the pairs oftgpihich eventually form the
grain boundaries and the space divided by thees forms the grains having the
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orientation of the corresponding nucleus. In Figdré grains with different
orientation generated by using the Voronoi tesgefiehave been shown.

The irregular node arrangements with variationhi@ structure and the size of
neighbourhoods between locations in the grid agarthut micro-structure to the
model. It can be seen that each point represeatselh Because only points are
used in calculations, the shapes of the grain siaeseasily be varied during the
time. The recrystallization process starts withstarcted initial microstructure,
which contains a randomly distributed number ofegdvhich are then assumed
to grow according to the rules already describddvibe

node at the

border:
/V

L’ central

node:

Figure 4.4: Example of irregular CA distribution of cells based the Voronoi tessellation
computed from the random distribution of pointsff@ent colours represent different grains
with different orientations.

4.4.2 Neighbourhood Configuration

To obtain even more realistic representation ofgteen shape, the random CA
neighbourhood was applied to model recrystallizappoocess. As mentioned in
the CA method, cells and neighbors are usually-dopiantly distributed over

the space while in the random CA, the neighbourhameh depends on the
neighbourhood radius. A neighbourhood of a randahenincludes all random

nodes whose positions are contained within thdecingth assumed radius (see
Figure 3.8). As only random node coordinates amedus the calculations,

shapes and size can easily be varied, even locally.
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4.4.3 Grain Transition Rules and Grain Boundary Movements

With the new definitions of the neighbourhood cgofation and initial grain

distribution the irregular CA method can be usedctly in the same way as the
conventional CA method. The initial cell structumeeds to be created following
the Voronoi scheme from the predefined points. ditaén boundary movements
can be modelled following the same transition rudsch are applied for the
classical CA. The random nodes located within tees meighbourhood in the
shape of circle need to be determined (see Figdne The transition rules and
the general algorithm, already described in Sectidh3 for the classical CA

method, can be used.

Figure 4.5: A definition of the neighbourhood configuration tbe irregular CA method.



5 Mesoscopic Model of ECT/CET

The numerical model described in the present chajmesists of a stochastic
mesoscopic model coupled with deterministic maapgcmodel to predict the
ECT/CET. The two main parts of this model are dbesdr in the next sections.
The ECT/CET is frequently observed in the graindtres of cast metals. The
phenomena have been investigated both theoretiaatlyexperimentally in the
past decades [M’Hamdgt.al, 1998; Flood and Hunt, 1987; Flood and Hunt,
1987; Gandin, 2000; Gandin, 2000; Rappaz and Garldda3]. It is assumed
that the transition occurs by different mechanismh&n equiaxed grains block
the growth of columnar grains. Casting of metadliobys may exhibit either
wholly columnar or entirely equiaxed grain struesurdepending on the alloy
composition and the solidification conditions [Waagd Beckermann, 1994].
The prediction of CET [Rappaz and Thevoz, 1987;zKairal, 2001] is of great
interest for the evolution and design of the mead@arproperties of solidified
products. First analytical model of CET were pragzbby Hunt [Hunt,1984] for
unidirectional solidification under steady-statenditions. In this model
equiaxed grains nucleate at the temperature less d@h equal to the liquidus
temperature and grow into the undercooled zonedabkthe growing columnar
front. The front is blocked and CET transition takgace. Mathematical models
following Hunt can be identified as deterministither stochastic, when some
random parameters are used.

Wang and Beckerman [Wang and Beckerman, 1994] tleedoncept of the
dendritic envelope to represents both the equiexadl the columnar grains
developing a numerical model to predict the CETumdirectional transient
solidification. M’'Hamdi [M’Hamdiet.al, 1998; M’Hamdiet.al,1999] modelled
the heat transfer and columnar growth in the C@olticomponent steel billet.
Proposed algorithm was able to calculate the mwstf columnar front at steady
state, which was described by the continuous fanatif the radial distance of
the billet. The calculated columnar front shape whs result of strand
movement and the growth kinetics of the columnarddées. This approach was
combined with an equiaxed solidification model tegict the ECT/CET in the
CC processes.

47
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Stochastic models of the ECT/CET prediction [Seitind Brown, 1989; Zhu
and Smith, 1992] track the growth of each columarad equiaxed grain, not
only the columnar front alone. They predict theadetl grain structure in two
and three dimensional solidification. The highlyimed mesh is necessary to
resolve all grains, usually demanding larger comipamal resource. Following
the developments of stochastic models for solidifan, Gandin and Rappaz
[Gandin and Rappaz, 1994] developed CA-FEM which ombination of the
CA method to predict the grain structures and FEMalculate the temperature
field. Their CA-FEM model was extended to three @mnsional problems in
[Gandinet al, 1999].

Modified CA models that resolve not only the enpel®mf the grain, as it is in
the original CA models, but also the dendritic armere developed, by
increasing the number of the CA sites and the cdatipmal resources.
Recently, Dong and Lee [Dong and Lee, 2005] progpamech modified CA
models of ECT/CET in unidirectional solidificatioshowing that the equiaxed
grains nucleated not ahead but also between thencar grains.

One of the principal goals of this dissertationresgnts the development of a
new simulation tool for modelling the grain struetun solidification process.
The numerical model is designed to outline only thiemension of chill,
columnar and equiaxed zones (see Figure 5.1),rrdtha the detailed structure
of each grain separately. The accurate size ofgthas is not taken into the
consideration because of the chosen calculated idodmscretisation, which is
too small to predict it in such details.

In this chapter we present the numerical stochastdel which is designed to
be able to simulate the positions of the ECT andl Q& CC of steel. The
governing equations of the macroscopic model arevetk by the LRBFCM
method and the numerical solution for mesoscopicdehby the CA and PA
methods is presented.

5.1 Characteristic Zones of CC

In CC three characteristic zones can be distinggish terms of the size, shape
and orientation of the grains, corresponding todhid layer, columnar growth
and equiaxed region, as demonstrated in Figurel'bdy reveal to the following
distinct regions (from the centre to the surface):

» A central region of fine randomly oriented equiaxgdins.
* An outer region of columnar grains, elongated ndtméhe ingot surface.
» A third zone corresponding to the very fine chilfstals at the surface.

In order to understand the formation of the strregdut is necessary to consider
various thermal, hydrodynamic and physical-chempte@nomena. The process
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starts at mould wall where the first solid nuclermh. The sudden cooling
produces a very thin layer of extremely fine graahghe surface, no more than a
few millimetres thick, called the chill zone. Thelemnar zone in the middle is
composed of the nuclei that nucleate in the cljlel and which grow with
respect to the solidification front. Equiaxed caystin the centre form in the
liquid with random orientations and no preferredcroacopic growth direction.
This implies that the liquid becomes undercooladk tb the heat conduction
through the columnar layer. Growth of the equiagesins eventually stop the
extension of the columnar zone. The origin of thelei that give rise to the
equiaxed grains is still a subject of debate. Manthors believe that they can be
formed spontaneously in the liquid or by the fragimation of the dendrites in
the columnar zone [Durand-Charre, 2004].

Equiaxed zone

Columnar zone

Chill zone

CET

ECT

¥

‘466931

Figure 5.1: Grain structure occurring during CC of steel (Stteel company). Billet of
dimension 180 mm, 25MoCr4,_ . =1545K and V__ =1.12m/min.

tast cast

In case the fragmentation occurs the broken endeo€olumnar dendrites can
be entrained in the liquid by convection curremtd aan remain relatively stable
if the temperature is not too high. The fragmentsymemelt in the solute
enriched liquid. The respective proportions of teéumnar and equiaxed zones
depend on numerous factors. The most importanhés temperature range
between the liquidus and solidus which is deterahibg the alloy composition.
In the industry an extended equiaxed zone in thdreeis preferable. This
simplifies further rolling and heat treatment oysti@ns.



50 Mesoscopic Model of ECT/CET

The developed numerical model is able to predieitptively and quantatively
the dimension of the three zones with respect éoaibserved Bauman prints
(Figure 5.1). The CA mesostructure model (Sectid) & combined with the
macroscopic heat transfer calculations describ&kntion 5.3 and 5.4.

5.2 CC Process

CC process is used to solidify more than millions@f steel produced in the
world. This process involves many complex interagtiphenomena while
molten steel is solidified into a semi-finished léti$, blooms, or slabs for
subsequent rolling in finishing mills. The schenfettee process is depicted in
Figure 5.2.

The ladle with molten steel is placed in a holdgom the ladle, the steel is
tapped through a nozzle into the tundish. The &im@ an intermediate vessel
designed to maintain a constant melt level andaalléor flying ladle changes
during the course of casting in a continuous prec€€ takes place through a
water-cooled mould that is open at the top andbatiA casting powder is used,
so that the steel will slide smoothly through theuhd. Intensive water cooling
of the mould side plates immediately gives therhett a hard shell of solidified
steel. The cooled steel shrinks in volume as withdrawn from the underside
of the mould in a long strand. The strand is camdirsly cooled on its arc-
shaped path down to the cutting station. At thégyst the steel is still hot and
glowing, but is sufficiently solid to enable theastd to be cut with movable
oxygen lances into pieces of several meters lomg. final product of the CC
process of the billet is depicted in Figure 5.1e iumerical model developed in
the dissertation, was developed in order to ingasti the grain structure for
different dimensions of billet, different materaoperties and different casting
parameters. In this dissertation all simulationgemgerformed for the square
billet of dimension 140 mm (Chapter 7) and 180 mAppendix A) and the
spring steel grades 51CrMoV4 (Chapter 7) and 52GfM@nd 25MoCr4
(Appendix A) typical for the Store Steel billet ta¥he main purpose of this
model is to be able to simulate the mesostructmadtion which occurs during
the CC process. Comparisons between calculatetigmssof ECT and CET and
measured in the industry are analyzed. We veriffezl numerical model by
comparison of the measured transitions with theedsions of simulated three
zones: chill, columnar and equiaxed. The tempeegturfile can be obtained for
any alloy and for different casting parameters ((Fég5.6) through the macro
heat transfer model. These macro temperature freljoiesent the input data to
the mesoscopic model. The detailed descriptiom@ftacro heat transfer model
[Vertnik and Sarler, 2002] is described in Secti&n® and 5.4 and Appendix
A2.
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Figure 5.2 Scheme of the CC of steel [Vertnik, 2010].

ECT/CET model is considered in this dissertations Iphysically described by
the macroscopic heat transfer model and the megmsemwdel. The temperature
field is solved by the LRBFCM and the mesoscopigatipns by the stochastic
CA and PA methods.
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Figure 5.4: CC of steelthe tundish (Store Steel company).

Figure 5.5: CC of steelthe billet (Store Steel company).
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5.3 Macroscopic Model

The macroscopic model of the Store Steel compardesgned to be able to
calculate the steady temperature distribution e dbntinuously cast billet as a
function of the following process parameters: biltBmension, steel grade,
casting temperature, casting velocity, primary, awaa secondary cooling
systems flows, pressures, temperatures, type aatiquof the casting powder,
and the (non)application of the radiation shield alectromagnetic stirring.

The Bennon-Incropera [Bennon and Incropera, 198Tktume continuum
formulation is used for the physical model, sol®dthe recently developed
meshless LRBFCM [Sarler and Vertnik, 2006]. In thiszel numerical method,
the domain and boundary of interest are divide®d ioverlapping influence
areas. On each of them, the fields are represéntetie multiquadrics radial
basis function collocation on a related sub-setnotles. Time-stepping is
performed in an explicit way. The governing equagiare solved in their strong
form, i.e. no integrations are performed. The potygation is not present and
the method is practically independent on the prmobliimension. The other
possibility represents the local approximation I tmoving least squares
[Sarleret al, 2005] instead of interpolation. The charactegisti the model are
represented as follows:

5.3.1 Governing Equations of Macroscopic Model

Consider a connected fixed domdn with boundarydQ occupied by a liquid-
solid phase change material described with the ¢eatpre dependent density

of the phasél, temperature dependent specific heat at constassprec,,

thermal conductivity4d , and the latent heat of the solid-liquid phasengeda. .
The mixture continuum formulation [Bennon and Impmoa, 1987] of the
enthalpy conservation for the assumed system is

0

—(ph)+0O0pvh) =

5 (Ph) +Otlovh) 6.0
00ADT) +Dfevh- £ o0~ 1oy h)

wherep, h, L, A, c, represent the material density, specific enthapgcific

latent of the solid-liquid phase change, thermaidewtivity and specific heat,
respectively.
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& STORE-STEEL CCSim: 5IM INPUT BROWSER
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Casting temperature: 1530.000 ['C]
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Casting speed: IT [mmin]
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Figure 5.6: Macro heat transfer simulator [Vertnik and Sar802; Sarleet al, 2005].

The second term on the right-hand side is a caorederm, which needs to
accommodate the mixture continuum formulation of ttonvective term. In
continuation we neglect this term. In equation 5t mixture density and the
thermal conductivity are defined as

p=1tp+1'p, (5.2)

A=A+ YA, (5.3)
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where f), represents the volume fraction of the ph@seThe liquid volume

fraction fY might vary from 0 to 1 between solid@is and liquidus temperature
T, . Mixture velocity is defined as

V=1 o9+ £ ou)/p, (5.4)
and mixture enthalpy is defined as
h=f'L+f'L,. (5.5)

The constitutive temperature-enthalpy relationshngs

h=[ cdT, (5.6)

h=h(T)+[ (¢-¢)dT+ L (5.7)

with T, standing for the reference temperature. The thlecoraductivity and

the specific heat of the phases can arbitrarilyeddmon temperature.

5.3.2 Spatial Discretization

The temperature field of a point in the billet regcribed by the following three-
dimensional vector in the Cartesian coordinateesyst

p=xi,+y +1, (5.8)

where x,y,z are the coordinates ang,i,,i, are base vectors. The

coordinate measures the length of the inner ragliube casting machine. This
Cartesian coordinate system represents the flameey, which is the

geometrical approximation of the real curved casprnocess (Figure 5.7). The
origin of the z coordinate coincides with the top side of the mdpahd the base
vector i, coincides with the casting direction. The coordinate measures the

width (west-east direction) of the billet, perpendar to the casting direction. Its
origin coincides with the centre of the billet. The coordinate measures the
thickness (south-north direction) of the billet,rgendicular to the casting
direction. Its origin coincides with the inner (slouside of the billet. According
to the heat transfer phenomena of the CC of stkelheat conduction in the
casting direction might be roughly neglected. The coordinate is then
parabolic, while thex and y coordinates are elliptic. The temperature field in
the billet at a given time is described by the ghatton of the cross-section



56 Mesoscopic Model of ECT/CET

(called infinite slice) temperature field of thdléi. In this way the temperature
field at a givenz coordinate depends only on the slice history amaaoling
intensity as a function of time. The slices form tae z,, longitudinal

coordinate of casting and travel in the directidrthe i, base vector with the

casting speed'. For calculating the cooling intensity of the slias a function of
time, we need the connection between theoordinate of the casting machine
and the slice history, which is in general

t
2(t)= [ v(t) dt+ zgqv(t) = V(1) 0, (5.9)
§
where t; is the initial time of a slice. In the case whée tasting speed and

other process parameters are steady, we obtaioltbeiing simple connection
between thez coordinate of the casting machine and the slishy t

t(z):%ﬂ:. (5.10)

Figure 5.7: Slice traveling schematics of the billet.

In subsequent calculations we use the simple emu#s.10), since we assume
the steady-state solution of the casting procelss.pFescribed simplified spatial
discretization also simplifies the equation (5.3) femoving the convective

terms. Thus the equation (5.1) transforms intosieart equation, defined on x-y
plane

%(ph):mq;lm). (5.11)
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This simplified model is consistent with the modétsroduced by [Louhenkilpi,
1995].

5.3.3 Boundary Conditions

The heat transport mechanisms in the mould takeaotount the heat transport
mechanisms through the casting powder, acrossittgag (if it exists), to the
mould surface, in the mould, and from the mouldemsurface to the mould
cooling water. The heat transport mechanisms ins#@ndary cooling zone
take into account the effects of the casting véyoatrand surface temperature,
spray nozzle type, spray water flow, temperaturé pressure, radiation and
cooling through the rolls contact. Different typefthe rolls are considered
(driving, passive, centrally cooled, externally lsah etc.). The mentioned basic
heat transfer mechanisms are modified with regarcdutning water and rolls
stagnant water at relevant positions.

Represented model is not in focus of this dissertatTherefore a more
elaborated step by step description and testinthefused LRBFCM solution
procedure for temperature field is presented inlggand Vertnik, 2006]. The
use of the model in simulation system for CC oéktsllets is given in [Sarler,
et al, 2006]. The process parameters were taken dirdoily the process
computer, installed on the casting machine. Thenbephysical material
properties of the spring steel were calculatedheyXMatPro software [Saunders
et al, 2003].

5.4 Coupling of the Mesoscopic and the Macroscopic
Models

The movement of the solid-liquid interface is goest by the evolution of the
temperature field in the computational domain. HE&T/CET is modelled by a
stochastic method to track the interface motionpéeal to the determinate heat
transfer calculations solved by the LRBFCM [Sarerd Vertnik, 2006]. A
solution of the mesoscopic model based on theitramgsules for the classical
CA methods and PA method is described first. Towdhart of the calculations
is given in Figure 5.8. Next the coupling scheme ERBFCM-CA and
LRBFCM-PA method is explained.

The flowchart of the numerical solution for the HCET model is presented:
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Generation of the macro temperature field
(macro heat transfer calculation)

v

Transformation of under-cooling temperature from th
nodes to the micro CA cells
equations (5.12) - (5.13)

v

Nucleation stage
(Gaussian distribution equation (5.14) - (5.13))

v

Nucleation conditions

v

Assigning a random number and a random value déang
for each micro CA cell.

v

Checking the probability condition
equation (5.21)

v

Selecting one of the neighbourhood configurations
(Tables 5.1-5.2, Figure 3.3-3.6)

v

Calculation the distance to the neighbouring agitk respect to the
received configuration and the location
equations (5.22) - (5.25)

v

Growth velocity calculations
equation (5.19)

v

Trapped neighbouring CA cells become solid

Figure 5.8: Flowchart of the ECT/CET model.



Coupling of the Mesoscopic and the Macroscopic Mode 59

5.4.1 LRBFCM-CA and LRBFCM-PA Transfer of Temperature

The described macroscopic model gives the infoonabn the macroscopic
temperature fields (Section 5.3). Temperature \&&re calculated on the macro
nodes so they need to be interpolated for use enmbsoscopic CA and PA
model. On the meso level of calculation the tenmipeeaof a CA cell (PA node)
is influenced by its nearest four neighbouring roacalculation nodes (see
Figure 5.9) Obtained values of temperatures are recalculatex the under-

cooling temperatures by using the following formilg, ., =T, - T, where

macro?

T represents the macro node temperature, and tkentarpolated for each

macro
micro CA cell (PA node) over time. In the preserdrkvthe following simple
interpolation formula is used to find the valuetbé temperature for each CA
cell or PA node

4 4
ATmicro = (Z ATmacrowi) / \Nl’ (512)
i=1 =1

w =exp(™), (5.13)
where AT,

micro !

PA node), the undercooling temperature for the maode from the macro heat
transfer calculations and the distance to the séanacro nodes, respectively.

AT | represent the undercooling temperature of the(oell

macro? i

AT

macro_1

AT

macro_ 2

ATm acro_3 AT

macro_4

Figure 5.9: Scheme of the transfer of temperature from the asaopic to mezoscopic
discretisation (circles represent the macro nodlask square represents the CA cell).
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Figure 5.1Q Left: Relationship between the macro node arrarege and, right: meso CA
mesh. Solid circles in the macro node arrangemgmtesent schematics of the corner, surface
and bulk 5-noded domains of influence of the messhieethod.

5.5 Mesoscopic Model

The following three processes take place on theosoepic level of calculation

» Nucleation process

» Growth process

* Impingement: growth continues until the grains ggcthe whole preliminary
liquid region.

These stages have been already discussed in det@ifgpter 2.

5.5.1 Nucleation Process

The Gaussian nucleation model as defined in [Thegbzal, 1989] and
elaborated in [Lee and Hong, 1997] and alreadyemtes! in Section 2.1, was
applied in the mesoscopic model. If all nuclei ofextain class are active at a
certain undercooling, it is natural to relate theclaus density to the
undercooling. Considering this argument, Théebzal [Thevozet al, 1989]
proposed a statistical approach (called Gausswtnhiition), which indicates a
continuous dependency oN on the temperaturel . In our work, this
heterogeneous continuous nucleation model was edaptwhich two different
Gaussian distributions were considered at the meulfiace and in the bulk
(Figure 5.11), respectively.
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— 2
dN Nstot AT - ATmax surface
= exp- = : (5.14)
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Figure 5.11 Surface and bulk area.
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Figure 5.12 Nucleation curves for the surface and bulk area.

Nucleation starts at the surface layer and thenesidvom the mould with
respect to the undercooling temperature. The posiof the new grains is
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chosen randomly according to the equations (5.4d)(8.15) and is related with
the value of mean undercooling temperature. Itssumed that the highest

occupancy of nucleuses is expected in the range3fT ) to (+3AT,), (Figure
5.12).

5.5.2 Growth Process

The KGT [Kurz, Givoanola and Trivedi, 1986] modedswused as the model of
the growth kinetics. The description and basienelets of the model have been
already presented in Section 2.2.

5.5.2.1 Numerical Treatment of the KGT Model

For assumedPe values, first the equation (2.21) which represdutmtsov
function and then equation (2.28) which represémesstability parameter, are
calculated. Then the coefficientg, and ¢, of the growth velocity are
calculated, following the equations (2.33) and 42.3espectively. The velocity
V and the dendritic tifR, can be obtained

V:_51/52 (5-16)
R=2 r 5.17
B -V(1-K)g ' (5.17)

.-G

m[l—(l— k) Iv(P4]D

Finally the undercooling temperatu& is definedw

_ _ G 2r
AT = m((;J 1—(1—k)|v( PG)J+ = (5.18)

For each node the value of undercooling temperafirg ., from the macro
heat transfer calculation, is known. UndercooliegnperatureAT (equation
(5.18)), according to the above scheme, shoulcelzged with the interpolated
undercooling temperatureST . (equation (5.12)) in order to find the growth

micro

velocity for each node separately. This scheme weakd too much time. To
reduce the calculation time the following procedigeemployed. A range of
Peclet numbers frofe,,, to Pe, need to be chosen to be able to compare the

recalculated undercooling temperatures with theseived from the macro heat
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transfer calculations. In the present study we rasske,,, = 0.004,Pg, = 1
with stepAPe= 0.00Z The values of velocitie&/ (Pe), ,...V( P§ (equation

(5.16)) and the undercooling temperatura3 (Pe), ,...AT( P§ (equation

(5.18)) are recalculated in advance. The leastreguaethod is used to obtain
the coefficienty,, y,, ), of the growth velocity equation (5.19). The valads

three coefficients are determinate through thetir:ssriéleX)_l X" Yusing the

values ofAT (Pe), (AT(Pe))Z, (AT(Pe))3 as matrix X of dimension [3x5000]

andV (Pe) as matrix Y of dimension [1x5000].

The growth velocity in each CA cell (or PA node}then calculated thought the
following formula

V(ATmicro) = yl(ATmicro)3 + VZ(A Tmicrc;)2 + y3(A Tmicr()’ (519)
where
v =(PeV AT,,,) for =1,23,. (5.20)

The same solution was proposed by [Yamazikal, 2006]. If some of the
assumed parameters (material properties of thg)atltange, the coefficients in
the relation (5.19) have to be modified as well.

5.5.3 Impingement Process

At the beginning all points are liquid. The nucleatprocess takes place in the
mushy zone where the first grains nucleate andvediels the growth stage
occurs. The process is completed until the whata & composed of the grains
(solid).

5.6 Solution of the Mesoscopic Model by the CA

5.6.1 LRBFCM-CA

Mesoscopic equations are numerically solved byGQRhetechnique [Rappaet
al., 2003]. Conventional CA discretisation is geneddirst and a set of possible
neighbourhood configurations is determined (sedeTakll). Process starts with
nucleation where the following conditions need to thecked: appropriate
temperatureAT in the micro cell and the probability conditiom(ation (5.21)).
During each time step all cells are assigned a amndumber between
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(O<rand<1) and a random computational angke from -45<6< 45. The
transformation from liquid to solid will occur onlyhenrand < p

D =M—1J§Texp—[(AT—ATmax) /(x/_m'l;ﬂz (5.21)

Once a cell is nucleated it grows with a prefeandirection corresponding to
its assigned orientation and with respect to that lilew. Depending on the
randomly chosen anglé, the following neighbourhood configurations [Nasta
2004] are chosen: Neumann, Moore and modified Mg&ection 5.6.1.1),
respectively (Figures 3.3-3.6). A new neighbourhoodfiguration is developed
in this dissertation. It is shown in Figure 3.7¢ Section 5.6.1.1.

All of new nucleuses which arise from the ‘paregrow with different randomly
chosen configuration which is fixed for them at thee step when they occur.
For all ,neighbours” of the treated nucleus, thé&ueal is checked by using the
formula

d=1(t)/a,, (5.22)

where
(1) = [V (6T) t, (5.23)
a, = ata 6+ 1, (5.24)

where t, a, & represents the initial time, the size of the cafid the
crystallographic angle, respectively.

ranc=1
i =
M
H 2
rancd=1

Figure 5.13 The explanation of growth stage, see also Table 5.1

Thel(t) is the length of the moving solid-liquid interfaceough the time
t,,t,+At. The trapezoidal rule approximation technique wsed to calculate
the movements of the interface
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v(aT(y)+v(aT()
2

jv (AT (1)) dt=(t-1) (5.25)

If a neighbour is one of the four nearest eastthnarest, south neighbours
(6=0") then the equation (5.24) is reduced &p=a, but if neighbour is a

corner neighbour =45 ) thena, = av/2..

Figure 5.14 Left: growth front will not reach the closest netigiurg, ; :{qﬂ'j +1} - the cell will
not be trapped <1, right: growth front will reach the closest nebghurc ; :{qﬂ'j +1} -the cell

will be trapped! =1and becomes solid.

45° 45

Figure 5.15 Left: growth front will not reach the closest netglur c, | :{qm} . The cell will
not be trapped! <1, right: growth front will reach the closest neighinc, | :{qﬂyj} . The cell

will be trapped! =1and becomes solid.

Whend =1, the growth front of the solid reference cell ¢anch the centre of
the neighbouring cell and then this cell transfoitasstate from liquid to solid
[Zhu and Hong, 2001] (Figure 5.14-5.15). It is assd that the growth is not
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allowed to take place for more than a half of CA dering each meso time
step. This is assumed with a sufficient small tstep.

5.6.1.1 Neighbourhood Configuration and Mesh in the CA Metlod

The probabilistic selection of presented neighboadhconfigurations is based
on the randomly chosen angi as shown in Table 5.1. Wherl5< &< 30
modified Moore are selected. Since two types of iffetlMoore (variant 1 and
variant 2) are used in calculations, a further candselection of either one of
the two types is chosen. This selection is arbjti@nd based on the random
number O<rand <1 that is generated for each CA cell. A schematiahaf
selection of neighbourhood configuration is seemable 5.1 and Table 5.2.

Table 5.1:Selection of neighbourhood configuration based rmbabilistic calculation o for

Nastac configurations.
|9|; 0<f8<45 rand Neighbourhood configuration
30<8< 45 - Figure 3.4
0<6<15 - Figure 3.5
15<fd<30 | rand<0.5 Figure 3.6
15<f8<30 | rand>0.5 Figure 3.3

Table 5.2:Selection of neighbourhood configuration based rmabilistic calculation of for
newly introduced configurations.
i Neighbourhood configuration
Figure 3.7 a
Figure 3.7 b
Figure 3.7 c
Figure 3.7 d
Figure 3.7 e

QA WIN|F

Calculations of the temperature field are donetierregular square gird covered
by macro nodes (Figure 5.10 (left)). Each squaréoof macro nodes includes
625 meso CA cells. Relationship between macro feeld meso CA mesh is
presented in Figure 5.10.

5.6.2 LRBFCM-PA

The procedures are the same as for the CA metheti¢8 5.6.1). Nucleation

takes place. Once a point nucleates it grows vatpect to the heat flow and
with respect to the ‘neighbourhood’ configuratiohigh is now associated with
the position of the neighbouring points which falio a circle [Janssens, 2003;
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Janssens, 2000] with radilg, (see Figure 3.8). It means that each point can

contain different number and position of the nemlms, which gives various
possibilities of neighbourhoods. The growth velpce#t calculated according to
the KGT model. For all neighbours of the treatethpayeneral criteriond is
checked

d=I(t)/a, (5.26)

where a, (a <R, ) represent different lengths from the centralite tandom

points in the circular neighbourhood. Whikr1, the growing solid touches the
centre of the neighbouring point and this poinhsfarms its state from liquid to
solid (Figures 5.16 - 5.17).

Figure 5.16: Growth front will not reach the closest neighboiithe point will not be
trappedd <1.

Figure 5.17: Growth front will reach the closest neighbour. Twnt will be trapped >1and
becomes solid.
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5.6.2.1 Neighbourhood Configuration and Node Arrangement inthe PA
Method

The novel neighbourhood configuration of the PAmoéthas been chosen (see
Figure 3.8) which contains points within circle kitadius R, centred on the

reference point. Different dimensions of radiusiefghbourhood can be chosen.
Random PA discretization is always generated first.

Calculations of the temperature field are done tfe regular square node
arrangements covered by the macro nodes (Figugl&ft). The irregular node
arrangement is achieved in practice as a randoects®ml of points from the
centres of CA cells. It is constructed from theulag CA cell size by randomly
taking away certain percentage of the points (gui8 right).
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Figure 5.18: Left: Relationship between macro field and, righA node arrangement. Solid
circles in the macro field represent schematicthefcorner, surface and bulk 5-noded domains
of influence of the meshless method.



6 Dendritic Growth Model

This chapter represents a simple numerical modeathwican simulate the
dendritic forms [Zhu and Hong, 2001; Nastac, 208gnget al, 2002; Beltran-
Sanchez and Stefanescu, 2003] during the solitiicaf a pure substance from
its supercooled melt. The developed algorithm damulate dendritic growth
with the predetermined position of nucleuses, the. nucleation model is not
presented. The solution is structured by the aaksCA and a novel PA
technique, already described in Chapters 3 and drder to predict the dendritic
structure, the stochastic CA or PA methods are cosabwith the heat transfer
calculations to obtain the temperature and sobdtion fields [Lorbiecka and
Sarler, 2010b; Lorbiecka and Sarler, 2010c]. Theegung thermal equation
was solved by the explicit FDM.

6.1 Governing Equations

Thermally induced dendritic growth is consideredtins dissertation. It is
physically described by the heat conduction andsphehange kinetics. The
stochastic model includes calculations of the fats¥ temperature, curvature,
Gibbs-Thomson coefficient. This coefficient takesitoi account the
thermodynamic anisotropy related to the crysta¢rdation and crystal growth
velocity which accounts for the kinetic anisotrofy taking into the

consideration the crystal growth directiéhand the preferential orientatiél, .

The stochastic model receives temperatures frordeterministic model and the
deterministic model receives the solid fractionnfrthe stochastic model. The
heat transfer model is solved by the FDM on theulegnodes. The solid
fraction calculations are done for the classical i@&thod and PA method with
random node arrangement.

69
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6.1.1 Temperature Field

Consider a two dimensional domafd with boundaryoQ filled with a phase
change material which consists of at least two @hasolid and liquid, separated
by an interfacial region, which is usually veryrthin pure substances. The
thermal field in such a system is governed by tiewing equation [Xuet al,
2008]

0

E(ph)=D[ﬂADT). (6.1)
The specific enthalpy is constituted as
h=c, T+ fL (6.2)

where f, represents the liquid fraction, respectively. iilaterial properties are

assumed constant for simulation simplicity. Theidsaind liquid fractions are
defined as a function of temperature

faf =1, 6.3)
1 . T<T,

f(T)= _:L___-II_- D T<T<T, (6.4)
OL S ; T2T,

where f, represents solid fraction. In case of pure sulsstame the solidus and

the liquidus temperatures equal to the melting &napireT,, . However, for the
computational purposes a narrow melting interval atvays present

T, >T,, > T.. The melting temperaturg, is defined ad,, =%(TS +T,).

We search for the temperature at titne At by assuming the initial conditions
T(p.t)=T,(p): PO, (6.5)

f.(p.to) = f(p): POQ, (6.6)
(whereprepresents the position vector) and Neumann boyrodeditions
oT

%(p,t):F(p,t);pDaQ,t0<tsto+At, (6.7)
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wheren represents the normal @® andT,, f,F represent known
functions.

6.2 Phase Change Kinetics

6.2.1 Interface Undercooling

The phase change situation can be achieved by eoaerg a liquid below its
melting or liquidus temperature. When a solid séedplaced in such an
undercooled melt, solidification will be initiateBue to crystal anisotropy and
perturbations in the system, the growth of thedsélom the seed will not be
uniform and an equiaxed dendritic crystal will for®olid-liquid interface is
undercooled to the temperatufe defined as [Gibbs, 1928; Saié al., 1988;

Nakagaweet al, 2006]
T, =T, -TK, (6.8)

where K is the interface curvature.

6.2.2 Dendritic Growth Kinetics

The growth process is driven by the local undeliogolThe interface growth
velocity is given by the classical sharp model {S&mmd Hong, 2002]

Vo= u [T =T(p, 9] pOr,, (6.9)

wherey,, 'y, are the interface kinetics coefficient and theidshtjuid

interface, respectively.

Dendrites always grow in the specific orientatiofikerefore, it is necessary to
consider anisotropy in either the interfacial kicgetor surface energy (or both).
The present model accounts for the anisotropy th kimetics.

6.2.3 Thermodynamic Anisotropy

The Gibbs-Thomson coefficient can be evaluated jKet al, 2009] by taking
into account the thermodynamic anisotropy relatethé crystal orientation and
type as follows

r =F[1—5t cos[s(e—edef)ﬂ , (6.10)
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where S, 8, 6,,, o, T represent factors which control the number of

preferential directions of the material’s anisoydfs = 0 for the isotropic case,
S=4 for four fold anisotropy and so on), growth andkngle between
they coordinate and the line that connects the centéneofnass of the dendrite

and point atl'y,, see Figure 6.1, the preferential orientationyrtfoelynamic

anisotropy coefficient and the average Gibbs - Témm coefficient,
respectively.

6.2.4 Kinetic Anisotropy

The crystal growth velocity is calculated accordinghe crystal orientation by
taking into the consideration the crystal growthediion & and the preferred
orientation 8,,,. The crystal growth velocity follows the equatif®hin and

Hong, 2002]
V=V, (p, t)[1+ , cog s(e—edef))} par,, (6.11)

where J, represents the degree of the kinetic anisotragspectively.

6.3 Coupling Scheme

The movement of the solid-liquid interface is gowad by the evolution of the
temperature field in the computational domain (Feg8.3) and the phase change
kinetics.

Figure 6.1: Calculation domain of the dendritic growth.
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The dendritic structures are modelled by the ststithianethod to track the
interface motion coupled to the deterministic Heatsfer calculations. We first
describe the solution of the temperature field dasm the FDM and
subsequently the transition rules for the CA (PAStmads for calculation of the
solid fraction field. The flowchart of the calcutats is given in Figure 6.2.

SetT, and solid fractiofi,,  from the initi@nzlitions

4

> Calculation of the new temperature field in FDM asd

4

Transfer of temperaturds from FDM nodes to PEArnodes

4

PA or CA calculation off,

4

Transfer of solid fractiorf, from the PA or CAdes to the FDM
nodes

4

Set
To =T [} f05 = fs

Figure 6.2: Flowchart of the thermal field and solid fracticsaulations.

6.4 Solution of the Temperature Field

A square domain with a sideis considered. The solution for the temperature
field is performed by the simple explicit FDM. Thember of points in FDM

mesh inxandy directions isN,,. The total number of FDM grid points ny-
4, since the four corner nodes are not considéradhiform FDM discretization
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is made with mesh distancAx=Ay=a= I/(ny—l) as seen in Figure 6.3
(top). Solution of the temperature field in the domnodes is thus

_ AtA B
T, =Ty, +p_cp([(T0._1j 2Ty, + Touy ) /(A %)]+
, . (6.12)
|:(T0i,j—l_2T0ij +To;+1)/(AY) })"'C_( f; B fo j,),

p

fori=2,3,..N,, - Iandj=2,3,..N, -1

The boundary nodes are calculated (the Neumanndaoyronditions are set to
F=0W/m’) as: west side: T,;=T, for j=2,..N, -1 East side:

Ty, =T, for j=2,..N, =1 North side:T,, =T, for i=2,..N, -1
South side: T,=T, for i=2,.N, -1 where fy ., To;, Ty,
Toicajs Toijs10 Toij-o are initial solid fraction, initial temperature the FDM

central, east, west, north and south nodes, ragphct

6.5 Solution of the Solid Fraction Field

We now define and discuss the elements of theiclISSA and the novel PA
solutions in details.

6.5.1 Definition of Mesh and Neighbourhood Configuration

Square cells with lengtidx = Ay= a= |/ n, wheren, =N, -1 represents the

number of cells inx andy directions are considered in the CA approach. ¢n th

PA approach the square is divided in uniformly a@nuniformly distributed
nodes and the cells are not defined.

6.5.2 Mesh and Neighbourhood in the CA Method

The conventional square mesh structure is appliedCA calculations. It
represents a square domain covered by the CA xglls, Y., ; located exactly

in the middle of four FDM nodes, as it is depictedrigure 6.3 (middle).
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Figure 6.3 Schematicof space discretization. Top: FDM nodes with,

cells with Ny



76 Dendritic Growth Model

1
XCAi,j ZE[XFDMi,j +)§:DMi+1,j]' (6-13)
1
yCAi,j _E[yFDM i + Yom i +1]- (6-14)

The von Neumann neighbourhood (Figure 3.3) thatgakto account only the
closest neighbours is used in the regular celtsires.

6.5.3 Mesh and Neighbourhood in the PA Method

For the novel PA method the random node arrangemseint the dissertation
generated from the regular CA mesh. To constriectdhdom node arrangement
the CA cell centres are displaced to randomly gpasitionsxg,; ;, Yea;; ON the

computational domain (see Figure 6.3, bottom).

Xeom, ., + YrOM, ., XEOM 1 1 * YFOM, 1
O O
X+ Yen,
® X, .\ Vey
O O
XFDMi'j ' yFDMi,j XFDMi:l,j ! yFDMiJrlvj

Figure 6.4 Schematic representation of the relationship betweaM nodes (4 corners), CA
cell (centre) and the random PA node.

The displacement of each CA centre is assumed po&sble only in the square
area defined by the four FDM nodes. The followimggedure is applied

Xoni; = Xea; T €[2rand-1], (6.15)

Yeai,j = Yeai,j +£[2rand_]] ) (6.16)

where X., . e, € represent coordinates of PA nodes and the scaahge

0<£<0.49, respectively. It must be emphasized that the Pdécqulure is
established on the random nodes in general. Thetfaesfer calculations are
performed on the regular FDM nodes, which are erpthin Section 6.8.
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The PA node grows with respect to the heat flow anth respect to the
‘neighbourhood’ configuration which is now assoedtvith the position of the
neighbouring PA nodes which fall into a circle [9sens, 2000; Janssens, 2003]

with radius R, in 2D or a sphere in 3D. It means that each PAergath in case

of the random node arrangement contain differemibar and position of the
neighbours, which give various possibilities ofgiourhood configurations for
each node.

6.6 Curvature Calculations

The interface curvature is approximated by the togncell procedure
developed by Sasikumar and Sreenivasan [Sasikumda8i@enivasan, 1994].

6.6.1 Calculation of Curvature in the CA Method
The expression for curvatute is given by the formula [Kranet al, 2009]

1( 2NsCAJ
K==|1- , (6.17)
a I\ItCA

where N, ., and N, ., are the number of solid CA cells whose centrdsrfaide

the circle of assumed radi® and the total number of CA cells whose centres
fall inside the circle, respectively (see Figurg)6.

6.6.2 Calculation of Curvature in the PA Method

The expression for curvature in PA is derived fribra expression of curvature
in CA method by assuming the average node distanicestead ofa.

:i(l- ZNS”J, (6.18)

a N pa

N,-, are the number of solid PA nodes inside the ciafle
assumed radiusR. and the total number of PA nodes inside the circle

respectively (see Figure 6.6).

where N

s PA? t PA
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Figure 6.5 Scheme showing a circle sample wi) = 2a for calculating the curvature in the
conventional CA method (exampl®, ., =8 and N, ., =12).
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Figure 6.6 Scheme showing a circle sample wilt) = 2a for calculating the curvature in the
random PA method (examplI®N, ., =7 and N, ,, =11).
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The curvature of both methods has been calculatddcampared on a circular
solid fraction arrangement with radil®=10 um, depicted in Figure 6.7. Two
different types ofR. have been choserR(=1um andR, =5 pum). It can be

concluded that with the higher radii the value ofK becomes almost the

same as in the conventional CA approach. This vegscted in Figure 6.8 and
Figure 6.9, respectively.

Cross section

Figure 6.7: Scheme of the area used to compare the curvatigelations by the CA and PA
methodsR=10pum anda =1pm. Green area represents solid, white area repeelgguid.

The cross section of the curvature forR =1

-1
s, K[am?]
___'_______\% 1’ :,";"__________
A Iy
% 05 i
3 / [1am]
1 n !
T T s T 5] T T T 1
-20 -15 10 5 5 16 15 20
L -0,5 /i
AN /o
\ /
(- . -4 [
15
----CA method ------- PA method

Figure 6.8 Calculated curvature with the CA method and PA-(Ahethod
(s =0.49) for R, =1um and a=a=1um with respect to the data depicted in Figure &lre
node arrangement of CA and PA is given in Table 7.6
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The cross section of the curvature for R .=5
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Figure 6.9: Calculated curvaturevith the CA method and PA-(A) metho(j£=0.49) for

R =5um and a=5=1um with respect to the data depicted in Figure 6[fhe node
arrangement of CA and PA is given in Table 7.6.

6.7 Phase Change

The crystal growth velocity is calculated accordioghe crystal orientation. The
envelope of the grain can be expressed by the iequ@.11) which is depicted
in Figure 6.10. Once a CA cell (or PA node) becos®sl it starts to grow with

respect to the ‘neighbourhood’ configuration. Eawhthe CA cell (or the

random node) can have two possible states: liqugbbd. The CA cell (or PA

node) becomes solid through the growth process.chbege of solid fraction of
the CA cell or PA node is calculated from the caygrowth velocity.

Figure 6.1Q0 Schematic representation of the shape functiarafpeters see Table 7.3).
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For all neighbours of treated solid CA cell (oriddPA node), general criterion
d is checked which is represented by the equat®2?) and (5.25).

For the dendritic growth the Neumann neighbourhomafiguration is used. If a
neighbour is one of the four nearest east, nordstwsouth neighbours then in

the CA method this distance becomg&s= a (Figure 5.15). In the PA method
a (a,. < &) represents the different distances to the neiglihgUPA nodes

which fall into the circle with radiu®R,. Whend >a or d >4g (Figure 5.14

(left), Figure 5.15 (left) and Figure 5.17) thewmog solid touches the centre of
the neighbouring CA cell or PA node and this celifa transforms its state from

liquid f.c,=0(f.p,=0) to solid f,c, =1(f,p,=1).

6.8 FDM-PA-FDM Transfer of Temperature and Solid
Fraction

6.8.1 FDM-CA/PA Transfer of Temperature

The obtained values of temperature on regular FDM (@quation (6.12)) are in
each time step transferred to the CA mesh (randé@mgfd arrangement)
according to scheme in Figure 6.2. The following@e interpolation formula is
used in the present calculations

4
TPAi,j = (-E,j+1 |1+-Ii-+1j +1|2+T+ i I 3+ Tj, l A)/ZJ ) (619)
j=1
Ti+1,j Ti+1,j+1 Ti+1,j Ti+1,j+1

T T

i i
Figure 6.11:Relationship between four FDM nodes and a CA ¢eft)(and PA node (right) for
calculation of the temperature.

T

ij+l

T

ihj+l

In case of FDM-CA the equation (6.19) reduces to
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Ton; =(Tat Toyaat Ty + T, )14 (6.20)

where T.,;;, Tcai;and | represent the temperature of the PA node, the

temperature for the center CA cell and the distarioethe nearest four FDM
nodes, respectively. The calculation is repeatedach time step (see Figure
6.2).

6.8.2 CA/PA-FDM Transfer of Solid Fraction

The temperature field at timig + At is calculated from the regular FDM mesh.

Then these values are recalculated to all CA @alording to the equation
(6.20) or PA nodes equation (6.19). Afterwards B#e procedures take place
(see Section 6.2). The output information from tlergel of calculation is the

value of solid fraction for all CA celld, ., ; or random PA noded, ., ; which

have to be transferred to the FDM nodes to betalbdalculate the new values of
temperature (Figure 6.12).

o O O O O O

s CAj, j+1 fs CAML, j+1 f sPAi+1, j+1

s PAI, j+1

S PA#L,

SCAML,j

O O O O O O

Figure 6.12 Relationship between FDM node and four neighbouRAgnodes or CA cells for
transfer of the solid fraction.

The following equation is applied

4
fsi,j = ( fs PAI, j+1|1+ fs PAifl,}fll 2t f s PAF 1,j| 3+f s PAi,l )/Z| P (6-21)
i=1
In case of FDM-CA the equation (6.21) reduces to

fsi,j =(fsCAi, it fsCAH,jH1+ fsCA'fl,j+ fsCAi, j)/4’ (6.22)

where f_,, and f ., represent the solid fraction for the FDM nodes frdhe
PA nodes, respectively.
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In this chapter the numerical results of modellitg grain structures and
dendritic growth are obtained by the solution pohges presented in Chapters 5
and 6. The accuracy of presented algorithms isgodirst tested for the
conventional grid structures where the problemolvesl by the classical CA
technique. These solutions of the governing eqoatare replaced by the novel
PA method where the node arrangement is generatelbmly for both models.
The definitions of both approaches have been ajrgacn in Chapter 3 and 4.
Here the numerical results of the two models aesqmted and discussed.

7.1 Numerical Results of the ECT/CET by the CA
Method

The numerical examples are solved by the LRBFCMhaenmacroscopic level
and CA/PA methods on the mesoscopic level. Theitsgtysstudy for the input
parameters is prepared on both levels of calculatiwshat is detailed presented
in next part of this section.

Initial conditions. Mesoscopic model is combined with the macro heatstier
calculations, which are already described in Sasti®.3 and 5.4.1. Macroscopic
model gives the temperature information in 412@lpositions as the input data
to the meso model. On the macro level of calcutatithe only parameter which
influences the mesoscopic model is the value oéllamdercoolingAT .,

which is interpolated to CA cells or PA nodes. Wput data to the ECT/CET
model are presented in Figure 7.3. Material progefor heat 46352 from Store
Steel company are calculated from the JMatPro so&fSaunderst al, 2003],
see Table 7.1. Fixed nucleation parameters aremesin Table 7.2.
LRBFCM-CA/PA distretization . Each axial position has a billet dimension
140 mm x 140 mm (or 180 mm x 180 mm) and the sizaoh macro cell is 0.5
cm. There are 841 macro nodes at each axial podiidl40 mm x 140 mm
(Figure 7.1-7.2) and 1369 in 180 mm x 180 mm. Orenm node includes 625
CA cells.

83
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Time step. Two time-step loops are used in the program: mbeuwp with time
step 0.3 s and meso loop with time step 1.5 ps.

Numerical implementation. Macroscopic simulator takes about 3 minutes to
prepare the macro temperature fields, while therastopic simulation takes
approximately 6 hours on a standard PC with 3 GHd 4024 RAM. The
information connected with one CA cell (position time domain, angle, CA
configuration, time of generation) and all cellsn@unt of nucleuses, generated
at the surface and in the bulk areas) are storedfiie for each micro time step.
During the simulation the results can be observethe screen, and afterwards
post-processed. The described multiscale model emgpled only in the
direction from macro to meso calculations. This nseahat the meso
calculations do not effect the macro calculations.

Table 7.1:Growth model parameters (heat 46352).

Symbol \ Unit | Value
Steel grade parameters

K 1 0.370
r Km 1.9x10”
D, m°/s 2.0x10°
Co % 0.51
m 1 -30
T K 1755.01

From the measurement data prepared by the Storel Stmpany, the
51CrMoV4 heat (Reference case) spring steel waserhdor the basis for
analysis of the influence of the input parametersh® meso and macro part of
the model. Simulations with different values shdwattchanging some of the
parameters can strongly affect the final appearahti®e mesostructure.

The following cases have been prepared:

e On the meso level a nucleation parameter (mean eatich
undercooling, standard deviation) and neighbourheodfigurations
(Nastac’s neighbourhood and simplified neighbouth@onfiguration)
sensitivity study is prepared for the heat 46332 & 1530 K, =

cast

1.75 m/min, dimension 140 mm x 140 mm), see Figuk&s7.9 and
Figure 7.10.

* The model parameters are adjusted in order to roli@ experimentally
determined actual billet ECT and CET positions ttee chosen 46352
heat. A systematic procedure is outlined for adpestt of the model data
with the Baumann print (Figure 7.11).

* On the macro level the influence of changeable maarameters are
checked. The simulations are prepared for the Beéer case with lower
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casting temperatur@__ = 1500 K and lower casting velocity_, = 1

cast ast—
m/min, see Figure 7.12.
* Finally, the calculations are prepared for différeasting speeds and
casting temperatures for heats 48695 31 € 1524 K, V_,= 0.95

cast™

m/min, dimension 180 mmy8695 3/1 T_,= 1529 K, = 1.15

ast cast™

m/min, dimension 180 mmjnd 46693/1 {_,= 1555 K, =

ast cast™

1.10m/min, dimension 180 mm), see Figures 7.13:7.15

7.1.1 Mesoscopic Model Input Parameters

The input data to the mesoscopic model (Figure haye a tremendous
influence on the final grain distribution. A sensty study has been performed
[Lorbiecka and Sarler, 2008], to study this influerand to adjust the model
parameters to the experimental values accordingly.

7.1.1.1 Nucleation Parameters Sensitivity Study

It is shown in Figures 7.8 and 7.9 that the parametf nucleation model most
strongly influence the final grain structure resukhey determine the number of
the possible generated nucleuses in the surfacebalkdareas. Increasing the
range of AT ., parameter for the bulk the calculated area is widad the

number of new grains drastically arise. Variatimisthe AT , brings to the

opposite situation what is represented in the eXxasnjit was shown that the best
results, with respect to experimental data, areived in the range of valu&T,

from 1.25 K to 2.25 K for the bulk and around 0.Zdf the surface area. The
smaller values of surface nucleation parametersvels as the thickness of

surface area bring a smaller number of grains geeeérat the borders and
finally the thinner chill zone. In presented exaeg0.5 cm was assumed for the
surface area what fits to the observed case.

7.1.1.2 Neighbourhood Configuration Sensitivity Study

To check the influence of the neighbourhood comfigjan, an analysis of an
alternative simplified approach to the Nastac’gghbourhood configuration was
made (Figures 3.3-3.6). Simulations were preparét the same nucleation
parameters as for the Nastac’s neighbourhood amafigpns and for the
simplified one. New approach reduces the time tfutations from four hours
to only two. It results in a smaller central zobecause a lower number of
grains arise. The simplified neighbourhood is neeasitive to the variations of
AT_for the surface area, what results in longer colamfiorms, which could not
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be noticed using the Nastac’s configuration (FiguB). From this study one can
conclude that the model is also very sensitivdnéoahoice of the neighbourhood
configuration. It means that the nucleation paransetheed to be adjusted to the
experimental data and neighbourhood configuration.

Mesh size and time step sensitivity studyit was deduced also that the mesh
size should be 200m as it brings the stable results which fit to ¢xperimental
observations. The same conclusion was made acgotdithe meso time step,
because many variations did not have positive eémfte on the final structure.
The optimal value of 1.5 us was chosen to combiak with the macro heat
transfer calculations and to receive the more peegrain morphology.
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Figure 7.7: Input data to the ECT/CET model.
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Table 7.2:Variable parameters of Gaussian distribution lier flastac’s configuration and
simplified configuration of the meso model (Figui®e8 and 7.9).

SYMBOL | UNIT CAISE CAHSE CIA”SE Cﬁ/SE CQ/SE C\A/|SE

Varied parameters

For the bulk area
JAY P K 30 30 30 7.00 15 30
AT, K 1.25 1.75 2.25 1.75 1.75 1.75

Fixed parameters

For the surface area

AT, K | 060 | 060] 060/ 060 064 060
AT, K | 020 | 020| 020 020 020 0.20

messigece” um | 200 | 200 | 200| 200/ 200 @ 20(

mesotimel s | 150| 1.50| 150 159 150 1.50
step

7.1.2 Macroscopic Model Input Parameters

The sensitivity study of casting parameters waslyaed according to the

experimental Baumann prints received from the S®teel Company from

Slovenia. Experimental tests were analyzed to betakestimate the dimensions
of three zones (chill, columnar and equiaxed) far different value of casting
speed and temperature (see Appendix Al). Sevemriexental results were
chosen for the analysis. They prove that even saoihges of casting speed
(from 0.95 m/min to 1.15 m/min) strongly influenca the extension of the

central zone (Figure 7.13). For the higher speedctlumnar forms become
shorter and start to break which gives bigger eqdazone (Figure 7.12 and
7.15). On the Baumann print, the fragmentation baneasily observed. The
same situations can be noticed for the strong awmg casting temperature
(from 1500 K to 1550 K). The simulated resultstditthe experimental samples
and indicate exactly the same trend (Figure 7.3&yeral examples for different
billet dimensions and casting parameters are preden Appendix 1. Measured

Baumann prints are compared with the simulatedtsesu
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CASE IV

Figure 7.8: Calculated billet microstructures as a functiorttad changeable micro parameters
(see Table 7.1 and 7.2) for the Nastac’s neighlmmdltonfiguration (see Figures 3.3-3.6), heat
46352 with dimension 140 mm x 140 mm.
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CASE | CASE IV

Figure 7.9 Calculated billet microstructures as a functiortted changeable micro parameters
for the simplified neighbourhood configuration (d&igure 3.7), heat 46352 with dimension 140
mm x 140 mm.
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Figure 7.10 Comparison of two different neighbourhood configimas. Left: Nastac's
neighbourhood, right: simplified one for the sanoelaation and growth parameters (CASE VI).

140mm

140mm

Figure 7.11 Baumann print of the 51CrMoV4 spring steel (seel@a&h2), ECT between chill
and columnar (dashed line) and CET transition betwenlumnar and central zone (dotted line).
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... H‘
.

Figure 7.12: Characteristic mesostructure of the heat 46352 afime periods of time for the
following casting parameters. Left,,,= 1500 K, V_ = 1.75 m/min (periods of time: 1 min, 2
min, 3 min, 4 min, 5 min, 5 min 33 s from the tapthe bottom), middleT_,=1530 °C,V,,=
1.75 m/min (periods of time: 1 min, 2 min, 3 mmin, 5 min, 5 min 55 s from the top to the
bottom), right: T_,,= 1530 °C,V,,, = 1.00 m/min (periods of time: 1 min, 2 min, 3 min,

cast
4 min 36 s from the top to the bottom).
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7.1.2.1 Simulated Results for Variable Casting Parameters

T b
3 =
T,

chill zone 2%, chill zone 2%,
columnar zone 50 %, columnar zone 44 %,
equiaxed zone 48 % equiaxed zone 56 %

Figure 7.13: Left: Baumann print of the 51CrMoV4 spring steel (see Table A.2)T_, = 1525
K, V_..= 0.95 m/min, dimension 180 mm, right: simulatedesult.

cast™

48695 3/IIL

chill zone 2%, chill zone 2%
columnar zone 63 %, columnar zone 62 %,
equiaxed zone 37% equiaxed zone 37%

Figure 7.14: Left: Baumann print of the 51CrMoV4 spring steedsTable A.2),T,
V_.= 1.15 m/min, dimension 180 mm, right: simulatedraple.

cast

= 1529 K,

ast
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chill zone 2%, chill zone 2%,
columnar zone 47 %, columnar zone 47 %,
equiaxed zone 51 % equiaxed zone 51 %

Figure 7.15: Left: Baumann print of the 51CrMoV4 spring steadgsTable A.2)T = 1550 K,
V_ .= 1.10 m/min, dimension 180 mm, right: simulatedreple.

cast™

7.2 Numerical Results of the ECT/CET by the PA
Method

In this chapter the results obtained with the PAthoé are presented. This
apporach was implemented for modelling the positain ECT/CET. The
mesostructure equations are solved according toptheedures described in
Chapter 4. As for the CA method the same heat 4¢Bhfure 7.11 left) was
chosen to analyze the influence of the changealpletidata for the meso and
macro parameters. Simulations of PA demonstrateBignres 7.16-7.21, are
prepared for exactly the same physical input patarses for the conventional
CA method (see Table 7.1). They are finally compavéh the CA result.
The following cases have been simulated:

* On the meso level the calculations with differeati@ arrangements and

curvature calculation radiuR, are presented for the heat 46332 (=

1530 K,V_ = 1.75 m/min, dimension 140 mm), see Figures 77151.

cast
* The model parameters are adjusted in order to roliai experimentally
determined actual billet ECT and CET positionsdbosen 46352 heat.
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A systematic procedure is outlined for adjustmdrihe model data with
the Baumann print (Figure 7.16).
* Finally the CA and PA results are compared, searEig.21.

7.2.1 A Sensitivity Study of Meso Input Parameters

The regular CA cell size is 200 um. The irregulad gncludes 490.000 CA
cells. Random grid is generated from the regular € size 600 um by
randomly taking away certain percentage (90 % or%)0of the regularly
positioned points. According to that the numbdr4@0000 micro CA cells is
reduced to 54756 points on the computational domain

The neighbourhood configuration of the PA methos been chosen to contain
points within circle with radiusR, (1.2x10°m or 3.0x10°m) centred around
the reference point. Several cases for differetiusaand node arrangements are
shown are depicted in Figures 7.17-7.20. It isasatithat the reduction of the
number of micro cells which take part in the cahtuans, the central (equiaxed)
zone becomes larger, while the columnar zone is sely slightly. This can be
modified by changing the radius of the neighbouthdaarger the value oR,

is chosen the wider columnar forms can be obsegfvetre 7.18).

Figure 7.16: Left: Baumann print, right: simulated result withet PA method. Black circle
represents approximate position of CET (51CrMoV4).

The maximum radius should be kept aroRj&3.6x10°m, otherwise the

columnar structures become distorted (waved). Hheutation time grows with
smaller radius. Process always starts with nudedirst, followed by a growth
stage. Each new grain can start to grow only iftthe@ conditions (temperature
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and probability) are satisfied. Neighbourhoods wvatlarger number of points
have higher probability that at least one of thengsowill nucleate as well as a
higher probability that in the growth process notyocone of the neighbouring

points will be converted to solid.

: i

Figure 7.17 Simulated grain structure ECT and CET of the billet PA method,
R, =1.2x10°m, node density 90 % of CA grid.

Figure 7.18 Simulated grain structure ECT and CET of the billeg PA method,
R, =3.0x10°m, node density 90 % of CA grid.

It turns out that by using PA some points might tadee part in the process. To
avoid this problem, an extra procedure is added;iwthecks the position of the
possible ‘left-out’ nodes which are after idengfiion converted to solid. In our
previous work [Lorbiecka and Sarler, 2009], where tconventional CA

approach was employed, a sensitivity study of thpui parameters was
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discussed. As a result of this study (Figure 7ighty, a perfect fit of the CA
parameters to the experimentally observed microstre (Figure 7.11-left) of a
billet of dimension 140 mm x 140 mm and steel grati€rMoV4 was found.
We add the PA results in this study as well (seguiféi 7.16-right). The input
parameters are for both cases the same as in Figlrét can be seen that the
two different methods give similar results.

In this chapter, a new PA approach has been deratedtfor prediction of the
grain structure which occurs during the CC of stBédl method offers a simple
and powerful approach of cellular simulations. #sashown that both methods
are able to qualitatively and quantitatively modal diverse range of
solidification phenomena in almost the same catmnaime.

PA method offers an attractive alternative to cad<CA method, because of its
flexibility of node density and neighbourhood ddfon. The density of the
nodes can in principle vary across the domain @frést and the neighbourhood
can be defined in a flexible way. The new approhes thus theoretical
advantages of allowing a more proper and versatddelling of ECT and CET
transformations. Very promising and interestingulissaccording to the various
neighbourhood configurations and density of poimise been shown. It was
also shown that the PA method gives compatibleltesuth the conventional
CA method when using the same nucleation and grpiwiics (Figure 7.21).

Figure 7.19 Simulated grain structure ECT and CET of the ebilby PA method,
R, =1.2x10°m, node density 70 % of the CA grid
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i

Figure 7.20 Simulated grain structure ECT and CET of the billeg PA method,
R, =3.0x10°m, node density 70 % of CA grid.

Figure 7.21 Simulated results. Left: conventional CA methddht: PA method. Black circle
represents approximate position of CET.

7.3 Numerical Results of the Dendritic Growth

In this chapter the results of the numerical mothelt was developed for
modelling the dendritic growth are presented. Taedditic growth is modelled
by the classical CA method and PA method basedlgorithms described in
Chapter 6. The problem definition and discretizatoe given in Section 7.3.2.
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The numerical results of the CA method are prep#oedhe following set of
input parameters: thermal fluctuations, curvatuakedation radius and Gibbs-
Thomson coefficient. Finally, the growth process $everal dendrites growing

simultaneously at orientatior® and 45 is presented. The results are presented
in Section 7.3.2.

In Section 7.3.3 the dendritic growth is simulatedthe PA method with the
same PA-(A) and different types of random nodergiements PA-(A), PA-(B),
PA-(C), PA-(D) that differ in the initial seed fageneration of the random
numbers that is used in the node arrangement genésae equations (6.15) and
(6.16)). Calculations are prepared for differentemmiations and with different
randomness of the node arrangement0.1, € =0.25 and € =0.49.

Next, dendritic growth is simulated by includingettrandomness growth
correction factor responsible for the correction lengths of the primary
branches as compared with the CA method. Finally, present the growth
process simulated by the PA method for seven dsdgrowing simultaneously
at the same orientations as for the CA model amdratom orientations.

7.3.1 Problem Definition and Discretization

The numerical examples are solved by the FDM bésegberature calculations
and CA or PA based solid fraction calculations.

Initial conditions. Simplified material properties for pure aluminijgkammer,

1999] are used in all numerical examples. Theysamamarized in Table 7.3.
The process starts from the predetermined solid pesition in one or multiple
CA cells (or PA nodes) with the following initialonditions of temperature
933.45K- 1.5K and solid fractionf, =1. All other CA cells or PA nodes are

assumed to be liquiff, = 0. All FDM nodes have initial temperatui&/0.2K.

The initial and boundary conditiors =0 W/m? are the same in all simulations.
FDM and CA/PA distretization. The computational domain of the square with

| =350um and uniform discretizatidd, = 701lis used. FDM and CA methods

are always constructed on a regular node arrangemethe present study
(Section 7.3.2). In the PA approach the randomeremmdangement needs to be
constructed. The PA approach was first tested with predetermined node
arrangement PA-(A), and then with different type$ kandom node
arrangements: PA-(B), PA-(C), PA-(D), respectivi@gction 7.3.3).
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Neumann boundary conditions

] a_T:F
i=1 j=701 on

j =701
Initial solid crystals 933.45-1.5 K
350pum
Supercooled melt 770.23 K
i=1
350um

Figure 7.22 Geometry and initial conditions.

Time step. The time step used in FDM calculation of the terapee field is
limited by the formula [Zhu and Hong, 2001]

NP (7.1)

At = ,a
M4 5y pc,

wherea represents the thermal diffusivity. For the caltioless of the solid
fraction field by the CA and PA method the followirelation is used [Daming
et al.,2004] for assuming stability

[ a &
At., =pmin| — — |, 7.2
e &) =

max

wheren andV,_, represent the positive constant less then 1 amantéiximum
growth velocity of all interface cells, respectiyel
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Numerical implementation. The model was coded in Fortran. The CPU time of
the simulations presented in dendritic growth afe@gm 10 to 15 minutes. The
solid CA cell or PA node are graphically presertgdoloured pixels which can
be observed on the screen during the simulation.

The dendritic morphologies were first calculated thg classical CA method
based on the numerical model described in Secéc¢hand 6.5.

Phase change kinetics

v v v v v
. Average Gibbs .
Cell size Time step Radius of Thomson Anlsqtropy
curvature . coefficients
coefficient
v v 2 v v
v
Heat transfer model ‘
Node . Thermal - . Melting
distribution Time step conductivity Specific heat Latent heat Density temperature
2 v v 2 v v v

v

Initial positions of solid CA cell(s) or PA node(s)
Initial temperature and fraction

v
MODEL
| : |
Thermal field calculations
| |
| |
| |

v
Phase change kinetics
v
Dendritic structures

Figure 7.23 Structure of the dendritic growth model.

7.3.2 Simulated Results by the CA Method

In this section many cases corresponding to vanadif input parameters are
shown. Important input data to the model are aea\ybelow. We analyse the
response of the FDM-CA method with respect to theed of A", R, I and
B4 IN this section. It can be assumed that thesenmpateas strongly influence
the solutions. The respective figures are 7.24-7.28

* From CASE 1 to CASE 3 the dendritic growth wasiudated by the CA
method without and with random fluctuations.

» CASE 4 represents the dendritic growth simulatgdtie CA method at
orientation45'.
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* From CASE 5 to CASE 6 the dendritic growth was dated by the CA
method for different values of curvature radiRs

* From CASE 7 to CASE 8 the dendritic growth was dated by the CA

Numerical Results

method for different values of the average Gibbs#iiton coefficient.

* Finally, Figure 7.29 represents seven dendritesviggp simultaneously at
orientationsO" and 45 as the CA grid in constructed. Their exact orieata

and position are given in Table 7.5.

Table 7.3:Nominal parameters used in simulations.

Symbol Value Unit

Y 2700 kg/m3

T 933.4¢ K

Ts 933.45-1.! K

T 933.45+1.! K

A 210 W/mK

C, 955.56 J/kgK

L 259259.26 J/kg

7 0.222 1

r 1.6x107 Km

o, 0.3 1

O, 0.75 1

S 4 1

R, 15 um

R, 2 um

My 2 m/sK
Aty 6.82x10™ S

| 350 um

700 Chcals.

N, 701 FDM nodes
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Table 7.4:Parameters varied in the calculations with FDM-Cétinod
A" R F Hdef
CASE [[] |[cel]l | [Km] | [
CASE 1 0 1 |16x10"| O
CASE 2| 0.05 1 [16x107| O CA
CASE3| 05 1 |1.6x10° | O CA
CASE 4| 0.05 1 [16x10"| 45 | CA
CASE5 | 0.05 4 |16x10" | O CA
CASE6 | 0.05 12 | 1.6x107 | O CA
o
0

method

CA

CASE 7| 0.05 1 |1.6x10° CA
CASE 8| 0.05 1 |1.6x10° CA

Table 7.5:Initial positions and orientations of nucleusesdonulation with the FDM-CA
method (see Figure 7.29).

nucleus X, y position [um] orientation [deq]
1 120, 290 45
2 150, 550 0
3 300, 100 0
4 350, 350 0
5 410, 550 45
6 500, 150 0
7 570, 380 45

7.3.2.1 Discussion of the Results

Grid size and time step.The grid size of the square domain should bauh&s
it is fine enough to resolve the dendritic tip xesli The same conclusion was
made according to the time step. For the stahilitthe coupled FDM-CA/PA
procedure a minimum ofAt., and At.,,, was used. For the CA method all

depicted results of simulations are shown f@r and 45 (one example)
orientations after 1500 time steps of the lendth,,, =6.82x10's, i.e after

1.02x10°s. The example where several dendrities are grosimgltaneously at
orientationsO° and 45 is presented after 350, 700, 1500 and 2500 timyasst

i.e. after2.39x10’s, 4.77x10" s, 1.02x10°s and1.71x10° s, respectively.
Thermal fluctuations. In order to avoid the symmetric shape of the diémdin
the conventional CA approach some fluctuations riedak introduced into the

calculations. The following equation is commonlypkgd ¢ = 1+ Arand.
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Thermal noises are usually presented by puttingahdom fluctuationg/ into

the calculations of latent heat, undercooling terafjee or velocity [Voller,
2008]. It this work we use them in the velocity adationsV =V x¢. The

effect of increased random fluctuations was studiegure 7.24 represents the
morphologies of dendrites for different values bt The number of secondary
dendritic branches grow with growindy’ as seen in Figure 7.24.

Curvature calculation radius. To analyze the influence of the calculation
curvature radius the several different values R)f (Figure 6.3) have been

attended. FoR =3 the results are similar tB.=4. Smaller values of curvature

calculation radius brings more branches. The aralgg curvature calculation
radius are presented in Figure 7.27.

Average Gibbs Thomson coefficientThe effect of the variation in the average
Gibbs-Thomson coefficient on the evolution of defarstructure during the
growth stage is shown on Figure 7.24. The valueoefficient which is used in

the calculations, is the normal value for aluminiu(ﬁ:1.6x107Km).

Insignificant branching takes place for the casehaher I (Figure 7.28
(bottom)).

Anisotropy calculations. In the basic approach of CA the grid anisotropy is
always a problem in the sense that whatever otientas assigned first to a
dendrite, the final dendritic growth orientatiomvals shifts toward€° or 45°as
solidification proceeds, due to division of the gatational domain into
horizontal and vertical mesh structure. In our ghgtons the orientation of the
dendrite is aligned with grid direction by two pedntial growth
orientationsé,, =0° and 8, =45° (Figure 7.26). Simulated results show that

this model is able to reproduce most of the dewdfégatures. The classical
FDM-CA mode is converted to FDM-PA model in the hgaction.
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Ops =0

CASE 1

Ops =0

CASE 2
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CASE 3

\/

Figure 7.24 Simulated dendritic growth for a single dendsteorientationd,,, =0 by the CA
method with different fluctuations.

Vertical section of the temperature field
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830 -

790 - ’

750

Temperature [C]

1 60 119 178 237 296 355 414 473 532 591 650

number of CAcells [-]

Without fluctuations ------- With fluctuations

Figure 7.25 Vertical cross section of the temperature field@ase 2 aty =175 pm.
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O, =45

CASE 4

! < -
- >

I
Figure 7.26 Simulated dendritic growth for a single dendsteorientationd,,, =45 by the CA

method.

Ops =0

CASE 5

\j
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Ops =0

CASE 6

\

Figure 7.27 Effect of different curvature calculation radiRs=4andR, =12 cell size (from the

top to the bottom)

A

A

CASE 7

Ot =0

AT

\J
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Ops =0

CASE 8

Figure 7.28: Effect of different values of the average Gibbsifison coefficient
I =1.6x10°Km andl" =1.6x10° Km (from the top to the bottom).



112 Numerical Results

(1) )

A o=
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aﬂﬂiI‘I
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11 ﬁ A @
F‘; ;%H (. L 4‘\ \Mﬁ , f’ d
EETNE g
N\
| |
v (4)

\j

Figure 7.29: Seven dendrites growing simultaneously at orieotatio” and 45 after (1) 350,

(2) 700, (3) 1500 and (4) 2500 time steps of thegtle6.82x10'°s. FDM-CA solution
procedure, see Table 7.5.
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7.3.3 Simulated Results by the PA Method

The dendritic morphologies were in this sectioncekted by the FDM-PA
approach. The simulations have been performedduessthe data presented in
Table 7.6.

* From CASE 9 to CASE 18 the dendritic growth pesces simulated by the
PA methodwith the same random node arrangement denoted APAkgr the
following ten orientations

edef = OO ’Bdef = 50 ' edef = 100 ’Bdef = 15 ' edef = 200 ' Bdef = 25 ' edef = 300 '
6, =35,68,, =40,6,, =45.

* From CASE 19 to CASE 27 the dendritic growth is deted by the FDM-
PA method with different random node arrangemess (B), PA-(C), PA-(D))
for the following orientations

O =5, 4y =15, 8,, =30,

* From CASE 28 to CASE 33 the dendritic growth precsssimulated by the
FDM-PA method with different randomness of the noderangement
£=0.10,6 =0.25 and £=0.49, for the following 6, =5 and 8, =30
orientations.

* From CASE 34 to CASE 36 the dendritic growth is eted by the FDM-
PA methodincluding the randomness growth correction facesponsible for
the correction in the lengths of thandy branches for different random node
arrangements (PA-(B)-F, PA-(C)-F, PA-(D)-F).

» CASE 2 where the dendritic growth is simulated g tonventional FDM-
CA method with random fluctuations is comparedh® CASE 9 and 34 where
the dendritic growth process is simulated by the iRéthod with and without
correction randomness growth correction factor.

e Finally, Figures 7.40 and 7.41 represent seven ritesd growing
simultaneously at orientatior® , 45 and orientation®’, 10", 12, 22, 27,
3T, 40 . The randomness growth criteria factor has beended.

The results have been arranged and representbd following way. The FDM-
PA calculations with different orientations are uégd in Figure 7.30 based on
the same node arrangements. The lengths of theritierfsranches of these
calculations are depicted in Figure 7.31. Then FEgw.33-7.35 show the FDM-
PA results with the varied random node arrangerfana single dendrite with
6. =5°, 8, =15and g,, =30°, respectively. The length of the dendritic

branches of theses calculations are depicted inr&ig.32. Figure 7.36 and
Figure 7.37 represent dendritic growth for a sindggmdrite with g, =5°and

6, =30° for different node arrangement randomness. Fin#ily simulations
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are shown for the conventional CA approach witldaan fluctuations in Figure
7.39 (top) and for the same input data for the Pé&thwmd, with and without
randomness growth correction factor, Figure 7.3%dde and bottom) (see
discussion in the next paragraph).

Table 7.6:Parameters varied in the calculations with PA meth

edef A° &

CASE Vi1 | 1 (] | method
CASE9 | O 0 0.49 | PA-(A)
CASE10| & 0 049 | PA-(A)
CASE 11| 10 0 0.49 | PA-(A)
CASE 12| 15 0 0.49 | PA-(A)
CASE 13| 20 0 049 | PA-(A)
CASE 14 | 25 0 0.49 | PA-(A)
CASE 15| 30 0 049 | PA-(A)
CASE 16 | 35 0 049 | PA-(A)
CASE 17 | 40 0 0.49 | PA-(A)
CASE 18 | 45 0 0.49 | PA-(A)
CASE19| 5 0 0.49 | PA-(B)
CASE20| & 0 0.49 | PA-(C)
CASE21| 5 0 0.49 | PA-(D)
CASE 22| 15 0 0.49 | PA-(B)
CASE 23| 15 0 0.49 | PA-(C)
CASE 24 | 15 0 0.49 | PA-(D)
CASE 25| 30 0 0.49 | PA-(B)
CASE 26 | 30 0 0.49 | PA-(C)
CASE 27 | 30 0 0.49 | PA-(D)
CASE28| 5 0 0.10 | PA-(A)
CASE29| 5 0 0.25 | PA-(A)
CASE30| 5 0 0.49 | PA-(A)
CASE 31| 30 0 0.10 | PA-(A)
CASE 32| 30 0 0.25 | PA-(A)
CASE 33| 30 0 0.49 | PA-(A)
CASE34| O 0.05 | 0.49 CA
CASE35| O 0 0.49 | PA-(A)
CASE 36| O 0 0.49 | PA-(A)-F




Numerical Results of the Dendritic Growth 115

Table 7.7:Initial positions and orientations of nucleusesdonulation with the FDM-PA
method (see Figure 7.40).

nucleus X, y position [um] orientation [deg]
1 120, 290 45
2 150, 550 0
3 300, 100 0
4 350, 350 0
5 410, 550 45
6 500, 150 0
7 570, 380 45

Table 7.8:Initial positions and orientations of nucleusesdwnulation with the FDM-PA
method (see Figure 7.41).

nucleus X, Yy position [um] orientation [deq]
1 120, 290 12
2 150, 550 27
3 300, 100 22
4 350, 350 5
5 410, 550 31
6 500, 150 40
7 570, 380 10

7.3.3.1 Discussion of the Results

Grid size and time step.Exactly the same assumptions as for the CA method
concerning the grid size and the time step werdiexppFor the PA method all
depicted results of simulations are shown for déifie¢ orientations after 1500

time steps of the lengtht,,,, =6.82x10"°s, so after1.02x10°s. The examples

with several dendrites growing simultaneously aerdations0’,45 and with
different orientations are presented after 350, 2800 and 2500 time steps, so
after 2.39x10’s, 4.77x10" s, 1.02x10°s and1.71x10°s, respectively.

Thermal fluctuations. In the PA approach it is not necessary to involug a
fluctuations. In the novel method, the calculatians done on the random node
arrangement. This substitutes the random fluctnatiwhat can be observed on
all of the performed simulations.

Radius of neighbourhood.In the two dimensional square lattice there areyman
neighbourhood configurations possible. For the oamdhode arrangement the
new configuration of the PA method has been chagbith contain points
within circle with radiuRR, cantered from the reference poib&rger the value

of R, is chosen more dendritic and irregular structuwres be seen. Here
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opposite to the CA approach, where the closesthbeigrhood configuration is
being analyzed a more extended area of neighbaedsnto be taken into the
consideration. The radius of neighbourhood shoelddpt at a minimum of 1.5
um in case ofa = 0.5um.

Generation of random node arrangementThe orientations of crystallographic
branches of different dendrites have different mtagons in general. It is
commonly recognized that this process is diffidoltsimulate by the classical

CA method since the dendrite will always switchoor 45 direction during
the growth. Our testing is thus primarily focusedtibe growth of the dendrite at
different orientations by the novel PA method. Seed examples are for the
random node arrangements PA-(A),..., PA-(F) presemeligures 7.33-7.35,
respectively. They show that when employing the @athod any of the
orientations can easily be achieved. Results shiomt the proper growth
direction is always observed with increasingly mmd (¢ — 0.49) node
arrangement, see equations (6.15) and (6.16).

Randomness growth correction factor.For the same input parameters the
dendritic growth process was simulated by the CAthoe with random
fluctuations and by the PA method with and withoahdomness growth

correction factor for the orientatiod,;, =0 (see CASE 2 and CASE 9). The

lengths ofx and y branches were different in both methods. Thisuis t the

influence of the random node arrangement and subs¢qgariable distances
between the nodes. In the CA method the same wédlaeis taken while for the
PA method this distances are different and mightry vabetween

maximumAx = Ay = 2 aand minimumix = Ay = 2(1-¢) a. It can be concluded

that the differences in the length betweemnd y directions with respect to the
random node arrangement are almost constant and dedpw =5%. The
standard deviation was calculated for thend y lengths of the dendritic arms
and for the ratio between them (see Figures 7.3l AB2). The following
features can be summarized from Table 7.9. Theageelength of the dendrite
at ten different orientations and some random rascingement witke =0.49 is
152.8+5.18 um. The average length of the dendrite is calculatet four
different random node arrangement for the fixedlesm®°, 15°and 30° is
153.37+5.39 um, 156.12 6.44 um and 151.7% 5.36 um, respectively. From
this data one can conclude that the errors caugéldebrotation of the dendrite
are at the same order as the errors cussed byredifferandom node
arrangements. Figure 7.36 and Figure 7.37 demdasthat when reducing
£from 0.49 to 0.1 the PA starts to behave like tiAeadd the proper simulation
of the dendrite is not possible. We are too closin¢ classical node structure in
such case and CA limitations appear. To achievesdnge dendrite length in PA
method as in the CA method, an empirical factorictvimultiplies the calculated
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velocity in the PA method, was added in the cotleah be shown that putting
randomness growth correction factor 1.25, (forrtme@lom node arrangement
0.49) in the PA calculations, the primary brancivdshave the same length in
both methods (see Figure 7.38). The factor wasited into the calculations of
the movements of interface in equations (5.23)(arizb).
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CASE 18

\5 -

Figure 7.30: Simulated dendrites with different orientationstbg PA method for the same PA-
(A) random node arrangement.
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Figure 7.31 The lengths of the dendritic branchesxinand y directions for ten orientations,
random node arrangement PA-(A), (see Figure 7.30).
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Branches lenght in x and y direction
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Figure 7.32:The lengths of the dendrite branchesirand y directions at different orientations

6. =5,0,=15 and g, =30 (from the top to the bottom), for the random node
arrangements (see Figures 7.33-7.35).
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Table 7.9 The lengths of dendritic branchessxnand y directions with respect to the random
node arrangements.

x/y o
average | Standard
R . length | deviation
e « y ratio of ratio of
S branch | branch g rm:ja?/ [] x/y
U length | length endrite []
method arms o
L [um] [um] x|y | average
T length | Standard
S [-] of deviation
xandy of
lenght
[um] [um]
5 PA-(A) 148.0 154.0 0.961
5 PA-(B) 160.0 150.0 1.066 0.982 0.057
5 PA-(C) 145.0 155.0 0.935| 153.37 5.39
5 PA-(D) 155.0 160.0 0.968
15 | PA-(A) 154.0 160.0 0.962
15 | PA-(B) 160.0 150.0 1.066 1.032 0.049
15 | PA-(C) 155.0 145.0 1.068 | 156.12 6.44
15 | PA-(D) 165.0 160.0 1.031
30 | PA-(A) 160.0 157.0 1.019
30 | PA-(B) 151.0 145.0 1.041 1.033 0.010
30 | PA-(C) 155.0 150.0 1.033| 151.75 5.36
30 | PA-(D) 151.0 145.0 1.041
o PA-(A) 160.0 154.0 1.038
5 PA-(A) 148.0 154.0 0.961
10 | PA-(A) 142.0 148.0 0.959
15 | PA-(A) 154.0 160.0 0.962
20 | PA-(A) 160.0 148.0 1.081 0.980 0.041
25 | PA-(A) 154.0 148.0 1.040 152.8 5.18
30 | PA-(A) 160.0 157.0 1.019
35 | PA-(A) 154.0 148.0 1.040
40 | PA-(A) 157.0 151.0 1.039
45 | PA-(A) 151.0 148.0 1.020
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CASE 21

Figure 7.33: Simulated dendritic growth at orientatio®” with different random node
arrangements: PA-(B), PA-(C), PA-(D).
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CASE 23

CASE 24

' < >
-

Figure 7.34 Simulated dendritic growth at orientatioh5 with different random node
arrangements: PA-(B), PA-(C), PA-(D).
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CASE 25
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CASE 27
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Figure 7.35: Simulated dendritic growth at orientatioBO" with different random node
arrangements: PA-(B), PA-(C), PA-(D).
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CASE 28
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CASE 30
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I
Figure 7.36 Simulated dendritic growth at orientatio,, =5° for the different node

arrangements randomness= 0.1, = 0.25,£ = 0.4¢
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CASE 32

CASE 33

)8 >

I
Figure 7.37 Simulated dendritic growth at orientatid,, =30° for different node arrangement
randomnesg = 0.1, = 0.25,£ = 0.4¢
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0" with randomness growth correction factor
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0" with randomness growth correction factor

CASE 36

Figure 7.38 Simulated dendritic growth by the PA method withdamness growth correction
factor1.25 for PA-(B)-F, PA-(C)-F, PA-(D)-F node arrangents (from the top to the bottom).
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Ops =0

CASE 2

Ops =0
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0° with factor

CASE 34

\/

Figure 7.39 Simulated dendritic growth by the CA method, PA moet and PA method with
randomness growth correction facéom the top to the bottom).
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®) (4)

Figure 7.40: Seven dendrites growing simultaneously at oriemtatD” and 45 (see Tables 7.3

and 7.8) after (1) 350, (2) 700, (3) 1500 and B)®time steps of the lengdtB2x10" s by the
FDM-PA method (such a simulation is not possiblthwiie FDM-CA method).
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W

3) (4)

Figure 7.41: Seven dendrites growing simultaneously at differ@nmgntations (see Table 7.7)
after (1) 350, (2) 700, (3) 1500 and (4) 2500 tsteps of the lengtl6.82x10"°s by the FDM-
PA method.
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8 Summary and Conclusions

8.1 Summary of the Main Contributions

The principal goal of the present dissertation waslevelop a simulation tool

for modelling the grain structure in solidificationy using the coupled

mesoscopic and macroscopic models and validatiothéyexperimental results
as well as to be able to simulate the dendritiomnoon the micro level of

calculations. Two numerical models were develomedd able to simulate the
solidification structure at different levels. Thalaulations were in both cases
done by the conventional CA method with rectangplailygon mesh structure
and by the newly developed PA approach, basedeonrdgular positions of the

nodes. The differences in numerical implementatibthe classical CA, and the
new PA microstructure models were discussed. Usessl of the novel

approach has been demonstrated. The present digsedan be summarized by
the following contributions:

8.1.1 ECT/CET Macro-Mesoscopic Model

* A coupled multiscale model was developed firstredpct the nucleation,
growth and final grain structure (ECT and CET) lué {CC steel billets.
The physical model is composed of the macroscogat transfer model
of the CC process solved by the meshless LRBFCVhaogetand the
mesoscopic model solved by the CA and PA methols.uhdercooling
temperatures received from the macroscopic heasfera simulator for
chosen alloy, are interpolated to the mesoscopi ler the regular CA
cells (or random PA nodes) before the calculatistast. On the meso
level the processes of nucleation, growth and igmgximent of the grains
are modelled as follows: (I) the nucleation is nitedk through a
continuous dependency of the nucleation densityeamperature by the
Gaussian distribution. Different nucleation paranetare used at the
boundary and in the bulk region. (II) The growtldampingement are

141
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modelled by the KGT model. The CA method is basedhe Nastac’s
and simplified neighbourhoods, while for the PA hoat the
neighbourhood in the shape of circle is used. Téveming numerical
equations were first solved by the LRBFCM-CA methadd then
converted to the novel LRBFCM-PA method.

Numerical examples are done for square billethefdimension 140 mm
and 180 mm. Several related industrial examples coected in
Appendix 1. Fixed input parameter of the model espnts the
macroscopic temperature field obtained from thereStSteel billet
simulation system. All other grain structure phgsimodel parameters
are varied, such as: the surface and the bulk ane@n nucleation
undercooling, standard deviation of undercoolingximum density of
nuclei. The sensitivity study of these parametegsewpresented through
the numerical results. The influence of the vamiatof the principal
macroscopic heat transfer parameters (casting tetype and casting
speed) on calculated grain structure is shown #s we
In the dissertation the ECT/CET model parametergadjusted in order
to obtain the experimentally determined actualebillECT and CET
positions of the heat 46352 for the alloy propers@ CrMoV4 (Al: 0.02,
Cr: 1.05, Cu: 0.125, Mn: 0.9, Mo: 0.025, Ni: 0.1, &275, V: 0.155, C:
0.51, P: 0.0125, S: 0.0275 wt%). A systematic pdace is outlined for
adjusting of the model data with the experiment.
Many measurements from the Store Steel alloyedifterent alloys and
casting temperatures and casting speeds were addlyse Appendixl).
The dimensions of the three characteristic zonkat, columnar and
equiaxed were compared to the simulated examplesfdllowing heats
for different casting parameters are analyzed. egffit casting
temperatures:
= heat 48695 3/I for the alloy properties 51CrMoV4:(B.02, Cr:
1.05, Cu: 0.125, Mn: 0.9, Mo: 0.025, Ni: 0.1, SR27b, V: 0.155,
C: 0.51, P: 0.013, S: 0.027 wt%).
= heat 48695 3/Ill for the alloy properties 51CrMo{At: 0.02, Cr:
1.05, Cu: 0.125, Mn: 0.9, Mo: 0.025, Ni: 0.1, SR27b, V: 0.155,
C: 0.51, P: 0.013, S: 0.027 wt%).
= heat 48807 3/l for the alloy properties 51CrMoW: (0.027, Cr:
1.05, Cu: 0.125, Mn: 0.9, Mo: 0.200, Ni: 0.125, 8i275, V:
0.095, C: 0.00, P: 0.015, S: 0.013 wt%).



Summary of the Main Contributions 143

= 48807 3/IV for the alloy properties 51CrMoV4 (Al:027, Cr:
1.05, Cu: 0.125, Mn: 0.9, Mo: 0.200, Ni: 0.125, Bi275, V:
0.095, C: 0.00, P: 0.015, S: 0.013 wt%).

and different casting speeds:

= 46484/1 for the alloy properties 52 CrMoV4 (Al: 24 Cr: 1.05,
Cu: 0.125, Mn: 0.9, Mo: 0.200, Ni: 0.125, Si: 0.2%5 0.095, C:
0.00, P: 0.015, S: 0.013 wt%).

= 46693/1 for the alloy properties 25MoCrV4 (Al: 0QZXr: 1.05,
Cu: 0.125, Mn: 0.750, Mo: 0.225, Ni: 0.100, Si:&1V: 0.025,
C: 0.00, P: 0.015, S: 0.013 wt%).

= 46693/3 for the alloy properties 25MoCrV4 (Al: 0QZXr: 1.05,
Cu: 0.125, Mn: 0.750, Mo: 0.225, Ni: 0.100, Si:&1V: 0.025,
C: 0.00, P: 0.015, S: 0.013 wt%).

8.1.2 Dendritic Growth Model

The aim of the dendritic growth model is the sintiola of thermally
induced liquid-solid dendritic growth in two dimeoss by a coupled
deterministic continuum mechanics heat transferehadd a stochastic
localized phase change kinetics model that takés atcount the
undercooling, curvature, kinetic and thermodynararasotropy. The
stochastic model receives temperature informatiom fthe deterministic
model and the deterministic model receives thaldddiction information
from the stochastic model. The heat transfer mzdsblved on a regular
grid by the standard explicit FDM. The phase-chakigetics model is
solved by the classical CA approach and a novebppgroach. The CA
approach is established on quadratic cells and Neumann
neighbourhood. The PA approach is established waoraly distributed
points and neighbourhood configuration, similarappears in meshless
methods. Both methods provide same results in ebesgular PA node
arrangements and neighbourhood configuration vt goints.
Numerical examples are done for square domain raedsion 350 um
with  Neumann boundary conditions. Fixed input patan of the
dendritic model represent the material properiedhe pure aluminium,
cell size, average Gibbs-Thomson coefficient aridatropy coefficients
for the CA/PA methods. In the CA method the nunariesults are
prepared for the following varied input parameténgrmal fluctuations,
curvature calculation radius and Gibbs-Thomsonfment. Finally, the
growth process was simulated by the CA methoddwes four branched
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dendrites growing simultaneously at orientatid¥is45 and by the PA
method at the same orientations as for the CA madeladditionally at
random orientations.

8.2 Technological Relevance

The developed numerical model for simulating grgwowth structures during
the CC of steel is found to be a very importantl tbr extending the
technologically relevant capabilities of the alngatbveloped simulation system
[Sarler and Vertnik, 2002] in the Store Steel compand steel industry in
general. These models are appropriate for optigitie process parameters.
Despite the powerful futures of the already devetbthermal model, approved
in practise, the developed meso-macro model camsbd for simulation of the
grain growth process which seems to be a techrzatigirelevant problem. The
main scientific achievement of the dissertatiora idevelopment of an entirely
new generation of PA methods. This method can led us grain growth and
dendritic growth modelling. The main characteristiche new approach are:

* No need for mesh generation or polygonisation. Otig node
arrangement has to be generated, but without amyetical connection
between the nodes.

* In the new PA method the governing equations aredonith respect to
the location of points (not polygons) on the conapiohal domain.

» PA method offers a simple and powerful approach GA type
simulations. It was shown that both methods are abl qualitatively
simulate a diverse range of solidification phenoaeai approximately
the same CPU time.

» Straightforward node refinement possibility.

» Straightforward extension to 3D.

8.3 Conclusions and Future Work

The computational modelling is one of the tools ahhincreasingly helps the
engineers to better understand the influence dérdifit process parameters on
the details of microstructure. With the help of gutational modelling it is able
to dissect the microstructure in space and invtdution in time, and can, for
example, perform different parameter studies taddebow to ameliorate the
manufacturing process.

We construct two numerical models defining the ulyiley physics of the
different sub-processes that influence on micrastine evolution. Our models
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are capable of simulating the evolution of the gmgtiowth formation using the
underlaying laws of physics as the input data.

The following conclusions can be summarized:

The developed numerical model for prediction ofimgratrictures is
capable to predict the position of ECT/CET transisi with a very good
agreement to the experimental data from the Sttrel Sompany. It is
shown that the measurements are very importantcasp&ing the
verification of the numerical model. The novel PApeoach is
successfully implemented to the ECT/CET model. atheantage of the
PA method is its simplicity, simple transitions amstraightforward
applicability in non-uniform mesh structure.

In this dissertation, a new PA approach is the fi,se demonstrated for
prediction of the grain structure which occurs dgrihe CC of steel. It is
shown that the PA method offers a simple and pawexpproach of

cellular simulations. It is shown that both methadsed are able to
gualitatively and quantitatively model a diversega of solidification

phenomena in almost the same calculation time. R#&had offers an

attractive alternative to the classical CA methmetause of its flexibility

of node density and neighbourhood definition. Tkeagity of the nodes
can in principle vary across the domain of inteeest the neighbourhood
can be defined in a flexible way what establisheayvpromising CA

computational environment.

The new approach always brings some disadvant&geshe ECT/CET

model we need to be careful when choosing the dsinarof radius of

the neighbourhood. To small or too high value Wrihg distorted forms

of the columnar grains. A sensitivity study need$¢ done. Any of the
newly developed neighbourhood configurations foe {6A and PA

methods has been subject to comprehensive verdlictsts. The reason
for this is that there is a high probability thatrse of the nucleuses will
not take part in the growth stage. There will benmy left cells (points)

on the domain what will not give a reliable sighthacrostructure. There
is also a possibility that the code might never plate calculations.

It is shown that the novel PA method can also leessfully used for
calculation of the dendrites in any preferentiatediion. The novel
approach is developed and introduced in this worlcitcumvent the
mesh anisotropy problem, associated with the daksCA method.
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Dendritic structures are in the CA approach saresitn the relative
angle between the cell structure and the preferemtiystal growth
direction which is not physical. The use of FDM-PR#ethod instead of
FDM-CA method implies transfer of the results frone regular FDM
mesh to the irregular PA node arrangements andwacga. This is not
the case in the classical FDM-CA method. A replaaeinof the FDM

method with a meshless [Atluri, 2004; Liu and G0PZ; Sarleret al.,

2005; Sarler and Vertnik, 2006] method that is dbldirectly cope with
irregular node arrangement is underway.

The radius of neighbourhood has to be chosen dbrefio small or too
high value will bring distorted dendritic forms. dlsecond important
aspect is the generation of the random node amasige The
randomness of PA nodes is required in order tolde & rotate the
dendrites, otherwise we are too close to the carwesd CA approach.

The efforts of the future work should be focused on

- Inclusion of the species diffusion.

- The thermal and the solutal dendritic growth shdédtoupled.

- Deformation of grains due to mechanical forces.

- Calculating of the recrystallization processes dditon to the
solidification.

- The ECT/CET model should be upgraded by includihg t
concentration field received from the measureméram the
industry. The influence of the concentration to themation of
equiaxed and columnar grains should be analyzed.
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A.1 Database of Measurements from Store Steel
Company

Four Technical Reports from the Slovenian StorelStempany were received.

1. Influence of casting speed on the grain structitanojlovi¢, 2008].

2. Influence of casting speed on the grain structitanojlovi¢, 2007].

3. Research on grain morphology (casting temperatmeé @asting speed)
[Manojlovi¢, 2008].

4. Influence of EMS on the grain structure [Manojig\w2008].

From these measurements, the positions of ECE/C&TIsformations for the
different casting parameters were determined. €halts were divided into four
groups according to the received reports. Fronthallmeasurements we choose
only few examples which are believed to be of tlw®dyquality. First one
46352 _1 represents the example from the Chapteh&re the sensitivity. The
following alloys were analyzed: 48807 3/11, 4880W3 48695 3/1l, 48695 3/1V,
and for the different casting speeds and 46484693/1 and 46693/3 for the
different casting temperatures. For all Baumanmtprthe centre and corner
cross sections of the temperature fields are peepar

Finally the chosen measurements were compared thghsimulated result
prepared for the conventional grid structure ushMastac’s neighbourhood
configuration (following procedures from Chapter 5)

Mesoscopic CA model was studied and refined in roite obtain a good
agreement with the measurement observations. Timeleged positions of
ECT/CET transformation fit to the industrial exaegl
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Table A.1: Database of measurements from Store Steel company.
Alloy Material Veast Teas Dimension Simulation
[m/min] K] [m]
48807 3/l 52CrMoV4 0.95 1522 0.180 Figure A2
48807 3/IV 52CrMoV4 1.15 1520 0.180 Figure A3
48695 3/I 51CrMoV4 0.95 1524 0.180 Figure A7
48695 3/11I 51CrMoV4 1.15 1529 0.180 Figure A9
48696 3/I 51CrMoV4 0.95 1523 0.180 *
48696 3/l 51CrMoV4 1.05 1521 0.180 *
48696 3/11I 51CrMoV4 1.15 1520 0.180 *
48939/1 51CrV4 0.95 1531 0.180 *
48939/2 51CrV4 1.15 1531 0.180 *
48938/1 51CrV4 0.95 1530 0.180 *
48938/2 51CrV4 1.15 1530 0.180 *
gggrjgggz 51CrMoV4 1.65 1530 0.140 Figure Al
46484/1 52CrMoV4 1.05 1522 0.180 Figure A1l
46484/3 52CrMoV4 1.05 1520 0.180 *
46693/1 25MoCr4 1.12 1545 0.180 Figure A1B
46693/3 25MoCr4 1.12 1550 0.180 Figure Alb
46392/1 51CrV4 1.05 1529 0.180 *
46392/3 51CrV4 1.05 1528 0.180 *
46340/1 51CrV4 1.08 1522 0.140 *
46340/3 51CrV4 1.08 1529 0.140 *
46342/1 51CrV4 1.80 1527 0.140 *
46342/3 51CrV4 1.80 1528 0.140 *
46352/3 51CrV4+Mo 1.75 1531 0.140 *
46379/1 52CrMoV4 1.10 1520 0.180 *
46379/3 52CrMoV4 1.10 1517 0.180 *
46381/1 50CrVv4 1.10 1516 0.180 *
46381/3 50CrVv4 1.10 1519 0.180 *
46391/1 51CrV4 1.07 1527 0.180 *
46391/3 51CrVv4 1.07 1528 0.180 *
50644/3-1 51 Crv4 0.180 Figure A17
50644/3-2 51 Crv4 0.180 Figure A18

* bad quality of measurements or entirely unknowasting parameters.

Table A.2: Material properties - compositions

Heat/ Al Cr Cu Mn Mo Ni Si \Y, c P S
compositions

46352 0.02| 10§ 0.125 09 0.025 04 0.275 0.1551 p.6.0125| 0.0275
48695 3/1 0.02] 1.05 0.125 0. 0.0p5 01 0.275 0416%1| 0.013| 0.027
48695 3/l 0.02| 105 0.125 09 0025 0. 0.275 5B.1 0.51| 0.013| 0.027
48807 3/l 0.027, 103 0.125 09 0.200 0.125 0.27509%| 0.00{ 0.015] 0.013
48807 3/IV 0.027, 1.0§ 0.125 09 0.200 0.125 0.27509%| 0.00] 0.015] 0.013

46484/1 0.0277 1.0% 0.125 0.9 0.2p0 0.125 0.p75 50j00.00| 0.015| 0.013

46693/1 0.0277 1.0% 0.125 0.7%0 0.225 0.100 0/18W250, 0.27| 0.015| 0.013

46693/3 0.027 1.0% 0.125 0.7%0 0.225 0.100 0/18W2%0, 0.27] 0.015] 0.013
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140 mn

d

140 mn

Figure A.1: Left: Baumann print, right: simulated result foeat 51CrMoV4, dimension 140
mm, T__ =1530K andV__ =1.75m/min (Reference case, heat 46352).
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Figure A.2: Centerline and corner temperatures along thenzpdtrection (heat 46352).
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Figure A.3: Left: Baumann print, right: simulated result foeet 51CrV4+Mo, dimension 180
mm, T__ = 1522 K andV___= 0.95 m/min.
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Figure A.4: Centerline and corner temperatures along the gpdtiection (heat 48807 3/II).
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Figure A.5: Left: Baumann print, right: simulated result foeet 51CrV4+Mo, dimension 180
mm, T_.= 1520 K andV_,= 1.15 m/min .
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Figure A.6: Centerline and corner temperatures along the epditaction (heat 48807 3/1V).



Appendix A 155

140 mn

48695 3/1

<

Ve
<«

v

140 mn

Figure A.7: Left: Baumann print, right: simulated result foeat 51CrV4+Mo, dimension 180
mm, T_., =1524K and V_ = 0.95m/min.
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Figure A.8: Centerline and corner temperatures along the epdiiaction (heat of 48695 3/1).
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Figure A.9: Left: Baumann print, right: simulated result for steeCs4+Mo, dimension 180
mm, T__= 1525 K andv___= 1.15 m/min.

cast cast
___| 48695_2.PLT: S1CrNoV; 180; ar i 48895 | SIORE TR doe
SToREQSTEEL ——
SI-3220 Store
CORNER TEMPERATURES S
oo e
PROCESS PARAMETERS | MATERIAL PROPERTIES
LEGEND: ¢ |8 & g g4 BBIg 51 8 BLLET oWENSIO ) couroson (v
48695__2.PLT SiF | o : I 4 isd I = ey
c —— 1600.00 T CASTING SPEED [m/'min] cr: 1,050
: y Flid
. = ]
I 150000 R — WO Lve o [l ]
R 901 j i Lo i | ] HOULD TEMPERATURE [C] to: oo
S 1400.00 . oL A T b = o
OR —— L \ I VouLD FLow [1/mir] 5 05
oo = 53
1300.00 RADIATION SHELD T oo
L S
P 4 RE | s e o
C S~ CASTNG PONDRR | ¢ ewperaTE (0]
)
1100.00 - SERAY TEMFERATURE [C] T T L]
r . - P Vel
1000.00 SCS01_  48.000
\ > 7 \\ Sy PU
L ; ! ¢ S e
900.00 \ Saw =4
£ 800.00 -
N
700.00 &
600.00
500.00
400.00
300.00
200.00
100.00
0.00 L1 I Y S T TN N T N T A T | ] T T Y
STORE_STEEL_ g 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
g 8 8 8§ 8§ 8§ 8 8 8§ 8 8 8 8 8 8 8 8 8 § 8
52000/558/02 S 233 9 3 R 33 32 d 8§ 582 &
14:34:49 2 [m] os0s uoses

48695_2_.C02 e o




158 Appendix A

- ___| 48695_2.PLT: S1CrNoV; 180; ar i 48895 | SIORE TR doe
REQSTEEL zelszarska cetta 3
CENTERLINE TEMPERATURES S sl
oo e
PROCESS PARAMETERS | MATERIAL PROPERTIES
LEGEND: 2|3 2, g Q { Ry 3 BILLET DIMENSION [m] COMPOSITION [wt]
Ilé 28 N 2|3 8 S o]
48695__2.PLT g s : < E 5 S | cwme e [0 o
c 1600.00 T CASTING SPEED [m/min] & b
b C o &
‘ 1500.00 E— o o b0
° . X = = _\ HOULD TEMPERATURE [C] No: 0000
. " 5%
S & 5
- 1400.00 N o T Z Son
R —— MOULD FLOW [I/min] St 0275
oo = 53
1300.00 OTON SHEWD T oo
" EM STRRIG | 1quipus TewpEsaTURE [c]
1200.00 CASTING POWDER el
L e - \ SToRE_ | SOUDUS TEMPERAURE [c]
1100.00 v/""Y" SPRAY TEMPERARE [C] | e e (3]
L Y W—E\ sery LW [ymi] 1215
1000.00 = Bl . = S0 aewm
7 lv{ /ﬂw' l\\"‘ o
=
900.00 | ' ' Y
£ 800.00
- |
700.00 \
V|
600.00
500.00
400.00
300.00
200.00 5
100.00
e [ Y N P T I 1 P
oy § § 888 8 888 888888888 8§ g
Eioé);égsa/ 02 S 233 9 3 R 33 32 d 8§ 582 &
149 PYROMETER TEMPERATURE: +48695_2.PLT=1073.1[C] 2 [m] s brone
48695_2_.C01 48695_2.PLT SS8159_

Figure A.10: Centerline and corner temperatures along thengpdtiection (heat 48695 3/III).
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Figure A.11: Left: Baumann print, right: simulated result foeet 52CrMoV4o, dimension 180
mm, T = 1522 K andV,,,= 1.05 m/min.
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Figure A.12: Centerline and corner temperatures along the cpstiection (heat 46484/1).
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Figure A.13: Left: Baumann print, right: simulated result foealt 25MoCr4, dimension 180
1.12 m/min.

mm, T__= 1545 K andVv.
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Figure A.14: Centerline and corner temperatures along the gpstiection (heat 46693/1).
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Figure A.15: Left: Baumann print, right: simulated result foealt 25MoCr4, dimension 180
mm, T__ = 1550 K andv___= 1.12 m/min.
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Influance of EMS on the final microstructure (rep&tore, 19.12.2008)

'}{)3‘-‘"9' /f ALl

Figure A.17: Baumann print for steel 51CrV4, dimension 180 miith \EMS,

Figure A.18: Baumann pront for steel 51CrVv4, dimension 180 mithaut EMS.
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A.2 Meshless Solution Procedure of the Macroscopic
Heat Transfer Model

The solution procedure follows developments in jmatiions [Sarler and
Vertnik, 2006] and [Lorbieckat al, 2009] We seek for mixture temperature at
time t, + At by assuming known initial temperature, velocigldi and boundary

conditions at timd, . The initial value of the temperatuil'e(p,t) at a point with
position vectorp and timet, is de fined through the known functidp

T(p,t)=T,(p); pOQ+0Q. (A1)

The boundary 0Q is divided into not necessarily connected parts
0Q =0Q° 0oQ" 00QR with Dirichlet, Neumann and Robin type boundary
conditions, respectively. At the boundary pomtwith normal n,, and time
t, <t<t,+At, these boundary conditions are defined throughvinfunctions

D N R R
TOQ ' TOQ ! TOQ ! TBQref

T=T2;p0dQ°, (A2)
a%Tz'lj,g;pDaQN, (A3)
]
a — TR R . R
a_T _TOQ(T_-IFref)’ pDaQ ) (A4)

-

The numerical discretization of equation (Al), wgsiexplicit (Euler) time
discretization has the form

G(Ph) ~ ,Oh—f)oh) =0 EQAODTO) (AS)

ot A
From equation (A1) the unknown function valbiein domain nodep, can be
calculated as

At
PoCo

h=h+

(DA, @MT, + &, I°T,), (AB)
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The spatial derivatives in equation (A5) are apprated by the LRBFCM. In
the LRBFCM, the representation of unknown functiatue over a set gfN (in

general) non-equally spaced nodes; n=1,2,..., N is made in the following
way

K

o(p) =2 i (P)ia, (A7)

k=1
where ¢, stands for the shape functions, for the coefficients of the shape

functions, and K represents the number of the shape functions.|&théwer

index on entries of equation (4.18) representdrifieence domain (subdomain
or support),w on which the coefficientsa, are determined. The influence

domains,w can in general be contiguous (overlapping) or c@miguous (non-
overlapping). Each of the influence domais includes, N nodes of which
N, can in general be in the domain an®l. on the boundary, i.e.
‘N =, N, +, N,,. The total number of all nodgs, is equalN =N, + N,, of
which N, are located on the boundary ail, are located in the domain. The
influence domain of the nodg is defined with the nodes having the nearest
N -1 distances to the nod@ . The five noddedN =5 influence domains are

used in this paper. The coefficients are calculated the collocation
(interpolation).

Let us assume the known function valyes in the nodesp, of the influence
domain, w. The collocation implies

#(1p.) =2 . (1P.) 4. (A8)

For the coefficients to be computable, the numlieh® shape functions has to
match the number of the collocation poinks =, N, and the collocation matrix

has to be non-singular. The system of equatior®j4chn be written in a matrix-
vector notation

|‘l’|a:|¢;|4£’kn:|¢’k(|pn)'|#:¢(|pn)- (A9)

The coefficientsa can be computed by inverting the system

o=y, (A10)
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By taking into account the expressions for the daton of the coefficientsa,
the collocation representation of temperatm(ep) on subdomainw can be
expressed as

N

JESWACDIRHES (A11)

[y

The first partial spatial derivatives @f(p) on subdomainw can be expressed
as

,N N
(// . ¢=X,Y. (A12)
ap{ s apc 1%k Z:; k K8

The second partial spatial derivatives qv(p) on subdomain,w can be
expressed as

a |N 62 N

W ( n
op, pg TZopp'h zi Yir B (A13)
C!g_xly'

The radial basis functions, such as multiquadriesy be used for the shape
functions

@ ()= 2 (p)+c?T ", (A14)

where ¢ represents the shape parameter. The explicit vafue involved first
and second derivatives ¢f (p) are

0 _ 1 P
. = PR oy Al5
aIoc.z//k(p) (v )mc y (A15)
62 ():Irkz_(pq_lpkc)z-l_c2

— . (p C=X,Y, (A16)
apf | k (lrkz +C2)3/2
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