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Abstract

Genome sequencing technologies produce large amounts of genomic data that
allow biologists to study novel problems, such as microbial communities that
consist of thousands of species communicating with each other using various
signals. This problem is important in medicine, agriculture and the environmental
sciences. Currently, new bacterial genomes are being sequenced by the hundreds
but genome annotation — predicting the location and function of the genes — is a
bottleneck. My thesis project deals with the annotation of genes involved in
bacterial communication, in all bacterial genomes available in the databases. This
is a long term project, my work concentrated on the study of quorum sensing (QS)
genes in proteobacteria that help bacteria to stage a density dependent response,
based on a well-defined family of chemical signals, N-acyl homoserine lactones
(AHL). My goal was to develop an automated system that allows one to find QS
genes of AHL systems in complete and draft genomes — QS genes are poorly
annotated in the current databases. This is a so-called subsystem based approach

because we do not annotate one entire genome, but a subsystem in many genomes.

In my thesis project I constructed an automated pipeline for analyzing complete
and draft genomes, which was primarily based on the known technique of Hidden
Markov Models (HMMs). I contributed original software tools for the analysis that
allow one to study the topology of QS systems within the chromosome, to classify
and visualize the local topology of QS genes and to study horizontal gene transfer
in these systems. I used the tools to analyze all currently available complete
genomes (2620) and draft genomes (6970). In particular, I analyzed a family of
solo LuxR proteins, a specific group of QS genes that occur ,alone” in the
chromosome, not in close proximity of other QS genes. I found that these genes
cluster into individual subgroups, and sometimes form a novel local arrangement I
called “twin /uxR topology”. I studied the sequence variability of these novel
protein families and made the results available via a common web server. My

results were published in 4 publications and there is one more in preparation.









Izvlecek

Tehnologije dolocanja DNA zaporedij omogocajo generacijo obseznih koli¢in
informacij o genomu, ki biologom omogocajo raziskave problemov, kot so na
primer raziskave mikrobnih zdruzb. Mikrobne zdruzbe sestojijo iz predstavnikov
ve¢ tiso¢ razli¢nih mikrobnih vrst, ki za medsebojno komunikacijo uporabljajo
razli¢ne signale. Komunikacija med predstavniki mikrobnih zdruzb predstavlja
problem predvsem v medicinskih, kmetijskih in okolijskih znanostih. Raziskovalci
trenutno dolocajo DNA zaporedje velikemu Stevilu mikrobnih genomov, anotacija
genov pa Se vedno predstavlja ozko grlo analize. V doktorskem raziskovalnem
delu se osredoto¢am na anotacijo genov odgovornih za komunikacijo med
bakterijskimi vrstami, ne glede na to ali je genom teh vrst Ze anotiran ali Sele v
»draft« stanju. Anotacija vseh genov je dolgotrajen projekt, zato sem se pri svojem
delu osredoto¢il predvsem na gene, ki kodirajo proteobakterijske N-acil
homoserin-laktone (AHL). AHL sodelujejo v procesih zaznavanja celicne gostote
(quorum sensing, QS) in omogocajo skupinski odziv ob primerni gostoti celic.
Anotacija QS genov v obstojeCih podatkovnih bazah je skopa. Cilj mojega
raziskovalnega dela je bil zato razvoj avtomatiziranega sistema, ki bi omogocal
identifikacijo AHL genov v katerem koli mikroorganizmu, ne glede na stopnjo
anotacije genoma tega mikroorganizma. Ker se osredotoam na anotacijo
podsistema genov med Stevilnimi razlicnimi organizmi, ne pa na anotacijo vseh
genov v doloenem organizmu, ta pristop predstavlja tako imenovan podsistemski

pristop.

Razvil sem platformo za avtomatizirano obdelavo anotiranih in »draft« genomov,
ki temelji na prikritih Markovih modelih (HMM). Platforma vsebuje programska
orodja, ki omogocajo raziskave topologije QS sistemov znotraj kromosomov,
klasifikacijo in vizualizacijo lokalne topologije QS genov ter raziskave
horizontalnega prenosa genov znotraj mikrobnih zdruZzb. Razvita programska
orodja sem uporabil za analizo 2620 anotiranih in 6970 »draft« mikrobnih

genomov, ki so trenutno dostopni v podatkovnih bazah. OsredotoCil sem se na



analizo solo IuxR proteinov, ki predstavljajo specificno skupino QS genov. Na
kromosomu se nahajajo posami¢no, oddaljeni od drugih QS genov. Odkril sem, da
ti geni tvorijo razlicne podskupine in obcasno tvorijo strukture, ki sem jih
poimenoval »twin luxR topology«. Raziskoval sem variabilnost DNA zaporedij
teh novih proteinskih druzin in rezultate objavil na spletnem strezniku.
Raziskovalno delo sem objavil tudi v sklopu $tirih Ze objavljenih ¢lankov, za

objavo pa pripravljam Se en ¢lanek.
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1. Introduction
“Begin at the bcginning,” the King said, very
graveig, » and go on until you come to the end: then

stop” — Lewis Carroll, Alice in Wonderland.
1.1. Sequencing of DNA

Not even 20 years passed since the complete genome of the bacterium
Haemophilus influenzae [1] was sequenced, which was the first event of its kind,
and now we have more than 2500 complete bacterial genomes. In addition we
have over 150 complete eukaryotic genomes. And the number of ongoing
sequencing projects is above 15000 [2] . In order to arrive to this point, several
important milestones were achieved, but the most important of them was
doubtlessly the event in June 2000, when the president of United States and British
Prime minister have jointly announced the end of first phase of Human Genome
sequencing project, thus revealing human genome. This was only very raw draft
format, but in the subsequent years, the results were organized into a full genomic

form.

With the fast development of sequencing methods, the number of published
sequences is growing at exponential pace. While the earlier sequencing efforts
almost exclusively used so-called chain termination sequencing method developed
by Sanger et.al [3], today most sequencing projects use so-called next generation
sequencing techniques [4], the biggest advantage of these methods is that they are
in order of magnitude less expensive than the previous ones. While in 2001
sequencing of raw mega base-pairs cost around 53008, in 2012 this service could
be reached at a cost of 0.09$[5], (Figure 1). The decrease in sequencing cost led to
a fast increase of known DNA sequences. The GenBank database of the NCBI
(National Canter of Biotechnology and Information, USA) is one of the most
important primary sources of DNA sequences [6] and the size of this database has
reached by 2008 the size of 100 billion base pairs, while 10 years before that it
was only 1-2 billion base-pairs (Figure 2).



The fast increase in amount of sequences was only one side of the coin. We
also have to understand the functions of the genes: it makes no sense to have only
the full sequence of human genome if we don’t understand the structure and the
function of the genome, since otherwise it will remain as a mere sequence of
characters without any biological information. The tool of understanding genome

sequences is genome annotation.

Moore's Law

HHM““I'"“HW National Human
Genome Research
Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 1. The cost of sequencing [7]. The price of sequencing one mega-base of
DNA, in comparison with Moore’s Law.
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Figure 2. The growth of GenBank [8]

1.2. The concept of genome annotation.

Informally the term genome annotation denotes a process whereby we
assign additional pieces of information to a raw genomic sequence. The definition
of www.medicinenet.com 1is a typical example of such an informal
definition: ”Genome annotation: the process of identifying the locations of genes
of all of the coding regions in a genome and determining what these genes do.
Annotation (irrespective of the context) is a note added by way of explanation or
commentary. Once a genome is sequenced, it needs to be annotated to make sense
of it”. Even though some annotation is added to the raw data already during the
process of sequencing, more serious annotation work starts only when the raw data
is added to a database. This is especially true when the data is deposited to a public
database accessible to everyone. The initial information added to raw data includes
the host organism, the number of sequencing experiment, the time of the
sequencing which means the(Altschul, Gish et al. 1990) general bookkeeping data.
During genome annotation, which is carried out for including this data to a
database, we add a number of different kinds of information and these pieces of

information are added by professional annotators who have deep biological



knowledge. Annotators use various electronic databases and bioinformatics tools
and the results they find are then described in terms of well-defined vocabulary

which is contained in ontologies or other semantic resources.

The formal definition of genome annotation cannot be found in the
literature so here I will be using conceptual framework which is based on the

bioinformatics courses held at ICGEB, Trieste.

In bioinformatics, the concept of structure can be regarded as an ensemble
of entities (substructures) and relationships, where the latter denotes the
connections between the entities. The description of such structure can be
simplified, for instance a structure can be described only in terms of its
composition which includes the number of constituent units without the
relationships between them. In addition there are even simpler property-like
descriptions, for instance the sequence is helical or hydrophobic etc. The allowed
names of the entities and the allowed properties as well as relations that are
allowed between entities are included in bioinformatics ontologies. The
description of such a structure can be formally regarded as an entity-attribute value
data item [9] and the same kind of descriptions belong also to the relations. This
general description is important because it can be adapted to all important data
types of bioinformatics, which include sequences (DNA, RNA or protein), 3D
structures, networks as well as textual items. For instance genomes can be
represented in terms of sequences and in a sequence the units are nucleotides
(A,C,T,G), and from the relations the only one type which is included denotes the
vicinity within the chain — and this relationship is not even separately represented
in a sequence. Nucleotides are defined in terms of a well-defined alphabet — for
instance the [UPAC nomenclature — and as a result the sequence is represented as a

series of characters.1.3.

In the context of genome annotation the term raw data refers to a series of
characters. The theoretical topology of such a data structure is the line of numbers
which can be best pictured as a series of empty positions, and in the course of

genome sequencing we assign nucleotide character to these empty positions. The



genome may consist of one single sequence which can be linear or circular, but it
also may consist of several sequences. In the bacterial world, a typical bacterial
genome consists of one single linear or circular DNA sequence, which is the
genome, and in addition it can contain one or more circular plasmid sequences as
well. Some of the more complicated bacterial genomes like the one of the
Burkholderia genus consist of several large chromosomes and several plasmids.
Once the genome is sequenced it can be either complete, which means that it is
assembled into a full chromosome, or a draft genome which consists of several,
sometimes overlapping, so-called contig sequences. Both the complete genomes
and the draft genomes can be annotated or left in their raw forms. Finally, there are
individual gene sequences which are deposited in databases such as RefSeq or
GeneBank and which are result of individual small scale sequencing efforts where

the target is a small segment of a bacterial chromosome.

In the course of genome annotation we assign attributes — or as we call
them in bioinformatics: descriptors — to a raw sequence or to a given part of it.

Descriptors can be categorized as global descriptors, which refer to entire genome,

and local descriptors, which only refer to part of them (Figure 3

Global Descriptors (ex. Gene ID, name, product, function etc.)

Local descriptors(ex. protein domain, coding region, name, start codon etc.)

Figure 3. Classification of descriptors.



The sources of descriptors are the following:

1. Human knowledge. This is formulated in terms of a fixed vocabulary given as
ontologies and the form of such a description can be a free text. But more often

annotators use a given set of free structures.

2. Computational procedures. There are two kinds of such procedures; either we
use a database to assign some kind of a description based on similarity (i.e.
putative protease) or we can carry out calculations on the sequence, for instance
we determine a low complexity region. While the first type includes databases and
similarity search programs the second is based only on the sequence or on the

structure.

3. Database cross references. When we add cross references we connect a piece of
raw data or a part of it to a data item in another database using a pointer. The
descriptors in this second database are from the same data sources mentioned

above.

On the basis of forgoing we can make a logical sketch of DNA sequence
annotation. A DNA sequence can be considered as annotated if the coding regions
and other gene sequences are marked in it along with other segments of known
structure or function. In addition the coding genes must be cross linked to as many

databases as possible:
1. To primary databases such as protein sequence database UniProt.

2. To secondary databases such as: a) sequence databases clustered
according to their functions, such as the protein sequence database
COG, b) sequence databases clustered according to their structures such

as PFAM or SBASE.

This sketch has two important consequences: 1) An annotation is never
“complete” since many new proteins have no records in the primary or secondary

databases or may have a corresponding un-annotated record. 2) Annotations



change very frequently because the background databases to which an annotated

item is cross linked are continuously updated or even changed. For this reason it’s

always very hard to claim that a genome is completely annotated (Figure 4).

Raw sequence

{4

o sorr

(_J STAR1‘ 4 ) ‘ STOPL_

PROTEIN

GenBank <
UniProt

\_ COG PFAM 11
NS

UniRef

50 920 100

Figure 4. Steps of genome annotation. The steps of genome annotation are shown here
as projected to a few commonly used bioinformatics databases. In a raw genome sequence
we first find the positions of potential genes i.e. so-called Open Reading Frames (ORF).
After that, we look for substructures of a protein coding gene ex. protein domains. And
cross-link these domains to know secondary databases such as COG, PFAM. After that,
an annotated protein sequence is inserted into the UniProt [10] database, as well as UniRef
[11] which contains pre-clustered forms of protein sequences.

The idealized situation depicted in|Figure 4|can be reached only with well-

organized and adequately updated integrated databases. However, one can observe
that using currently available tools and above mentioned approach, not always it is
possible to reach the maximum coverage of annotation. In practice, an annotated
genome 1s such a genome sequence which is stored in the complete genomes
section of sequence databases. The best collection of such genome sequences is
the NCBI’s collection of complete genomes. And in this collection we have two

categories for bacterial genome sequences:



1. Complete genomes. In these genomes, the positions of all the genes are
determined and the part of them, usually more than half of them, are provided
with some functional descriptions. The sequence of such complete genome is

validated. So it is devoid of obvious sequencing errors.

2. Draft genomes. These consist of several unassembled sequence segments,
so-called contigs. Some of the contigs are annotated, i.e. have an annotation

file (so-called ptt file) which is described below.

In addition, we naturally have DNA sequence records of the old-fashioned
sequence collections such as GenBank. The annotational part of a GenBank
sequence contains the positions of the protein or RNA genes. As well as an
accession number which allows one to link the GenBank record and a particular
protein sequence to a sequence database like UniProt. On the basis of above
definitions we can formulate the process of genome annotation from the point of
view of data formats. Raw data formats are deposited in the simplest data formats
such as fasta files or concatenated fasta files. In these files sequence contains one
single annotation line and this can contain the number of the experiment, or in the
case of better annotated sequences, some gene identifiers that link the sequence to
other databases. When such a DNA record is deposited into a public database, ex.
NCBI, it gets an unchangeable identifier which will appear in the annotation line

of the fasta file.
Full genomes are deposited in the following data formats:

faa: This is a concatenated fasta file which contains the protein sequences
belonging to bacterial chromosome or plasmid. Each sequence has a separate
annotation line that contains more important IDs of the sequence and its

potential functions.

ffn: This a concatenated file similar to the previous one but it contains nucleic

acid sequences of the genes, without further pieces of information.

fna: This is a continuous DNA sequence without annotations or segmentations.



The annotation line contains only the name of the bacterium and the stage of

sequencing i.e. if it's completed or not.

gbk: This is the GenBank record of a given bacterial chromosome or plasmid,
which contains all annotation information that refers to the subject sequence
including the name of that bacterium, full taxonomy, identifiers, journal
references, the positions of reading frames as well as their functional
annotations. This format is more transparent for a human reader but it's more

complex to parse computationally comparing to previous formats.

ptt: This is a table-like format which is similar to feature table of SwissProt
database [12] and this table contains the genes and other similar features of
DNA in serial order of their sequence positions. Each line corresponds to a
gene and includes information about that gene such as from/to coordinates,
identifiers, potential function, names, references to COG, PFAM and UniProt
databases. This format is ideal for information retrieval because its format is

handy for parsing computationally and contains little unnecessary information.

The annotation level of draft genomes is between the raw data and
complete genome, which means that for some contigs we find all the above files,

whereas for some we do not have anything.

Bacterial genomes are 5 million base-pair long typically and contain 3-5
thousand genes. A well annotated bacterial genome, such as those which are
included in NCBI's database, contain typically 25% and sometimes 40% un-
annotated genes, and these are tagged as ‘“gene of unknown
function”, “hypothetical protein” etc. In general, the core genes of bacterial
genomes are annotated in details which are present in most bacterial species and
carry out typical core cellular functions. Sometimes these genes are referred to as
housekeeping genes. The accessory genes, which are also referred to as the shell,
carry out special functions of a bacterial cell which can sometimes be found only
in one species. The shell genome is usually much less annotated than the core

genome. One reason for this situation is that although the shell genes are
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computationally predicted very well, they don't provide the same level of
confidence, due to their species-specific nature. Thus, they are not always

annotated by annotators as often as the core genes are.

As for the workflow of the genome annotations, we have two main
approaches. One is the full annotation of a complete genome, which involves
annotating as many genes as possible throughout the genome and leaving as few
genes un-annotated as possible. The second approach refers to annotating
subsystems, ex. a metabolic pathway, but in all possible genomes. In bacterial
genome annotation this approach is especially important given the fact that a large

number of un-annotated genes found in their genomes.

In case of full genome annotation, we choose an un-annotated genome and
try to determine the functions of as many genes as possible. We do it using
databases and several searching algorithms. In this case, we need to rely on the
content of the genetic databases and if the content of the database is incorrect, we
will necessarily commit a mistake, which is a problem of similarity based genome
annotation in general. If we carry out similarity searching, the usual result is the
nearest neighbor of a given gene. The fact that we found a nearest neighbor doesn't
guarantee that the function of the new gene will be the same of its neighbor, so we
have to determine using other means if the function is transferable. More often the
function is automatically transferred if there is a more than 90% or more sequence
similarity or in terms of blast e-values smaller than 10™. But these automated
function assignments can also lead to false positive or false negative assignments,
which is a general problem. And moreover, the usage of such automated function
assignment tools is the reason why such large portions of bacterial genes are left

un-annotated.

On the other hand, if we annotate subsystems, we do not work with single
genome, but on a given subsystem such as a biological pathway or a signaling
mechanism etc. [13]. When we already know some genes which belong to
subsystem that we want to annotate, we will try to locate similar genes in the

genome and we will normally also check if these genes are in the same local
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arrangement as the genes in already known genomes. In other words, the
validation of the gene function relies not only on similarity, but also on similar
arrangement within the genomes, which helps one to filter out false positive and
false negative results which would necessarily be present were the process be
based simply or solely based on sequence similarity. Nevertheless, this method can
also fail because we can also find new hitherto unknown variations of a subsystem
or if the subsystem is simple, for instance if it consists of only two genes, spurious

similarities can also lead to errors.

1.3. Tools of genome annotation.

1.3.1. Pairwise sequence alignment.

Similarity search techniques between two sequences constitute one of the
most important cornerstones of bioinformatics. On the computational level, the
process of similarity searching is done by modified string matching algorithms,
called pairwise sequence alignment algorithms (referred to as plain sequence

alignment further).

Sequence alignments can be in two types: global and local alignments, and
can be used for aligning DNA, RNA or protein sequences. While both types of
alignments are similar to each other on algorithmic level, and are both called
aligning algorithms, they answer fundamentally different questions. The global
alignment score tells us how similar the given sequences are, while the local
alignment not only gives the similarity but also helps us to investigate, if the given

sequences share conserved regions or not. These two methods work as follows:

Global alignment. When performing global sequence alignment, algorithm
reads the given two sequences and starts aligning them by matching the first
residues of the sequences. Further it keeps scanning iteratively over all the
residues by either matching two residues or shifting the sequences by leaving that

point either unaligned or aligning one of the residues with an empty gap. So, in
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this way, global alignment forces the input sequences to cover each other to
maximum extend, making them aligned globally. If we assume that aligned
sequences evolved from a common ancestor, the mismatches are mutations, and
gaps are indels (insertions and deletions). For calculating the overall score of the
alignment, so-called substitution matrices are used. The most frequently used
substitution matrices are block substitution matrix (BLOSUM) [14] and point
accepted mutation (PAM) [15] matrix series. While identical matches and
mismatches are scored using the corresponding values from substitution matrices,
the indels are penalized (using negative scores). And the penalty for gap opening is
higher than extending an already existing gap. The resultant score will be the sum
of the scores corresponding for each position on the alignment. This approach for
aligning is most often carried out by algorithm called Needleman-Wunsch which is

based on dynamic programming [16].

Local alignment: In this type of alignment, algorithm does not try to stretch
the alignment to full coverage, instead searching for most similar subsequences
between two input sequences. On the algorithmic level, this effect is achieved by
penalizing the gaps with smaller penalties comparing to global alignment. When
calculating the resultant similarity score, it sums up the scores of aligned blocks,
which are calculated using the same mechanism as global alignment. The most
prominent implementation of this approach is Smith-Waterman algorithm which is

also based on dynamic programming [17].

The difference between global and local alignments is depicted in Figure 5.



1 Global alignment

B E

Figure 5. Types of sequence alignment. Global alignment tries to estimate how
similar the two given sequences are, by stretching one sequence onto another,
whereas local alignment searches for conserved regions.

1.3.2. Multiple sequence alignment and ClustalW.

While pairwise alignments can be used for tasks where we need similarity
search, for building profiles and making phylogenetic analysis of related proteins
we need multiple sequence alignments (MSA). MSA is alignment of three or more
sequences (DNA, RNA or protein). Naive way of constructing MSA is, first
aligning two sequences with pairwise alignment, and taking the alignment as a
single sequence, aligning it further to next sequences. While this approach is fairly
simple to implement, it has been proven to be non-feasible for using to align large

number of sequences. Using Big-O notation, which is commonly used for
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expressing computational complexity, this approach will take O(L") time to
construct where L is the length of resulting alignment in terms of number of
residues, and N is the number of sequences aligned to each other. This means that
the time needed for building MSA will increase exponentially as the number of
sequences increases linearly. Under this conditions, finding global optimum was

proven to be an NP-hard problem [18].

Since searching for guaranteed optimum solution in MSA building is
prohibitively computationally expensive, new sub-optimal approaches were
introduced which included heuristic steps. The most know of these methods are so
called progressive alignments, which are not globally optimal. This method first
calculates pairwise similarities between all the sequences, and using them,
constructs a so-called guide-tree using clustering algorithms such as Neighbor-
Joining [19] or UPGMA [20] . Then, it takes the most similar sequence pair as a
starting point, and progressively extends the alignment by going from the next
most similar to the most distant sequence, using the guide-tree. While this
approach turned out to be fairly fast, it also has a systematic problem. If at any step
there was made a mistake in aligning (simply because of the fact that at that point,
misaligning gave higher score), this mistake is inevitably propagated to the rest of
the alignment, worst case of which is the situation when the first pairs of
sequences were aligned wrong, leading to a significant errors in resultant
alignment. Nevertheless, this approach is the most widely used technique for
building MSA. The best performing implementation of this approach is the Clustal
family of programs [21], and among them ClustalW [22], [23] gained the
reputation of the most popularly used one. Clustal W uses an additional level of
heuristics, the most important of them being a process of assigning weights to

partial alignments before starting to build guide-tree.
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1.3.3. Hidden Markov Models.

Hidden Markov Models (HMMs) are a mathematical framework used for
building probabilistic learning algorithms for inferring meaningful conclusions
from sequential data. While it was initially applied for speech recognition and
signal processing, later the same approach was successfully ported to solve
numerous biological problems, among which are gene prediction, protein structure

prediction, sequence alignment and homology detection [24].

HMMs are similar to profiles, which were used extensively for homology
detection before HMMs were introduced to bioinformatics. But instead of
representing the profile as a two dimensional matrix, it uses a simple Bayesian
network, where each position in the multiple sequence alignment, which is being
modeled, is represented by three different states (insertion, match, deletion). For
each of the states, the profile stores probability distributions for emitting for all
possible residues. Moreover, once one state is processed, for passing to the next
position in the sequence, there are transition probabilities to be issued for all three
states. After setting the probability distributions, this HMM can be used to
generate a sequence, just by following the path which gives the highest score. A
sequence generated in this way is called null model and the score it gets going
through the most probable path is used to normalize the score of a real sequence
put on a test. When a sequence is subject to test for similarity, then it forces to go
through states, which would produce the given sequence. Therefore, the states
which would emit the given sequence are unknown until they are observed, hence

they are hidden. This structure is represented by an oversimplified example in

Figure 7

The score of HMM search is calculated by the following formula:

P, (sequence)

§=log Py (sequence) (1)

where Pm(sequence)is the probability calculated by forcing the path based on
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evidence given by subject sequence, and Ps(S€quence) ig the probability calculated
from null model described above. Since the probabilities are multiplied along the
path, they tend to result in extremely small numbers, thus it’s more convenient to
operate with log of the number. A score obtained in this way is also called /og-

odds.
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Figure 8. An HMM based profile. It models a multiple sequence alignment with length
of 2. In case of protein sequence profiling, for each corresponding position in multiple
alignment being modeled, there are 49 values stored: 9 state transition probabilities (the
arrows), 20 match emission probabilities and 20 insert emission probabilities.

\

HMMs were applied for remote homology detection in several research
groups and most of them were proven to be reliable [25][26][27]. Due to its
convenience in use and high specificity, HMMs are today used widely in genome
annotation projects, and databases like PFAM provide both multiple sequence

alignments and HMMs for known protein domains [28].

1.3.4. BLAST.

While pairwise sequence alignment methods described in chapter 1.3.1
find optimal alignments, carrying a similarity search against large sequence
databases with them can be extremely expensive in time and computational

resources. To overcome this problem, numerous heuristic algorithms were
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developed. Among them, the most popular one is BLAST, developed by Altschul
et.al at NCBI [29].

The BLAST (Basic Local Alignment Search Tool) is a sub-optimal aligner

which reduced the running time of database searches in order of magnitudes

comparing to optimal alignment methods. This improvement in speed was gained

due to its underlying heuristic algorithm, the main idea of which is reducing the

search space before starting doing full alignments. Algorithm works as follows:

1.

Given a query sequence, every k-length word is produced sliding the
window one by one until it reaches the end of sequence. (By default, £

is 3 for proteins and 11 for DNA sequences.)

Every word is aligned with all possible k-length words. In case of
proteins, for k=3, every word will be aligned with 20° 3-length words.
After that, only the words which gave a score above a certain threshold

t are kept.

Having a set of words collected from the previous step, it searches for
exact match throughout the database. Once the sequences having exact
matches are found, the exact matching regions are extended in both

directions until the time when alignment score starts to decline.

Having maximally extended aligned regions, BLAST looks for these
regions within a distance 4 with each other. If this kind of region exists,
they are merged together. These merged segments are called High

Scoring Segment pairs (HSPs).

Calculates the similarity scores between HSPs and their statistical
significances (e-values). The e-values are calculated using the

following formula:

PiS5=x)=1— exp{—e'ﬁ':x'“:j (2)

logs(Kemsn )
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where . ™ and ™ effective length of query and database sequences,
whereas the statistical parameters K and A are found by fitting the
scores, obtained by aligning query sequence and lots of shuffled

versions of database sequence, to so-called extreme value distribution.

1.4. Types of genome annotation.

1.4.1. Structural genome annotation.

Structural genome annotation means identification of structural elements or
segments in the genome. Finding protein coding genes is not complicated neither it
is trivial. There are several methods for this task and most of them are based solely
on the sequence. This type of genome annotation uses only the characteristics of
sequence and is based on pattern recognition. The patterns that we are talking
about maybe of many kinds, we might be looking for identities or we might use
complicated regular expressions. A good example for complete identities between
patters if ORF (Open Reading Frame) recognition which is based on recognizing
the start codon (ATG) and the stop codons (TAA, TGA, TGG). When looking for a
gene, we would like to find a series of codons, which starts with a start codon and
ends with a stop codon. The only criteria we use here is that, the sequence should
be sufficiently long. Thus, this is a simple exercise which we can implement with
other patterns in a series that we recognize, simply based on codon characteristics.
In practice, this method would be efficient enough provided that there are no
sequencing errors. However a single sequencing error would destroy the process of
recognition, so we need to have more complicated pattern recognition algorithms.
In bacteria the program which is almost exclusively used is called Glimmer(Gene
Locater and Interpreted Markov Modeler), developed by Steve Salzberg et.al [30]
which was used extensively by the TIGR institute for annotating bacterial genomes
on a large scale [31]. Glimmer is a system for finding genes in microbial genomes
especially in bacteria, archaea and viruses. It uses Interpolated Markov Models to

identify coding regions and to distinguish them from non-coding DNA. The
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Interpolated Markov Model approach is described and published by Salzburg et.al
in Nucleic Acids Research and it was later improved and published again in 1999
paper in Nucleic Acid Research. The glimmer principle is based on a combination
of Markov Models and these models range from the first through the eighth order.
And the order of data depends on the amount of data to train the model. Simple
Markov Models, like the ones which are used here, are collection of transition
probabilities which are based on observed statistics of sequences. In other words,
these models are the generalized version of using codon tables, because instead of
recognizing codons in all-or-none fashion, we are now recognizing
mononucleotides, dinucleotides, trinucleotides etc. on a probabilistic basis. This
approach works remarkably well for bacteria based on the fact that it interpolates
between Markov Models of various degrees. When arriving at a coding sequence
the model starts to look for three periodic non-homogeneous models which mean
the generalized versions of the codon table. While this approach is completely
adequate for bacterial genomes, it had to be complemented with other features for
finding eukaryotic genes. The modified version of mechanism for finding
eukaryotic genes includes HMMs and separate training procedures for splice sites,
introns and exons. The details of eukaryotic gene finding will not be described

since the eukaryotic genes are not in the scope if this study.

Altogether, glimmer became a complex recognition engine that can now
adequately recognize various gene types. In bacterial section of NCBI's database,
we find glimmer predictions for all annotated genomes. When we carry out
structural genome annotation, in practice this almost invariably means the usage of

one of the glimmer variants.

1.4.2. Functional genome annotation.

The term functional annotation refers to the process wherein we assign

functions to hitherto unknown predicted gene. This gene prediction is based on

structural gene prediction procedure described in previous section. In principle, the
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best method for functional prediction would be function determination which
means experimental analysis of a gene based on gene knockouts etc. The
advantage of this approach is that in principal we can recognize many new
functions. However, given the variability of bacterial genomes, many gene
functions cannot be determined using simple knockouts. The reason for this is that
the behavior of knockout mutants is normally observed in the lab, under
standardized growth conditions. And many of these specialized genes, and we
know that bacteria are full of such genes, are simply not necessary for growth in

those specialized conditions.

1.4.3. Homology based function prediction.

The other class of function determination is homology-based function
prediction. This is the predominant way of function prediction today, which works
well in bacteria. But it's hampered by the fact that each new bacterium has a large
number of functions that may not be present in other instances of the same
bacterium. When carrying out homology based function prediction, we take a
predicted gene from a bacterial genome and compare it with the database of
known bacterial genes and genomes. And if we find a significant similarity, then
we can suppose that the unknown gene will have the same function. Such a
similarity can point to same species, related species or a distant species. In
practice, we see that the function of a gene can be conserved throughout quite

different species and taxa.

Naturally this method has several problems. First, we may not know if a
certain function is really represented in our database or it has a hitherto unknown
role. This makes a problem in many cases where we have to determine whether or
not a similarity is biologically significant. The fundamental problem is that even
similar genes can carry different or similar functions. From this point of view,
homologies can be divided into two groups: orthologs and paralogs. We consider

two genes orthologous if they are in different species, carry out the same function
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and have evolved from a common ancestor. We call them paralogs if they are
within the same organism, have the same ancestor, but carry out different

functions. These functions can be completely different or different but related.

Figure 9) [32].

Finding orthology is the basis of homology base genome annotation and

there are many more or less approved methods for distinguishing orthologs and

paralogs. For a recent review see Kuzniar et.al [33]

T Du p lication

Orthologs

Paralogs

Species 3

Species 2

Species 1

Figure 9. Homologous genes derived from a common ancestor. If they are in different
species and carry out the same function, they are called orthologs. If they are in the same
organism, but carry out different functions, they are called paralogs. The basis of

evolution of paralogs is a gene duplication event.
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1.4.4. Protein domain databases.

Protein domain databases are standard tools of genome annotation. Protein
domains are complex three-dimensional structures in proteins, which can be well
distinguished in three-dimensional (3D) structure of proteins and also can be well
recognized based on the protein sequence alone. Protein domains are thus
substructures of the entire protein and, as it is well known, they are evolutionarily
autonomous units, which can hop from one gene into the other one, which have a
well conserver exon-intron structure in eukaryotic proteins. But in bacteria, protein
domains often constitute entire protein. Given the fact that protein domains can be
very well recognized based on their 3D structures, there are several current
collections of protein domains. The best known protein domain collection is the
PFAM database, which was developed at Sanger institute in Hinxton [28]. The
protein domain in PFAM is described by a Hidden Markov Model (HMM). This
model is based on a multiple alignment which is also a part in the database. The
PFAM database has two kinds of multiple alignments. One is the so-called SEED
collection, which was used for developing HMMs. The complete alignment is also
part of PFAM and it contains the elements of SEED as well as those which were
not included in building the HMM but were recognized by HMM. PFAM is
consolidated collection, which means that if they include something it will very
probably be a true positive, since they prune the results, and they also cross-link
such a domain description to external databases. The most important part of the
external database is the PDB (database of protein 3D structures) which means that
once you recognize a protein, you also have a picture of a representative example
of that protein domain. In addition, which is equally important, PFAM also
contains a well maintained description of that domain. This is like a mini review of
that domain type, which describes its main functionalities, possible occurrences
and various domain architectures in which this domain is part of. So PFAM, as of
today, is a complex collection of information. Once we find a homology to a
protein which exists in PFAM, we can link it to existing structure. From this

context, it is interesting to note that PFAM was originally developed for protein
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domains. But bacterial proteins are so-called monodomain proteins so we have
entire proteins structures as well. So now this is a complex database which
contains information for domains mostly of known 3D structure. Also PFAM has

various visualizing techniques, for instance the PFAM logo which is shown in

Figure 10|represents the residue conservation in protein domain.

Contribution

Relative Entropy

Figure 10. The logo of PFAM a family PF0O0765. It is an auto-inducer synthase protein.
The size of the letter and each position is proportional to its conservation level which is
calculated as relative entropy.

It is important to note that, in the beginning, protein domains were first
described in terms of regular expressions. This was so-called PROSITE database
[34]. The PROSITE database was the first to determine residue syntax for
describing protein sequences and used regular expressions for describing the
conserved protein segments which were the protein domains. This database was
later complemented with profile-type descriptions of proteins that also included
relative frequencies in various sequence positions [35][36], which are in fact very
similar to HMMs, being in fact equivalent. The reason for including profile-type
description was that it was obvious from the beginning that conservation cannot be
described in terms of yes/no occurrences which are basis of regular expressions.

Another early approach which was based on this recognition is so-called SBASE
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approach (or domain library approach) [37]. In this approach we do not develop a
consensus such as an HMM or a sequence profile, but we represent a domain type
as a collection of sequences. In order to maintain such a collection, we don't need
multiple alignments which actually require a large human overhead. SBASE was
the first publicly available domain sequence collection and it was later
complemented by literature reviews and today is not updated anymore. Doubtless
advantage of this approach is that it can recognize also atypical domain instances
which are missed by HMMs and profiles. The reason for this is that HMMs can be
biased towards one type if the sequences of that type are predominant in sequence
collection used for making multiple sequence alignment for building that HMM.
SBASE does not have this drawback but it is based on sequence similarity
searching which is less sensitive than HMM searches. So this approach is still

viable and it can complement HMM searches.

1.5. Functional databases.

For describing and organizing functional descriptions we have two
derivative database types. First type is a collection of sequences grouped according
to protein functions. Archetype of this database is COG [38]. A different type of
database is actually meta-database which stores only a standardized description of
functions organized into a concept hierarchy and a set of rules which is often
called ontology. The best known ontology in bioinformatics is GO (Gene

Ontology) which is maintained by the Gene Ontology Consortium [39].

1.5.1 The COG database: Clusters of Orthologous Groups.

The COG database [38], is the first and perhaps the best known protein

sequence database used for annotating functions in bacteria. A COG group is a
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cluster of sequences that are mutually similar to each other above a certain
threshold of BLAST similarity. Such a group contains supposed orthologs and
evolutionary relatedness was validated by human operators. The database was
published first at the end of 90s on experimental basis so as to facilitate the
annotation of bacterial genes. Based on the early experiences, they defined 17
main functional classes in which most of the biological functions were known. But
based on sequence similarity, there were also COGs with unknown function. The
functions were grouped into higher classes like energy metabolism, information
processing etc., which resulted in a very well structured and not too complex
concept hierarchy. We note that this concept hierarchy is different from that of the
GO database today but it is still used. The database was very successful and it has
grown to close to 5000 groups of bacterial proteins close to 4 of which were genes
with unknown function [40]. Unfortunately NCBI has decided to discontinue the
development of COG, so database is no longer updated. Nevertheless it is still

used almost inevitably when annotating bacterial genomes.

There are several automated databases such as eggNOG [41] ,which were
devised to take the role of COG database. But as these databases do not include
human curation, they are far less popular in automated genome annotations, which

are still mostly based on COG database.

1.5.2. Gene ontology

The Gene Ontology (GO) database contains a standardized description of
gene functions [39]. Originally this database was developed for description of
Drosophila genes but the authors of this database have recognized that there are no
other standardized systems of concepts for other biological domains, so they
extended their work to bacterial and eukaryotic genes as well. Today GO is a
general system which is used throughout all biological kingdoms. GO is an
ontology, so it contains a system of concepts organized into a directed acyclic

graphs which are similar to concept hierarchies used in simpler systems, but they



also allow one concept to belong to several parent concepts. The advantage of GO
is that logical integrity of concepts can be automatically validated. And once this is
done, an accepted function description in GO can be used in functional annotation

and will allow to eliminate misunderstandings and chaos which was always the

case when unstandardized names were used. An example is shown in|Figure 11
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Figure 11. Gene Ontology. The edges of acyclic directed graph, which is used as a data
format in GO, represent type of relationships between the ontologies (the nodes in the
graph). A relationship can be: /$_a, part_of, regulate and has_part. For example, in the
figure above, “Mesoderm development” is a “tissue development”, which means that
former is the subtype of latter. Similarly “Digestive tract mesoderm development” is a
part of “mesoderm development” process. When a linked lineage of ontologies (a branch
of the tree) is traceable from leaf node to root following only /§_a relationships, this
ontology tree is called “/§_a complete”.
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1.6. Bacterial communication.

Bacteria communicate with each other using secondary metabolites, to
coordinate their actions, behaving like multicellular organisms. This behavior can
be well understood in evolutionary context, since it enables bacteria to better

exploit the resources and adapt to environment [42].

1.6.1. Secondary metabolites

Secondary metabolites are organic molecules produced by organisms,
which do not play primary role in normal growth, development and reproduction.
Absence of a secondary metabolite or malfunctioning of the secondary metabolite
producing system does not cause an immediate death or effect on organism. This
was the subject of a debate on real functions and importance of secondary
metabolites [43]-[45]. A secondary metabolite is usually used by one or a small
group of species. Some secondary metabolites function as a communication
signaling tool among producer organisms (plants, animal and microorganisms)

which share the same environment.

Microorganisms release a large number of secondary metabolites and they
also take up secondary metabolites released by their neighbors. In this manner,

they both react to as well as modify their environment.

1.6.2. Quorum sensing

Quorum sensing (QS) is a type of cell-to-cell communication system where
bacteria react to fluctuations in cell population density by regulating the
expression of specific genes [46]. This process is carried out by using secondary
metabolites called autoinducers. When the level of autoinducer concentration

reaches a certain threshold level, the bacteria population reacts by a synchronous
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expression of response gene [47]. In this manner, the concentration of autoinducers
in the environment is used as a measure of population density. This behavior

makes it possible for bacteria to both survive and change hostile environment.

An example to this can be a study done by Chandler et.al. using
Burkholderia thailandensis and Chromobacterium violaceum as model bacteria.
Both of the bacterial species use QS to trigger production of antibiotics, which will
inhibit the population growth of other species. The study showed that the signal
receptor encoded by Chromobacterium violaceum can sense the signals produced
by Burkholderia thailandensis, thus making it possible for the former to eavesdrop
on later. This gives Chromobacterium violaceum competitive advantage in certain
cases [48].

From the theoretical point of view, QS is a particular subcase of a cell

responding to extraneous molecules adverted by diffusion from the environment

Figure 12). In this general sense, the cell can simply respond to a molecule in the

environment, such as is the case in chemotaxis [49]. In chemotaxis a cell will
follow a concentration gradient of a molecule within the environment. QS is a
particular case wherein the molecule to which the cell responds is produced by the
cell itself. This subcase is also called auwfocrine signaling. Finally, microbial
communities living inside a host have a complex network of interactions. First
they respond to molecules produced by the host, and also produce molecules that
produce a response in the host. This is a subcase of paracrine signaling wherein
different cells interact with signals they themselves do not necessarily react to.
Within a community of host bound microbiota cells of the same population may
also communicate via QS (autocrine signaling), and they also may communicate
with each other via antimicrobial factors, etc., which is a case of paracrine

signaling.
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Figure 12. Cases of bacterial signaling. 1. Microbes, such as bacteria have a large
number of sensing systems that allow them to respond to molecules of the environment.
Example: Chemotaxis. 2. Microbes also respond to their own signals which allow them to
sense their neighbors, to share public goods and to form complex communities. Example:
Quorum sensing. 3. Interactions with host organism can build complex microfloras called
microbiota or microbiomes. Example: Gut flora

Interestingly, the signaling mechanism between cells is based on very
similar principles both on prokaryotes and eukaryotes. Typical examples are the
so-called two-component systems of bacteria [50] which are very abundant, some
species can have more than hundred such systems, all presumably responding to
different materials. In a two-component system, the extracellular signal is bound to
the extracellular part of a transmembrane receptor. A conformational change
occurs in the receptor, and the internal part, a kinase enzyme becomes active. The
kinase will phosphorylate the second component of the system, a response
regulator, which will bind to DNA in the nucleus triggering a change in gene
expression. This elaborate system allows a signal being transduced through the cell
wall, without any molecule passing through the cell wall. Prokaryotes that have
strong peptidoglycan cell walls such as Gram-positive bacteria use this kind of
two-component system also for QS. In Bacillus subtilis, the response regulator
COmA activates the production of a peptide signal comX and a transport protein
com(@ that binds to the internal membrane. Com(@ then processes the comX peptide
molecule, in two enzymatic steps, modification by isoprenylation and cleavage
[51] . The resulting product, the mature, isoprenylated comX peptide is released
from the cell. This case is an example of active transport which ensures that only

specific molecules can pass through, and there is no diffusional contact between
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the cell interior and the external environment (Figure 13 B). A simplified version
of this system is used by Gram-negative bacteria that do not have a peptidoglycan
cell wall so their cell wall is more penetrable by small molecules. The main
difference is that in simple Gram negative systems a) the signal molecule can pass
through the cell wall by diffusion, so the external and internal signal
concentrations are in equilibrium, and b) The signal directly binds to the response
regulator protein which will then bind to DNA. In this system, the signal is a small
molecule, synthesized by a signal synthase that is activated by the signal itself in a

process called autoinduction. (Figure 13 A)

The fundamental steps involved in the response to fluctuations in cell number are
similar in all QS systems. In a canonical AHL system, the autoinducer molecules
are passively released or actively secreted outside of the cells. As the number of
cells in a population increases, the extracellular signal concentration likewise
increases and when it accumulates above the minimal threshold level required for
detection, cognate receptors bind the autoinducers and trigger signal transduction

cascades that result in population-wide changes in the gene expression (Figure 14).
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Figure 13. Types of signal transduction. A) One component system: small signal
molecules penetrate the cell membrane freely, leading to balance in concentration of
signal molecules inside and outside. B) Two component system: Signal is passed using a
trans-membrane protein, to which the signaling molecule binds only from outside of cell
membrane.
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Figure 14. A canonical example of QS machinery. Autoinducers are produced for
making it possible to measure the cell density. Once the cell-density reaches a specific
threshold level (high autoinducer concentration), the autoinducer molecules get bound by
receptors which will then lead to alterations in gene expression level.
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Well known and most studied autoinducers are the N-acyl homoserine
lactones (AHL), while other autoinducers used for bacterial communication are

also known (such as oligopeptides).

The genes involved in QS regulation tend to be located in well-organized
clusters on the chromosome, classified by Goryachev into three types [52], [53].
These clusters usually include the genes for encoding enzymes which are
responsible from synthesis of response molecules, as well as the genes which
provide resistance to some toxic secondary metabolites (such as antibiotics) [54].
This nature of genes which encode proteins/enzymes which constitute QS

machinery makes it suitable to use subsystem based approach to annotate them.

However, there is a large number of /uxR genes that are not paired with
lux/ genes hence they are often called orphans [55] or solos [56]. The overall
architecture of the encoded polypeptides is highly similar to QS-linked /uxR
proteins, so it is very likely that solo /uxR proteins respond to signals that in
principle can be intracellular or extracellular. Among the intracellular signals one
can think about the signal of a distantly related /ux/ gene as is the case with P.
Aeruginosa [57], but it can be any intracellular metabolite. Among the
extracellular signals one can think of environmental cues, such as those involved
in chemotaxis. A very interesting hypothesis by Venturi and associates proposes
that plants recruit their symbionts as well as the members of their rhizosphere via
chemical signals perceived by solo receptors [56]. Detailed modeling experiments
showed that the active pocket of /uxR solos may have evolved to accommodate
such foreign, non-AHL molecules. From the regulatory perspective, the case of
solo /uxR proteins responding to foreign signals is not unique. One of the goals of
my thesis is to make a census of solo /uxR genes/proteins in the current genomic

databases.

This study is mainly concentrated on annotating QS genes of Gram
negative bacteria, and studying their characteristic topological arrangements, using

various bioinformatics tools.
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1.7. Horizontal gene transfers
1.7.1 Theory

Horizontal gene transfer (HGT), also called lateral gene transfer (LGT) , is
said to occur between organisms when the donor of the genetic material is not the
parent of the acceptor [58]. For HGT to occur between two bacteria, the cells have
to be in physical contact. Once the transferred DNA is incorporated into the
genome, it is then “vertically” inherited from parent to offspring. The molecular
mechanisms of HGT had been studied since the 1940’s but it was only after the
appearance of the first complete genomes in the 90’s when it was recognized that
HGT is a major factor of microbial evolution. Today HGT is considered as key to
many important processes in the microbial world, such as, for instance, the
spreading of bacterial antibiotic resistance [59]-[61]. In general, HGT is very
useful for environmental adaptation, better than point mutations. Dense microbial
communities, such as the human gut microbiota are generally considered as a hot
spot of microbial gene transfer [62]. This is all the more significant since it was
recently discovered that the rate of HGT is apparently eight to nine orders of
magnitude faster than previously thought [63]. As a result, rapid microbial
evolution is now believed to be a major factor that can shape the community

structure of microbial consortia [64]—[66].
In bacteria, HGT has three main avenues.

- Transformation — some bacteria (“transforming” bacteria) can take up short

pieces of naked DNA, this is a commonly occurring mechanism.

- Transduction — phages can transport DNA together with their own genomes. The
length of DNA is limited by the carrying capacity of the phage head. Donor and

recipient have to be closely related since they must share cell surface receptors.

- Conjugation-plasmids/transposons, cell to cell contact, distant relations, long

DNA.
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The requirements of gene transfer include many factors, such as proximity
of the acceptor to donor DNA, stability of DNA in environment, vector
transmission, uptake/insertion mechanisms as well as proper maintenance,
stabilization and selection in the new host. Factors limiting or preventing HGT
include instability in the new host, restriction systems that eliminate foreign DNA,
GC/Codon usage incompatibility as well as the lack of appropriate interacting
genes. As a result of these factors the entire scenario of HGT can be pictured as
follows: DNA arriving into a host cell first carries all characteristics of the donor
genome. If these characteristics are not compatible with the acceptor, the incoming
DNA will not survive. If it is successfully incorporated into the acceptor
chromosome, it will carry the original characteristics of the donor genome,
however these characteristics (often called “signatures”) will slowly mutate away
and the new DNA will become more and more similar to the host genome. This
simple view implies that recent HGT events can be more easily spotted, also HGT
between genomes widely differing in their local characteristics can be better

detected and will be detectable for longer times.
Known instances of HGT include:

- Antibiotic resistance genes on plasmids
- Insertion sequences

- Pathogenicity islands

- Toxin resistance genes on plasmids

- Agrobacterium Ti plasmid

- Viruses and viroids

- Organelle to nucleus transfers

HGT is studied in two broad contexts: 1) In genomics, the question usually
is to pinpoint regions of a chromosome that are likely to be newcomers as
compared to the rest of the genome. ii) In functional studies, on the other hand, we
want to decide if a given gene (gene family) has a tendency to undergo HGT,

where it arrived from, etc. In both cases, the analysis is predictive and we can
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only suggest that HGT is likely reason. Early genomics studies indicated that the

percentage of foreign DNA can be quite substantial in bacterial genomes:
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Figure 15. Percentage of foreign DNA in bacterial genomes, from [67]. Length of bars
represent the amount of coding DNA, native is blue, foreign due to mobile elements is
yellow, other is red. Numbers indicate predicted percentage of foreign DNA.

1.7.2 Principles of computational analysis

The methods of HGT prediction fall into two categories: a) phylogenetic
analysis. b) sequence characteristics, also called parametric analysis, of which GC

content is the classical example.

a) Phylogenetic methods — that will not be described here in detail —
require the comparison of phylogenetic trees constructed from various genes. In
bacteria, the gold standard is 16S RNA gene which is most often used to classify
bacteria. HGT can be suspected if the phylogenetic tree of a given gene is
obviously different from the 16 RNA tree. Naturally, HGT is more probable if a

series of adjacent genes show the same phylogenetic anomaly.

The simplest, most practical question is to decide if a gene is rare or unique
within its taxonomic neighborhood. A gene that is present in a single bacterial
strain within a species or a genus, is likely to have arrived by HGT, if similar

genes are frequent or obligatory in other taxa. This probability is corroborated if
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the two suspected organisms live within the same environmental niche. The

phylogenetic approaches are summarized by Azad and Lawrence, 2012 [68] .

b) Parametric methods are based on determining a local characteristic of
a genome segment. Plotting this value as a function of sequence position within
the genome allows one to pinpoint conspicuous regions that may correspond to
alien DNA. Such outlier regions are usually identified by numerically comparing
calculated metric of a local segment to the globally calculated value of the same
metric of the same genome, or to the immediate environment of the segment

analyzed.

G +C content. The earliest example of parametric methods is G+C content
(from Lawrence and Ochman (52—54), from book chapter). As G+C content (also
written as GC content) has a profound effect on DNA stability, it widely varies
between bacteria. Also, high GC genomes have a tendency of having genes of both
DNA strands as opposed to low GC genomes, where one of the strands contains
most of the genes. So if a genome has an overall GC content of 52%, a segment
with only 40% can be easily spotted by plotting the GC content along the
chromosome. Obviously, if there is little or no difference between the GC content
of the donor and acceptor genomes, the segments cannot be easily spotted. From
the numerical point of view, GC plots are noisy curves with a lot of local
fluctuations which can obfuscate HGT events, especially those of shorter DNA
segments. GC plots are an example of window-sliding algorithms: GC content is
calculated for a given sequence window which is then slid along the sequence.
This is perhaps the oldest and simplest algorithm types in bioinformatics and many
signal processing tricks known in the engineering literature can be applied to them
[69] . As a consequence, the methods of GC analysis are quite varied even though
many of methods differ only in slight technical details (overview of the commonly

used methods is in book chapter by Azzad and Lawrence [68]).

The picture of GC analysis can be easily widened, and in several

directions. The main directions are as follows.
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Varying the alphabet size and vector content. GC analysis describes
sequences in a two-letter alphabet (G or C correspond to one, A or T to the other
character) so the composition of a window is described with one single number.
We can use larger alphabets, for instance there are 16 dinucleotides, 64
trinucleotides etc. so that the window composition will be described with the
vectors of 16 or 64 dimensions, calculated as the frequency of overlapping di- or
trinucleotides, respectively. We can reduce the alphabet size by considering
reverse complements of di or trinucleotides as equivalent. Today, tetranucleotide
descriptions are generally used, larger nucleotides are rarely used, simply because
they are less and less frequent in genomes as we increase the size, so the resulting
vectors are sparser and sparser, especially for shorter sequence windows. An
interesting example of nucleotide signatures are the relative abundance measures
f’, defined by Karlin et.al. [70][71], defined for a dinucleotide word as follows:

ran=-"1AD_ )
f(A* 1(T)
where f(A) and f(T) are the frequencies of A and T, respectively, f(AT) is the
frequency of the word AT. By extension:

rATe) = TATO
F(A)* 1(T)* 1(C)
f'(ATCG) = [(ATCG) (5)

f(A* 1(T)* 1(C)* 1(G)

etc. /7 vectors have the same number of dimensions as fvectors, but are thought

to be more sensitive.

An interesting type of vector descriptions are those that take into
consideration the structural equivalence of nucleotide words. Briefly, a nucleotide
word on the positive strand strictly corresponds to a reverse complementary
nucleotide word on the negative strand. Strict correspondence means that if one of
them occurs, so will the other one. The databases contain only one strand of the

genome, but in principle there is no reason to leave the other strand out of the
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calculation. The rule of reverse complementarity is schematically shown in[Figure

4 14
5" AACATTGT 3

3 TTGTAACAYS
H_JH_}

Figure 16. Structural equivalence of reverse complementary words. Note that
AAC on the upper strand is equivalent with GTT on the lower strand. But the
word AT is the same on both strands.

The important property of structural equivalences (SE) is that they decrease
the dimensionality of the vector descriptions. Instead of 64 trinucleotides we will
have 32 structurally equivalent trinucleotide pairs. We can make SE descriptions
for mono, di, tetranucleotide etc. descriptions. It is interesting to note that the SE
version of mononucleotide descriptions is the GC content itself. Another
interesting point is that the dimension reduction is different for even numbered
nucleotide words. For instance, the word AT is the same on both strands which
means that the 16 dinucleotides correspond to 10 SE dinucleotides. This principle
i1s widely used in DNA structure prediction (for instance see Brukner et.al. [72]),

but there is no systematic study on the genomic data available today.

Using more than one parameter. We can compute more parameters for
characterizing a sequence segment, for instance we can use GC content and
tetranucleotide composition. One possibility, used early on, is to plot the codon
usage of the ORFs within a given region. Naturally, codon usage can only be

calculated for coding regions, and it is known to strongly vary with the expression.

The parameters that can be used are not restricted to composition-like
features, we can use physicochemical parameters (e.g. melting point), computed
parameters (DNA curvature) etc. The plot.it server [73] offers 45 parameters for

DNA that can be combined in various ways. The most typical method is to use
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more parameters is to make multiple plots, and visually identify peak/valley
regions. Another, widely used method is to make a scatter plot using two
parameters for each window and then study the clustering patterns either visually,
using a 2D plot, or with any method of cluster analysis. Further, we can make

histogram-like representation, e.g. 3D plots etc.

Hi=togram

Outliers

Comp | exitw

Figure 17. Finding outliers in multidimensional plots.

Vector comparison measures. The key of all calculations is a numerical
measure of comparison. Two vectors, for instance, one describing the sliding
window at a given position, and the other one describing the genome, can be
calculated with any of the vector distance measures, or such standard similarity
measures, such as the dot product of the two vectors. For comparing two

tetranucleotide frequency vectors the dot-product is

256

So,=) [*f  (6)

1
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which is by definition symmetrical and within the range of [0,1], the latter

condition if fulfilled if the f vectors are normalized to the sum of vector.

Today, the comparison is often carried out with the Kullback-Leibler (KL)

divergence measure. The original KL measure for two (for instance

tetranucleotide) vectors f' and f is

256 1

f
KL, =2 1! *log—5 (7)
1 i

whereas the symmetrized measure is

KL, + KL,

KL, . (8)

also called as Jensen—Shannon divergence.

Outlier search. The parametric methods mentioned so far were based on
plotting a measure calculated from local characteristics as a function of sequence
position. If we compare this value with global characteristics of the genome, we
get difference plots where only outlier regions show up as peaks or valleys.
Typically, we calculate a vector for the window and a vector for the entire

genome, and compare these in terms of the KLy These plots allow one to

pinpoint outlier regions, [Figure 18((left). Naturally, thresholds are needed to select

the significant peaks. But if a long segment of the genome has an above average
KL value, this may be indicative of HGT than simple isolated peaks. This is a
fairly simple principle but it has a tacit assumption that is rarely mentioned: By
comparing local and global values we assume that a local property has to be
similar to a global property. G+C content and nucleotide signatures may be such
properties, but there is little theoretical backing to this, so outlier regions do not

necessarily indicate HGT events.

Current methods use a combination of the above principles. A good
example is the web server of Dufraigne et.al [74] that uses tetranucleotide

signatures for describing genomes and KL divergence as a distance metric. The
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tetranucleotide signatures are compositional vectors that are cleaned from the
influence of alien DNA. To do this, the genome is divided into overlapping
segments and a — somewhat arbitrary, k-means based — clustering algorithm is
used to identify the outliers which will then be omitted when the tetranucleotide
vector (signature) is calculated. This gives rise to a set of genome vectors and the

segments of the query DNA are compared to this set.
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Figure 18. ldentifying outlier regions in DNA. Left A Kullback-Leibler plot of a
genome. Right: A histogram of the KL values obtained for the individual windows.

Another successful example of server for detecting HGT i1s GOHTAM
server, developed by Ménigaud et.al [75], which is an improved version of the
server done by Dufraigne et.al [74], described above. Differing from the methods
described above, the GOHTAM server uses KLgym (Jensen—Shannon) divergence
instead of plain KL divergence. The main feature of this server is that it can
combine parametric and phylogenetic methods, giving as an option for a user to
choose, whether to do them both or only one of them. It stores the signatures of not
only the complete genomes, but all bacterial GenBank entries, longer than 1 kb.
And when user submits a genomic segment (or GenBank entry) for analysis, it
calculates and brings up 10 nearest neighbors in terms of signature distance. The

set of items that GOHTAM gives is as follows:
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- Potential source genomes. 1t gives 10 nearest neighbors found from the

database, in terms of tetranucleotide signature distances, as described above.

- Phylogenetic trees built using the signature distances in neighbor joining

algorithm, as described in [76].

- Oligonucleotide content, which is a visual representation of signature as a
matrix of dimensions 16x16, obtained from vector of oligonucleotide frequencies

of size 256 (since it works with tetranucleotide signatures), as described in [77]

- Genome alignment of input sequence to the genomes of possible origin, using

maximum unique matches (MUM) approach as described in [78].

It is worth mentioning that today there are a number of further web servers
that can evaluate genomes for HGT and databases that assign pre-computed HGT
probabilities to the genes of microbial genomes. Also, there are number of ready-

made programs that can be used in microbial genomics pipelines.

Some of the servers and packages for predicting horizontal transfers or

other useful information:

Name Location Features
Trex http://www.trex.uqgam.ca|| Phylogenetic inference and
I visualization [79]
Horizontal Gene ||http://genomes.urv.es/H || Database of known
Transfer database GT-DB/ horizontally transferred
genes[80]
Alien hunter http://www .sanger.ac.uk || Detection of putative HGTs
/resources/software/alie || using Interpolated Variable
n_hunter/| Order Motifs [81]

Table 1. Online tools for horizontal gene transfer detection.


http://www.sanger.ac.uk/resources/software/alien_hunter/
http://www.trex.uqam.ca/
http://genomes.urv.es/HGT-DB/
http://genomes.urv.es/HGT-DB/
http://www.sanger.ac.uk/resources/software/alien_hunter/
http://www.sanger.ac.uk/resources/software/alien_hunter/
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Some tools for comparative genomics:

Name Location Features

VISTA http://genome.lbl.gov/vista Suite of programs and databases
for comparative analysis of
genomes [82]

ACT: Artemis http://www.sanger.ac.uk/resou | Displays pairwise comparisons

Comparison Tool

rces/software/act/

between two or more DNA
sequences [83]

SyntTax http://archaea.u- Tool for linking genomic
psud.fr/SyntTax/ elements according to their
taxonomic relations. [84]
LAST [http://last.cbre.ip/| Finds and displays similar regions
between genomic sequences[85]
CoGe Suite of tools for comparative

http://genomevolution.org/Co |

Ge/

genome analysis[86]

Table 2. Online tools for comparative genome analysis.

1.7.3 Gene and operon comparisons

The philosophy of HGT testing is seemingly very different when well
defined segments of genomes are analyzed. As a hypothetical example, suppose
we want to find out if an operon Opseudomonas Of PS6UTOMONas aeruginosa comes
from Burkholderia cepacia where it is called Opuinolderia- We calculate vectors for
the operons as well as for the genomes, Gpseudomonas and Gpurkholderia- We also need
an “average genome” that can be of a strain which is not related to P. aeruginosa
or B. cépacia but is of similar GC content. We can test the hypothesis of 0 coming
from Burkholderia by comparing the vectors of all operons and genomes with each
other, in terms of a distance measure such as the symmetrical Kullback-Leibler

divergence KLg,. We can then support the hypothesis in terms of conditions

written in the form of inequalities:



http://genomevolution.org/CoGe/
http://last.cbrc.jp/
http://genomevolution.org/CoGe/
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K Lsym( Opseudomonas ’ Obur/(ho/der/a) < 77 (Very 10W) (1)
K Lsym ( Opseudomonas ’ Gbur/{ho/der/a) <T, very low or low (i)
K Lsym( 0pseudomonas, Gpseudomonas) ~ KL ( Opseudomunas/ Gaverage) > T 3 (iii)

high or significantly higher.

K Lsym( Obur/{ho/a’eria ’ Gbur/{ho/der/a) < T4 ( very low or lo W) (iV)

where 7; are threshold values. These inequalities express the common sense
expectation that a segment should be similar to its donor sequence and to its donor
genome, but less similar to its own genome. And the respective operon in the
donor genome is similar to the donor genome itself. Note that the inequalities
symmetrically change if the operon was transported from Pseudomonas to
Burkholderia. Such clear pictures are rarely obtained, because, same as stated for
GC content above, there are problems if there is little or no difference between the
vector descriptions of the donor and acceptor genomes. In order to make the
evaluation more robust, the above inequalities are often simultaneously tested for a

few descriptions, such as tri- or tetranucleotide signatures as well as codon usage

vectors etc. Usually, this analysis is manual as given in|Figure 19

Table 1 | Kullback-Leibler divergence comparing ¢odon usage (beld) and tetranucleotide frequency (Italics) for various combinations of the
C. hydrogenoformans, T carboxydiverans, and E. coif K12 genomes and the C. hydrogeneformans and T carboxydivorans CODH-ECH gene

clusters.

C. hydrogenoformans T carboxydivorans C. hydrogenoformans T carboxydivorans E. coli K12

genome genome CODH-ECH cluster CODH-ECH cluster genome
L. hvdrogencformans genome o] 0.3202 2.023 0.045 0.155
T carboxydivorans genome 0.143 a 2202 0217 0095
C hvdrogencformans CODH-ECH cluster  0.075 0.154 a 0016 015
T carboxydivorans CODH-ECH cluster 0.088 0.133 0.036 a 0116
E colf K12 genome 0.170 0.153 0.236 0.212 a

Figure 19. Heuristic predicton of HGT. By comparing donor (C. hydrogenoformans),
acceptor (7. carboxydivorans) and average genome (£. coli) data. Note that full genomes
and the target segment (CODH-ECH cluster) sequences are compared in an all vs. all
fashion. The comparison is carried out on tetranucleotides (upper half-matrix) and
trinucleotides (lower half-matrix). [87]
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2. Scope and methods

«Of all my seeking this is all my gain:
No agony of any mortal brain
Shall wrest the secret of the life of man;

The Search has taught me that the Search is vain” -
Omar Khayyam

2.1 Scope

The process of automated genome annotation, discussed extensively in the
Introduction chapter, is becoming ever more important as high-throughput genome
sequencing technologies are advancing at an increasing pace. In this regard, many
approaches have been proposed and introduced, subsystem based annotation being

one of them.

This study concentrates on developing approaches and tools for carrying
out extensive subsystem based analysis and annotation of genes, using various QS
systems as study cases. In particular, I studied Acyl-Homocerine-Lactone (AHL)
based QS systems in Burkholderia, Pseudomonas and other Proteobacteria as well
as ComQXPA based systems in Bacillus subtilis.

The analysis includes identification of local gene arrangements, gene
overlap patterns and studying the potential role of horizontal gene transfer for

which we tested a number different methods.

2.2 Data sources and types

This study uses complete genomes, draft genomes and RefSeq entries as

data. (Obtained from |ftp://ftp.ncbi.nlm.nih.gov/genomes/) At the time of carrying

out final analysis there were 2620 complete and 6970 draft genomes.


ftp://ftp.ncbi.nlm.nih.gov/genomes/
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The main homology detector used throughout this study is HMMER
developed by Eddy et.al. [27]. For building homolog recognizers, we used
annotated QS genes, mined out from literature. The main proteins that constitute

our target subsystem are:

- AHL QS system genes: /uxR, lux/, rsalL, rsaM (Table 3)

Luxl homologues

YP_002649215.1, YP_003261728.1, YP_003262850.1, YP_003296640.1, YP_003331715.1, YP_003608088.1,
YP_004230809.1, YP_003366470.1, YP_004012993.1, YP_004106681.1, YP_004106954.1, YP_004108425.1,
YP_003910269.1, YP_003520250.1, YP_003530770.1, YP_003538486.1, YP_003546445.1, YP_003558209.1,
YP_003566926.1, YP_003568278.1, YP_003576501.1, YP_003729883.1, YP_003930460.1, YP_003734012.1,
YP_003749682.1, YP_003750860.1, YP_003744153.1, YP_003740503.1, YP_003740954.1, YP_003847234.1,
YP_003885141.1, YP_004088230.1, YP_004115279.1, NP_521405.1, NP_522340.1, NP_767703.1,
NP_106262.1, NP_106661.1, NP_109412.1, NP_385945.1, YP_002965845.1, YP_002966879.1,
YP_002346031.1, YP_002347420.1, YP_002426405.1, YP_428477.1, YP_105963.1, YP_106161.1, YP_110894.1,
YP_111576.1, YP_001005892.1, YP_554693.1, YP_555669.1, YP_165635.1, YP_167511.1, NP_669050.1,
NP_670673.1, YP_528965.1, YP_234707.1, NP_250123.1, NP_252166.1, YP_002232872.1, YP_002234481.1,
YP_768958.1, YP_048233.1, NP_793636.1, YP_789671.1, YP_791820.1, NP_903761.1, NP_993604.1,
NP_994737.1, YP_674865.1, YP_371808.1, YP_001114940.1, YP_001117676.1, YP_439001.1, YP_439708.1,
YP_273860.1, YP_508562.1, YP_071011.1, YP_071751.1, YP_206882.1, YP_914595.1, YP_002551489.1,
YP_002549360.1, YP_002541324.1, YP_659946.1, YP_317245.1, YP_776005.1, YP_617566.1, YP_617628.1,
YP_838353.1, YP_623506.1, YP_470411.1, YP_473057.1, YP_001024425.1, YP_001025818.1, YP_001077901.1,
YP_001078152.1, YP_989942.1, YP_001062290.1, YP_001063210.1, YP_335777.1, YP_337633.1, YP_972130.1,
YP_484039.1, YP_486927.1, YP_567542.1, YP_569311.1, YP_530592.1, YP_531903.1, YP_781244.1,
YP_001231849.1, YP_001604809.1, YP_001606209.1, YP_001399709.1, YP_001400525.1, YP_001220569.1,
YP_001241094.1, YP_001242901.1, YP_001075256.1, YP_001076162.1, YP_002537871.1, YP_001327237.1,
YP_453964.1, YP_681952.1, YP_650194.1, YP_651865.1, YP_647981.1, YP_649109.1, YP_002220095.1,
YP_855089.1, YP_001161918.1, YP_001163229.1, YP_001347034.1, YP_001349251.1, YP_001143471.1,
YP_001583944.1, YP_001860597.1, YP_001811255.1, YP_001531662.1, YP_001534185.1, YP_001761364.1,
YP_001476305.1, YP_001888022.1, YP_001893789.1, YP_001083198.1, YP_001844795.1, YP_001777918.1,
YP_001779189.1, YP_001641952.1, YP_001772211.1, YP_001758390.1, YP_001776814.1, YP_001783295.1,
YP_002158590.1, YP_001948920.1, YP_002423669.1, YP_001927659.1, YP_001203094.1, YP_002128524.1,
YP_002976728.1, YP_001989358.1, YP_001991324.1, YP_002282165.1, YP_002495630.1, YP_002496260.1,
YP_002497058.1, YP_001906897.1, YP_001908005.1, YP_001832057.1, YP_002826208.1, YP_002317565.1,
YP_001979200.1, YP_001985290.1, YP_001719546.1, YP_001720402.1, YP_001873009.1, YP_001873806.1,
YP_002265246.1, YP_002327281.1, YP_002439140.1, YP_002441565.1, YP_002923740.1, YP_003019698.1,
YP_003002473.1, YP_002955226.1, YP_002909043.1, YP_002934276.1, YP_002360442.1, YP_002947663.1,
YP_003964946.1, YP_003941574.1, YP_001603070.1, YP_003070966.1, YP_001715479.1, YP_004144716.1,
YP_004145051.1, NP_945673.1

LuxR homologues

YP_002649216.1, YP_003261727.1, YP_003262848.1, YP_003296639.1, YP_003331714.1, YP_003608086.1,
YP_004230807.1, YP_003366469.1, YP_004012994.1, YP_004106680.1, YP_004106955.1, YP_004108424.1,
YP_003910271.1, YP_003520251.1, YP_003530769.1, YP_003538485.1, YP_003546444.1, YP_003558208.1,
YP_003566925.1, YP_003568279.1, YP_003576500.1, YP_003729882.1, YP_003930459.1, YP_003734010.1,
YP_003749681.1, YP_003750859.1, YP_003744152.1, YP_003740504.1, YP_003740953.1, YP_003847232.1,
YP_003885142.1, YP_004088229.1, YP_004115278.1, NP_521406.1, NP_522339.1, NP_767702.1,
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NP_106261.1, NP_106660.1, NP_109411.1, NP_385944.1, YP_002965846.1, YP_002966880.1,
YP_002346032.1, YP_002347421.1, YP_002426403.1, YP_428476.1, YP_105961.1, YP_106160.1, YP_110896.1,
YP_111575.1, YP_001005891.1, YP_554691.1, YP_555670.1, YP_165634.1, YP_167510.1, NP_669049.1,
NP_670674.1, YP_528967.1, YP_234708.1, NP_250121.1, NP_252167.1, YP_002232873.1, YP_002234479.1,
YP_768957.1, YP_048234.1, NP_793635.1, YP_789670.1, YP_791822.1, NP_903760.1, NP_993605.1,
NP_994736.1, YP_674864.1, YP_371810.1, YP_001114942.1, YP_001117674.1, YP_439002.1, YP_439706.1,
YP_273861.1, YP_508561.1, YP_071012.1, YP_071752.1, YP_206883.1, YP_914594.1, YP_002551488.1,
YP_002549361.1, YP_002541325.1, YP_659944.1, YP_317246.1, YP_776003.1, YP_617565.1, YP_617627.1,
YP_838351.1, YP_623508.1, YP_470410.1, YP_473056.1, YP_001024423.1, YP_001025820.1, YP_001077903.1,
YP_001078154.1, YP_989940.1, YP_001062292.1, YP_001063209.1, YP_335776.1, YP_337635.1, YP_972129.1,
YP_484040.1, YP_486928.1, YP_567541.1, YP_569310.1, YP_530593.1, YP_531902.1, YP_781245.1,
YP_001231850.1, YP_001604810.1, YP_001606210.1, YP_001399708.1, YP_001400524.1, YP_001220570.1,
YP_001241092.1, YP_001242900.1, YP_001075258.1, YP_001076161.1, YP_002537872.1, YP_001327236.1,
YP_453965.1, YP_681951.1, YP_650193.1, YP_651866.1, YP_647982.1, YP_649110.1, YP_002220093.1,
YP_855090.1, YP_001161917.1, YP_001163230.1, YP_001347033.1, YP_001349253.1, YP_001143472.1,
YP_001583946.1, YP_001860599.1, YP_001811253.1, YP_001531661.1, YP_001534186.1, YP_001761363.1,
YP_001476304.1, YP_001888024.1, YP_001893790.1, YP_001083200.1, YP_001844797.1, YP_001777917.1,
YP_001779191.1, YP_001641953.1, YP_001772212.1, YP_001758389.1, YP_001776815.1, YP_001783296.1,
YP_002158591.1, YP_001948918.1, YP_002423670.1, YP_001927660.1, YP_001203095.1, YP_002128523.1,
YP_002976727.1, YP_001989359.1, YP_001991323.1, YP_002282164.1, YP_002495629.1, YP_002496262.1,
YP_002497059.1, YP_001906896.1, YP_001908006.1, YP_001832058.1, YP_002826207.1, YP_002317567.1,
YP_001979199.1, YP_001985289.1, YP_001719545.1, YP_001720401.1, YP_001873010.1, YP_001873807.1,
YP_002265247.1, YP_002327279.1, YP_002439139.1, YP_002441567.1, YP_002923741.1, YP_003019697.1,
YP_003002472.1, YP_002955225.1, YP_002909041.1, YP_002934275.1, YP_002360441.1, YP_002947664.1,
YP_003964947.1, YP_003941575.1, YP_001603072.1, YP_003070967.1, YP_001715477.1, YP_004144717 .1,
YP_004145052.1, NP_945674.1,

RsalL homologue

NP_250122.1, YP_001349252.1, YP_001860598.1, YP_001888023.1, YP_002441566.1, YP_002794907.1,
YP_003608087.1, YP_003847233.1, YP_003910270.1, YP_554692.1, YP_791821.1

RsaM homologues:

YP_439707.1, YP_001062653.1, YP_776004.1, YP_001117675.1

Table 3. Proteins used for building HMM recognizers for searching respective genes.

2.3 Computational tools and media

During the course of this study, many tools, pipelines and environments
have been developed using various programming languages and third party

libraries, such as (in decreasing order of involvement): Python, MATLAB, R.
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Algorithms which were implemented using Python programming language,
were mainly deployed as tools for Galaxy [88] framework, for further ease of use

and sharing between peers.

Once the data and results were calculated, they were mostly organized as
web pages for demonstration, using various Python web frameworks. The links to

results of each chapter will be provided in respective sections.

In depth explanation and analysis of www-related computational tools will

be covered in Chapter 6.

2.4 Methods and algorithms

2.41 Homology detection

The first step of this study was choosing of tool for remote homology
detection. The task was to search for homologs of QS genes, for which had pre-
collected library of sequences. As described in Chapter 1.3, we had two
approaches to go with:

- Sequence alignment based similarity search

- Statistical profile based similarity search (Hidden Markov Models)

With the sequence alignment based option, we could not go with plain optimal
alignments methods (such as Smith-Waterman [17] or Needleman-Wunsch [16]
algorithms), since the amount of data that we were intending to scan was too big
for running them on. So, instead, we had to choose from sub-optimal heuristic
approaches, which run faster. The most popular and robust example of such tool is
BLAST [29]. The idea was building BLAST databases for each set of QS genes,
and querying each available genome sequence (/14 files of chromosomes of
corresponding genome) against these databases, searching for homologous genes

(genome regions with high similarities).

As for HMMs, the most popular and robust implementation is HMMER [24].

In similar fashion with BLAST, we first build statistical profile of sequence groups
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using our sequence libraries (further as HMM recognizers), and scan input
sequences in search for high score hits. One other big difference of HMMER from
BLAST is that, HMMER runs only on protein sequences, whereas BLAST can run
on both protein and DNA sequences. Therefore, BLAST would allow us to handle
draft genomes, where not all the genes are annotated, if it is at least as good as
HMMER. HMMER takes as input concatenated fasta files of protein sequences.
So, as opposed to BLAST inputs, where each chromosome was represented in
terms of one single long sequence, here we feed a fasta file for each chromosome,

containing annotated protein sequences in it.

My aim was to run BLAST and HMMER on test genomes using the same
libraries, and to assess, which one of the tools performs better. If we run both
BLAST and HMMER on protein sequences, HMMER clearly outperforms
BLAST, because BLAST gives false positives to the threshold value of e-value =
10"°. What we were interested in is, running BLAST on DNA sequences, and
compare the hit regions with correspond to annotated regions and calculate the

coverage of two regions.

After running our experiment, we observed that on raw DNA sequences, false
positive rate of BLAST is high. And even the hits which corresponded to genes,
gave significantly erroneous boundaries. BLAST can compete with HMMER in
accuracy, only if it is run on sliced sequences, which are predicted to be genes. In
case of this study, GLIMMER [30] was used ( Markov Model (MM) based

bacterial gene finder) to detect tentative gene regions.

In order to be able to run HMM search on DNA sequences, one needs to
translate DNA sequences to protein sequences in all six frames. One of the
translations will be hit by HMM, if there is a homologous region (Figure 20). The
problem which arises with this approach is that HMM hit rarely covers the entire
gene. Instead, outputs a local region (domain) with higher matching score, than
longer region with lower matching score. As a result, that domain hit needs to be
extended to the actual borders of the gene. If there are more than one domain hits,

they need to be merged first, and then extended to global borders of the gene.
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Global borders of the gene are the coordinate of nearest methionine (M) at the N-
terminal, and any of stop codons at the C-terminal (Figure 21). Stop codons were
proven to be reliable for estimation of coordinate of C-terminal. Whereas N-
terminal coordinate estimation is uncertain, since it is hard to decide if the
Methionine found while spanning towards left is the first codon of gene, without

additional information.

Genome DNA

-3 -2-1 0+1+2
Translations
of a segment

-3 -2-1 0+1+2

Figure 20. Searching with HMM on translated sequences of DN A segment.

Gene

stih-domain stth-domain

v

merged domain

—_—
. \;
£ —— 3 »
AUG TAG
TAA
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Figure 21. Domain merging. When two domains are found, they get merged into one
domain. After that, the borders of super-domain get extended to borders of gene, which
are the coordinates of nearest methioning (M) and stop codons.
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2.4.2 Mining QS systems components and data.

The core algorithm for analyzing QS systems can be summarized with

flowchart in|Figure 22|.

While different QS systems require processing steps and input data
differing from each other, analysis of any kind of QS system requires the steps
depicted above. For instance, detecting clusters of genes (,,topologies”, described
in next chapter) of AHL systems is completely different from that of COM
systems. Furthermore, analyses of different QS systems lead to different biological
interpretations. In order to create a generic template of pipeline for conducting
automated analysis of different QS systems, I developed Galaxy framework
pipelines. In this way, it was possible to deploy different automated tasks using
smaller sub-units of pipeline (called Galaxy tools) in different combinations, and

develop individual sub-routines for QS system of interest when necessary.

START

i

Genome data

l

Gene detection

l

Gene group
detection

l

Phylogenetic
analysis

l

END
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Figure 22. Core algorithm of subsystem based analysis of QS systems.

An example case of workflow of a Galaxy pipeline for analyzing AHL

based QS system is depicted in|Figure 23
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Input dataset hmmer Group " Filter b4 Get ptt lines Add column b4
output Select data containing genomes ) Select data Filter Select data contalining genomes () to Dataset
zipped zipped
out_filel {tabular) out_filel
HMMER profile file for hmmsearch Hits that you want to retreve ptt
" lines for.
thlout (tabular)
Input dataset hmmer Group b4 Filter b4 Get ptt lines Add column b4 Cut 8
output Select data containing genomes Select data Filter Select data containing genomes [ to Dataset From
spped | e dpped | -
out_filel (tabular} out_filel out_filel out_filel (tabular)
HMMER profile file for hmmsearch Hits that you want to retrefve ptt
" lines far.
thiout (tabular)
thlout (tabular) Sort %2
Input dataset hmmer Fitter " Get ptt lines ' Detect Topologles 38
output Select data contalning genomes () Fiter Select data contalning genomes () to Dataset Sort Dataset
spped | spped | i
out_filel out_filel out_fllel
HMMER profile file for hmmsearch Hits that you want to retreive ptt
" lines for.
thiout (tabular)
thiout (tabular)
Input dataset hmmer Filter bt ' ! add column 5 Jain two Datasets
output Select data contalning genomes ' Filter Select data containing genomes Jain
zipped zipped
HMMER profile file for hmmsearch Hits that you want to retreive ptt out fllel
" lines far. —
thlout (tabular)
thiout (tabular)
Input dataset ' ! Add column ¥ | concatenate dataset
Concatenate datasets §f ancatenate datasets g
output to Dataset ~
Concatenate Dataset Get ptt Ines # Fancatenate Dataset

Dataset 1 > Select

Natasst ? = Selart

Select data containing genomes
zlpped

Dataset 1 » Selact

Figure 23. Galaxy workflow for mining and annotating AHL based QS systems. The vertical line of nodes on the left represent input fields.
The ultimate result is the rightmost node, output of which is the list of topologies with detailed information about them. While some of the nodes in
this picture are specific to AHL based QS system, most of the tools are usable for working with any other kinds homology detection based systems.
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3. Results and discussion

“(Cogjto ergo sum” {René Descartes

3.1. Chromosomal arrangement patterns.

The genes constituting a QS system tend to be located together on the
chromosome as discussed in the introduction. Our subsystem based approach
mainly focuses on genes adjacent or located close to each other. Throughout this
study, group of adjacently located QS genes will be called as 'topologies'. The
topologies were selected with the threshold of maximum 3000 base pairs of
distance from each other. In other words, if genes are more than 3000 base pairs
apart from each other, they won't be considered as a single topology even if they

are located one after another, without any genic regions in between.

For simplicity in depiction and formulation of topologies, /ux/, rsaL, rsaM
and /uxR genes are represented as I,L,M and R respectively. And for representing
strand of a gene on which the gene is located, an arrow over letter is used. While
genes can be located on either positive or negative strands, the arrows only
emphasize the direction of genes with respect to each other. Therefore, an arrow

pointing towards right side can mean either negative or positive strand. So, as a

result a notion like /7L / means that the genes might be located in order of
both /uxR-rsal-lux/ and /[ux/-rsalL-/uxR. What it emphasizes is the order of
occurrence of genes and the fact that /uxR and /ux/ are located on the same strand,

whereas rsalM is located on the opposite strand.
The questions targeted with above described topologic approach were:
1) How well the topologies are conserved?

2) Do similar topologies group together in phylogenetic trees of

organisms which carry them?

The process of generating annotation and topology detection were

implemented in terms of Galaxy toolboxes as described in previous chapter.


http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
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Apart from cluster forming genes, some of genes which are involved in QS
machinery, can be found far away from each other. One particular example of this
behavior is that of /uxAR [89], which is found on genomes as a part of a
neighborhood of related /ux/, rsal and rsall genes, as well as surrounded by genes
which are not involved in QS system (those /uxR genes which are not located
together with other QS genes will be named as solo R genes, and are extensively
studied later on in this chapter). To carry out analysis of locations of these
seemingly distant gene locations for any possible common patterns, I created
circular diagrams of chromosomes with QS genes and topologies projected on

circular diagrams according to their location coordinates.

The aim in building these circular diagrams was to understand if relative
locations of QS components are conserved with respect to each other as well as

with respect to the origin of replication.

The origin of replication is located where GC skew of chromosome is at
minimum level. GC skew is a metric calculated over genome/chromosome using
non-overlapping sliding windows. For each considered window, occurrence times
of C and G nucleotides are counted, and skew value is set as shown in (Eq. 9)

n(G)-n(C)

GC skew = NI

(9)

For locating origin of replication, one calculates cumulative sum of GC

skew values as described above, and finds global minimum over the range of

values (Figure 24). The size of window for calculating above mentioned metrics is

very important if location of origin of replication is subject to precise
measurements. But in this case, we only need to project the cartesian coordinate to

a polar coordinate, therefore, commonly accepted window size of 100 was used.

As a result, we have the following entities on the circular diagrams:
beginning of coordinate reference (coordinate 0, from where we start counting the

position), estimated origin of replication and QS system topologies or isolated

genes. |Figure 25[shows that there is one particular RLI topology and one isolated R

gene on the chromosome NC 018672 of Burkholderia phenoliruptix.
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Burkholderia ambifaria AMMD, chromosome: NC_008392
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Figure 24. GC skew. Also cumulative GC skew and supposed origin of
réplication of chromosome NC_008392 of bacteria Burkholderia ambifaria
AMMD.

Genome: Burkholderia phenoliruptrix BR345%a
Chromosome: IING_018672(2713495bp)
Rotated to 120.0 degrees

s

——

RLI

Figure 25. Circular diagram. Chromosomal arrangements of AHL based QS
system genes, origin of replication and reference points.
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3.2. Local gene arrangement patterns

Based on the definitions and assumptions made in Chapter 3.1, all possible
combinations of AHL based QS system genes were searched for. The search was

carried out in complete and draft genomes. The topological combinations found in

bacterial genomes are summarized in|Table 4| Each combination is given a code

name (Field: ID) for further convenience.

The classification scheme of topologies used in this study was largely taken
from a study by Gelencser et.al [90], according to which we classify the topologies
either as simple topologies wherein we have at least one /uxR and one /ux/ genes
involved with 1-2 intervening genes, and complex topologies wherein the
topological patterns can be irregular and we can have more intervening genes.
While the genes of interest are only R,I,M or L genes, sometimes there are genes
which were not recognized as one of the mentioned genes, yet are located inside a
topology. For this kind of cases, we use X to denote these non-QS genes. The X
genes’ strand information was not taken into account. To be able to handle the

cases when there are variable number of X genes are present in topology, the

regular-expression like notation was used. So, for instance X > 7)?1’ means that

there are more than 7 X genes between I and R genes.

ID Pattern Gene topology

Simple Topologies

R1 Rl = > >

|

R2 7/
w Al e
| S -
0| A | s
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I R
e = > E >0 >
SR =
X2 RXT L@ >
Sl = ><a>
x4 RXI <R >E >
X5 | AX7 =S ES >

Complex Topologies

M3 | BXQ-I)MT | L > >
M4 | RMX(<T)] | < =0 > >

g | e
X6 | RX(7)] = > wE >
X7 | IX(>T)R R

Table 4. Topological arrangements of AHL QS system genes.

Listed topologies were found in bacterial genomes.

Taking into consideration the strand information of genes leads to definition of

different sorts of arrangements:

- Convergent genes. C-termini of genes face each other and are located on
opposite strands. E.g. R2, X1.
- Divergent genes: N-termini of genes face each other and are located on

opposite strands. E.g. R3, M1, X2

- Tandem genes: The genes are located on the same strand and transcribed in

the same direction. E.g. R1, R4, M2
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ID | Burkholderia | Pseudomonas | All
R1 48 96 538
R2 2 48 502
R3 0 4 78
R4 0 0 20
M1 213 3 585
M2 0 0 3
M3 198 0 198

M31 20 0 46
X2 0 0 9
X3 75 0 93
X4 0 0 18
X5 6 0 9
X6 5 0 5
X7 0 0 5
L1 36 81 123
M4 4 0 4

Table 5. Statistics of topologies for Burkholderia and Pseudomonas.

Table 5|provides information on number of times a particular topology was

observed in Burkholderia, Pseudomonas and in general. It is evident from the table
that mainly the AHL based QS system is found in Burkholderia.

Once topologies were assigned and annotated for each found case,
distribution of topologies among phylogenic clades was analyzed. For this
purpose, phylogenic trees from /ux/ genes were created for Burkholderia and
Pseudomonas genera. Topologies turned out to be distributed more coherently

within the phylogenetic tree than taxonomies of organisms carrying them.
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Figure 27. Phylogenic tree of Burkholderia having /ux/ genes.
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Figure 26|shows that Pseudomonas do not group according to taxonomic

distribution. For instance, PSeudomonas aerueginosa species were split into two

distant clades, whereas every clade is represented by one or more topology types.

Similar interpretation is valid for Burkholderia as well. |Figure 27| shows that

grouping according to topologies is more coherent than that of taxonomy.

3.3. Gene overlap patterns

Overlapping genes are the genes, coding regions of which collide with each
other. It is believed that gene overlaps arise to make the length of genome shorter
thus minimizing the cost of maintenance [91] . The overlaps arise as a result of
point mutation in either 5° or 3’ ends of genes. According to the strands of

overlapping genes, the gene overlaps can be categorized as in Figure 28

) T

A B C

Figure 28. Types of overlaps |. Overlapping genes can be divergent (A), convergent (B)
and unidirectional (C)

According to the locations of overlapping genes, gene overlaps can be

categorized as|Figure 29] While the overlaps touching each other at end points

Figure 29] D) by definition are not overlaps, but they are usually surveyed

together with gene overlaps.
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A B C D

Figure 29. Types of overlaps Il. Overlapping genes can be forms of: terminal overlap
(A), equal or almost equal (B), one containing another (C) and touching each other at end
points (D).

Mathematically, two overlapping genes can be defined as:

(X1Y1,%2Y2) = {x1Y1,%2Y2 €Z, 5| (x1 —y) X (x2 —y1) =20}

where Z : integer number, X: range of gene coordinates, (X;})) is coordinate of a

gene. The condition (x; —y,) X (x, —y;) = 0 holds when genes have terminal

overlap (Figure 29] A).

A script was wrapped as a Galaxy tool for scanning all consecutive AHL

QS genes and parsing out those which match the above mentioned rule.

The gene overlap cases among R,I,M and L genes are summarized in

Table 6
Topology | Overlapping genes | Occurrence
RI luxR, luxl! 217
RLI luxR, rsal 40
RXI X, lux! 3
RXI X, luxR 3
RXMI X, rsaM 3

Table 6. Found cases of gene overlaps for AHL QS system genes.

3.4. Patterns of horizontal gene transfer

Quorum sensing is governed by small sets of core genes that govern a
number, sometimes a large number of genes within bacteria. It is a conspicuous
fact that there are genera and families where only a few members carry known QS

genes, so one might hypothesize that those few members acquired the QS property
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by horizontal gene transfer (HGT). Also, many bacterial species carry solo /uxR
genes [55] that may be responding either to QS signals produced by a nonadjacent
signal synthase gene, or, they may respond to external signals. The evolutionary
fate of these genes is not well understood. There are no explicit data on the HGT
properties of these genes, and since our survey indicated a large number of novel
QS genes, it looked a plausible step to check if they can be linked to potential
HGT events. Since we have several thousand of genes to check, the first step was
to develop a computational method that can check the properties of these genes on

an equal footing.

3.4.1 Testing various vector descriptions and comparison methods

Various methods proposed for HGT detection are based on vector
representations (di-, tri- and tetranucleotide etc.). Tetranucleotides are currently
used the most, but our initial step was to make a systematic test on the over 9000

genomes that are presently in the databases.

Figure 30| shows a qualitative comparison of different vector

representations. A window of 5000 nucleotides length was slid along the
chromosome sequence, and a local vector description was compared to the vector
of the entire chromosome as described in the introduction (Equation 8). The ) axis
is the Kullback-Leibler divergence which is a measure of the local difference, i.e.
it is high for regions that may have arrived by HGT to the genome. It is apparent
that the chromosome contains two conspicuous regions, a plateau-like region

around positions (400000, 450000) and a sharp peak at around (508000, 515000).

Figure 30|also contains a numerical performance measure for the vector

type. The Fisher’s discriminant metric in context of Linear Discriminant Analysis
1s a widely used measure for comparing inter-group variations with within-group
variations [92]. Relying on Fisher’s discriminant, we devised a separation metric

which suits our task (Equation 10). We defined the groups by first dividing the

values to “peak” and “baseline” (Figure 30|A, inset) and calculated the separation

between these two groups from the average and standard deviation values of

within-group and between-group comparison of the vectors:
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F= (ywith/’n B ybetween)2
(8d:,pn+ SO,

within

(10)

etween)

This is a standard approximation that in our case measures the performance

of a vector type to separate peaks from the baseline.

Figure 30|shows that the performance of the vector types is different, noisy

plots are associated with low discriminant values, which is an indicator of poor
performance. The relative abundance plots are noisy and have low discriminant
values. The simple frequency vectors are less noisy and have higher discriminant
values. The mononucleotide plot seems to be the noisiest, but interestingly, the
best discriminant value is seen at trinucleotide plots, and not at tetranucleotides, as
expected. One can suspect that the window of 5000 may be too short so that the

tetranucleotide vectors are too sparse.
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Figure 30. Word frequency plot of a Burkholderia chromosome (N C_008392).
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The comparison in|Figure 30[{confirmed that there are differences between

the vector types, but this was calculated only for a single chromosome. So we set
up a more systematic evaluation where we compared about 2700 complete
genomes. As there are no standard methods for this evaluation, first we tested the

sensitivity of the method on a qualitative basis.

The principle shown in|Figure 31| — is to represent genomes as vectors and

then to compare them in an all-vs-all fashion. In the figure we see the comparison
of three genera, Burkholderia, Escherichia and Chlamydia. The figure clearly
shows that the method can well distinguish genome groups from each other; within
genus vectors are clearly lower than between genera vectors. The overall
separation between groups, calculated as the discriminant is 2.038 in this case. The
figure also illustrates an important property of this approach: One can calculate an
all-vs-all comparison matrix for any vector type, and one can use the matrix to

calculate species separation, genus separation etc., for any taxonomic level. The

heat map in|Figure 31|{shows that the genera separate well from each other, but

there is less separation within the genera.

The comparison of all 2771 bacterial genomes is shown in|Figure 32| The

picture is less clear-cut. The discriminant value at the species level is 0.576.

With these preliminaries I compared 4 different vector descriptions: mono-,
di-, tr1 and tetranucleotides, in 3 different representations: simple frequency

vectors, relative abundance vectors and structural equivalence vectors (described

in|Figure 16). The comparison was carried out at species, genus and family levels

using the discriminant value as a performance measure. (Table 7
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Burkholderia Escherichia Chlamydia

20 40 60 80 100 120 140 160

Figure 31. The comparison of 3 genera in terms of Kullback-Leibler. Divergence is
calculated between tetranucleotide frequency vectors. Note that the diagonal matrices are
the within group comparisons, the off diagonal matrices are the between group
comparisons.
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Figure 32. All-vs-all comparison.
The comparison is made for all 2771 bacterial genomes in terms of Kullback-Leibler

divergence calculated between tetranucleotide frequency vectors. The discriminant value
calculated for species separation is 0.5729.



Species level

Frequency | SE-frequency | Rel. abundance | SE-Rel. abundance
Mononucleotide 0.7053 0.7035 NA NA
Dinucleotide 0.897 0.8588 1.5395 1.1667
Trinucleotide 1.1107 1.0281 2.192 1.8541
Tetranucleotide | 1.3684 1.2276 2.6753 2.2309
Genus level
Frequency | SE-frequency | Rel. abundance | SE-Rel. abundance
Mononucleotide | 0.6394 0.6382 NA NA
Dinucleotide 0.7946 0.7665 1.1132 0.8142
Trinucleotide 0.9591 0.9005 1.4621 1.1835
Tetranucleotide 1.1462 0.9733 1.6768 1.3417
Family level
Frequency | SE-frequency | Rel. abundance | SE-Rel. abundance
Mononucleotide 0.3552 0.3544 NA NA
Dinucleotide 0.4486 0.4276 0.8767 0.6034
Trinucleotide 0.5384 0.4999 1.1423 0.8982
Tetranucleotide | 0.6279 0.4995 1.2662 0.986

Table 7. Evaluation of vector descriptions for various word sizes.

3.4.2 Prediction of HGT in QS genes

Based on the preliminary evaluation described in the previous paragraph,
we made a wholesale comparison of all QS genes, both for those that occur in QS
topologies, and those that are /uxR solos. We took +/- 5000 neighborhood of the
QS genes as a “unit”, calculated tetranucleotide divergence and GC divergence for
them and plotted them as a two-dimensional scatter plot. The scatter plot shows

that QS genes are not especially prone to HGT, since their divergence values do

not substantially differ from the genomic averages.
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Figure 33. A scatter plot of QS genes in various genomes. A total of 3464 segments,
corresponding to 1081 QS topologies and 2383 solo /uxR proteins were plotted. The
dotted lines indicate the values of genomic averages: KL.=0,0293, abs(A) = 1,79.

It is conspicuous that topology-bound and solo /uxR genes do not separate
in the plot, which means that neither type is more prone to HGT than the other
type. Also, they occur roughly equally in the outliers’ region. In this region we
find genes from the following genera: Pantfoea, Burkholderia, Pseudomonas,
Polymorphum, Gluconacetobacter, Rhodopseudomonas, Rahnella,
Halothiobacillus, Gluconacetobacter, Micavibrio.

In most of these genera, the species harboring the QS-related gene is one of
very few within the genus, so the outlier property is correlated with the unusual
taxonomic distribution. This means that in these cases we can expect HGT to play

arole at least in principle.

Another approach to test the HGT is to taxatively check the inequalities
listed in the introduction. This can be numerically checked for all QS genes by
pre-calculating all (gene-to-gene, gene-to genome, genome-to-genome)
comparison values in the form of a distance matrix and checking the inequalities
for all genes. This requires minutious manual checking, but it is based on a simple
principle: A /uxR gene should be substantially closer to a foreign genome, than to

its own “host” genome. Substantially is mean in a qualitative sense, Techtmann et
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al [87] used a criterion that the average genome was roughly as distant from the
segment in question, as the host genome itself. To check this principle I listed the

10 most conspicuous luxR gene neighborhoods.

KL Distance’
. . Own Nearest | Average
LuxR gene ? strain, chromosome id/Topology
genome | genome genome
with QS
genes
YP_195352, Aromatoleum_aromaticum_EbN1_uid58231, NC_006823, R | 0.00963872 | 0.000895 0.03339
YP_486928, Rhodopseudomonas_palustris_HaA2 uid58439, 0.00951471 | 0.002026 0.02361
NC_007778, RI
YP_005200648,Rahnella_aquatilis CIP_78_65_ ATCC_33071_uid868 | 0.00918153 | 0.002333 0.014492
55, NC_016818, RI
YP_003262848, Halothiobacillus_neapolitanus_c2 uid41317, 0.00860706 | 0.002003 0.025017
NC_013422, RMI
YP_ 001603072, Gluconacetobacter diazotrophicus_PAl 5 uid61587, 0.00811162 | 0.002464 0.024895
NC_010125, RXI
YP_004117160, Pantoea_At 9b_uid55845, NC_014837, R 0.00790213 | 0.001223 0.014128
YP_776923, Burkholderia_ambifaria. AMMD _uid58303, NC_008391, R | 0.00742393 | 0.001228 0.014138
YP_004864636, Micavibrio_aeruginosavorus_ ARL_13_uid73585, 0.00682175 | 0.001165 0.029306
NC_016026, RR
YP_008258288,Salmonella_enterica_serovar_Bareilly CFSAN000189 ui | 0.00668614 | 0.001419 0.023462
d212971,NC_021817,R
YP_006325991, Pseudomonas_fluorescens_A506_uid165185, 0.0062857 0.001402 0.012823
NC_017911,R

Table 8. KL values for 10 loci of luxR subject to possible HGT event. 1) Symmetrized
Kullback-Leibler divergence. 2) With 5000 nucleotides flanking on both ends. 3) Average
distance of the /xR neighborhood from all genomes.

Table 8| shows that the LuxR neighborhoods are not convincingly far away from

their own genomes, i.e. the main condition of HGT is generally not fulfilled. The
only species where this condition is fulfilled is Aromatoleum aromaticum which is
substantially nearer to a Pseudovibrio GEO6Z, as species which has two solo /uxR
genes. Aromatoleum aromaticum also has only solo R genes, so there may be a

chance that there was HGT between these two organisms, however there is no
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proof the solo R genes are involved in QS. Based on this we conclude that HGT
between distant species is not likely to play a major and general role in the
evolution of QS /uxR genes. The term “distant species” is emphasized here
because the tetranucleotide signature method tested here is not sensitive to the
small differences that may exist between closely related species. So our analysis
does not entirely rule out that /uxR regulated clusters may be exchanged between
closely related species but our analysis is not able to detect such transfers. The
lack of HGT in AHL systems was also suggested by an earlier publication [93] ,
but that conclusion was based on a study of a few V/jbrio species. Our study is the
first comparison that included a large number of genomes, and the conclusion

seems to confirm this earlier study.

3.5. Biological applications:

As stated in the objectives, the broad fundamental aim of this study is
developing computational tools and pipelines for a comprehensive analysis of QS
systems, the results of which were presented and discussed in previous sections of
this chapter. In addition to the mainly targeted questions, during the course of the
study, several spin-off research topics emerged and gave rise to further studies.
One of them is comprehensive analysis of solo /uxAs (described in Chapter 1.6.2)
independently from topologies of other AHL based QS system genes. Second one
was construction of web based interface for visually presenting AHL QS system
topologies for Burkholderia genus. And the biggest one is generalization of
developed methods to other QS systems, and building a web portal with an aim of
automatizing the described annotation tasks to maximum extent and providing
researchers with detailed genomic, quantitative and phylogenetic information in
interactive web based system. The following chapters will describe above

mentioned tasks in given order.



73

3.5.1. Analysis of solo /uxR genes

AHL based QS systems are perhaps the best studied and best understood
among the bacterial intracellular mechanisms, however the role of the so-called
solo /uxR proteins that are present in many bacteria, are relatively poorly
understood. The goal of this project was to employ the computational tools that I
helped to develop, to a comprehensive analysis of /uxR genes in bacterial
genomes. One of the novel parts of this analysis is that I also scanned draft

genomes for solo /UxR occurrences.

I wanted to address the following questions: a) Have the solo /uxARs
evolved independently from those /uxAs that are in well-defined QS circuits (QS
topologies). b) Are there specific arrangements of /uxR solos in the prokaryotic

chromosomes? c) Are there novel sequence features in the /xR solos?

An important question is to predict whether or not a solo /uxR protein is
likely to bind AHL. This question can be studied only by laboratory experiment,
even though a few prediction methods were developed for the purpose. Namely,
one can study the 3D structure of /uxR — AHL complexes and pinpoint the amino
acids that are necessary for ligand binding. There are very few such structures
available, but there is a small group of amino acids that are a) seen as ligand-
binding in the 3D structures and b) are sufficiently conserved in the proteins that
are known to be AHL binders. Such residues can be summarized as regular
expressions. In addition, the groups of Vittorio Venturi and Doriano Lamba have
identified a few residues that are likely to be conserved in non AHL binding solos
[94] [95]. Moreover, we have identified a few patterns conserved in Burkholderia

luxRs. From these we developed a small battery of regular expressions that fall

into two groups, AHL binders and non-AHL binders {(Table 10).
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Census of solo LuxR genes in prokaryotic genomes.

I scanned all prokaryotic genomes present in the NCBI databases as of
March 2014. This included 2620 complete and 6970 draft genomes with 644474
annotated and 505155 un-annotated contigs, and a total of over 25 million protein-
coding ORFs. I used Hidden Markov Model recognizers that contained an HMM
module for autoinducer binding domain and an additional HMM module for the
GerE DNA binding domain (used data described in Chapter 2.2). This census

revealed that there are 64 new occurrences in which the functions were indicated

as hypothetical. The complete list of the genera is shown in{Table 9

Genus Total Hypothetical

N
N

Shigella

Polaromonas

Sphingobium
Erythrobacter

Bradyrhizobium

Geobacter

Caulobacter

Cupriavidus

Dickeya

Chelativorans

Sagittula

Pelagibaca
Methylocella

Ahrensia
Xanthobacter

Bl o= =] =] O W] =] W W] B Q] B~

Oceanicola

—_
[\

Ochrobactrum
Burkholderiales

Pelagibacterium

Magnetospirillum

Oceanibulbus

Micavibrio

Pseudoalteromonas

_ =] =] B =] =] =

Thalassiobium
Salmonella 307
Polymorphum

Gluconacetobacter
Candidatus

O O O O W O O O O O O O O O O O O O | O O O O | O @ | O] ©

W N |

Celeribacter
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Ruegeria

Acetobacter

Escherichia

Desulfurispirillum

Tolumonas

Haliangium

O O O W| O ©

Klebsiella

—_
\S]

Acinetobacter

Octadecabacter

Rhodobacteraceae

Mesorhizobium

Novosphingobium

Comamonas

Sodalis

Roseibium

Roseovarius

Phenylobacterium

Citreicella

Collimonas

Salinibacterium

Variovorax

W] —| =] W] —| & ]| —| W] W

Pseudomonas

254

Lutiella

Acidithiobacillus

Oxalobacteraceae

Azospirillum

Roseobacter

Leptospirillum

—_| O] —| = —| —

Sinorhizobium

(5]
\S]

Agrobacterium

W
(e}

Hoeflea

Sorangium

Parvibaculum

Legionella

Raoultella

Enterobacteriaceae

Rhodobacterales

Cellvibrio

N W = =] N =] =]

Brenneria

Methylibium

Labrenzia

Gamma

Vibrio

Rahnella

Ralstonia
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Alcanivorax 1 0
Oceanicaulis 1 0
Aromatoleum 1 1
Sphingomonas 10 0
Hirschia 0
Pectobacterium 9 0
Xanthomonas 23 0
Cronobacter 0
Methylacidiphilum 2 0
Maritimibacter 1 0
Rubrivivax 2 0
Yersinia 24 0
Phaeobacter 4 0
Beijerinckia 0
Nitratireductor 6 0
Burkholderia 179 1
Nitrobacter 3 0
Fulvimarina 1 0
Jannaschia 3 0
Azoarcus 1 1
Oligotropha 5 0
Nitrosospira 1 0
Rhizobium 166 4
Aeromonas 23 8
Serratia 30 0
Pantoea 2 0
Paracoccus 4 0
Phyllobacterium 3 0
Achromobacter 1 0
Frateuria 1 0
Dinoroseobacter 1 0
Caenispirillum 2 0
Citrobacter 8 0
Rhodobacter 13 1
Brucella 109 10
Pseudovibrio 4 2
Rhodospirillum 5 0
Aliivibrio 1 0
Afipia 1 1
Silicibacter 0
Sulfitobacter 0
Enterobacter 19 0
Rhodopseudomonas 2 0
Stenotrophomonas 8 0
Yokenella 1 0
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Aurantimonas 1 0
alpha 1 0
Fluoribacter 1 0
Frankia 1 0
Photorhabdus 2 2
Acidovorax 3 0
Desulfovibrio 1 0
Citromicrobium 2 0
Sideroxydans 1 0
Oceaniovalibus 1 0
Methylobacterium 1 0

Table 9. List of genera for members of which soloRs were found. Many of
the recognized luxR genes were annotated as hypothetical.

Among the genera in|Table 9|we find a number of occurrences in which

luxR have not yet been described. Altogether, we have 3514 /uxR genes (including
solos, twin Rs and QS-linked counterparts), 2488 of which are solo /uxAs, i.e. they
are clearly more numerous (2488 occurrences) than their QS-linked counterparts
(884 occurrences). The similarity cladograms of all /uxR sequences is clearly too
big to overview. Yet, it is very important to overview it since perhaps the most
important question is to decide if the /uxR solos cluster separately from those in
known QS systems. This tendency is perceivable in the large /uxR tree, but in
order to see it more clearly, we restricted the in depth analysis to Burkholderia

genus first.

The tree of Burkholderia /uxR proteins is shown in|Figure 34| Here we

clearly see that a) Also in Burkholderia, /uxR proteins are more numerous ((271
occurrences, out of which 179 are solos) than QS-linked /uxAs (169 occurrences)).
b) Solo /uxAs form clades (colored blue and red) that are separate from the QS-
linked /uxRs (colored black). The latter form the usual clades denoted by the type
of topology (RI, RMI, RXI etc., see section 3.1). From the clades of solo /uxAs,
some of the groups are difficult to interpret. There are a few, however, that deserve

special attention.
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First we see a group labeled RR which denotes a novel topology that we

term twin R arrangement in which two /uxR proteins are located next to each

other. We see two versions of this topology, shown in|Figure 35| The divergent

topology occurs only in the Burkholderia genus. One of the /uxAs is longer than
the other one so we introduced the “short/long” notation for the genes. The two
luxRs are not immediately vicinal and the intergenic region in some of the
annotated genomes contains a short ORF arranged in tandem with the long /uxR
gene. But this ORF is too short so one cannot be certain that it is not an annotation

artifact.
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Figure 34. Cladogram of Burkholderia according to luxR genes. Black indicates /uxR
in canonical topologies (RI, RMI, RXMI), red indicates solos and blue indicates solos in
twin R (RR) topologies. AHL- indicates the lack of AHL binding predicted by regular
expression search (Table 11, below)
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87 to 536 nt

| | Divergent topology. Occurs
only in Burkholderia. The
intergenic region sometimes

. contains a short, hypothetical
long “short” ORF

0to 393 nt

- P! Tandem topology. Occurs only
| outside Burkholderia
I (Caenispirillum Lautropia
Methylobacterium Micavibrio
5’ 3’ Pantoea Rhizobium Sinorhizobium)

Figure 35. Twin /uxR arrangements and the notations used in this thesis.

Sequence variability

The sequence variability within the /uxR protein is quite complex. Namely,
the sequence of the autoinducer domain is highly variable, sometimes only a few
key amino acids are conserved in it. The GérE DNA-binding domain on the other
hand seems far more conserved in comparison with the autoinducer domain, but
we have to remember that the GérE domain is a member of a large clan of helix-
turn-helix proteins, perhaps the widest class of DNA binders, so its sequence bears

similarities to great many other proteins.

For this reason we primarily studied the conservation within the
autoinducer domain. The question asked was whether or not one can say sequence
features that are characteristic of one or other clade in the /uxR cladograms. First

we identified a number of sequence patterns that are conserved in AHL-binding or

non AHL binding autoinducer domains (Table 10
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AHL-binders

Y. (3)W.(3)Y.(8)D. (13,14)W

.(3)Y.(8)DP. (13)W. (32)G

.(3)Y.(8)D[PS]. (12,13)W. (32)G

. (8)DP. (13)W. (24-32)G

.(3)Y.(8)D[PS].(12,13)W. (24-32)G

A3IW.{3}Y.{8}DP.{13}W.{19}A.{3}G.{3}G

S = = =
w
._<

ASIW.{3}Y.{8}DP.{13}W.{14}A.{3}G.{3}G

N O UL | W|N| P

[VF].{3}W.{3}Y.{8}DP.{13}W.{14,19}[CR].{3}[GP].{3}G

Non-AHL binders

Y. {3}W.{3}Y.{8}DP.{13}W.{19}A.{3}G.{3}G

10

Y.{3}W.{3}Y.{8}DP.{13}W.{14}A.{3}G.{3}G

11

[VF] . {3}W.{3}Y.{8}DP.{13}W.{14,19}[CR].{3}[GP].{3}G

Table 10. Regular expressions. They were found in the autoinducer binding domain of
AHL-binding and non-AHL binding /uxR proteins

Then we used these regular expressions to predict whether or not various

groups of /uxRs are likely to bind AHLs. As shown in the previous table, the

regular expressions are partly overlapping, so the results are partly redundant. In

order to get a clearer picture, we present the hits grouped according to the solo

clades identified in the cladogram of Burkholderia /uxR proteins.

Pattern AHL Non-AHL AHL
Clade-name 1|2|3|4|5|6|7|8 9|10|11 binding
Solo clades:
cenocepacia 01 + _
cenocapacia 02 + ]+ + ]+ +
pseudomallei 01 + |+ +
pseudomallei 02 + _
pseudomallei 03 + _
pseudomallei 04 + + |+ +
pseudomallei 05 NI T RN NI T + +
thailandensis + |+ +
Twin solo clades
RRCepacia_long + -
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RRMallei_long + -
RRCepacia_short + -
RRMallei_short + -
RRnonB_3T + + | + +
RRnonB_5T I T QN QN +

Table 11. Prediction of AHL-binding domains in solo /uxR proteins using regular
expressions

The hits found by the regular expressions separated well according to the
clades i.e. one clade had hits either with the AHL-binder, or with the non-AHL

binder patterns. The corresponding labels were then added to the /uxA tree.

Another, somewhat unexpected finding was the presence of conserved

cysteines in some of the /uxR clades, an example is shown in|Figure 36

1HOM D |PDBID|CH
2000 A|PDBID|CH
3SZT A|PDEBID|CH
gi| 537169590 | ref
gi| 53721704 | ref
gi| 76819024 | ref
gil| 83716650 | ref
gi|124381986|re
gi|126442536|re
gi|126457399 |re
gi|167565359 |re
gi|167572464 |re
gi|217415285 |re

1HOM D|PDBID|CH
2000 A| PDBID | CH
3SZT A|PDBID|CH
gi|53716990 | ref
gi|53721704 | ref
gi|76819024 | ref
gi|B83716650|ref
gi|E124381986 | re
gi|126442536|re
gi|12645739% | re
gi|167565359 | re
gi|167572464 | re
gi|217419285|re

1HOM D|PDBID|CH
2000 A|PDBID|CH
33ZT A|PDBID|CH
gi|53716990 | ref
gi|53721704 | ref
gil| 76819024 |ref
gil|83716650|ref
gi|124381586|re
gil|126442536|re
gil|126457399 |re
gi|167565359 | re
gi|167572464 | re
gi|217419285 | re

Figure 36. A conserved cysteine patterns (yellow). Depicted are the cases found in the
Long. B. mallei clade of Twin R proteins. Structural multiple alignment of /uxRs with
three known /uxR protein 3D structures (top three sequences), using the t-coffee alignment
pipeline.
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Characteristically, we see cysteine patterns both in QS-linked and in solo
luxR proteins. Interestingly, cysteine patterns are known to be almost sure
indicators of disulfide bridges that are characteristic of secreted proteins. On the
other hand, /uxR is a cytoplasmic protein which is in contact with the
chromosome. So we need further evidence to show that these cysteine patterns are
just frozen accidents or can in fact be involved in disulfide bridges. Such pieces of
circumstantial evidence may be derived from the 3D arrangement of the conserved
cysteines. If the conserved cystein positions are within a proper distance, we can
predict that the cystein pair in question is involved with intra-domain, intra-
molecular, dimerizing or tertramerizing disulfide bonds. These studies are

underway at the time of writing of this thesis.

In this chapter I presented results of a comprehensive census of solo LuxA-
like genes in 2620 complete and 6970 draft prokaryotic genomes (sequenced by
the end of 2013). After manually checking the data for false-positive and false-
negative hits, we found 2552 /uxA-like predictions. The census data show that
AHL quorum sensing loci solo /uxR like proteins occur largely in Proteobacteria.
From a broader perspective, /UxR proteins belong to a wide class of repressors that
contain an autoinducer signal binding domain that binds, covalently or
noncovalently a signal molecule, changes its dimerization state and binds to DNA.
In the largest class of these molecules, an N-terminal /uxR autoinducer domain is
the signal binder, and a C-terminal GérE-type helix-turn helix domain is the DNA
binder. However, there are varieties in which the DNA binding domain is a sigma

factor, or the N-terminal signaling domain is phosphorylated.

It seems that the number of /uxR solo genes is higher than the number of
QS-linked /uxR proteins. We built cladogram of /uxR solo proteins but for clarity,
we analyzed the /uxR proteins of Burkholderia in greater detail. We found a novel
topological unit that we termed twin /xR motif whose transcriptional oritentation
can be either divergent, as we see in Burkholderia, or tandem, as we see outside

the Burkholderia genus, notably in Sinorhizobium, Rhizobium, Methilobacterium.
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Using regular expressions we found that only some of the solo /uxR proteins are

likely to bind AHLSs, others may respond to other, hitherto unknown signals.

3.5.2 Presenting AHL QS system data for Burkholderia

The findings of this study were part of several publications, and several
ongoing other studies. As a part of QS system analysis tasks, a website was
developed for presenting detailed information about topologies, chromosomal
arrangements and neighborhoods of AHL based QS systems in Burkholderia. The

website was deployed in ICGEB servers and available from address:

http://net.icgeb.org/burkholderia/| It includes the AHL based QS system data

mined from complete genomes, draft genomes and individual Genbank entries as
well. For each of the data source type (complete/draft genomes and Genbank

entries), it provides a table summarizing every Burkholderia organism and gives

the total number of certain types of topologies found (Figure 37). Each listed

genome is summarized further in a separate page, giving the list of topologies

found, and link to detailed neighborhoods and chromosomal diagrams pages

Figure 38). Each topology can be browsed in more details.|Figure 39|depicts genes

which constitute M1 topology (RMI) and the genes from flanking regions. Each
line represents a gene, together with annotation data. The first field of the table
denotes the ID of chromosome on which the genes are located. Both gene and
chromosome IDs are linked to their corresponding NCBI GenBank pages. It is
possible to retrieve sequence of gene of interest using the link given in the last

column of table.


http://net.icgeb.org/burkholderia/
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\COEs

THE INTERNATIONAL CENTRE FOR GE

NETIC ENGINEERING AND BIOTECHNOLOGY

arch and training in molecular biology and biotechnology,

( Back Y Complete Burkholderia genomes with QS genes (Home)
ID Bacterium name SIMET B} !‘,2 '13 'i4 J'i ,"!5 .ME ‘ME ,)E? N IR ZIIZM ZL
F | I |RI |RI [RI [IR [RLI |RMI RMI|R.MI |R<I |Bef

269482 |Burkholderia vietnamiensis G4 1 |1 o [op jo o o 1 0o |0 1 1 331 |0
272560 |Burkholderia pseudomallei K96243 2 |0 |1 jo |0 |0 j0o |1 |0 |1 1 1 |5 32 |0
1229785 |Burkholderia pseudomallei BPCO06 2 |0 o |0 [0 |0 0o |1 |0 |1 2 |1 |5 32 |o
357348 |Burkholderia pseudomallei 1106a 2 0 1 o o o jo 1 o1 1 1 |5 32 |o
271848 |Burkholderia thailandensis E264 3 0 1 o o o jo 1 0o |1 1 1 |6 32 |0
884204 |Burkholderia pseudomallei 1026b 2 |0 o |0 |0 |0 j0o |1 |0 |1 2 |11 |5 32 |0
320372 |Burkholderia pseudomallei 1710b 2 |0 |1 jo |0 |0 j0o |1 |0 |1 1 1 |5 32 |0
320373 |Burkholderia pseudomallel 668 2 0o |1 |0 [0 |0 jo )1 |0 |1 1 1 |5 32 |o
320389 |Burkholderia mallel NCTC 10247 3 |0 @ 0 |0 0o o 1 o |0 1 0 5 |2 |1 |0
999541 |Burkholderia gladioli BSR3 1 |0 o 0o |0 [0 |0 |2 0o |0 0 0 3 212 |0
216591 |Burkholderia cenocepacia 12315 2 |0 |1 |0 |0 |0 j0o |1 |0 |0 0 |0 4 21 |0
416344 |Burkholderia sp. K1006 1 0 0o ©o [0 |0 j0o (1 |0 |0 1 1 3 |2 2 |0
406425 |Burkholderia cenocepacia MC0-3 2 |0 |1 |0 [0 |0 |0o |1 |0 |0 o |0 |4 |21 |o
266265 |Burkholderia xenovorans LB400 1 0 1 ©o |0 o |1 o o [0 0 0o 3 201
398527 |Burkholderia phytofirmans PsIN 1 0o |1 0o |0 [0 |1 j0o 0 |0 0 [0 |3 20 |1
339670 |Burkholderia ambifaria AMMD 3 [0 0o 0o 0o |0 o 1 |0 |0 0 1 4 2 12 |0

Figure 37. Complete Burkholderialisted with AHL QS genes summarized.

( Backx Complete - Burkholderia vietnamiensis G4 X Home)

1D Code Type Pattern
1.0 sR R
2.0 M1 RMI RMT
3.0 X5 RXI RXT
4.0 sl I

b 5.0 N/A RR

ALL Neighborhoods
Chromosomal diagrams

Figure 38. Summary page of Burkholderia vietnamensis G4. 1t has 5 topologies found.
Also, links for browsing the neighborhoods and to chromosomal diagrams are given.

( Back Y Burkholderia vietnamiensis G4 - M1 X Home)
Chromosome PID TypeStrand From To Symbol Product Seq
NC_009255 [134292712| - + 784761 | 786053 - 3-oxoacyl-ACP synthase seq
NC_009255 |134292713| - + 786226 | 787611 - FAD-binding monooxygenase seq
NC_009255 |134293935| - - |2188289/2188888 - DNA-N1-methyladenine dioxygenase seq
NC_009255 |134293936| - - |2189150(2190298 - metallophosphoesterase seq
NC_009255 |134293937| - + 2190831|2191538 - MgtC/SapB transporter seq
NC 009255 |134293938 R - |2191597|2192316 - LuxR family transcriptional regulator seq
NC_009255 |134293939| M + 2192350(2192833 - hypothetical protein seq
NC_009255 [134293940| 1 aF 2193043|2193651 = autoinducer synthesis protein seq
NC_009255 |134293941| - + 2193731|2194477 - hypothetical protein seq
NC_009255 |134293942| - - 2194697|2195566 - ankyrin seq
NC_009255 |134293943| - - 2195566|2195913 - hypothetical protein seq
NC_009255 |134293944| - - 2196145/2196750 - acyltransferase seq
NC_009255 (134294019 - - |2282323)2284362| - | YSCC/HrcC family type :’Ir{)f:icn'e“"" outer membrane | .
NC_009255 |134294020 - - 2284362|2284640 - HrpQ family type III secretion protein seq
NC_009255 |134294021| - - 2284637|2286883 - type III secretion FHIPEP protein seq
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Figure 39. M1 topology of Burkholderia vietnamensis G4. Topology is found on
chromosome NC 009255 and its surrounding genes (neighborhood) are listed with
detailed annotation information.

(Back ) Burkholderia vietnamiensis G4 (Home)

Chromosome: NC_009255 (2411759 nt) Chromosome: NC_009254 (1241007 nt)

From OriC to: From OriC to:
M1 : 1651533 nt, 114° X5 : 303832 nt, 88°
Rotate: o Rotate: o
Flip: Flip:

Submit Submit

Figure 40. Circular diagrams.

In addition to neighborhood information described above, the website also

gives chromosomal arrangements of QS elements on circular diagram. |Figure 40

depicts two chromosomes (NC 009255, NC _009254) of Burkholderia
vietnamensis G4. The chromosomal diagram illustrates all annotated QS elements,
origin of replication and starting point of chromosome. To make it more
convenient for visual inspection and analy-sis, rotation and flipping functionalities
were added. Such functionality is useful for making larger scale survey and
spotting common patterns. For instance, location of M1 topology relative to origin

of replication is conserved across species in Burkholderia. 1t can be revealed by

observing visually as in|Figure 41| where it can be seen that locations of M1

topologies found in Burkholderia cenocepacia, Burkholderia mallei, Burkholderia
multivorans and Burkholderia gladioli relative to origin of replication is

conserved.
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This website was used as main demonstration of methods and

supplementary materials in publication written by Choudhary et.al. [96]

sy g ~
— onC onc

Figure 41. RMI topology’s in species of Burkholderia. Shown chromosomes
correspond to genomes of Burkholderia cenocéepacia (top left), Burkholderia
mallef(top right), Burkholderia multivorans(bottom left) and Burkholderia gladioli.

3.5.3 An integrated portal for QS genes

In the last years, there has been an increased amount of researches on QS
systems. One of the well-known QS systems is AHL based quorum sensing
system, which was the main subject of this study. But, apart from AHL based
quorum sensing system, there are number of other known quorum sensing

systems, which are relatively less studied. Some of them are:

1) Two-component signal-transduction based quorum sensing

systems (in broad sense) [97]
2) Pseudomonas quinolone signaling (PQS) [98]
3) Diffusible signal factor-mediated quorum sensing (DSF) [99]

4) DSF in Burkholderia (BDSF) [100]
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One idea was to extend the computational tools and methods which were

developed during this study to the above mentioned systems. Preliminary searches

for genes (Table 13) which constitute these QS systems gave reasonable amounts of

hits, which lead to further studies (Table 12|).

Name Hits
Two Component based systems 6333
DSF 6918
BDSF 5131
PQS 452

Table 12. Other types of QS systems, and the number hits we
found corresponding to them.

QS system Regulating genes

Two-CGomponent systems |ABC_Transporters ComA, ABC Transporters blpA,

IABC Transporters plnG, CQ_ AgrB,

CQ _and Pheromone fsrB_Enterococcus_faecalis, HK AgrC,
HK blpH, HK ComD, HK ComP, HK PInB,

HK VirS_Clostridium, Pheromone AgrD,
Pheromone AgrD Clostridium_difficile,
Pheromone AgrD Clostridium_perfringens,
Pheromone AgrD Listeria_monocytogenes,

Pheromone AgrD Staphylococcus_saprophyticus,

Pheromone CSPs_ComC,BIpC,
Pheromone lamD Lactobacillus_plantarum, Pheromone papR,
Pheromone phrC, Pheromone PInA, Pheromone PItA,
Phosphatase rapC, RR_AgrA, RR BIpR, RR_BIpS, RR_ComA,
RR_ComE, RR_PIcR, RR_PInC, RR_PInD,

Transmembrane protein BlpB, Transmembrane protein ComB,
Transmembrane protein PlnH, X, CQ_ComQ,

Pheromone ComX

DSF rpfG, rpfB, rpfC, rpfF, rpfH
BDSF rpfF, rpfR
PQS pgsB, pgsC, pgsD, pgsE, pgsA

Table 13. Suggested QS systems for extending the framework, and the genes which
regulate named systems.

In similar way with Burkholderia page described in previous section, this
project's aim is to provide detailed information about loci and genes belonging to

each of the above mentioned QS systems.



Namely, by:

At the time of writing of this thesis, this project is a work in progress. And

QS system's type

Data source type

The annotation data can be browsed in different way of categorization

Genome wise browsing of assigned QS system types. (Figure 44

the modules which are planned to be integrated to it will be described in future

works chapter.

Summary of QS available systems

Total number of topologies/loci

Two Component based QS sy

Literature

Figure 42. Summary page of annotation data grouped by QS system type.



89

Home About Qs systems Data sources Galaxy Analysis Download Updates Literature
Browse the genomes by their source types and systems
= Complete genomes
Show |10 ¥ | entries Search:
Organism AHL TCS DSF BDSF PQS Totah
Agrobacterium_vitis_54_uid58249 12 0 1 0 0 13
Rhizobium_etli_bv__mimosae_Mim1_uidZ2 13896 i1 0 0 0 0 11
Rhizobium_leguminosarum_bv__ viciae_3841_uid37955 w o0 o0 1 0 1
Burkholderia_ambifaria_AMMD_uid38303 6 0 1 z 1 10
Burkholderia_ambifaria_MC40_6_uid58701 5 0 1 3 1 10
Burkholderia_thailandensis_E264_uid58081 7 0 1 1 1 10
Rhizobium_etli_CFN_42_uid58377 w o0 o0 0 0 10
Rhizebium_leguminosarum_bv__ trifolii_WSMZ2304 wuid38997 B 0 [t} z 0 10
Burkholderia_vietnamiensis_G4_uid38073 3 1] 1 3 0 9
Rhizobium_leguminosarum_byv__trifolii_ WSM1325_uid58991 8 0 0 i 0 9
Showing 1 to 10 of 1,062 entries First Previous 2 3 4 5 HNext Last
v Draft genomes
\ "

Figure 43. Genomes listed with the number of QS systems found in them.

Home About Qs systems Data sources Galaxy Analysis Download Updates Literature
Organism: Achromobacter xylosoxidans A8 uid59899
System: AHL
v SoloR
v Chromosomal diagram
System: BDSF
C Generic operon/loci
’ Generic operon/loci
» Generic operon/loci
’ Generic operon/loci

Figure 44. Organism summary. Each organism is summarized and given information
about topologies/loci/genes corresponding to different QS systems, if found.
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4. Conclusion, remarks and future work

"Beware of bugs in the above cocle; ] have onlg Provecl it

correct, not tried it.” — Donald E. Knuth.

4.1 Corollaries from the study

As the cost of sequencing decreases, the amount of publicly available
genomic data is growing orders of magnitude faster than it was previously
expected. And automated annotation techniques and tools will be cornerstones in
processing of this data. This study suggests a subsystem-based annotation
approach, and shows that while working on annotation aimed tools, the same tools

can be used to address different biological questions.

This study provides complete census of AHL based QS system’s /ux/ and
luxR based topologies, together with their phylogenetic interpretations.

Previously, it was shown that /uxA genes were unlikely to be acquired by
horizontal gene transfers in Vibrionaceae [93]. With the comprehensive analysis
of /uxR genes in search for horizontal gene transfers, we generalize the test and
confirm the findings of the study for other genera of Bacteria where /uxR genes

were found.

4.2 Tools, environments and languages used

Throughout this study, several programming languages and environments
were used. In addition to standard bioinformatics tools described in the
introduction chapter, Python was used for scripting. Python was used not only as a
tool for scripting, it was also used extensively in calculations and pipelining. For
this purposes, it was seen that BioPython and Numpy libraries are mature enough

for making advanced calculations.
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The main calculations for finding and annotating topologies of QS systems
were carried out using Galaxy framework. Tools developed for that task were

wrapped as Galaxy tools.

Calculations for horizontal gene transfers were done using either
MATLAB or Python (Numpy framework). In terms of running time cost, the most
expensive task was the calculation of word frequencies in sliding window
algorithm. For optimizing this task, the straightforward way of calculating the
frequencies was altered. Initially algorithm slices each window from the long
DNA sequence and calculates the A-mér frequencies over sliced window, which
means that certain sequence segments would be counted multiple times for
multiple windows, depending on window and offset lengths. Instead, the new
approach scans over sequence word-by-word and each time increases the
corresponding pointer in all of the windows which span the word being focused.

As a result, the algorithm is of O(/N) complexity with respect to the length of the

sequence (Figure 45). The draw-back of this scheme is that, it will require

annotation of dictionary (a data structure used for keeping frequency numbers) for
each possible window at the beginning of procedure, which will be kept in RAM
memory until the overall counting process is over. This might be issue if multiple
processes are being run using shared RAM memory.

555 Window sliding signature calculation running time

2000 Window size: 5Kbp, offset: 1 Kbp

0 2 4 6 10 12 14 16

8
Nucleotide length (Mbp)

Figure 45. Running time window sliding algorithm vs. length of sequences.
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The Burkholderia web page described in Chapter 3.6.2 and ongoing QS
portal described in Chapter 3.6.3 were both built using Python based Django
framework and MySQL relational database management system on the backend,

and HTMLS, CSS3, JavaScript(jQuery) on the front end.

Relational database scheme which backed the system of Burkholderia page

was extended for QS portal with new logical units in order to handle larger scale

representation (Figure 46).

| assystem v ] Topology_of Subsystem v |7, Class ¥ T, ym v
WID INT(11) )
‘ (m Topology_WID BIGINT(20) WID BIGINT{20) Taxonomy WID BIGINT(20)
Name VARCHAR(100) QSSubSystem_WID INT(11) NameClass VARCHAR(255) Synonym VARCHAR(255)
>
QSSystem_WID INT(11) » | | | TaxonomySynonymNameCi.
L
T O "
A ] Vo o— "
TopologyDefinition
] Topology| | Topology ¥ ] Topology_of_Organism v
WID BIGINT(20) WID BIGINT(20) Topology_WID BIGINT(20)
Gode VARGHAR(15 )
) GenelD BIGINT(20) Organism_WID INT(11)
Mask VARCHAR(50) f | @ GeneType WID INT(11) >
Pattem VARCHAR(S) 1< & TopologyDeintion_wiD BIGINT(20) |
QSSystem_WID INT(11) ,
GenomeStatus_WID INT(11) m Drgnnlm v ] Topology_has Taxonomy ¥
> . |
dj_id BIGINT(20) WID INT(11) Topology_ WID BIGINT{20)
‘ >, Name VARCHAR(500) Tauld INT(11)
i | Status INT(11) >
_ GenePool ¥ 7 7] GenomeStatus v !
source VARCHAR(50) WID INT{11) I
1 m =F
PID BIGINT(20) Status VARCHAR( 100) ] GeneType v ] Gl_to_Ref
strand VARCHAR(2) >
WID INT(11) gid BIGINT(20)
pFrom BIGINT{20) . ‘
GeneShortType VARGHAR[45) ref VARCHAR(20)
pTo BIGINT(20) ] Sequence v
GeneLongType VARCHAR(45) acosasion VARCHARR0)
GeneSymbal VARCHAR(10) PID BIGINT(20)
QSSystem_WID INT(11)
Product VARCHAR(1000) header VARCHAR(300)
>
>
sequence TEXT j Taxonomy v
>
K; * WID BIGINT{20)
"] Neighborhood ¥ 7‘k # | Topology_has_Neighborhood ¥+ Taxld BIGINT(20)
WID BIGINT(20) ] assubsysiem v Topology_WID BIGINT(20) ParentTaxld BIGINT(20}
PR
pid BIGINT(20) QSSystem_WID INT(11) Neighborhood_WID BIGINT[20) Rank VARCHAR(100)
> WID INT{11) > EMBLCode VARCHAR(S5)
ShortDesc VARCHAR({45) TaxonomyDivision_WID BIGINT(20)
LongDesc TEXT InheritedDivision VARCHAR(1)

>

Figure 46. ER diagram of tables which run on the backend of QS portal project.

The database scheme deployed for running QS portal, was used not only
for the purpose of running the website, but also for extracting the statistics and
detailed information during the study for other projects as well. The flexibility of
relational database system allows one to be able to ask interesting questions to the
database. For instance, for retrieving solo /uxR genes described in Chapter 3.6.1,

the following SQL query was used:
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select gp.source, gr.Ref, gp.pFrom, gp.pTo, gp.strand

from Topology t

inner join TopologyDefinition td on t.TopologyDefinition_WID = td.WID
inner join GenePool gp on t.GeneID = gp.PID

inner join GI_to_Ref gr on gr.gid = t.GeneID

inner join Topology_ of_Organism too on too.Topology WID = t.WID

inner join Organism o on too.Organism_WID = o.WID

where td.Code='sR'

Relatively more complex question “Give number of occurrences for each
AHL QS system topology type for genus Burkholderia, Pseudomonas have and in
total” (Table 5) can be answered with the following SQL command:

select td.Code,
coalesce(burk.cnt,®) as 'Burkholderia’,
coalesce(pseud.cnt,0) as 'Pseudomonas’,
coalesce(all_gnm.cnt,0) as 'All’
from TopologyDefinition td
left join (
select td.WID, count(*) cnt
from Topology t
inner join TopologyDefinition td on td.WID = t.TopologyDefinition_WID
inner join Topology_of_Organism too on too.Topology WID=t.WID
inner join Organism o on o.WID = too.Organism_WID
where o.Name like '%Burkholderia%' and td.QSSystem_WID=1
group by td.WID
) burk on burk.WID = td.WID
left join (
select td.WID, count(*) cnt
from Topology t
inner join TopologyDefinition td on td.WID = t.TopologyDefinition_WID
inner join Topology_of_Organism too on too.Topology WID=t.WID
inner join Organism o on o.WID = too.Organism_WID
where o.Name like '%Pseudomonas’%' and td.QSSystem_WID=1
group by td.WID
) pseud on pseud.WID = td.WID
left join (
select td.WID, count(*) cnt
from Topology t
inner join TopologyDefinition td on td.WID = t.TopologyDefinition_WID
inner join Topology_of_Organism too on too.Topology WID=t.WID
inner join Organism o on o.WID = too.Organism_WID
where td.QSSystem_WID=1
group by td.WID
) all gnm on all gnm.WID=td.WID
where td.QSSystem_WID=1 and td.WID<>5
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4.3 Future work
4.3.1. Horizontal gene transfer

One of the projects still running at the time of writing of this thesis is
development of more comprehensive computational framework for analysis of
horizontal gene transfers. Particularly, I plan to try and evaluate different
mathematical methods for horizontal transfer inference [67][101][102] which are
studied in broader sense, and integrate them to subsystem based annotation
approach, studied in this research. It has been shown that bacterial metabolic
pathways evolved adaptively mainly due to horizontal gene transfers [103], and
the possibility of horizontal gene transfer is one of the first questions that
microbiologists ask. Therefore analyzing the growing body of annotated QS

systems for horizontal transfer remains an important task.

4.3.2. Quorum Sensing portal

I consider ongoing project of building large scale portal for different
Quorum Sensing systems as the main inertia of this study. Some of anticipated

additional features will be:

- Comprehensive phylogenetic analysis of several QS systems

- Direct integration of portal with locally deployed Galaxy Framework.
- Automatization of QS system analysis whenever a new genome is
sequenced

- Integration of genomics with metagenomic servers.

- Conducting selection analysis on homolog genes of QS system gene

types.

While main purposes listed above are kept strict with definition of
biologically justified research projects, there are technical cases which can be of
great use for QS researchers lacking computational technical skills. For instance,
for being able to answer the example questions demonstrated in Chapter 4.2, one
would need to have SQL query writing skills and more importantly, familiarity

with the relational database scheme used in this study and the tables. To make
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these kinds of information more accessible to researchers, one additional idea is to
create a simpler query builder (within Galaxy framework), which will make it
possible to query meaningful questions without knowing underlying technical
details. Currently, the gene portal contains many data that await manual curation
and assisting this procedure with computational tools is an important task for the

future.
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