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Abstract 

The aim of the thesis is to propose an alternative to the existing traditional 

approaches of modeling semantic representations. The practical outcome of the thesis 

is a computer prototype for modeling lexical semantics, based on the theory of 

conceptual spaces and various methods for natural language processing. 

Traditional symbolic and connectionist approaches, it is argued, offer no credible 

explanation of meaning and semantics and attack the problem on two different, and 

to a large extent, incommensurable levels. Classical symbolic approach is rule based, 

using top-down processing and manipulation of discrete symbolic structures to 

generate appropriate representations, whereas connectionism uses a bottom-up 

functioning of a neural network to generate distributed representations. In their 

critique of connectionist approach, Fodor and Pylyshyn (1988) claimed that 

connectionism cannot naturally account for the compositionality of language and 

thought, designating it as merely implementational strategy simulating the 

functionality of a symbol system. Abstract thought and problem solving, they argued, 

are highly structural everyday activities that cannot be successfully explained by 

connectionism. Unlike symbolic representations, neural networks simply do not have 

structural or methodological means to account for more abstract and hierarchical 

representations, and to use these same representations for further reasoning – the 

network does not operate upon the representations in the sense of ‘being detached 

from’, as is the case in symbolic approach, but within representational structures. 

Classical symbolic approach, on the other hand, has its own set of problems. 

Reserving the domain of abstract thought and problem solving, symbolic approach 

has no answer to the challenges brought up by lower-level cognition, such as 

perception or bodily experience. In a classical computational system, to solve a 

specific problem, the decisions need to be hand-coded into the system as rules, in a 

top-down manner. Such system cannot represent the emergent properties of the 

environment, nor the bottom-up influences of lower-level cognition on higher-level 

cognition (van Gelder 1990). A further, more pressing problem for symbolic 

approach is its psychologically inadequate theory of semantics, based on the realist 

view of the world. By this view, concepts are discrete symbols that correspond to 

entities and categories in the world. Our conceptual symbol system is innate and 
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made meaningful via its capacity to correspond correctly to these entities and 

categories in the world. Our representation is representation of external reality, a 

mirror of logical relations independent of individual’s belief, knowledge, perception, 

modes of understanding, or any other aspect of individual’s cognition. The success of 

our interacting with the world depends on our ability to successfully represent this 

external reality. Thought then, becomes a manipulation of abstract symbols, which 

get their meanings via correspondence with objectively defined entities and 

categories. The essential features forming such categories are abstract, amodal, 

arbitrary elements that take on their meaning by a principle of compositionality. 

From a standpoint of cognitive psychology, such approach has serious logical and 

empirical problems. For example, experimental research has shown that categories 

do not conform to the rules of logic and ontological view of the world as one based 

on defining features. In most cases, the structure of a category is “radial”– that is, the 

category has some central or prototypical members with other members more or less 

related to these central members. Learning the meanings of words is not analogous to 

processing abstract symbol structures. Meaning is not defined by a set of necessary 

and sufficient conditions, nor is it a part of static, ontologically defined view of the 

world, rather, meaning is a conceptual entity, affected by individual’s beliefs, 

background knowledge and context. The deterministic structure of categories and 

concepts, it seems, could be appropriate only in matters of mathematics and logic. 

Gärdenfors' theory of conceptual spaces (2000) is proposed as a solution to modeling 

semantic representations, both as a mathematical framework for building computer 

applications, as well as a plausible semantic theory. The main argument goes as 

follows: meanings are conceptual structures. Since the semantic relations are 

inherently conceptual, they should be modeled on a conceptual level by employing 

conceptual spaces. Furthermore, the conceptual level should be taken as a mediating 

level between traditional symbolic and connectionist representations in order to 

mitigate well-known issues of both accounts. 

The practical outcome of the thesis is a computer prototype, based on the theory of 

conceptual spaces coupled with various statistical and probabilistic methods for 

natural language processing. These are proposed as alternatives to the traditional 

symbolic and connectionist models. Probabilistic approach, particularly, brings fresh 
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air into the traditional accounts of language and cognition. It is conceptually closer to 

the symbolic approach (by utilizing top-down processing), but overcomes many of 

its vices. For one, it allows for hybridity and coupling of different representational 

architectures. It utilizes associative, approximating data structures and thus allows 

the ‘environment’ to influence the representational structure of the system. 

Furthermore, the notion of probability represents a set of top-down constraints 

which, taken as inductive biases (e.g., as the constraints on learning and memory), 

can account for effects in human similarity judgments (see Griffiths et al. 2008, 

2010, Clark (in press)). Coupled with conceptual spaces, the proposed model offers a 

more flexible framework for creating and exploring semantic representations, and the 

effects inductive biases have on individual’s representation of meaning and 

semantics. 

The role of conceptual spaces in modeling meaning and semantics of natural 

languages is significant. What we get, in machine-readable form, are not only 

conceptual representations of objects, concepts, properties and similarity relations, 

but the framework that exploits the underlying quality dimensions and projects them 

onto conceptual space according to the mode of graded categorization. By 

connecting various levels of analyticity, e.g. by coupling conceptual space with the 

top-down and bottom-up approaches for natural language processing, such a system 

becomes truly hybrid.  

 

 

Keywords: cognitive modeling, conceptual spaces, computer model, meaning, 

probability, representations, semantics 
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There are no shades of grey in this. Truth is, after all, a binary function. 

(Doug Edwards, the long-time online marketing guy at Google) 

 

 

1 Introduction  

One of the main issues in cognitive science is how meaning is being represented. 

Most cognitive theories support the constructive approach to cognition and argue that 

meaning and semantics should be modeled by employing some kind of 

representational structure. Beyond this general idea, the opinions quickly diverge on 

many of the essential aspects, starting with the notion of representation, the nature of 

representational relation, the degree of representational complexity (e.g. levels of 

description) needed for modeling particular cognitive phenomenon, the significance 

of certain cognitive functions for explaining main features of human mind, etc. All of 

which over the years resulted in the two, apparently competing and to some extent 

incommensurable, traditional paradigms: a) symbolic approach, also termed classical 

computationalism, which defines cognition as computation over abstract symbolic 

structures, or b) connectionist approach, or connectionism, which models dynamic 

and emergent properties of cognition (such as perception or motor control) using 

artifical neural networks (ANN) and argues these should be grounded in the 

environment. 

An alternative to the traditional representational theories are various situated 

(Clancey 1997) and embodied approaches to cognition (e.g., Dynamical Systems 

Theory or DST; Beer 1995a, Thelen and Smith 1994). In similar spirit as 

connectionism, the embodied approach claims cognition strongly depends on the 

interaction with the external world, but unlike connectionism emphasizes the claim 

that in many cases our cognizing is direct and unmediated, with no real use for 

(internal) representations (see e.g., Brooks 1991, Varela et al. 1991, Wheeler 1994, 

Thelen and Smith 1994, van Gelder 1995). Proponents of embodied approach further 

argue that the traditional notion of representation is only a theoretical construct with 
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the aim to illuminate (whether describe, explain or model) some cognitive 

phenomena, not a feature of human mind
1
. 

While embodied approach certainly poses some challenges to the more traditional 

symbolic and connectionist views, most of its examples refer to lower-level 

cognition (e.g. perception, motor control), where interaction with the environment is 

largely unmediated. Arguably, in such cases we might not really need to employ 

representations – in case of reactive systems (Brooks 1991, Beer 1995a) for example, 

a robot builds its internal model exclusively by directly interacting with the 

environment. Higher-level cognitive processes, on the other hand, are per se highly 

representational and abstract (e.g. language comprehension, planning, problem 

solving etc.), and hence generally evade the scope of the embodied approach (e.g. see 

Svensson and Ziemke 2005).  

Overall, the discussion has been fruitful (e.g., Brooks 1991, Beer 1995a/b, 2003, 

Bickhard and Terveen 1995, Bickhard 1998, 2000, Clark 1997, 1998, Bechtel 1998, 

2001, van Gelder 1995, 1998, Chemero 2000a, Dretske 1988, Grush 1997, 2004, 

Millikan 1984, 1996, and Ramsey 2007). According to Chemero, the embodied 

cognition approach “has changed the tenor of recent writings on representation: the 

debate has changed, in part at least, from being about how to determine the content 

of representations to a debate about what it is to be a representation in the first place” 

(2000b, p. 11). The embodied approach does signal a general warning that cognition 

reflects bodily experience and that explanation of cognitive phenomena cannot be 

isolated from our interactions with the world, nor should they necessarily involve 

representations. As this thesis is about representing meaning and semantics, both in 

the domain of abstract thought, the embodied approach is not further discussed. 

Moreover, in following chapters I argue that meaning and semantics of natural 

languages are highly representational, but cannot be properly explained by either of 

the traditional accounts. Gärdenfors' theory of conceptual spaces (2000) is proposed 

as a solution to modeling semantic representations, both as a mathematical 

framework for building computer applications, as well as a necessary theoretical 

input to the theory of cognitive semantics. The construction of computer prototype 

                                                 
1
 A more radical form of embodied approach, commonly termed as anti-representationalism, strongly 

supports non-representational alternatives to modeling cognition (e.g., Brooks 1990, 1991, Beer and 

Gallagher 1992, Wheeler 1994). 
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for modeling lexical semantics, based on the theory of conceptual spaces and various 

methods for natural language processing, is presented in the final part of the thesis. 

2 Motivation, goals and methods  

In the spirit of cognitive science, this is an attempt to review and implement some 

(predominately computational) ideas regarding cognition, and meaning and 

semantics in particular – a smörgåsbord of research covering areas of linguistics, 

philosophy, cognitive psychology and artificial intelligence (AI). A large part of the 

thesis is a critical analysis of traditional symbolic and connectionist approaches to 

modeling representations, and corresponding semantic theories, with the aim to 

illuminate the fundaments and set up the argument for a more plausible semantic 

theory. Main methodological underpinnings of the thesis, both from constructive and 

explanatory view, are the theory of cognitive semantics (Lakoff 1987, Langacker 

1986, 1987, Lakoff and Johnson 1980), the theory of conceptual spaces (Gärdenfors 

2000, 2011) and the prototype theory (Rosch et al. 1976, Rosch 1978a/b). The 

practical goal of the thesis is the construction of SpaceWalk: a computer model for 

representing semantics of natural languages based on the theory of conceptual 

spaces.  

The proposed theory and methodology behind SpaceWalk is part of cognitive 

semantics. I reject both traditional symbolic and connectionist approaches in favor of 

Gärdenfors' theory of conceptual spaces, anchoring meaning in the conceptual realm 

of individual language user. An underlying argument is that both traditional theories 

are unsuitable for modeling semantics of natural languages. More importantly, 

classical computationalism and connectionism approach the modeling of cognition 

on two different, non-complementary levels. Whereas the former operates on 

symbolic level and aims to address higher-level cognitive processes (such as abstract 

thought and reasoning), the latter operates on subsymbolic (and subconceptual) level, 

focusing on lower-level emergent cognitive processes (such as perception and motor 

control). As a consequence, these architectures are incompatible and cannot be 

directly mapped onto each other or result in some hybrid form that could offer a 

more unifying cognitive theory. 
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My main argument goes as follows: meanings are conceptual structures. Since the 

semantic relations are inherently conceptual, they should be modeled on conceptual 

level by employing the theory of conceptual spaces. I argue that traditional realist 

view of semantics, supported by philosophical heritage of propositional logic, where 

meanings are represented as abstract symbolic structures governed by truth 

conditional semantics and syntactic rules, is generally flawed. Instead, and this will 

be emphasized throughout the thesis, meanings, concepts and categories are highly 

imbued. Meaning is not something static and rule-governed, but largely dependent on 

context and conceptual and categorical knowledge. Furthermore, how we act and 

reason, or do anything else for that matter, is constrained by our environment: social, 

cultural and physical. Therefore, our perception of the world is as much constrained 

and influenced by our beliefs as by the ‘environmental context’ we live in. Any 

plausible cognitive theory should be able to address these issues. As we shall see, 

both classical computationalism and connectionism come at a cost. 

It is often said that the purpose of modeling in cognitive science is both constructive 

and explanatory. On the constructive side I argue, that conceptual level – as a 

mediating level between symbolic and connectionist representations – should be 

employed in order to mitigate well-known issues of both traditional accounts. 

Practical alternatives to traditional accounts are proposed in the later parts of the 

thesis, where I discuss various statistical and probabilistic approaches to natural 

language processing and their implementation in SpaceWalk. Especially the latter, 

probabilistic models, have recently received a growing attention from cognitive 

science community (see e.g., Chater 2006, Chater and Brown, 2008, Chater et al. 

2010, Griffiths et al. 2010, Clark 2012), as they promise to solve some of the issues 

unsuccessfully addressed by more traditional, statistical approaches. Hence, I argue 

that probabilistic approach, coupled with the theory of conceptual spaces, provides a 

superior functional and explanatory model of semantics, compared to more 

traditional methods. It is a novel and innovative approach to semantics, with the end 

result (SpaceWalk) immediately applicable to a wide area of systems, as well as areas 

of research in cognitive semantics, machine learning, knowledge representation and 

semantic web.  
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3 Structure 

The thesis is divided in 4 parts. I start off by defining the general notion of 

representation (Part I) and divide representational genera into three forms: symbolic 

(language-like or logical), iconic (image schemas) and distributed (neural networks). 

I discuss the nature of individual representational relation as well as its content and 

structure. Part II is a detailed analysis of the two traditional approaches to modeling 

cognition, symbolic approach (or classical computationalism) and connectionism. 

My aim is to examine the underlying theory and discuss the validity of main 

arguments brought forward by proponents of each approach. The focus is on general 

hypotheses, rather than on more specific and peculiar instances
2
. In similar spirit, the 

strengths and weaknesses of both approaches in relation to language will be 

discussed.  

Part III focuses on theories of meaning and semantics. Traces of philosophy of logic, 

which prevailed in traditional symbolic approach to cognition, are clearly evident in 

the classical realist semantics. I argue against realist semantics, proposing cognitive 

semantics as psychologically more plausible solution. After arguing that realist 

semantics has little explanatory value when considering the notion of meaning and 

semantics in natural languages, and discovering that the image-schematic formalisms 

proposed by cognitive semantics are opaque and under-defined, I argue for the theory 

of conceptual spaces as the most appropriate approach to modeling semantic 

structures. While sharing main tenets of cognitive semantics, conceptual spaces, 

unlike image-schemas, offer a precisely defined mathematical framework upon 

which to build and exploit these semantic structures.  

Part IV discusses the construction of computer prototype for modeling lexical 

semantics, called SpaceWalk. I start with two main alternatives to the existing 

symbolic and connectionist models of language: probabilistic and similarity-space 

approaches to natural language processing. The former is a top-down approach and 

therefore roughly corresponds to symbolic view on modeling cognition, whereas the 

latter uses bottom-up processing similar to connectionist modeling. Both approaches 

are compared and tested based on their structural and computational characteristics, 

                                                 
2
For example, when discussing classical computationalism, I won’t review the variety of symbolic 

architectures, but instead look for fundamental ideas that are characteristic and essential to symbolic 

approach. 
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as well as on the theoretical assumptions that they bring to the discussion of 

semantics. I conclude with the empirical evaluation of SpaceWalk, along with 

mentioned methods for natural language processing.  

Before we start I’d like to emphasize three things. First, due to the complexity of the 

field, none of the theories presented here should be taken as universal or self-

sufficient. Each addresses problems on a different level and characteristically focuses 

on only a small subset of cognition. Hence, the need for an appropriate hybrid 

architecture involving multiple representational architectures is emphasized 

throughout the text. Second, I argue that cognitively realistic account of semantics is 

possible by implementing conceptual spaces as a mediating level between symbolic 

and subconceptual representations, and that such solution is also step towards 

building a hybrid system. Third, methods and models discussed in the thesis are 

taken as explanatory tools, i.e. instruments used to explore, simulate or explain 

particular aspects of cognition, not mechanisms of human mind. Thus, while 

conceptual spaces make a beautiful analogy, we do not really employ Voronoi 

tessellations in our thought. 
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PART I: REPRESENTATION 

Section 1: The notion of representation 

1 Introduction 

The origin of the word representation comes from Latin repraesentatio(n-), from 

repraesentare: to “bring before, exhibit”. According to the Oxford English 

Dictionary, Representation (n.) is 

a. The action or process of presenting to the mind or imagination; 

b. Philos. An image, concept, or thought in the mind, esp. as representing an 

object or state of affairs in the world; spec. a mental image or idea regarded 

as an object of direct knowledge and as the means by which knowledge of 

objects in the world may indirectly be acquired ... Also: the formation or 

possession of images, concepts, or thoughts in the mind, esp. as representing, 

or as a means of acquiring knowledge of, objects or states of affairs in the 

world. (OED 2011) 

In cognitive science, the general notion of representation is twofold: on one hand 

representation refers to an entity that is used to represent some thing. On the other, 

the aim of representation is to represent – to denote the relation between 

representation and what it represents: a meaning relation of some sorts (Cummins 

1989). As Cummins (1989) points out, there are two ways of understanding the 

notion of representation: as representations (vehicles carrying information) or as a 

representation (without s; a relation of sort between representation and what is being 

represented). The former presents the problem of determining which representational 

structures or states are used by cognitive systems to represent. The latter presents the 

problem of defining the relation between representations and what they are 

representations of. For Cummins (2002), the former is a scientific problem, the latter 

a philosophical (metaphysical) one. Here, I deal with both, but the emphasis is on the 

explanatory and functional aspects of modeling representations. The focus is mostly 

on computational approaches, different levels of representational complexity, and 

problems of modeling semantics of natural languages. I start by reviewing the 

general notion of representation, as defined by Haugeland (1991). 
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2 The notion of representation 

One of the most discussed and influential reflections on the notion of representation, 

is Haugeland’s article Representational Genera (1991). There, Haugeland identifies 

three “canonical accounts” of representational genera, logical or language-like, 

distributed and image-like representations: 

A genus of representation is a general kind, within which there can be more 

specific kinds, importantly different from one another, yet generically alike. 

The level of generality intended can be indicated by example. Natural 

languages, logical calculi, and computer programming languages, as well as 

numerous more specialized notations, are all interestingly different species; 

but they are generically alike in being broadly language-like or logical in 

character. By contrast, pictures, though equally representational, are not 

linguistic at all, even in this broad sense; rather, they, along with maps, scale 

models, analog computers, and at least some graphs, charts, and diagrams, are 

species in another genus of broadly image-like or iconic representations. So 

the level of generality intended for representational genera is that of logical 

versus iconic representations, thus broadly construed. (Haugeland 1991, p. 

171)  

In literature, these respectively relate to classical symbolic approach 

(computationalism), neural networks (connectionism; employing distributed 

representations) and iconic approach (image-schemas, mental images). Whereas the 

first two have been dominant paradigms over the years, the latter has served more as 

an underlying hypothesis in different cognitive theories (cf., Johnson-Laird 1980, 

Kosslyn 1981, Lakoff 1987, Langacker 1987).  

The main question then is: what is the distinctive ‘essence’ of each genus? 

To answer this question we first need to define essential features upon which we 

would be able to discriminate between representational genera. Haugeland argues 

that traditional approaches are based on wrong assumptions. Most standard 

characterizations of the notion of representation focus on “standing in for”, that is, on 

relational structure of representations – a distinctive relation between representing 

tokens (representational structure) and their represented contents or designation. 

However, the essential differentia, so Haugeland, should be sought in what is 

represented, i.e. in the contents, not in the nature of relation itself. 
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2.1 Distingushing the genera by relation 

The distinct characteristic of logical representations is their generative compositional 

semantics. Tokens such as sentences, rules, formulae etc. are complex structures – 

they have a recursively specifiable structure and determinate atomic constituents 

allowing the semantic significance of the whole to be determined by its syntax and 

semantic significance of its constituents. As we shall see, the contributions of 

possible structures and their constituents are fixed arbitrarily, but the significance of 

the compound object is not at all arbitrary given a particular set of atomic elements. 

Iconic or image-schematic representations, on the other hand, represent their contents 

through some form of isomorphism, from very obvious, carrying strong resemblance 

or similarity to things in pictures and scale models for example, to purely 

mathematical or abstract, such as graphs, wiring diagrams and analog computers. 

There are many forms of isomorphism and the ones relevant to particular 

representation are those determined by the scheme to which they belong. A 

monochromatic picture token might represent its object as monochromatic or color, 

depending to which scheme it belongs to (e.g., color or grayscale). Thus, the 

selection of an isomorphic structure is initially arbitrary or conventional; but once 

fixed, the contents of particular iconic tokens are not arbitrary. 

The distinctive feature of distributed representations is superposition. Each element 

in a network is encoded across all the token elements and the different contents are 

superimposed on one another – hence, distributed. Each element of the 

representational token in some way represents each portion of the represented 

contents. This requires the prior specification of representational tokens and the 

identification of various content portions, of what and how is being encoded within 

particular scheme. Once the details of particular representational scheme have been 

fixed, what particular token represents is not arbitrary. 

2.2 Representing vs. recording 

We can differentiate representational genera based on distinctive forms of 

representing relations: logical representations are characterized by compositional 

semantics, iconic representations by structural isomorphism and distributed 

representations by spread-out superposition. Intuitively, these distinctive relations 
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should be mutually exclusive (and thus sufficient) to distinguish between individual 

representational genera. But, as Haugeland (1991) argues, that is not the case. These 

distinctive relations should be understood more in terms of ‘recording devices’ or 

processes, than of respective representational genera. The distinction between 

something being representation or mere recording device is evident in Haugeland’s 

condition for sameness of representational genus: 

... if the representations of one scheme can be witlessly transformed into 

equivalent representations from another scheme by a general procedure, then 

those schemes are species of the same genus. (ibid., p. 181) 

The point Haugeland makes is that cross-generic ‘translation’ (or transformation) 

requires “wits”; otherwise it is not a representation but a mere recording of primary 

scheme. This problem is clearly evident in the case of photographed inscription. A 

photograph of a written description on a piece of paper preserves the original 

representation (or more precisely, the ability of the original to represent). But it is 

clearly not an image of what inscribed text was about, i.e. there is nothing in the 

image (read ‘image-like’ or ‘iconic’) that conveys the intended meaning of the 

original – the representing remains essentially logical in character. Thus, the logical 

representation has in no sense been translated into iconic one, but merely ‘recorded’ 

onto iconic medium. 

What then is the difference between recording and representing? The confusion 

arises from the fact, to stay with the example of the photographed inscription, that 

the photo both represents and records the text, but the text itself is a representation of 

something else – it does not follow that the photo is representing what is being 

represented in the text inscription, it merely records it; this issue is often overlooked. 

Recording is a trivial mechanical production process, like copying: it is reversible 

(‘playback’), it can reproduce copies from the original, and it is partial in the sense 

only certain aspects of the original are being recorded. The aim of the recording is to 

preserve the “schematic type”, i.e. the “type-identity” of the representation being 



Section 1: The notion of representation 

11 

 

recorded (ibid., p. 180). There’s no cognitive load, both recording and copying are 

completely witless, oblivious to content and ignorant to the world
3
. 

By contrast, representing is not witless. Of course, to continue with the case of 

photographed inscription example, there is an iconic representation of inscription on 

a piece of paper, but the intended meaning of the original representation is not 

conveyed, only recorded – the original representation is still logical in character.  

The question is can representational genera be differentiated based on the nature of 

representational relation alone? All traditional accounts seem to focus primarily on 

the representational relation. For Haugeland, such criterion is not discriminatory, but 

rather insufficiently exclusive. The essential differentia characteristic of iconic 

representations, for example, is to be abstractness and isomorphism. Yet, argues 

Haugeland, both could be found in many other tokens. 

As a counter-example, consider recursively generated maps or floor plans. What 

gives them semblance of being logical or language-like? An architectural drawing 

created with computer software is stored within system as a set of bytes and formal 

specifications (line-drawing commands) defined by programming language. The 

process of drawing is just a “witless process” of recovering the image. Thus, 

recursively generated maps are not logical representations, but icons recovered from 

logical recordings (in which the image is being stored). 

In similar spirit, take for example Wittgenstein’s picture theory of meaning (1922), 

where sentences represent worldly facts by “picturing” their logical structure. 

Wittgenstein argued that language is not sufficient for expressing its own logical 

structure – constituent parts of a proposition can correspond to some aspect of the 

world, but correspondence itself can only be shown (Stern 1995). Following this 

idea, for some logical representational scheme the picture theory could provide 

plausible semantics. As in previous example, the character of the scheme remains 

logical, but recorded iconically. A special kind of recording though: “... since there 

have been no actual prior sentences to record iconically, ... the recordings are of 

‘virtual sentences’ – something like the facts pictured” (Haugeland 1991, p. 182). 

                                                 
3
 Witlessness is not level bound – there is no level at which a witless process could count as intelligent 

or sensible (for example, a certain process can be seen as intelligent on cognitive level but mechanical 

on lower level) 
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This emphasizes two things about representational relation. First, isomorphism 

cannot be an essential discriminating feature of iconic representations because it can 

apply equally well to other cases that are not necessarily iconic, the relation between 

sentences and facts, for example. Moreover, isomorphism can be found everywhere: 

chess transcripts and the game’s moves are one example, music and notation, etc. 

Second, isomorphism might just be the way the contents are being recorded, not 

represented. Thus, representational relation cannot be a sufficient criterion for 

discriminating among genera. 

2.3 Skeletal vs. fleshed-out contents 

Haugeland argues that the essence of representational genera should be searched for 

in the nature of represented content, instead of relation. But what are the contents of 

representational genera? What is being represented? 

The problem we need to attack first is how to differentiate the contents of 

representational genus from the real-life, "fleshed-out" contents. In real environment, 

only part of the stimulus or information (whether perceptual or conceptual) is usually 

represented, for the rest, our cognitive capacities, such as categorization and 

memory, help us ‘fill-in’. These capacities are context dependent and dynamic (much 

experimental psychology research confirms this, e.g., Rosch 1978, Karmiloff-Smith 

1992, Barsalou 1999, 2008). To get to the skeletal contents then, we need to derive 

to-be-represented contents from background contextual information and qualitatively 

differentiate these contents among genus. This formula should give us the skeletal 

contents of individual genus, stripped off of the effects of real-life environment, that 

is, of other representations and background information. By analyzing this 

substructure, one would derive the essential characteristics of particular 

representational genus. In essence, skeletal contents is seen as a foundation for 

fleshed-out contents of real-life environment – a kind of primal substructure detached 

from background information and any characteristics of alternative representational 

schemes. Take for example the skeletal contents of language as defended by 

symbolic paradigm: language is composite, with atomic sentences and content as 

atomic facts (in the spirit of formal Fregean semantics), where the meaning of an 

expression is a function of the meanings of its parts and of how they are syntactically 

combined. 
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2.4 Discussion 

Even if we accept the premises given above some open questions remain? How can 

this skeletal content carry sufficient explanatory power? It is an abstraction, or more 

precisely, a substratum of certain (but always partial) information derived from 

analysis of cognitive processes in real-life situations, or their simulations, being 

further constrained by the nature of particular representational genus. This provokes 

related questions: Can different representational schemes combine or complement? If 

yes, as Haugeland argues, how do they combine? As we shall see, this is not just a 

technical issue. The main question is how can competing theories complement each 

other? And furthermore, to what extent are potential hybrid systems psychologically 

plausible? In attempt to construct a computer model based on psychologically 

plausible theory of semantics, these issues will re-emerge throughout the thesis.   

As representations have a functional role of ‘standing in for’, they depend crucially 

on the general background knowledge and context. What is often overlooked when 

discussing representational approaches to cognition is that by back-engineering a 

particular cognitive process into some composite representational structure, we lose 

large amounts of contextual information that, in reality, in the flux of our everyday 

life experiences, is essential to our being and functioning in the world. The problem 

is contextual information and background knowledge cannot be simply reduced to a 

set of simple representational elements. This, of course, is the deficiency of any 

formal attempt of modeling cognition: modeling any significant aspect of cognition 

(e.g. language comprehension) inevitably produces a very partial, ‘chunky’ image. 

And, while any credible representational theory should be able to tell us something 

about the represented world, it should also indicate the shortcomings of individual 

approach, particularly as representation is taken to be explanatory primitive.   

Haugeland acknowledges these problems, drawing from artificial intelligence 

research
4
. Using language as an example he argues, that the whole picture of the 

                                                 
4
 A frequent situation in using certain representational formalisms is that we tend to ascribe them more 

functionality and explanatory power that they really (can) carry. Good old fashioned AI or GOFAI 

(Haugeland 2000, p. 301) is a good example: a system using representations for navigating and 

reacting to the environment is often compared to human-like intelligence and motor skills. Such 

anthropomorphic explanations ignore a plethora of cognitive issues in everyday situations where there 

are many factors at play. Here, Haugeland agrees with Searle (1980, p. 288) that such system 

understands nothing – all these representations are external to the system and hardwired by the 

designer. 
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situation, fleshed-out contents of the situation, can be generated from the 

combination of representational structures:  

In other words, the full content of a discourse, in terms of which it is 

workable at all, is simultaneously a function of two determining factors: the 

skeletal content of those linguistic tokens themselves, plus whatever else the 

relevant sensible speakers of that language can count on one another to grasp 

in that context. That the latter is essential in practice does not show that the 

former is impossible in theory, or indeed inessential. (ibid., p. 188) 

By this view, the contextual information becomes a part of some internal 

representational structure (a mental image, for example) of individual language user. 

This notion has a long history in philosophy of mind. The only difference is that, 

traditionally, thought “is the locus of all contentfulness” (where the contents are 

somehow conferred on linguistic tokens), whereas for Haugeland, this locus is in the 

symbiosis between (logical representation of) skeletal linguistic content and internal, 

mental representation of background knowledge. How exactly should such symbiosis 

(between different representational structures) work, underlies large part of this 

thesis. 

It is important to note that the character of representational relation is an important 

discriminatory factor and, while these relations (whether logical, distributed or 

image-like) by themselves might not be sufficient criteria for discriminating among 

genera, they are still an important part of modeling cognitive processes. The 

character of representational relation inevitably constrains the contents, levels of 

abstraction and consequently the nature of cognitive process it aims to describe. For 

example, higher cognitive processing such as language use characteristically 

involves logical and conceptual representations, which cannot be sufficiently 

represented on the lower-level, dealing with perception, sensory-motor tasks etc. – 

the latter are, characteristically, subsymbolic and subconceptual. Moreover, there is 

rarely only one kind of representational structure involved.  

The above discussion opened some general theoretical and functional aspects of 

modeling representations. Following chapters present two traditional paradigms, the 

classical symbolic approach and the connectionist approach, in more detail. But most 

of Haugeland’s intuitions remain potent, especially in the context of formalism, 
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power and scope of individual representational approach, and the possibility of 

combining them into a hybrid system. 
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PART II: TWO PARADIGMS 

Section 2: Symbolic paradigm 

3 Conceptual foundations: Homo Ex Machina 

There are many different flavors to symbolic approach of modeling cognition, but the 

common underlying theoretical foundation characteristic to all is the idea of 

cognition as computation. Computational theory of mind has a long and firm 

tradition in cognitive science, taking from philosophy of logic, mathematics and 

classical artificial intelligence (AI). With the metaphor of 'mind is a computer', 

cognitive systems are being modeled as formal symbol manipulation systems: the 

mind is a symbol processor and mental states are related to computational states. 

This underlying hypothesis is best represented by the Turing machine. 

3.1 Can machines think? 

Alan Turing’s seminal paper Computing Machinery and Intelligence (Turing, 1950) 

started the debate whether human intelligence could be modeled by a digital 

computer. While the back-drop to this inquiry is a question "Can machines think?", 

Turing finds this question difficult to define and instead proposes to solve it by 

‘imitation game’, now called a Turing test. The suppletory question to "Can 

machines think?" becomes “Can computer pass the Turing test?”. Many variations of 

the Turing test exist (for an overview see Akman and Blackburn 2000, Moor 2000, 

Rapaport 2005), but in essence, their purpose is to test the computer’s ability of 

human-like performance in natural language conversation. The participant (human or 

computer) passes the test if it convinces the interrogator that it is human
5
. 

The new form of the problem can be described in terms of a game which we 

call the 'imitation game’. It is played with three people, a man (A), a woman 

(B), and an interrogator (C) who may be of either sex. The interrogator stays 

in a room apart front the other two. The object of the game for the 

interrogator is to determine which of the other two is the man and which is 

the woman. He knows them by labels X and Y, and at the end of the game he 

                                                 
5
 The rules being “an average interrogator will not have more than 70 percent chance of making the 

right identification after five minutes of questioning” (Turing 1950, p. 442). 
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says either "X is A and Y is B" or "X is B and Y is A." The interrogator is 

allowed to put questions to A and B thus: 

C: Will X please tell me the length of his or her hair? 

Now suppose X is actually A, then A must answer. It is A's object in the 

game to try and cause C to make the wrong identification. His answer might 

therefore be: 

“My hair is shingled, and the longest strands are about nine inches long.” 

In order that tones of voice may not help the interrogator the answers should 

be written, or better still, typewritten. The ideal arrangement is to have a 

teleprinter communicating between the two rooms. Alternatively the question 

and answers can be repeated by an intermediary. The object of the game for 

the third player (B) is to help the interrogator. The best strategy for her is 

probably to give truthful answers. She can add such things as “I am the 

woman, don't listen to him!” to her answers, but it will avail nothing as the 

man can make similar remarks. 

We now ask the question, “What will happen when a machine takes the part 

of A in this game?” Will the interrogator decide wrongly as often when the 

game is played like this as he does when the game is played between a man 

and a woman? These questions replace our original, “Can machines think?” 

(Turing 1950, p. 433-4). 

Turing test is an empirical test of a machine's ability to exhibit intelligent behavior – 

a simple but powerful examination underlying some of AI and philosophical 

hypotheses about machines imitating human intelligence
6
. Propositional character of 

language takes the main stage, and “the question and answer method seems to be 

suitable for introducing almost any one of the fields of human endeavor that we wish 

to include.” (Turing 1950, p. 435). 

But, what kind of machine could perform such a test? And further, what kind of 

device could perform any computation whatsoever? What follows, is an explanation 

of computation as a mechanical procedure. 

                                                 
6
 The question whether passing a Turing test is a sufficient demonstration of cognition has met a 

strong criticism from a number of scholars (for example Dreyfuss (1972, 1992), Harnad (1990), but 

most notably Searle (1980)). Since universal Turing machine is the fundamental ingredient of 

computational approach, its critique is targeting computational approach in general. 
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3.2 The Turing machine 

Turing (1936, 1938) designed a very simple device (now called the Turing machine) 

with a finite read/write control head that operates on an unbounded tape and can do 

four things: move the tape in both directions, read (a symbol on the tape), 

write/overwrite (a symbol on the tape), and change its ‘internal’ state. The input is 

given in binary form on the machine's tape (divided into squares with or without 

symbols) and the output consists of the contents of the tape when the machine halts 

(stops operation). The idea is to decompose an object’s behavior into finite, easily 

manageable ‘chunks’ or states. At any given point the machine is in one of its states. 

The possible operations are represented by instructions, table of rules or machine’s 

‘machine table’. The machine table can be thought of as the machine’s ‘program’: it 

tells machine what to do. The upshot of operating on formal symbolic encodings is 

that we can further encode the operations (machine table) and the contents of the tape 

of any Turing machine into strings and feed them to another Turing machine. We get 

a universal Turing machine that can simulate any other machine (Figure 1).  

It is possible to invent a single machine which can be used to compute any 

computable sequence. If this machine I is supplied with a tape on the 

beginning of which is written the S.D ["standard description" of a machine 

table] of some computing machine M, then I will compute the same sequence 

as M. (Turing 1936, p. 241-2) 

 

 

Figure 1: Universal Turing machine 

The Turing machine is not a physical machine, but an abstract (and universal) 

theoretical specification of a possible machine, a mathematical tool equivalent to the 
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digital computer
7
. The essence of universal Turing machine is in its simplicity

8
 and 

power: it serves as a standard against which to compare computational systems. 

Turing’s goal was to define general properties of algorithms and computations 

characteristic of any computer and to define the limits of computation and the 

capacities of physical computing machines, later presented in the Church-Turing 

thesis
9
. But the underlying theoretical foundation was purely mathematical. It started 

with the discovery of paradoxes in Cantor’s set theory (and later Russell’s Paradox; 

for an overview see (Anellis and Drucker 1991)) and Hilbert’s attempt of redefining 

mathematics as a study of formal systems. Hilbert aimed to avoid paradoxes by 

axiomatization of classical arithmetic, stripping off the traditional contents of 

mathematics into purely formal system, in order to construct a complete formal 

theory of classical arithmetic. The main problem became finding a definite finitary 

formal procedure that could be used to unequivocally decide the provability of any 

claim in formalized mathematics (Cleland 1995, 2004).  This decision problem later 

became known as Hilbert’s Entscheidungsproblem. 

Thus, it is important to note that, initially, Turing built his machines to solve 

Entscheidungsproblem (see his early paper (Turing: 1936)), and Hilbert’s hypothesis 

is strongly reflected in Turing’s account of computation: computation is processing 

of symbols as formal meaningless structures, such processing must be fixed in 

advance, and there can only be a finite number of steps in any computation. Only 

later has Turing analysis been extended to computational capacities of physical 

machines, outlined in the Church-Turing thesis. According to the Church-Turing 

thesis (Church 1936, Turing 1936, Kleene 1967) all possible number theoretic 

functions which can be computable, can be computable by universal Turing machine. 

Later, the thesis has been extended (with no restriction to the number theoretic 

functions) to define the limit of computation in general (see Minsky 1967, p. 132-

                                                 
7
 Modern computer is much like Turing machine, except that computers have finite memory while 

Turing machine has infinite memory. Turing machine operates with a movable read/write head on an 

unbounded storage tape; if we restrict the head to move in only one direction and operate on finite 

tape we get a finite automata or a finite-state machine FSM (a modern computer could be thought of 

as a large network of finite-state machines). 
8
 Numerous attempts to define smallest possible universal Turing machine have been made (see for 

example  Shannon 1956, Minsky 1956, 1962, Rogozhin 1996)  
9
 For a great philosophical view on Turing machine, see Crane (2003). 
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138): anything computable can be computed on a Turing machine
10

. This shift, 

together with psychological (and anthropomorphic) interpretation of machine’s 

operations, set the foundations of AI. 

3.3 Can thought be mechanically explained? 

For beneath Turing’s “Can machines think?” there is another important question 

lurking around: “Can thought be mechanically explained?” For Turing, both 

questions are intimately connected. In “trying to imitate an adult human mind” with 

computational processes of the machine, Turing’s approach becomes purely 

anthropomorphic. The justification for computational explanation of mind  

... lies in the fact that the human memory is necessarily limited. ... We may 

compare a man in the process of computing a real number to a machine which 

is only capable of a finite number of conditions.... The machine is supplied 

with a ‘tape’ … running through it, and divided into sections … each capable 

of bearing a ‘symbol’. At any moment there is just one square ... which is ‘in 

the machine’. We may call this square the ‘scanned symbol’. The ‘scanned 

symbol’ is the only one of which the machine is, so to speak, ‘directly aware’. 

(Turing 1936, p.231) 

The anthropomorphic character of computation is evident from the following 

passages.  

Computing is normally done by writing certain symbols on paper. We may 

suppose this paper is divided into squares, like a child’s arithmetic book ...  

The behaviour of the computer at any moment is determined by the symbols 

which he is observing, and his “state of mind” at that moment ... 

Let us imagine the operations performed by the computer to be split up into 

“simple operations” which are so elementary that it is not easy to imagine 

them further divided. Every such operation consists of some change in the 

physical [sic] system consisting of the computer and his tape. We know the 

state of the system if we know the sequence of symbols on the tape, which of 

these are observed by the computer (possibly with a special order), and the 

state of mind of the computer. We may suppose that in a simple operation not 

more than one symbol is altered. Any other changes can be set up into simple 

changes of this kind... . 

                                                 
10

 Not all agree with such loose interpretation of Church-Turing thesis (see Copeland 1998 and 2002, 

Cleland 1993). The precise formulation of the Church-Turing thesis does not account for what can be 

calculated by a machine. Rather, it states that whatever can be computed by a mathematician working 

in accordance with ‘mechanical’ methods (that is, given a finite number of instructions, and being 

unaided by machinery)using only paper and pencil, can also be computed by a Turing machine 

(Turing 1948, p.9). 
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The operation actually performed is determined ... by the state of mind of the 

computer and the observed symbols. In particular, they determine the state of 

mind of the computer after the operation is carried out. 

We may now construct a machine to do the work of this computer... .  

We suppose ... that the computation is carried out on a tape; but we avoid 

introducing the “state of mind” by considering a more physical and definite 

counterpart of it. It is always possible for the computer to break off from his 

work, to go away and forget all about it, and later to come back and go on 

with it. If he does this he must leave a note of instructions (written in some 

standard form) explaining how the work is to be continued. This note is the 

counterpart of the “state of mind”. We will suppose that the computer works 

in such a desultory manner that he never does more than one step at a sitting. 

The note of instructions must enable him to carry out one step and write the 

next note. Thus the state of progress of the computation at any stage is 

completely determined by the note of instructions and the symbols on the 

tape. (Turing 1936, p. 250-4) 

This is a general praxis of advocating computationalism, with the quasi-cognitive 

terms being ascribed to the operations of the machine:  the machine has a ‘state of 

mind’ (it is in a certain state), it ‘observes’ the environment (the symbols) and 

‘behaves’ accordingly (to the rules of operation), it can ‘forget’ (erase symbol, 

change state), ‘go on with it’ etc.  

By such view, human calculation is purely mechanical and devoid of any cognitive 

content: as Dennett (1986) pointed out, the Turing machines “presuppose no 

intelligence” (p. 83). Thought processes are broken down into a series of smaller, 

easily definable and mechanically ‘traceable’ steps: calculation depends on our 

brains following a set of simple mechanical rules and sub-rules, which are such that 

they can also be followed by a machine. In the process of computing, the ‘machine’ 

could be at any point replaced by the ‘human machine’ and vice versa. Intelligence-

like-behavior emerges from the overall complexity of the system: machine’s ability 

to simulate the creative aspect of human problem-solving (see Turing 1947, p. 103–

4). Thus, the early AI became “[t]he science of making machines do things that 

would require intelligence if done by men” (Minsky 1968, p. V).  
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4 Machine as a psychological paradigm 

4.1 Physical Symbol Systems Hypothesis 

The science of making intelligent machines started with the reformulation of 

Turing’s idea of mechanical symbol manipulation systems. In 1972, and later in 

(Newell and Simon 1976, Newell 1980), Newell and Simon laid the foundations with 

the definition of Physical Symbol Systems (PSS) and Physical Symbol Systems 

Hypothesis (PSSH), which marked the start of classical AI. 

A physical symbol system consists of a set of entities, called symbols, which 

are physical patterns that can occur as components of another type of entity 

called an expression (or symbol structure). Thus, a symbol structure is 

composed of a number of instances (or tokens) of symbols related in some 

physical way (such as one token being next to another)... Besides these 

structures, the system also contains a collection of processes that operate on 

expressions to produce other expressions: processes of creation, modification, 

reproduction and destruction. A physical symbol system is a machine that 

produces through time an evolving collection of symbol structures. Such a 

system exists in a world of objects wider than just these symbolic expressions 

themselves. ... 

The Physical Symbol Systems Hypothesis. A physical symbol system has the 

necessary and sufficient means for general intelligent action. (Newell and 

Simon 1976, p. 116) 

Newell and Simon were not interested in philosophical issues, rather, their mission is 

empirical: to apply and test computational models in domain of cognitive science, 

and anchor computational theory of mind as a prevailing approach within AI and 

cognitive psychology. PSSH is an empirical hypothesis with aim to define a 

universal class of systems capable of intelligent behavior
11
. As they point out, “[n]ot 

only are psychological experiments required to test the veridicality of the simulation 

models as explanations of the human behavior, but out of the experiments come new 

ideas for the design and construction of physical symbol systems” (Newell and 

Simon 1976, p. 120).  

For Newell and Simon “the symbolic behavior of man arises because he has the 

characteristics of a physical symbol system” (ibid., p. 119). For PSSH, human 

                                                 
11

 This agenda is similar to Turing’s definition of Universal Turing Machines. In his later, more 

detailed account of PSS (Newell, 1980), Newell explicitly defines PSS as universal, relative to 

physical limitations. 
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thinking succumbs to the rules of the formal logic and machine’s syntactic 

processing of symbols – “that intelligence resides in physical symbol systems 

[becomes] ... computer sciences' most basic law of qualitative structure” (ibid., p. 

125). The main research paradigm became human problem solving, decision making, 

routine action, inductive behavior, long-term memory research etc. – anything that 

could be successfully modeled with the syntactic representational structure of PSS. 

4.2 Some aspects of PSS architecture 

4.2.1 The heuristics of human problem solving 

Chess became the natural environment for studying the processes the human mind 

employs when solving problems. In his classical analysis of chess thinking, De Groot 

(1965) defines the four phases of problem solving that are very similar to machines' 

processing: 

1. The First Phase of Orientation, especially orientation to possibilities. What 

we find here is largely 'looking at' the consequences of moves and general 

possibilities in a certain direction. 

2. The Phase of Exploration. The subject tries out rather than 'investigates' 

possibilities for action. He calculates a few moves deep a few sample 

variations, or what he considers to be the main variation; if these are 

unsatisfactory he puts the move(s) in question temporarily aside. 

3. The Phase of Investigation. There is a deeper, more serious search for 

possibilities, strengthenings, etc., that are quantitatively and qualitatively 

quite sharply defined. The investigation is more directed and much more 

exhaustive: more variants are calculated and they are calculated more deeply. 

4. The Final Phase of Proof. The subject checks and recapitulates, he strives 

for proof; the obtained results are made into a subjectively convincing 

argument. A certain completeness is sought in the calculation of results, be it 

for the positive or negative part. (p. 267) 

In PSS, this ‘mechanical’ notion of human reasoning is defined as a function of the 

heuristics of human problem solving and as a function of the complexity of the 

domain in question (Newell and Simon 1959, 1972, 1976, Simon 1979). The latter 

defines the problem/search space as a “space of symbol structures in which problem 

situations, including the initial and goal situations can be represented” (Newell and 

Simon 1976, p.121) – for any step in problem solving there is a search space. The 
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idea of the search space is common to all areas of AI, including problem solving, 

natural language processing, robotics, vision, knowledge representation, and machine 

learning (for an overview see (Russell and Norvig 1995)). The former, the heuristics 

of human problem solving is realized by searching through a problem space. 

Heuristic Search Hypothesis. The solutions to problems are represented as 

symbol structures. A physical symbol system exercises its intelligence in 

problem solving by search – that is, by generating and progressively 

modifying symbol structures until it produces a solution structure. (Newell 

and Simon 1976, p. 120) 

 

4.2.2 Chunking 

Classical AI then, sees human thinking as a rule-governed mental activity, highly 

amenable to hierarchical recursive analysis of PSS. Because of the potential for the 

exponential explosion of operations upon number of possible representations 

describing complex problem space, the heuristic search through problem space is 

sequential. The individual symbolic structures of possible solutions the search 

operates on are represented as ‘chunks’. Chunks are ‘episodic’ records of 

‘knowledge’
12

 collecting the experience of a system at the given time and level of the 

operation (Newell, 1990). Thus, chunking operates as a knowledge-transfer process, 

recording what one did in the prior situation and using this knowledge in further 

operations. This effectively reduces computational load since the system can execute 

the already familiar tasks without repeating instructions. The role of chunking is to 

narrow down the search operations on problem space on a set of relevant symbolic 

structures (for a specific time and the task given), and then the knowledge 

accumulated in the process can be used to guide the search. 

For general intelligent systems (and humans), life is a sequence of highly 

diverse tasks and the system has available a correspondingly large body of 

                                                 
12

 In Unified Theories of Cognition (Newell 1990), Newell discusses SOAR cognitive architecture and 

the role of long-term and short-term memory. While short-term memory (working memory) is 

explained solely by functional requirements of the system’s architecture, SOAR’s single long-term 

memory represents both episodic and semantic knowledge (Tulving 1983). New knowledge is 

acquired in long-term memory through an experience-based-learning mechanism called chunking 

(Laird et al. 1987, Rosenbloom and Newell 1986). Chunking is episodic, while semantic knowledge is 

abstract. The transformation from episodic to semantic knowledge is illustrated by an example of 

block-stacking problems (Newell 1990), which shows how episodic knowledge can be abstracted 

from conditions of learning situation to form semantic knowledge. As with PSS and PSSH, critics 

doubt both biological and psychological plausibility of SOAR’s architecture. 
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knowledge. ... intelligence is the ability to use the knowledge the system has 

in the service of the system's goals (Newell 1992, p. 428). 

 

4.2.3 Designation and interpretation 

The accumulation of the abovementioned computational ideas resulted in the attempt 

to define a unified cognitive theory. In Unified Theories of Cognition (Newell 1990), 

Newell proposed a detailed computational theory of human cognition, using 

computational cognitive architecture SOAR (Laird, Newell and Rosenbloom 1987) 

as a primary example. SOAR represented a pure symbolic approach to cognition, 

shaped primarily by three functional requirements: (a) exhibiting flexible, goal-

driven behavior, (b) learning continuously from experience, and (c) exhibiting real-

time cognition (Lewis 1996). The overall aim of SOAR was to give a unified theory 

of cognition by explaining a wide range of cognitive tasks (e.g. problem solving, 

concept acquisition, long-term memory etc.). Its architecture is basically a PSS with 

multiple levels of abstraction to model different cognitive tasks, from simple input-

output and control-operational levels, to higher, knowledge level structures (cf. 

Newell 1990, Marr 1982, Pylyshyn 1984). These levels of abstraction were taken to 

be analogous, or at least try to respectfully resemble the structure of human 

cognition. Though the approaches to constructing symbolic architectures vary, such 

as production systems (proposed by Newell), formal logics (McCarthy 1968), frames 

by Minsky (1975), semantic networks by Quillian (1968), scipts (Schank and 

Abelson 1977) etc., they all share the underlying PSSH. In effect, they all have to do 

with internal manipulation of expressions to make the two basic functions of PSS as 

powerful as possible. 

Since symbols are abstract, meaningless (no information is encoded) and arbitrary 

(any symbol can designate any entity), their connection to the external environment 

or to the other symbol structures is via their mode of operation: via designation and 

interpretation. These are two most important functional capacities of PSS (Newell 

and Simon 1976, p.116): 

Designation. An expression designates an object if, given the expression, the 

system can either affect the object itself or behave in ways dependent on the 

object. In either case, access to the object via the expression has been 

obtained, which is the essence of designation. 
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Interpretation. The system can interpret an expression if the expression 

designates a process and if, given the expression, the system can carry out the 

process.  

The notion of interpretation indicates the ability of the system to run from a 

description: that system’s own data can be interpreted and that system can create 

expressions for its own behavior and then produce that behavior (Newell 1980, p. 

29). On the other hand, the concept of designation is the most fundamental concept 

of PSS, one “which gives symbols their symbolic character ... or ... meaning” 

(Newell 1980, p. 26). The power of designation as standing-in-for some entity inside 

(some other symbol structure in system’s memory) or outside of the system depends 

entirely on the nature of the process to which it is coupled
13

. Here, Newell (1980) 

offers a very formal definition: 

Designation: An entity X designates an entity Y relative to a process P, if, 

when P takes X as input, its behavior depends on Y. (p. 26) 

According to computational approach, representation is simply another term for a 

structure that designates. These structures are “systematically built by combining 

atomic constituents into molecular assemblies, which (in complex cases) make up 

whole data structures in turn” (Clark, 1989, p.19). Thus, the formal symbolic 

representational structures of the PSS are compositional – they may be composed 

and interpreted – with “combinatorial syntax and semantics” (Fodor and Pylyshyn 

1988). As such, they are amenable to the rules of formal logic. The raw materials of 

thought became symbol structures and syntactic operations, the fundamental 

constraining element from ‘intangible’ and ‘ineffable’, and the “progress was first 

made by walking away from all that seemed relevant to meaning and human symbols 

[carrying information]. We could call this the stage of formal symbol manipulation.” 

(Newell and Simon 1976, p. 117). 

The notion of designation, i.e. the way the representational token, symbol, pattern or 

structure ‘stands in for’ the object in the world, is an essential ingredient of 

representational theories of cognition. And, general differentiation between these 

                                                 
13

 For Newell, “designation is at the heart of universality. For one machine to behave as an arbitrary 

other machine, it must have symbols that designate that other.” (Newell 1980, p. 27). Recall the notion 

of Universal Turing Machine. 
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theories largely depends on the nature of designation they employ – the type
14

 of 

coupling between some artificial or biological system and the environment (cf. 

different views of Clark and Toribio 1994, Clark 1997, 1998, Brooks 1991, Beer 

1995a, Bechtel 1998, 2001, van Gelder 1995, Haugeland 1991, 2000, Dretske 1988, 

Grush 1997, 2004, Millikan 1984, 1996, Ramsey 2007, Chemero 2009). Overall, the 

notion of designation defines whether something is a representation, the nature of 

representational relation and the choice of representational system. Whether 

Newell’s (and hence symbolists) definition of designation poses a sufficient 

constraint, is still a hotly debated topic. 

Here, and throughout the thesis, the notion of designation is understood as a semantic 

relation. And, as we shall see, it is the very character of symbol systems – the 

disembodied abstractness of computational approach – that will become the main 

target of our criticism. 

4.3 Criticism 

There are many problems with symbolic approach to human cognition. The discrete 

and disembodied nature of PSS is widely open to the skepticism about its biological 

and psychological plausibility. As has been argued by many (most notably by Searle 

1980, Dreyfus 1972, 1992, Harnad 1990, Winograd and Flores 1987), any theory of 

human cognition has to deal with questions of how our cognition is grounded in the 

physical world (Harnad 1990) and how this grounding is represented. Not only 

lower-level cognition (such as perception), but most of high-level cognitive 

processes (for example language comprehension) depend on the context and 

interaction with the environment. As already noted, our knowledge is not only part of 

an abstract formal symbol structure, devoid of any subjective content. It is by our 

interaction with the environment (biological, social, cultural etc.) where, for 

example, language acquisition and reasoning, two fundamental and distinctively 

human characteristics, evolve (see Deacon 1997). None of these questions can be 

successfully explained by symbolic approach alone. As critics argue (e.g., 

                                                 
14

 Concepts like genuine, cognitive, intelligent, meaningful, grounded, situated, embodied etc. are all 

strongly linked to (interpretation of) the way some representational system designates – ‘stands in for’ 

– some entity in the environment. In some theories of cognitive science, the mode of designation, or 

more precisely, the ability or disability of the system to decouple from the environment and still 

functionally carry and use representational operations, is the mark between simple (having no 

intelligence) or intelligent system (Clark 1998). 
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Smolensky 1988, Clark 1989, Brooks 1991, Churchland 1995, Beer 1995a/b, van 

Gelder 1995, and Wheeler 2005, among others), most of the flaws of symbolic 

approach are due to the underlying philosophical assumptions given by the 

computational approach to cognition. For example, symbol system is restrictive in 

that inconsistency is not allowed: all conditions have to be precisely specified in 

advance. Further, disembodied and abstract syntactic structures do not reflect the 

environment: symbols designate distant memory locations within PSS and any 

relationship within the internal structure must be explicitly quantified. This leads to 

the frame problem (McCarthy and Hayes 1969, Dennett 1987) – a situation where 

logical inferences upon such explicitly quantified structure lead to combinatorial and 

hence computational explosion
15

. Moreover, symbolic approach is unable to deal 

with partial, incomplete or approximate information. In reality, cognition consists of 

complex cooperation of dynamic and interactive processes based on a large amount 

of noisy and inconsistent data. Unified theories of cognition should be able to explain 

these phenomena. Following chapters review alternatives to symbolic approach. 

  

  

                                                 
15

 Different solutions to the computational (logical) aspect of frame problem have been proposed (e.g., 

McDermott (1987)), but philosophical/epistemological issues remain (see, Dennett 1987, Dreyfus 

1992, Wheeler 2005, Wheeler 2008). The epistemological problem goes to the core of the classical 

symbolic approach to cognition and its underlying semantic theory (see Chapters 6 and 7). The 

question is: How can ongoing, context-sensitive information be captured with a set-propositional 

semantics of classical AI? Related to the computational aspect: How can such system drill out the 

information relevant to the current state? 
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Section 3: Connectionism 

5 Introduction 

Connectionism aims to explain some of the modeling issues that have not been 

successfully addressed by symbolic approach. It presents the alternative to the static, 

discrete view on cognition by taking into account dynamic changes in the 

environment and local context. As Chown and Kaplan (1992) waggishly remark: 

“the difference in approach could be characterized by saying that the classical 

approach fits the environment into the representation whereas the adaptive approach 

fits the representation to the environment” (p. 443).  

Symbolic approach treats cognition as an abstract cognitive process: human thought 

is represented by finite structures composed of discrete and meaningless atomic 

symbols and arranged in accord with a finite number of syntactic relations, devoid of 

temporary context. As consequence, these highly structured symbolic representations 

(operated upon by recursive analysis) are intimately related to the storage and 

performance issues, since such systems typically have to employ large amounts of 

information to successfully solve individual tasks (Gregory 1969, Gibson 1979, 

Clark 1989, Rumelhart, McClelland et al. 1986, Fodor and Pylyshyn 1988). Heuristic 

search on problem spaces does release some of the tension on computational load, 

but objectively, the knowledge still has to be ready and fully accessible to the 

system. For symbolic approach then, the accrual of knowledge mantra – the more 

knowledge the better (see Newell 1990) – is necessary for the overall functioning of 

the system, but the problem of how these unlimited amounts of information could be 

successfully processed by humans is not addressed
16

. 

Modeling human information processing definitely involves static and discrete 

symbolic states and accrual of declarative knowledge. But it is almost an intuitive 

                                                 
16

 Newell's argues that “we must be able to learn from the environment, not occasionally but 

continuously, and not about a few specifics, but everything and every way under the sun” (Newell 

1990, p. 19). Even though he later admits that humans can’t deal with unlimited amounts of 

knowledge, this issue remains largely untouched. In his pursue for the unified theories of cognition, 

Newell admits: “The final risk is the rising tide of connectionism, which is showing signs of sweeping 

over all of cognitive science at the moment. The excitement is palpable - we are all hot on the trail of 

whether neuroscience and the cognitive world can finally be brought together. That is indeed an 

exciting prospect. But my message relates to symbolic architectures and all the other good things that 

connectionism sees as the conceptual frame to overthrow.” (Newell 1990, p. 38) 
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notion that human beings cannot handle unbound amounts of information and 

knowledge in arbitrarily deeply embedded structures. Thus, Gregory (1969), Gibson 

(1979) and Clark (1989), among others, argue for a more reasonable and cognitively 

plausible strategy. In a flux of perceptual information that surrounds us, a system 

with a limited capacity (which human brain is) must treat information differentially. 

As Clark (1989) points out, in many situations we can only afford to know as much 

as we need to function. And Gregory, in "How so little information controls so much 

behavior" (1969), further argues, that we are able to function with remarkably little 

information since our cognitive processes are assisted by generality and 

simplifications of stimuli from our everyday experiences. Symbolic approach cannot 

successfully explain these properties. 

Hence, connectionism sets to explain where symbolic approach fails: the emergent, 

dynamic and distributed properties of cognition. 

The idea of emergence in cognitive science is the contrasting idea that there 

are more basic or elementary processes that are really the fundamental ones, 

and that physical symbol systems of the kind Newell described are sometimes 

useful approximate characterizations which, however, have difficulties in 

capturing in full the context-sensitive, flexible, graded, and adaptive nature of 

human cognitive abilities. ... 

When it comes to intelligence, the real stuff consists of human success in 

everyday acts of perception, comprehension, inductive inference, and real-

time behavior—areas where machines still fall short after nearly 60 years of 

effort in artificial intelligence... 

I do not think anyone who emphasizes the importance of emergent processes 

would deny that planful, explicitly goal-directed thought plays a role in the 

greatest human intellectual achievements. However, such modes of thought 

themselves might be viewed as emergent consequences of a lifetime of 

thought-structuring practice supported by culture and education... 

(McClelland 2010, p. 752-3) 

5.1 Connectionist representations 

Compared to symbolic approach, connectionism gives a fundamentally different way 

of viewing representations and processing of human cognition. The performance 

issues, coupled with the dynamic properties, partial information and the ability to 

treat information differentially, are an integral part of connectionist theory from the 

beginning. Thus, connectionism advocates two main ideas: 
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(1) the idea that processing in a multilayered processing system is continuous, 

so that information accumulates gradually over time and is propagated as it 

builds up, and 

(2) the idea that this kind of continuous processing may be interactive, so that 

influences can be bidirectional, flowing both from higher to lower levels and 

from lower levels to higher levels. These ideas are well captured in the 

connectionist framework. They are generally not captured well in highly 

symbolic processing frameworks, in which the objects manipulated are 

discrete tokens that stand in an all-or-none fashion for some mental object. 

(McClelland 1988, p. 115) 

According to MacLennan (1994), this proves that connectionist systems satisfy a 

different set of pragmatic invariants (such as flexible, robust, adaptive, and 

responsive), that are in some contexts more important than those of discrete symbol 

system
17

. Connectionist representations are continuous (meaning small errors in 

processing have small effects), adaptive in a way they can gradually change 

behavior, responsive to the environment and can use partial information and 

inferences in real time processing. These characteristics are essential for modeling 

lower-level cognitive processes, the microstructure of cognition
18

. 

We view macrotheories as approximations to the underlying microstructure 

which the distributed model ... attempts to capture. As approximations they 

are often useful, but in some situations it will turn out that an examination of 

the microstructure may bring much deeper insight. (Rumelhart and 

McClelland 1986, p. 125). 

Subsymbolic models accurately describe the microstructure of cognition, 

while symbolic models provide an approximate description of the 

macrostructure. (Smolensky 1988, p. 11) 

From theoretical perspective (e.g., Smolensky 1988, Harnad 1990), one of the 

fundamental advantages of connectionist representations is the ability to explain how 

the grounding of symbolic processes could be realized in the subsymbolic substrate. 

Smolensky sees connectionism as a prerequisite and prerogative to symbolic 

                                                 
17

 The difficulty for PSS framework to model above ideas has been demonstrated by Anderson (1983). 

Anderson, inspired by Newell’s SOAR, set out to prove that interactive activation model of visual 

word perception (McClelland and Rumelhart 1981) could be simulated with the production system 

formalism by using his ACT-R (Adaptive Control of Thought—Rational) cognitive architecture. 

Extensive modifications of ACT-R, and the fact that a large part of ACT-R architecture remained 

unutilized, proved connectionist approach more appropriate (McClelland 1988, p. 116). 
18

 Because of their neural network structure, some argue connectionist representations are ‘brain-like' 

and tend to simulate the processing in the brain (e.g., Churchland 1989, Clark 1989, Bechtel and 

Abrahamsen 1991, Pulvermüller 1999). But this might be an oversimplification of the neurological 

facts (see Clark 1998). 
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modeling of higher cognitive processes. Similarly, for MacLennan (1994, p. 121), 

“the fact that people can handle discrete symbols more flexibly than conventional 

computers ... [shows, that] ... human symbolic cognition is implemented in terms of 

continuous subsymbolic processes, and ... can partake of the flexibility of these 

processes when that is advantageous”. But, as we shall is in later discussion on 

hybrid systems, the coupling between symbolic and subsymbolic architecture doesn’t 

quite live up to the expectations. 

 

5.2 Connectionist architecture 

Connectionist networks, neural networks or parallel distributed processing (PDP) 

models are different names for describing connectionist architecture. In these 

models, cognitive processes are being modeled through the interactions of large 

numbers of simple processing units. The tasks involved operate upon relatively 

automatic processes based on prior experience:  perception (perceiving the world of 

objects and events and interpreting it for the purpose of organized behavior), memory 

(for example, retrieving contextually appropriate information from memory), 

intuitive semantics and language (perceiving and understanding language, natural 

language processing), categorization, reading, and, in general, intuitive or implicit 

reasoning (McClelland 1988, 1999). About the essential elements of connectionist 

architecture: 

Like all cognitive models, connectionist models must propose some building 

blocks and some organization of these building blocks. In connectionist 

models, the primitives are units and connections. Units are simple processing 

devices which take on activation values based on a weighted sum of their 

inputs from the environment and from other units. Connections provide the 

medium whereby the units interact with each other; they are weighted, and 

the weights may be positive or negative, so that a particular input will tend to 

excite or inhibit the unit that receives it, depending on the sign of the weight...  

Any particular connectionist model will make assumptions about the number 

of units, their pattern of connectivity to other units, and their interactions with 

the environment. These assumptions define the architecture of a connectionist 

model. The set of units and their connections is typically called a network. 

(McClelland 1988, p. 108) 
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Besides their focus on modeling natural cognitive tasks, there are two distinctive 

characteristics of connectionist networks that differentiate them from the classical 

symbolic models. First, inferences or solutions to a problem are discovered in a 

network of processing units without the explicit application of a predefined algorithm 

(McClelland 1999, p. 137). The units are "...truly active, in the sense that they give 

rise to further processing activity directly, without any need for a central processor or 

a production-matching-and-application mechanism that examines them and takes 

action on the basis, of the results of this examination" (McClelland 1988, p. 109). 

Another distinctive characteristic of connectionist representations are patterns of 

activation. Patterns of activation in the connectionist networks are in some way 

similar to symbolic representations, if we take the latter as patterns of 0s and 1s. But, 

as McClleland (1988) points out, there is a difference: connectionist representations 

are in general graded, "in the sense that each unit's activation need not be one of two 

binary values... typically each unit may take on a continuous activation value 

between some maximum and minimum" (ibid., p. 109). Thus, all connectionist 

representational structures are emergent and tightly coupled with the processing of 

the input data from the environment. 

5.1.1 Supervised and unsupervised learning 

Many different connectionist architectures exist, from simple to very complex
19

.  

These architectures differ in the organization and number of units, layers and 

interconnections among them. For example, a feed forward network has multiple 

layers and restrictions on connectivity among layers; the processing of units is 

directed forward through a series of layers. On the other hand, fully recurrent 

networks have usually no restrictions on connectivity, whereas simple recurrent 

networks introduce some restrictions to allow for certain dependencies among 

successive inputs, for example temporal dependencies for learning complex temporal 

tasks (Elman 1990a). While these architectures differ in structure and learning 

procedures, what they all have in common are general constraints, such as internal 

                                                 
19

 There is a vast amount of literature on connectionist architectures (see the classic (Rumelhart et al. 

1986) for a systematic study of connectionist modeling of a wide range of cognitive phenomena). Any 

detailed analysis of connectionist architectures is out of scope of this thesis. My intention here is to 

use some well-known examples of connectionist modeling and examine some of their general 

properties, for two reasons: a) to illustrate the basic principles behind connectionist approach to 

language, and b) to evaluate the significance of these principles within symbolic vs. connectionist 

discussion. The overall aim, of course, is to set the stage for the third theoretically and functionally 

necessary ingredient: conceptual spaces. 
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coverage, input and output, values of connections, weighing and processing (Figure 

2 diagrams a general architecture of neural network). Internal coverage restricts the 

extent to which individual units represent stimuli from environment or particular 

conceptual objects (letters, words, concepts etc.). Input and output restrictions define 

the role and interaction of units in network: some units may receive no input from the 

environment or send no output outside the net, and some of the interconnections 

among units in the network may be deleted. Furthermore, there may be restrictions 

on the values (positive or negative) of some of the connections and the strength of 

certain group of units. Learning in a connectionist network depends on network’s 

architecture and the representation of activation patterns. It involves modification, 

i.e. weighing and processing of weights on connections in a network, in a way that 

influences the pattern of unit activations produced in response to a given input. In 

supervised learning, changing of the weights to achieve desired result can be 

influenced externally by explicit feedback based on the behavior of the network, as is 

the case in error-correction learning. In the unsupervised learning, only input 

provided to the network along with internal biases is being used. 

The most general connectionist network is a three layer feed-forward network 

(Figure 2) where all units are interconnected and process from input to output 

through hidden layers, without any restrictions on connectivity or external influences 

(for thorough analysis of different variations, see Hinton and Anderson 1981, 

McClelland and Rumelhart 1981, McClelland and Rumelhart 1985, Rumelhart et al. 

1986). 
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Figure 2: A diagram of general feed-forward connectionist architecture 

(adapted after (Plaut 2003, p. 148)). All units in the network are 

interconnected and process forward from input through a hidden layer to 

output. The activity of each unit is a non-linear function of the summed 

weighted input from other units. 

Some neural networks use localist representations where individual conceptual 

object (whether letter, word or particular visual feature) is represented by a single 

unit (e.g., Dell 1986, McClelland and Rumelhart 1981). Other, more complex 

networks operate upon distributed representations where individual conceptual 

object is distributed over a pattern of activations from a number of simple processing 

units (e.g. Hinton, McClelland and Rumelhart 1986). The Interactive Activation 

model of word perception (McClelland and Rumelhart 1981) is an example of 

localist network: each unit stands for an individual conceptual object and there are 

three layers of units: letter-feature units, letter units, and word units (Figures 3 and 

4). However, some further constraints apply: “units within the same rectangle stand 

for incompatible alternative hypotheses about an input pattern and are mutually 

inhibitory. Bidirectional excitatory connections between levels are indicated for one 

word and its constituents” (McClelland 1988, p. 109). 

 

 

Figure 3: A three layered Interactive Activation model of word perception 

(McClelland and Rumelhart 1981). Only some of the units are activated and 

each letter in the middle layer is a generalization of particular pattern in input 

layer). 

In the Interactive Activation model the functionality of the network is based on 

interactive processing of weighted activations between layers: units in each layer 
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receive excitatory connections from consistent units at other layers and inhibitory 

connections from inconsistent alternatives within the same layer. Such simple 

architecture can explain some cognitive aspects of language use, for example a 

number of context effects in perception, including the word superiority effect where 

the perception of a letter is enhanced when it occurs in the context of a word 

compared with when it occurs in isolation or in a random letter string (for review, see 

Plaut 2003).  

Take as an example a simulation of a word superiority effect in Figure 4. Here, the 

reader is processing the letter T in the beginning of a word. All the letters in Figure 4 

apply only to the first letter of the word. The bottom layer represents visual feature 

detectors, where similar features, i.e. those that match the features of an uppercase T, 

are active (see two nodes on the left), whereas the three nodes on the right are not 

active because they don’t match. Nodes in the lower visual feature detector level are 

connected nodes in the letter detector level. All connections in the network are either 

excitatory (represented with an arrow at the end of the connection) or inhibitory 

(represented with a circle at the end of the connection). The activation spreads 

throughout the network. For example, the note representing the letter T is sending 

excitatory activation to all the words that start with T and inhibitory activation to all 

the other words. As word nodes gain in activation, they will send inhibitory 

activation to all other words, excitatory activation back to letter nodes from letters in 

the word, and inhibitory activation to all other letter nodes. Letters in positions other 

than the first are needed in order to figure out which of the words that start with T is 

being read. 
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Figure 4: Interactive Activation model: a simulation of word superiority effect 

(McClelland and Rumelhart 1981) 

The advantage of the connectionist approach is in the ability to learn and model the 

dynamics involved in cognitive behavior. Learning occurs through the evolution of 

patterns of activation over time. In the three-layer networks, for example, the 

propagation of activation among the units is directed via weighted connections in the 

hidden layer. The hidden layer is playing a representational role because the 

processing of the units in the hidden layer responds to the input of the network (via 

weighted connections), which results in partitioning of the activation space of the 

hidden units. Weights represent the enduring ‘knowledge’ of the network, whether it 

uses supervised or unsupervised learning, and determine how the network will react 

to incoming stimuli. This is an essential characteristic of connectionist 

representation. 

 

5.3 Connectionist models of language 

Even though examples shown above are cases of unsupervised learning, a large part 

of psychological connectionist modeling uses supervised learning models. According 

to Plaut (2003), unsupervised learning may be successful at modeling simple 

cognitive tasks (for example simple perceptual tasks) where “the similarities among 

representations provided by the environment may be sufficient to guide the behavior” 

(p. 145). Supervised learning, on the other hand, is more effective at modeling 

complex transformations involved in many forms of cognitive processing, and thus 
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contributes to the understanding of learning, generalization, and the flexibility and 

productivity of cognition. Since language comprehension exhibits many of these 

features, it quickly became the main area of connectionist research. 

A typical example of connectionist supervised learning procedure is a back-

propagation
20

 (Rumelhart, Hinton and Williams 1986). Back-propagation is a type of 

error-correction algorithm with the aim to “[c]hange each weight in a way that 

reduces the discrepancy between the correct response for a given input and the one 

actually generated by the system” (Plaut 2003, p. 145). It does this by manipulating 

internal representations over hidden units, based on calculated changes in each unit’s 

activation and by modifying the unit’s incoming weights accordingly. 

An early connectionist model from Rumelhart and McClelland (1986) used back-

propagation to generate the past tense forms of both regular and irregular English 

verbs from their stems. Their model learned various categories of verbs and a direct 

association between the phonology of all types of verb stems and their past-tense 

forms using a single neural network, thereby obviating the need for rule-based 

syntactically structured representations (typically used in symbolic approach). This is 

no trivial task, since different categories have different type and token frequencies 

and the network has to infer phonemic forms from both regular forms (i.e. by adding 

to the verb stem in one of the three regular ways, either /ed/ (add - added), /d/ (play - 

played) or /t/ (walk walked)) and irregular past tense forms (arbitrary mappings (is - 

was, go - went), identity mappings (hit - hit), or vowel change mappings (run - ran, 

ring - rang)).  

Many aspects of Rumelhart and McClelland’s approach were strongly criticized, 

most notably by (Pinker and Prince 1988; Lachter and Bever 1988), and in more 

general terms by Fodor and Pylyshyn (1988). One general criticism of the original 

model, put forward by Pinker and Prince (1988), is the lack of any explicit linguistic 

rules. The consequence, they claim, is that the model does not capture the fine details 

of the data and learns certain rules that are not characteristic of any human 

                                                 
20

 The back-propagation algorithm iteratively: 1) computes activations forward from input units to 

output units, usually via one or more hidden layers; 2) computes a measure of performance error over 

the output units, 3) propagates this error backward through the network to determine the partial 

derivative of the error with respect to each weight in the network; and finally 4) changes the weights 

based on these derivatives so as to reduce the error (Rumelhart, Hinton and Williams 1986). 
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language
21

. Another criticism concerned the training corpus, arguing that it was 

artificially structured with unnatural proportion of regular to irregular verbs.  

In subsequent work (Plunkett and Marchman 1991, 1993; Cottrell and Plunkett 

1995), many of the specific limitations of the model have been addressed. Modifying 

the original approach of Rumelhart and McClelland (1986), Plunkett and Marchman 

(1991) trained the network by activating the phonemic representation of a verb on the 

input layer and generating an output by successive application of the back-

propagation algorithm, constantly changing the weights in the network to generate a 

smaller error when the same input pattern is presented in the future. Apart from 

learning to generate the proper past tense forms of English words, the back-

propagation based learning demonstrated some important similarities to the way 

children learn the English past tense forms. In comparison with the original 

approach, Plunkett and Marchman trained the network on a large number of irregular 

words first, gradually adding larger set of regular and irregular words to the training. 

At this point, the model showed some overgeneralization. Like children, the network 

first learned the correct form for the irregulars in its corpus, but subsequently 

overgeneralized the regular form and applied it to some irregular forms (thus 

producing, using an English example, ‘dreamed’ instead of ‘dreamt’) before finally 

learning the proper form of all verbs (Markman 1999; Plunkett and Marchman 1991). 

Thus, Plunkett and Marchman argued their model can explain correct uses of both 

regular forms and overgeneralizations of irregulars, and does this in a 

psychologically credible way.  

Despite the success of Plunkett and Marchman’s model, it is important to note that 

simulating learning English past tense forms is only one small part among a wide 

variety of tasks related to modeling language. Moreover, especially in modeling 

higher level cognitive processes, there are obvious deficiencies of connectionist 

approach. A main problem is the lack of hierarchy and systematicity of connectionist 

architecture. In more specific terms, Fodor and Pylyshyn (1988) argued that 

connectionist approach cannot account for the compositional nature of language, 

which is essential to any credible theory on language and cognition in general. Thus, 

if Fodor and Pylyshyn’s criticism holds, connectionism has problems with both, 

                                                 
21

 This opened a heated debate (cf. Markman 1999; Haselager and Rappard 1998; Haselager, Bongers 

and Van Rooij 2003; van Gelder 1990; Bechtel and Abrahamsen, 1991) 
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theoretical and functional validity. These issues will be discussed later in Section 5. 

First, let us shortly review some of the attempts to overcome structural and 

functional deficiencies of individual approach by building a hybrid system. 
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Section 4: Hybrid systems 

6 Hybrid systems 

In general, both camps acknowledged some of the shortcomings of modeling 

language and cognition and sought solution in hybrid alternatives. 

While connectionist models have had considerable success in many areas of 

cognition, their full promise for addressing higher level aspects of cognition, 

such as reasoning and problem solving, remains to be fully realized 

(McClelland 1999, p. 139). 

... the motivation for the design and construction of  hybrid models, both 

within cognitive science and more practical applications, is that those models, 

by inheriting the virtues of the component technologies, can thereby also 

avoid the often cited vices. Thus, a hybrid model might avoid the symbolic 

vice of “brittleness” by employing a micro-feature based distributed 

representation which engenders graceful degradation. Similarly, the semantic 

opacity of a distributed connectionist system might be ameliorated by 

employing a symbolic component. (Cooper and Franks 1994, p. 5) 

The idea behind most hybrid systems is that connectionist systems can provide the 

underlying architecture for high level symbolic processing. A large number of 

different proposals has emerged over the years (e.g., Rumelhart and McClelland 

1986, Plunkett and Marchman 1991, Hinton 1981, 1988, Touretzky 1986, Pollack 

1990), which, according to Franks and Cooper (1995), could be defined within three 

general categories of hybrid models: implementational connectionism, 

implementational computationalism and real hybridness. 

6.1 Top-down: implementational connectionism 

First, consider a physical combination of both architectures, or what Pinker and 

Prince (1988) called “implementational connectionism”. By this view, neural 

networks could complement symbolic rule processing by creating distributed 

representations of elementary information upon which the functions of symbolic 

model could operate. In such cases, the network would present an intermediate level 

tightly coupled to the hardware of the system, and compute input to output according 

to the rules given by the symbol system (for some of the proposals see, e.g. Hinton 

1981, 1988, Hinton, McClelland and Rumelhart 1986, Touretzky 1986, Hinton and 
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Touretzky 1985). From the technical, engineering perspective of building such a 

system, the focus is on “the way in which entities in the domain are mapped into the 

hardware changes during the course of the inference” (Hinton 1988, p. 50). In most 

cases, such systems are primarily symbol systems that use neural functions where 

needed (in processing perceptual tasks, for example). Thus, the contribution is not 

equal: the mediation between both architectures is typically directed from top-down 

symbolic operations. From theoretical perspective, even though both (physically 

distinct) types of architectures are involved, there is still no cognitively plausible 

explanation on how representations on different levels should interact.  

6.2 Bottom-up: implementational computationalism 

An alternative approach is a fully developed connectionist network that can simulate 

hierarchy, i.e. compositional structure and syntactic transformations of symbolic 

approach. This is a prevalent approach in constructing hybrid systems and deserves 

some more attention
22

. Some of the notable examples include connectionist 

implementation of syntactic transformations (Touretzky 1986, Pollack 1990), a 

connectionist implementation of production systems (Touretzky and Hinton 1988), 

or implementation of structure and part-whole hierarchies (Hinton 1989, Elman 

1989, Smolensky 1990). For example, Hinton’s arguments for hardware modularity 

emphasize the need for putting compositional structure into the system: 

One of the best and commonest ways of fighting complexity is to introduce a 

modular, hierarchical structure in which different modules are only loosely 

coupled ... Self-supervised back-propagation ... was originally designed to 

allow efficient bottom-up learning in domains where there is hierarchical 

modular structure ... Given a sufficiently large ensemble of input vectors and 

an “innate knowledge” of the architecture of the generator, it should be 

possible to recover the underlying structure by using self-supervised back-

propagation to learn compact codes for the low-level variables of each leaf 

module . It is possible to learn codes for all the lowest-level modules in 

parallel. Once this has been done, the network can learn codes at the next 

level up the hierarchy. The time taken to learn the whole hierarchical 

structure (given parallel hardware) is just proportional to the depth of the tree 

... it is helpful to allow top-down influences from more abstract 

representations to less abstract ones, and a working simulation. (Hinton 1989, 

p. 228) 

                                                 
22

 Proponents of the classical approach argue that much of the criticism directed towards connectionist 

approaches to language also holds for this kind of hybrid systems. See Chapter 5 for a discussion. 
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6.2.1 Recursive Auto-Associative Memory model (RAAM) 

In general, hierarchical structure is the key problem for connectionism. One example 

of implementing compositional structure into connectionist network is a Recursive 

Auto-Associative Memory (RAAM) developed by Pollack (1990). RAAM is a three-

layer feed-forward network which can transform syntactically structured sentences 

(or any information in symbolic tree structures) into distributed representations. It 

does this by employing back-propagation learning algorithm on input representations 

and giving back distributed representations as an output. 

Moreover, RAAM can translate these representations recursively (in both directions) 

between symbolic trees and numeric vectors. It generates the translation using two 

basic components of the architecture: the compressor and the reconstructor. The role 

of the compressor is to encode symbolic tree structures in a bottom-up fashion, from 

leaves up to the root. Using Pollack’s example (1990, p.84), the hypothetical tree 

structure of ((A, B) (C, D)) can be encoded in three steps: first A and B are 

compressed into a pattern R1, following by C and D being compressed into pattern 

R2, and finally, both patterns (R1 and R2) compressed into pattern R3 (whole), thus 

resulting in a hierarchically distributed representation of symbolic tree structure (see 

Figure 5). 

 

  

Figure 5: A single feed-forward network composed of both compressor (input 

units) and reconstructor (output units). 

The compressor acts as the encoder or compositionality generator for RAAM’s 

distributed representations. The role of the reconstructor is just the opposite: it 
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reconstructs the constituent structure from the distributed representation. In a top-

down fashion, the reconstructor recursively decodes the distributed representation 

into an original symbolic tree structure: first, by decoding R3 into R1 and R2, and 

consequently, from R1 into A and B and from R2 into C and D. The implications of 

RAAM are significant for the theoretical and functional aspects of modeling 

language and cognition, and for the general connectionist vs. symbolic discussion 

(see Section 5). 

RAAM uses a purely connectionist approach. Delineation between symbolic (read 

abstract) and connectionist (read physical) properties of the system is lost, since the 

functions of both architectures conflate onto a modular neural network. 

Consequently, the ‘knowledge’ is stored implicitly in hierarchical layers of weighed 

distributes representations, based on the back-propagation of some low-level 

variables of the input information. Such network is able to reveal graded patterns of 

generalization from lower to higher variables, but the higher, abstract level of 

analysis (typical for symbol systems), offering an interpretation of this ‘knowledge’, 

is missing. Unlike typical symbolic representations, which are explicit and directly 

amenable to rule-like operations, the connectionist, and in this case simulated 

symbolic representations are implicit and not directly affordable to the system – they 

need compressor and reconstructor in order to translate. At the end, the underlying 

psychological theory is purely connectionist and succumbs to the typical problems of 

connectionist networks. True, compared to basic networks some of the 

compositionality (of symbolic model) is preserved, but (as we will argue later in the 

thesis) psychologically valid theory of how these structures could be semantically 

interpreted is missing. 

6.3 Real ‘hibridity’? 

The third option is a ‘real’ hybrid system where both levels complement each other 

in a bottom-up and top-down fashion
23
. Here, “the system’s behavior is generated by 

both connectionist and symbolic functions and by theoretically significant causal 

relations between them” (Boden 2006, p. 976). And for Franks and Cooper (1995), 

the real hybrid system “... that may be cognitively plausible and explanatorily 

acceptable is of the behaviourally hybrid type” (p. 61). 

                                                 
23

 This idea reflects philosophical discussion in Minsky’s The Society of Mind (1985). 
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On higher level, certain symbolic functions (e.g., based on semantic and/or syntactic 

properties) could influence the learning process in the neural network (e.g., with the 

aim of learning regular and irregular forms of English past tense) and in return, the 

‘knowledge’ of the system would be ameliorated by the information given through 

the output of network’s error-correction learning algorithm. For example, a back-

propagation model of McClelland and Rumelhart (1986) showed a genuine empirical 

validity in simulating learning English past tense forms without predefined linguistic 

rules, but such network would probably be even more stable (and psychologically 

valid), when complemented by compositional and rule based structure of symbol 

system (recall Pinker and Prince’s (1988) argument). 

Ideally, such hybrid system should overcome many of the problems that individual 

approach faces when modeling cognitive behavior individually. In reality, this is not 

the case. Among proposed solutions there is currently no common unified theory nor 

is there a hybrid model that could successfully explain basic properties of language, 

let alone other areas of cognition. Arguably, one reason might be the fact that the 

theoretical positions of both camps have, for the most part, remained static. Apart 

from the necessary modifications of their models to account for the novel scientific 

discoveries, the underlying theories themselves (whether connectionist, symbolic or 

hybrid) have not changed. Thus, for the most part of previous century we have been 

witnessing gradual improvement of the architectures, but this development has 

hardly been reflected in the core theoretical positions. 

6.4 Discussion: A need for intermediate level 

Many of the shortcomings of individual models from 1990’s were due to the 

constraints of technological development. But the main reason lays in the variety and 

complexity of human cognition and therefore inability to develop general, 

psychologically plausible theories (or, in Newell’s terms, “unified theories of 

cognition”) and computational models. Moreover, the ongoing research (especially in 

neurosciences; e.g., Cabeza and Nyberg 2000, Martin et al. 1996, Martin and 

Simmons 2008) has started to shift some of traditional cognitive explanations. Taken 

together, with the advance of modern technologies, more detailed scientific 

introspections into human cognition are being possible now, then ever before. 
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6.4.1 Problems with hybrid account 

The general problem with existing hybrid models is the theoretical and functional 

incompatibility of competing architectures: direct coupling between levels is difficult 

because the direct translation from connectionist onto symbolic representations, and 

vice versa, is not possible, or approximate at most. On one side we have distributed 

representations revealing graded patterns of generalization from the environment, on 

the other, hierarchical symbolic structures governed by rules and compositional 

semantics. From both functional and theoretical perspective, there is a large abyss to 

cross. 

Some of these issues echo from the studies of (Cooper and Franks 1993; Franks and 

Cooper 1995). They identify a number of dimensions where connectionist and 

symbolic implementations in hybrid models conflict. Since the exact mappings 

between symbolic and connectionist representations are not possible, they can only 

approximate the functioning and representational structure of the other model. The 

issue becomes what is ’lost’ when mapping the two models. Or, as Franks and 

Cooper (1995, p. 67) put it, “how much mismatch between components is 

permissible?” That is, to what extent does connectionist model, for example, 

approximate the symbolic structure. One way of addressing this question is to try and 

differentiate operational and instructional aspects of respective architectures from 

physical or behavioral aspects of cognitive content. According to Haugeland (1991, 

2000), the operational aspects, such as skeletonisation (i.e. a process of getting 

representational essentials from the context-dependent information in the 

environment) and implementation, cannot give exact mappings. For hybrid systems 

to be psychologically plausible, the physical and behavioral aspects should be 

preserved as much as possible. Moreover, the evaluation of hybridity should follow 

commitments of particular cognitive theory, not only functional (operational and 

implementational) aspects of the system in question
24

. 

6.4.2 Incompatabile representational mechanisms 

A related issue concerns the incommensurability of symbolic and connectionist 

representations. We have already touched upon the notion of connectionist vs. 

                                                 
24

 Fodor and Pylyshyn (1988) use similar argument to claim connectionism can only explain 

implementational aspects of modeling cognition, not cognitive. 
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symbolic representation: the first being continuous, distributed and implicit (i.e. 

hidden in the system), and the latter being explicit, discrete and affordable to the 

system. The difference between implicit vs. explicit means the connectionist system 

can only employ representations to the extent they are an implicit part of the 

processing, but cannot systematically operate upon/over them, this latter 

characteristic is natural for symbolic models. Therefore, the connectionist 

architecture and algorithms are fundamentally different from the symbolic.  

There is no clear method for ensuring the preservation of a symbolic 

algorithm in a dynamical equation that does not itself constitute an algorithm; 

nor one for ensuring the preservation of a symbolic semantics (or function) in 

a connectionist account of the discipline of real world entities ... There is no 

possibility of an exact mapping between the connectionist and the symbolic. 

(Franks and Cooper 1995, p. 69) 

The other significant (and tightly related) problem is that both approaches operate on 

different and to a large extent disjunctive representational levels. The issue becomes, 

how do we “reconcile the static ontologies of standard knowledge representation 

with a continuously changing world described using the ontologies of physics” 

(Hallam 1995, p. v)? How do we translate (map) from the dynamic distributed 

architecture into the static compositional one, and vice versa? How do we interpret, 

for example, patterns of continuous interactions into discrete symbolic states? 

Thus, the crux of the matter is lack of intermediate semantic theory that could 

translate one system's representational architecture into another. For example, the 

traditional realist view of the world is strongly reflected in the symbolic approach. 

Traditional realist view argues for combinatorial syntax and semantics, and the use of 

discrete states, formal ontologies and context-independent semantic relations, to 

describe and represent things in the world. As such, it fails to explain some of the 

essential cognitive phenomena, such as learning on partially accessible information, 

social and cultural context, graded structure of concepts and categories etc., and 

therefore lacks psychologically validity (Chapters 10 and 11 present these issues in 

more detail). 

Connectionism, on the other hand, focuses on the low-level dynamic and 'fine-

grained' aspects of cognitive behavior, with distributed representations generally too 

unstable to afford any durable form of semantics. And, as noted earlier, connectionist 
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representations are not affordable to the system. Moreover, as Pinker and Prince 

(1988) and others (especially Fodor 1975, Pylyshyn 1985, Fodor and Pylyshyn 1988) 

have argued, some of the detail, i.e. some of the properties and relationships among 

conceptual objects, is lost or hidden in the representation of the network. 

The rest of the thesis presents a quest for a semantic theory that could alleviate some 

of traditional issues about modeling representations, especially in regard to meaning 

of natural language. We begin with the analysis of three basic properties, namely 

systematicity, productivity and compositionality of language, and solutions offered by 

symbolic and connectionist approach. The following chapters act as an introduction 

to the discussion of semantics in Part III. 
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Section 5: Clash of two paradigms 

7 Systematicity, productivity and compositionality of 
language and thought 

7.1 A classicist’s critique of connectionism 

Number of criticisms have been directed towards connectionist approach to 

cognition, most notably from Fodor and Pylyshyn (1988), Pinker and Prince (1988) 

and Fodor and McLaughlin (1990). While systems like RAAM showed the capability 

of connectionist architectures to employ structural representations, for Fodor and 

Pylyshyn the structural problems of connectionist models still persist, even when in 

hybrid configuration. For one, defenders of classical symbolic approach have 

criticized connectionism for its inability to represent concatenative compositionality:  

a concatenative constituent structure of language and thought. For Fodor (1975) and 

Fodor and Pylyshyn (1988), representational system must be compositional, meaning 

that representations have a combinatorial syntax and semantics as a result of their 

concatenative compositionality. In practice, this results in the part/whole relationship 

between simple and complex representations. The concatenative constituent structure 

of complex representations is built up from the simple elements, by some mode of 

combination, to match the structure of the information represented; for example, the 

representation of “John loves Mary” is a concatenation of tokens “John”, “loves” and 

“Mary”. The mode of combination defines the relations between elementary 

representations that “explicitly represent the relations between parts of the 

information (e.g. that in “John loves Mary” it is Mary being loved, not John)” 

(Haselager 1998, p. 168). 

 

7.1.1 Concatenative compositionality 

For classical approach, the concatenation of tokens is necessary since it preserves the 

internal syntactical structure of symbolic representations. The symbolic tokens must 

be explicit and preserved in the representations, as constituents of the composite 

expression, for possible extraction and decomposition. Syntactic structure plays a 

crucial role in the classical approach to modeling cognition: it purports to explain 
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how a physical system (such as computer or brain) can exhibit semantically coherent 

behavior. Symbolic representations need to mediate between semantic and physical 

states of the system and do this in a systematically determined fashion via syntactic 

structure. In this way, the “semantic properties of representations come to be 

reflected in their syntactic (and hence physical) properties. ... The result is a purely 

physical system that can respect semantic criteria in its behavior by virtue of the 

causal role in the system of the syntactic structure of its representations; it is a purely 

“syntactic engine” generating meaningful activity” (ibid., p. 366). That this 

“syntactic engine” employs explicit physical tokens of the original constituents and 

thus satisfies the “semantical criteria of coherence” of thought, is essential for 

classical approach to cognition. 

If, in principle, syntactic relations can be made to parallel semantic relations, 

and if, in principle, you can have a mechanism whose operations on formulas 

are sensitive to their syntax, then it may be possible to construct a 

syntactically driven machine whose state transitions satisfy semantical criteria 

of coherence. Such a machine would be just what's required for a mechanical 

model of the semantical coherence of thought: Correspondingly, the idea that 

the brain is such a machine is the foundational hypothesis of Classical 

cognitive science. (Fodor and Pylyshyn 1988, p.30) 

The “syntactic engine” plays a double role. It enforces structure sensitivity of 

representations and at the same time ensures that similarly structured representations 

also bear semantic similarities: 

... on one hand, the meaning of the representation as a whole is fixed by the 

meanings assigned to the constituent tokens, and on the other, the presence of 

these tokens simply is the formal syntactic structure which drives the causal 

processes in the system (van Gelder 1990, p. 367). 

For the causal processes in the system to occur, the syntactic structure must be 

enforced not only at the functional level, but on the implementational level as well. 

... the symbol structures in a Classical model are assumed to correspond to 

real physical structures in the brain and the combinatorial structure of a 

representation is supposed to have a counterpart in structural relations among 

physical properties of the brain. For example, the relation "part of", which 

holds between a relatively simple symbol and a more complex one, is 

assumed to correspond to some physical relation among brain states ... This 

bears emphasis because the classical theory is committed not only to there 

being a system of physically instantiated symbols, but also to the claim that 

the physical properties onto which the structure of the symbols is mapped are 
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the very properties that cause the system to behave as it does.” (Fodor and 

Pylyshyn 1988, pp. 13-14) 

Fodor and Pylyshyn (1988) conclude their argument by pointing out the inherent 

structure sensitivity of syntactic-semantic relation in classical approach: 

It is perhaps obvious by now that all the arguments we've been reviewing-the 

argument from systematicity, the argument from compositionality, and the 

argument from inferential coherence-are really much the same: If you hold 

the kind of theory that acknowledges structured representations, it must 

perforce acknowledge representations with similar or identical structure ... So, 

if your theory also acknowledges mental processes that are structure sensitive, 

then it will predict that similarly structured representations will generally play 

similar roles in thought. (p. 48) 

The internal syntactic structure of symbol system, it is argued, ensures the 

representation of structural similarities which can be capitalized by mental processes:  

similarly structured representations can be treated in similar ways (recall ‘John loves 

Mary’ example). This shows a deep theoretical commitment of the classical approach 

to modeling cognition via internal syntactic structures, not only in terms of functional 

and implementational properties of some physical system, but of language and 

thought as well. Hence, mental representations of the Language of Thought are 

strictly concatenative and employ  

a combinatorial syntax and semantics, in which (a) there is a distinction 

between structurally atomic and structurally molecular representations; (b) 

structurally molecular representations have syntactical constituents that are 

themselves either structurally molecular or structurally atomic; and (c) the 

semantic content of a (molecular) representation is a function of the semantic 

contents of its syntactic parts, together with its constituent structure. (ibid., p. 

12) 

 

7.1.2 Productivity and systematicity 

Based on the classical definition of compositionality
25

, Fodor and Pylyshyn (1988) 

argue for two essential characteristics that distinguish classical cognitive theories 

from connectionist: productivity and systematicity of language and thought. 

                                                 
25

 A more loose interpretation of compositionality as functional compositionality is proposed by 

(Chalmers 1990a, 1993 and van Gelder 1990). Differences between concatenative and functional 

compositionality will be discussed later. 
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Productivity refers to the ability to produce an infinite number of novel propositions, 

sentences or thoughts, with finite means. This is only possible when representational 

system has a combinatorial syntax and semantics (Fodor 1975; Fodor and Pylyshyn 

1988). The theoretical arguments for productivity are closely connected to 

Chomsky’s generative grammar (Chomsky 1965, 1968): the knowledge underlying 

linguistic competence is generative, as it allows us to generate and understand an 

unbounded number of sentences. Similarly, Fodor and Pylyshyn (1988, p. 21) note 

“there are indefinitely many propositions which the system can encode. However, 

this unbounded expressive power must presumably be achieved by finite means”. For 

Chomsky (1965, 1968), as for Fodor (1975), many aspects of the formal structure of 

language are innate, a part of human biology. In classical computational 

interpretation then, the language faculty is an internal computational-representational 

system.   

It seems clear that we must regard linguistic competence – knowledge of a 

language – as an abstract system underlying behaviour, a system constituted 

by rules that interact to determine the form and intrinsic meaning of a 

potentially infinite number of sentences. Such a system – a generative 

grammar – ... defines a language ... as a recursively generated system, where 

the laws of generation are fixed and invariant, but the scope and the specific 

manner in which they are applied remain entirely unspecified. (Chomsky 

1968, p. 62) 

Systematicity, in terms of linguistic processing, refers to the intrinsic connection 

between our ability to understand and produce certain linguistic forms and expand on 

others. In terms of encoding, any language that can encode certain sentence will 

automatically be able to encode a variety of related sentences. Thus, understanding 

or producing certain sentences is intrinsically related to the ability to understanding 

and producing certain others (Fodor and Pylyshyn 1988). For example, we cannot 

understand the sentence “John loves the girl” without also being able to understand 

“the girl loves John”, or any other utterance similar to the form of “X loves Y”. This 

follows from compositionality principle: 

... a straightforward (and quite traditional) argument from the systematicity of 

language capacity to the conclusion that sentences must have syntactic and 

semantic structure: If you assume that sentences are constructed out of words 

and phrases, and that many different sequences of words can be phrases of the 

same type, the very fact that one formula is a sentence of the language will 

often imply that other formulas must be too: in effect, systematicity follows 
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from the postulation of constituent structure. (Fodor and Pylyshyn 1988, p. 

25; italics added) 

In the same manner, thought also shows systematicity: any cognitive system that can 

think one of these sentences will also be able to think the other. By classical view, a 

form of structural relations (e.g. subject – predicate – object in the “John loves the 

girl” and “The girl loves John” example) is the same in both thoughts, only certain 

atoms have changed place; thus understanding the first thought by way of 

systematicity of structural relations implies understanding the second thought as 

well. Moreover, these kinds of thoughts are systematically related not only on a 

structural level, but also "from a semantic point of view" (pp. 31 -42). Herein lays 

the difference between the "systematicity of cognitive representation" and the 

"compositionality of representations”.  

Productivity and systematicity are essential properties supporting classicist’s position 

on language and cognition: the need for underlying abstract structures that can be 

freely composed, instantiated with novel items, and interpreted on the basis of their 

structure (Lewis 1999). Moreover, both express compositionality and follow 

combinatorial syntax and semantics, and structure sensitivity of process.  

... the main argument stands: systematicity depends on compositionality, so to 

the extent that a natural language is systematic it must be compositional too. 

... The standard argument for compositionality is that it is required to explain 

how finitely representable language can contain infinitely many 

nonsynonymous expressions. (Fodor and Pylyshyn 1988, p. 29) 

 

7.1.3 Fodor and Pylyshyn’s further arguments 

Fodor and Pylyshyn (1988) point out they have no problem accepting connectionist 

(or any kind of hybrid system that is essentially connectionist) implementation of 

symbolic features, such as compositionality for example. What they argue for is that 

the sole implementation or simulation of these characteristically symbolic features 

does not make the simulating system systematic and compositional per se. Hence, 

merely providing counterexamples of simulated compositionality (e.g., in 

connectionist architectures such as RAAM) is not sufficient: compositionality has to 

be inherent in the system. Fodor and Pylyshyn argue that connectionist systems have 

no logical syntax and consequently no “mechanism to enforce the requirement that 
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logically homogeneous inferences should be executed by correspondingly 

homogeneous computational processes”, no combinatorial structure, and “nothing to 

prevent minds that are arbitrarily unsystematic” (ibid., p. 33). Thus, for 

connectionism to really count as an independent cognitive theory, it would have to 

show that systematicity necessarily follows from (and is essential to) the 

connectionist architecture. According to Fodor and Pylyshyn and proponents of 

classical view, it does not. Although connectionist architecture can employ structured 

representations and show some level of compositionality, those structures neither 

support semantic evaluation nor exhibit the properties of classical symbolic 

constituents (for one, they lack logical syntax). Consequently, connectionism cannot 

express psychological generalizations that classical theories capture (McCauley 

1998). Moreover, even if neural networks can address some of the cognitive states 

and processes, they do so at an analytic level that is subconceptual and therefore, 

non-cognitive. In other words: 

It’s not enough just to stipulate systematicity; one is also required to specify a 

mechanism that is able to enforce the stipulation. To put it another way, it’s 

not enough for a Connectionist to agree that all minds are systematic; he must 

also explain how nature contrives to produce only systematic minds. 

Presumably there would have to be some sort of mechanism, over and above 

the ones that Connectionism per se posits, the functioning of which insures 

the systematicity of biologically instantiated  networks; a mechanism such 

that, in virtue of its operation, every network that has an aRb node also has a 

bRa node… and so forth. 

There are, however, no proposals for such a mechanism. Or, rather, there is 

just one: The only mechanism that is known to be able to produce pervasive 

systematicity is Classical architecture. And, as we have seen, Classical 

architecture is not compatible with Connectionism since it requires internally 

structured representations. (Fodor and Pylyshyn 1988, p. 35) 

To reiterate, according to classical interpretation, the language faculty is an internal 

computational-representational system. Such analogy assumes that symbolic 

architecture (embracing the notion of logical syntax and consequently 

compositionality and systematicity) is prerogative for modeling abstract cognitive 

processes, whereas physical explanations, characteristic of connectionist modeling, 

contribute nothing to cognitive explanations; their role is purely implementational. 

Hence, “a theory of the relations among representational states is ipso facto a theory 
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at the level of cognition, not at the level of implementation” (Fodor and Pylyshyn 

1988, p. 48).  

For Fodor and Pylyshyn then, there is a clear distinction between the architecture 

(which, to become a credible cognitive theory, should accept the symbolic approach) 

and its implementation (which can be realized in various ways, symbolic, 

connectionist or hybrid). 

... the implementation, and all properties associated with the particular 

realization of the algorithm that the theorist happens to use in a particular 

case, is irrelevant to the psychological theory; only the algorithm and the 

representations on which it operates are intended as a psychological 

hypothesis. ... 

Given this principled distinction between a model and its implementation, a 

theorist who is impressed by the virtues of Connectionism has the option of 

proposing PDP’s as theories of implementation. But then, far from providing 

a revolutionary new basis for cognitive science, these models are in principle 

neutral about the nature of cognitive processes. In fact, they might be viewed 

as advancing the goals of Classical information processing psychology by 

attempting to explain how the brain (or perhaps some idealized brain-like 

network) might realize the types of processes that conventional cognitive 

science has hypothesized. (Fodor and Pylyshyn 1988, p. 47) 

From classicist’s perspective, human language and thought are compositional and 

governed by rules as opposed to simple activation patterns and associations (Pinker 

and Prince 1988). Fodor and Pylyshyn further argue that these characteristics are 

necessary for any adequate theory of cognition. If connectionism cannot properly 

explain compositionality, then it is not an adequate cognitive theory, but, in best 

case, a mere implementation of symbolic approach. 

 

7.2 Connectionist’s reply: functional compositionality 

In On the Proper Treatment of Connectionism (1988), Smolensky attempted to rebut 

Fodor and Pylyshyn’s criticism of connectionism as exclusively implementational, 

and argued for functional and theoretical implications that connectionism brings to 

modeling cognition, noting how connectionist systems readily accommodate the 

context sensitivity of representations for which considerable psychological evidence 

exists. Hence, for Smolensky (1988, 1989) the concatenative compositionality is 
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rigid, as the content in such architecture is generally context-invariant. As further 

noted by McCauley (1998), there are many cases where “the representational 

stability depends not on symbolic form but on a “family resemblance” among those 

vectors that, in different contexts, carry out some functional, subsymbolic role” (p. 

621). For example, the processing of propositional attitudes (characteristically a 

symbolic operation) is typically supported and initiated by the “intuitive processor” 

(Smolensky 1988, p.3), which does not involve symbolic manipulation. That is, the 

processing of propositional attitudes should incorporate representations of agent’s 

behaviour and interaction with the environment when expressing certain belief 

ascriptions, not merely context-free symbolic structures. As we shall see, symbolic 

approach alone is unable to express such ‘contextual’ semantics. 

Whether something counts as structural, functional or explanatory aspect of 

modeling of cognition, or a mere implementation of the architecture (as Fodor and 

Pylyshyn mark connectionist approach), strongly depends both on the level of 

analysis and theoretical commitment. For example, classical symbolic approach 

promotes high-level cognition that exhibits compositionality and is amenable to 

rules, hence ignoring other areas of cognition where conscious rule processing and 

predefined structural relations are not initially applicable (e.g., perception, intuition 

and, practically, all of skilled performance). Thus, what might look like 

implementational detail from a higher level symbolic perspective (for example, 

different learning algorithms giving different accounts of conceptually interpretable 

patterns), might have both functional and theoretical implications from lower level 

connectionist perspective (see Marr 1982). For example, Rumelhart and 

McClelland’s (1986) back-propagation model showed that learning regular and 

irregular past tenses of English verbs might not necessary require predefined rules – 

a discovery, that put a shadow of a doubt on many previously widely accepted 

theories about language and cognition (e.g. Chomsky 1968, 1980, Pinker and Prince 

1988, Fodor and Pylyshyn 1988).  

Nevertheless, the classical notion of compositionality and the critique of 

connectionism posed by Fodor and Pylyshyn have to be taken seriously. What 

follows, is a comparison of symbolic and connectionist accounts of compositionality 
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and an attempt to refute Fodor and Pylyshyn’s critique of connectionism as a valid 

cognitive theory. 

 

7.2.1. Functional compositionality 

Connectionists argued against concatenative nature of compositionality, most notably 

Smolensky (1987b, 1988), van Gelder (1990) and Chalmers (1990a, 1993). In 

symbol systems, the concatenation preserves the constituent structure and sequential 

relations among tokens in the expression, generating compound representation such 

as written natural languages, formal languages, mathematics, logic etc. Thus, 

[g]iven the way concatenation is defined, it is obvious that when describing a 

representation as having a concatenative structure, one is making more than 

just the grammatical point that it stands in certain abstract constituency 

relations, and also more than just the quasi-historical point that it happened to 

have been built up out of a certain set of (recoverable) constituents. One is 

also saying that it will have an internal formal structure of a certain kind; that 

is, such that the abstract constituency relations among expression types find 

direct, concrete instantiation in the physical structure of the corresponding 

tokens. An appropriate name for this kind of internal structure is syntactic 

structure. Thus, the syntactic structure of a representation is the kind of 

formal structure that results when a concatenative mode of combination is 

used. (van Gelder 1990, p. 360-361) 

But as van Gelder points out, the concatenation is only one possible mode of 

compositionality. Since the notion of compositionality is inherent in representational 

architecture, there could be other, different kinds of compositionality: 

...essential to a compositional scheme is the requirement that its expressions 

stand in certain abstract constituency relations. It is through the mode of 

combination, which relates primitive tokens to compound expression tokens, 

that these constituency relations are realized in a particular scheme; and it is 

because there can be important differences between modes of combination 

that various styles of compositionality can be distinguished. (van Gelder 

1990, p. 359) 

Connectionist representations do not employ syntactic structures in a classical sense 

and do not contain tokens of their constituents. The minimum requirement (by 

connectionist criteria) for the system to be compositional is: 

... to have systematic methods for generating tokens of compound 

expressions, given their constituents, and for decomposing them back into 



Section 5: Clash of two paradigms 

58 

 

those constituents again ... [there is no need for preserving the tokens of 

these] constituents in the expressions themselves; rather, all that is important 

is that the expressions exhibit a kind of functional compositionality. ... 

Functional compositionality is obtained when there are general, effective, and 

reliable processes for (a) producing an expression given its constituents, and 

(b) decomposing the expression back into those constituents. Such processes 

are general if they can be applied, in principle, in constructing and 

decomposing arbitrarily complex representations ... To be effective they must 

be mechanistically implementable; that is, it must be possible to build a 

machine that can carry out these processes. ... Finally, for these processes to 

be reliable, they must always generate the same answer for the same inputs. 

Standardly, of course, concatenative schemes are functionally compositional. 

(van Gelder 1990, p. 361) 

The main difference between concatenative and a functional compositionality then is 

in the way tokens are being employed in representations. To some extent, 

connectionist representations can represent complex structures (as shown in RAAM), 

but these structures are not concatenative: “this kind of internal structure does not 

count as syntactic structure, since its parts do not, in general, satisfy the identity 

criteria for the various constituents” (van Gelder 1990, p. 363). According to 

connectionists, the implementation of such non-syntactic compositional structure into 

connectionist architecture is functional. And, as van Gelder (1990) rightly remarks, 

... the most pertinent and informative contrast between the Classical approach 

and Connectionism is not, as Fodor and Pylyshyn (1988) have suggested, 

between a commitment to structured (Classical) as opposed to unstructured 

(Connectionist) representations; rather, it is between two very different ways 

of implementing compositional structure. (p. 365) 

 

7.2.2 Local vs. distributed 

Moreover, Chalmers (1990a/b, 1993a/b) and Smolensky (1987a, 1990) point out that 

Fodor and Pylyshyhn’s critique of connectionist compositionality is ill founded. 

According to Chalmers (1990b, 1993a/b), the main flaw of Fodor and Pylyshyhn’s 

critique lays in the general misunderstanding of connectionism and in consequent 

generalizations about localist vs. distributed representations. He argues Fodor and 

Pylyshyn (1988) built their case against connectionist compositionality upon the 

localist representations, which are taken as a typical example of connectionist 

architecture (see pp. 15-19). In reality, localist representations represent only a small 
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and atypical case of connectionist modeling. Moreover, the difference between the 

localist and distributed representations is significant and goes to the core of 

connectionist theory. To reiterate the debate from previous chapters, the deepest 

philosophical commitment of connectionist approach is the rejection of the atomic 

symbol as the bearer of meaning: “atomic tokens simply do not carry enough 

information with them to be useful in modeling human cognition” (Chalmers 1990b, 

p. 343). And to a large extent, sans basic associative links, the localist representation 

resembles the traditional notion of isolated atomic symbols: just like in symbolic 

models, each entity (word, concept, etc.) in the localist representation is being 

represented by a separate node. In typical connectionist architecture, on the other 

hand, the representation of each individual entity is distributed over many nodes, 

generating complex internal structures and “far more information than a single node” 

(ibid., p. 343). For Chalmers (1990), 

[t]his is the fundamental flaw in F&P’s argument: lack of imagination in 

considering the possible ways in which distributed representations can carry 

semantics. It is a different variety of distributed semantics that would be 

carried by a connectionist implementation of a Turing Machine ... And it is a 

different variety again of distributed semantics that can yield connectionist 

models of compositionality in important new ways. (p. 343) 

The main difference between localist and distributed representations then is in the 

“power of distribution” and hence in semantic interpretation of content: whereas 

localist semantics bears the characteristics of traditional symbolic approach, the 

distributed semantics is purely connectionist. Citing connectionist models of Elman 

(1990a/b), Pollack (1990) and Smolensky (1987a, 1990), Chalmers (1990) remarks: 

It is no accident that three of the most prominent counterexamples to F&P’s 

argument – the models of Elman, Pollack, and Smolensky – all use 

distributed representation in an essential way. Smolensky’s tensor-product 

architecture simply could not work in a localist framework. Its 

multidimensional tensor representations are by their nature spread over many 

nodes. Elman’s implicit structure which develops in a recurrent network 

could also not succeed in a localist framework – the many subtle adjustments 

needed for various syntactic distinctions to develop could not be made. And 

Pollack’s Recursive Auto-Associative Memory has a deep commitment to 

distribution – if it were one-concept-to-one-node, then its recursive encoding 

scheme could never get off the ground. (p. 344) 
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The main question then is whether functional compositionality is sufficient for 

modeling basic properties of language and thought
26

. If the answer is yes – and 

connectionists prove that structural similarity can be achieved without concatenative 

compositionality – then Fodor and Pylyshyn’s arguments can be put to rest. 

 

7.2.3 Examples of functional compositionality 

Connectionists approached the above question empirically, by building models of 

systematic cognitive processing and aiming to achieve functional compositionality 

from non-concatenative representations exclusively (e.g., Pollack 1988, 1990, 

Smolensky 1987a, 1988, Elman 1990b). Apart from Pollack’s RAAM (1988), two 

other models frequently mentioned in the literature are Hinton's (1988) model of 

representing hierarchical structures via reduced descriptions and Smolensky's tensor 

product framework (1987a)
27

. All three connectionist models offer alternative 

solutions to generating non-concatenative, functional compositionality. Moreover, all 

three models offer alternative solutions to representing various data structures over 

strictly limited connectionist resources. 

7.2.3.1 Pollack’s RAAM and Hinton’s reduced description model 

Presented in the chapter on hybrid modeling, RAAM (for a detailed analysis, see 

Pollack 1990 or Chalmers 1990) solves these issues by treating activation patterns in 

the network as stacks, by using functions of push and pop (for example, branches of 

binary tree in RAAM (Figure 5) are treated as stacks). Stacks are simple elements, 

operated upon by push and pop functions. Pushing (compressing) a new element into 

a stack generates a new pattern, thus expanding the stack, while popping 

(reconstructing) is a reverse process. Thus, structural relations are being kept or 

transformed by mode of operation and “[t]his process can be performed recursively, 

with the result that any given recursively structured sequence can be stored in an 

appropriately trained network” (van Gelder 1990, p. 369). 

                                                 
26

 This research is relevant for two reasons: to show the diversity of connectionist approaches to 

modeling language and cognition, and to show how distributed semantics, contra classicist’s view, 

supports a general connectionist claim for functional compositionality. 
27

 A throughout analysis and technical details of each approach are out of scope of this thesis and have 

been tackled in depth elsewhere in the scientific literature (e.g., in the writtings of Smolenksy (1987b, 

1988), Elman (1989) and van Gelder (1990)). 
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An alternative solution to the problem of mapping a part-whole hierarchy into a finite 

amount of parallel hardware had been proposed by Hinton (1988). Since the neural 

networks in general are fixed, there are some general constraints: there is only so 

much information that can be represented at the certain point in time on particular 

level. Thus, using allegory of a “moveable window scheme”, the hierarchical 

structure is being represented via reduced descriptions on each level. By utilizing 

structural similarities of the network, the network expands the constituent structure 

given/gained by reduced descriptions on particular upper level down onto the 

representations of the lower level. 

As van Gelder points out, both RAAM and Hinton’s reduced description model, 

allow for generation and 

...recovery of all the constituents of that hierarchy; in that sense [both models] 

can be described as a compositionally structured representation[s]. But ... this 

is not achieved by having first concatenated those constituents. There is no 

requirement that constituents figure, in the representation of the whole, in 

anything like the form they appear in when the constituent has been fully 

expanded (van Gelder 1990, p. 371). 

This argument is further supported by Hinton (1988): 

The crucial property of the moveable window scheme is that the pattern of 

activity that represents the current whole is totally different from the pattern 

of activity that represents the very same object when it is viewed as being a 

constituent of some other whole. (p. 52) 

Both Hinton’s and Pollack’s approach have shown that connectionist representations 

can support systematic processing. In both cases, there is no need for explicit 

constituent structure, i.e. the preservation of constituents’ tokens. There is no need 

for explicit tokening of the original expressions – functional compositionality, and 

hence systematicity, can be achieved by processing exclusively upon implicit 

structures of connectionist architecture (Pollack 1990; Hinton 1988; Smolensky 

1988).  

7.2.3.2 Smolensky’s tensor product framework 

In Smolensky (1987a, 1988), Smolensky describes a tensor product framework, 

another alternative to classical compositionality, and emphasizes the differences 

between connectionist and symbolic approach in more general terms, mirroring some 
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of the basic arguments presented above. As with Pollack’s and Hinton’s models, the 

emphasis is on the capability of generating structural representations without 

employing concatenation. Since the representations in neural networks are vectors 

describing patterns of activity over processing units and the connections between 

such units, the general problem is “finding a mapping from a set of structured objects 

(e.g., trees) to a vector space” (Smolensky 1987a, p. 2). Smolensky shows how 

hierarchical structure and various constituency relations among representations can 

be generated, preserved and recovered through the mode of combination (complex 

expression as combinations of simpler parts) operating on these vectorial 

representations, in this case by the processes of tensor addition and multiplication
28

. 

Smolensky’s definition of tensor product framework embodies some essential 

properties of functional compositionality (and of distributed connectionist 

architecture in general), showing how functional compositionality offers a genuine 

alternative to concatenative compositionality of the Language of Thought. The 

vectorial representations of neural networks are not syntactically structured, i.e. “they 

do not contain tokens of the primary constituents (i.e., the primitive vectors assigned 

to the original roles and fillers) in any sense other than that there are processes that 

can generate those constituents given the compound representation” (van Gelder 

1990, p. 373). Unlike atomic symbols, vectorial representations are context-

dependent: there is no single canonical position (node) representing individual 

concept, rather, individual concepts are distributed over patterns, i.e. clusters of 

vectors, and related and influenced by a kind of similarity or “family resemblance” 

and weigh distributions in the network. Hence, the modes of composition and 

decomposition cannot be “precise and uniquely defined”, as is the case with 

symbolic approach, and are subject to various kinds of imperfections (whether 

context effects, different kinds of ambiguities, interferences etc.; see (Smolensky 

1988, p. 14-16)). Moreover, all notable connectionist alternatives to traditional 

concatenative compositionality (e.g. Pollack 1990, Smolensky 1990, Hinton 1988 

and Elman 1990) employ distributed representations. 

                                                 
28

 In tensor product framework, computation is based on the numerical vectors and tensors (e.g., on 

activation values of vectors). 
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7.3 Discussion: a need for an unifying semantic theory 

The above chapters echo some of the problems for both paradigms. Connectionism, 

if understood as purely implementational strategy (as Fodor and Pylyshyn would 

have it), loses much of explanatory power and functionality, especially when 

modeling higher-level cognition, such as language acquisition and comprehension. 

Proponents of classical approach rightly argue that productivity, systematicity and 

compositionality are essential ingredients of language and thought. They further 

argue concatenative compositionality cannot naturally emerge from connectionist 

architecture – it requires unlimited or arbitrarily extended resources which are simply 

not available to the connectionist architecture. Connectionists, on the other hand, 

argue that functional compositionality can replace concatenation by employing 

distributed representations of complex structures by mode of superposition. 

Moreover, Van Gelder (1990) points out that contrary to fundamental computational 

assumption, cognitive processing involves finite resources that are not arbitrarily 

extendable
29

: 

Distributing transformations, which take various constituents and 

superimpose them to achieve a new representation of the whole over the same 

space, inevitably destroys those tokens in the process (although not 

necessarily their recoverability), and hence are incompatible with any variety 

of concatenation. In short, the finite resource restrictions characteristic of 

Connectionism preclude concatenative styles of compositionality in favor of 

distributed (and so merely functional) styles. The fact that a broad alternative 

conception of compositionality is emerging in Connectionist research is thus 

a fairly direct consequence of one of its basic commitments, a commitment 

that stands in stark contrast with the Classical assumption that resources are 

always, at least in principle, arbitrarily extendable (as in, e.g ., the unbounded 

tape on a Turing Machine). (p. 375) 

Thus, to stand as a genuine alternative to the symbolic approach to cognition, 

connectionism should be able to explain how arbitrarily complex structures could be 

generated by operating over finite representational resources without employing 

concatenation. This is a pressing problem for connectionism, since it cannot, apart 

from relatively successful modeling of some isolated cases (e.g., learning the proper 

form of English past-tense verbs, or exhibiting functional compositionality), 

generally account for discrete semantic structures and the abstract nature of human 

                                                 
29

 Also, recall Gregory’s (1969) and Clark’s (1989) comments about computationalism and the 

availability of resources in human cognitive processing. 



Section 5: Clash of two paradigms 

64 

 

thought. On the other hand, while Fodor and Pylyshyn agree that “understanding 

both psychological principles and the way that they are neurophysiologically 

implemented is much better (and, indeed, more empirically secure) than only 

understanding one or the other” (p. 45), they nevertheless remain fully committed to 

the computational theory of mind. They happily embrace Turing’s idea: the claim 

that the mind has the architecture of a classical computer is not a metaphor, but a 

literal empirical hypothesis (Pylyshyn 1984, Fodor and Pylyshyn 1988). And, since 

Fodor doesn’t acknowledge any explanatory power to connectionist theory, he seeks 

for plausible psychological hypothesis elsewhere – in an innate linguistic structure of 

the Language of Thought (LOT; Fodor 1975, 2008). The general problem for the 

computational theory of mind then is explaining how symbolic representations can 

be grounded in the lower-level cognitive processes (such as perception and action) – 

domain, where connectionist modeling showed relative success. And, as many 

studies have shown (some will be discussed in later chapters) language acquisition 

and comprehension are strongly influenced by perceptual, social and cultural 

constraints. 

There is no common ground for traditional paradigms to complement each other. 

While the proponents of symbolic approach argue for productivity and systematicity 

of language and thought (Fodor and Pylyshyn 1988, Pinker and Prince 1988) and 

hence for compositional semantics and syntactic constraints, connectionists claim 

that language processing is a “constraint-satisfaction process” sensitive to “local” 

semantic and contextual factors (Rumelhart and McClelland 1986). Nevertheless, by 

incorporating lower-level cognitive processes, context and environment, 

connectionism seems to offer psychologically more viable approach to language and 

cognition (e.g., Langacker 1974, Lakoff and Johnson 1980, Lakoff 1987, Cummins 

1983, Smolensky 1988, Clark 1989, Clark 1991). 

The problems of symbolic and connectionist modeling cannot be solved by merely 

developing or expanding upon more advanced cognitive models under the current 

theoretical assumptions of any of the two paradigms. None of the approaches offers 

an all-in-one theory. Missing from both is a credible semantic theory that could 

mediate between both levels in a true hybrid fashion. First, the symbolic and 

connectionist approach are solving problems on different levels and should really be 
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taken as complementary, rather than competitive cognitive theories (see Gärdenfors 

2000). Second, neither of them nor their hybrid variations can fully account for 

essential aspects of human cognition, e.g. the semantics of natural languages. Third, 

over the years, cognitive psychology research on categorization and concept 

formation has uncovered aspects of natural language and cognition that cannot be 

fully supported by any of the traditional views
30

. For example, connectionist model 

might explain certain aspects of language acquisition, such as learning past tense 

forms of English words, and therefore to some extent successfully simulate some of 

the emergent properties of the language-learning process. But it cannot account for 

conceptual information, formation and structure of concepts and categories, etc. One 

reason being, connectionist representations operate on the lower, subconceptual 

level. The other, connectionist representations are typically implicit and not available 

to the system. Classical symbolic approach, on the other hand, is notoriously poor at 

explaining language acquisition and comprehension, especially in regard to 

individual’s subjectivity, and social and cultural influences and constraints. As will 

be argued in Part III, the symbolic approach fails because concepts are not 

meaningless symbolic structures, but grounded in individual’s experience (both 

perceptual and conceptual) and environment. Meaning is a conceptual beast that 

cannot be harnessed by any of the two traditional approaches alone. 

  

                                                 
30

 Also, see Deacon (1997) for a brilliant evolutionary account of language and cognition 
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PART III: SEMANTICS 

Section 6: Realist semantics 

8 Introduction: the notion of meaning and semantics 

In previous chapters we have discussed two traditional computational paradigms of 

modeling language and cognition. Here, we discuss theoretical intuitions about 

language and semantics that underlie these models, and argue for an alternative 

semantic theory. To stay within the frame of the thesis, I will mostly focus on general 

notions, not on intricate details of individual theory
31

. 

According to Lewis (1970), there are two general approaches in modern semantics: 

I distinguish two topics: first, the description of possible languages or 

grammars as abstract semantic systems whereby symbols are associated with 

aspects of the world; and second, the description of the psychological and 

sociological facts whereby a particular one of these abstract semantic systems 

is the one used by a person or a population. Only confusion comes of mixing 

these two topics. (p. 170) 

Unlike Lewis, I argue that for modeling natural language semantics, the two topics 

cannot be, and should not be, separated. To state my case, I start off with the 

discussion about meaning and semantics as proposed by Gärdenfors (1999a). 

According to Gärdenfors (ibid., p. 209), a theory of semantics should be able to 

answer four basic questions: 

(1) What are meanings? (the ontological question) 

(2) What is the relation between linguistic expressions and their meanings? 

(the semantic question) 

(3) How can the meanings of linguistic expressions be learned? (the 

learnability question) 

(4) How do we communicate meanings? (the communicative question) 

                                                 
31

 Much of the discussion from philosophy of language and linguistic theory is being omitted, here the 

focus is on basic building blocks and functional aspects that a particular theory brings to modeling 

semantic representations. 
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The ontological question gives us two competing semantic paradigms: realist 

semantics and cognitive semantics. Realist semantics is not about psychological 

validity and the linguistic system as used by an individual (and hence in accordance 

with Lewis’ warning), but rather about the relationship between abstract linguistic 

system and aspects of the world. The main hypothesis of the realist semantics is that 

this relationship is independent of the meanings grasped by individual minds. 

According to the realist semanticist, “the meaning of an expression is something out 

there in the world” (ibid., p. 209); it is determined by the state of the world and truth-

conditions. Hence, realist semanticist argues for an objective view of the world, 

emphasizing the relationship between linguistic expression and reality. In general, 

this relationship is explicated by the model-theoretic semantics of Montague, with its 

core in set-theoretical approach of modern logic. The realist semantics is truth-

conditional: the meaning determines whether particular linguistic assertion rightly 

corresponds to the object or an observation in the world, i.e. under what conditions a 

particular sentence is true or false. The dependency between constituents is further 

defined by set-theoretical functions. 

The realist approach to semantics comes in two flavors: the extensional semantics of 

Frege and Tarski, and the intensional semantics of Kripke and Montague. Common 

to both are notions of reference, truth and inference. The main difference between 

the two is in their interpretation of the meaning and reference to the world. In 

extensional semantics the reference is direct and unmediated, i.e. linguistic 

expressions correspond directly to objects in the world. In intensional semantics, 

linguistic expressions get their meaning indirectly via intensions. 

Cognitive semantics, on the other hand, argues that meanings are mental entities – 

the relation to the external world and truth-condition are of secondary importance, 

what counts is the relation between natural language expressions and individual’s 

conceptual structure. Arguably, the overall agenda of cognitive semanticist is best 

described by the slogan “meanings are in the head”. Hence, cognitive semantics is 

dependent on conceptual structures of individual language user and context, not on 

objective atomic facts and logical calculus. 

The two theories differ in all of the four questions above. In what follows, I will 

mostly focus on answering the semantic question; answers to the learnability and 
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communicative questions will be given indirectly. The view adopted is that of 

cognitive semantics. The topic is what Lewis labeled "psychological facts" or how 

“one of these abstract semantic systems is ... used by a person or a population”. 

Unlike Lewis, and most proponents of realist view, I argue that the psychological or 

cognitive aspects of language should be incorporated into semantic theory. Contra 

Lewis, I argue that realist semantics, describing meaning in terms of purely abstract 

symbol system and its reference to the world, cannot successfully answer questions 

(2) and (3) above precisely because it tries to separate the semantic theory from the 

cognitive psychology. Moreover, I will argue that the realist view could be 

psychologically plausible only if it adopted the conceptual aspect of cognitive 

semantics. Or more to the point, the meaning of an expression (or sentence) should 

be determined via the conceptual structure of individual language user, not through 

direct, truth-conditional mapping between language and external world or possible 

worlds.  

 

9 Realist semantics 

The realist approach to semantics is rooted in the philosophical movement that 

existed since Leibnitz (1646-1716) and became predominant with the development 

of modern logic and philosophy of Frege (1848-1925), Russell (1872–1970), Carnap 

(1891–1970) and early Wittgenstein (1889-1951), among others
32

. Along with the 

development of modern logic came also the ideas for propositional analysis of formal 

languages, i.e. how natural language could be formalized to conform to logical 

                                                 
32

 The connections between logic and philosophy go way back to the philosophy of Greeks, with 

notable examples in Pythagoras’ theorem, Euclides’ Elements and Aristoteles’ writing on logical 

thinking (Organon). In Organon, for example, Aristoteles laid three fundamental laws of logic: a) the 

law of excluded middle (an object cannot have both a property and the opposite property), b) modus 

ponens (if all B’s are C’s and all A’s are B’s then all A’s are C’s), and c) modus tollens (if all B’s are 

C’s and no A’s are C’s then no A’s are B’s). 

Later, logic reemerged occasionally through the centuries in philosophy of Ockham (1300 a.d.), 

Francis Bacon’s Novum Organum (1620) and Descartes’ Discours de la Methode (1637), but finally 

found more stable ground in Leibnitz’s De Arte Combinatoria (1676), Newton’s calculus, Euler’s 

(1761) system of logic diagrams, Mill’s System of Logic (1843), and Boole’s work on symbolic logic 

in The Laws Of Thought (1854). In the latter, Boole argued that, besides solving mathematical 

problems, logic could be applied to thought in general. His ideas contributed to the evolution of 

modern ‘propositional’ and ‘predicate’ logic and to philosophy, inspired by logical formalization of 

thought. 
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calculus. In Foundations of Arithmetic (1884/1974) and Sense and Reference 

(1892/1980), Frege laid the fundamentals by providing logical formalism which 

constituted the first predicate calculus (representing the internal structure of 

propositions) and the truth-functional propositional calculus. In Principia 

Mathematica (1903), Russell further refined propositional and predicate calculus, 

arguing for all aspects of meaning to be explicit: the language and the world were 

seen as logical structures, constructions of atomic facts based on logical primitives 

and truth-functional semantics. The content of a sentence is the proposition 

expressed. The focus is on propositional semantics, i.e. meanings of sentences, not 

words. In Foundations of Arithmetic, Frege (1884/1974) claims: 

Only in a proposition have the words really a meaning … It is enough if the 

proposition taken as a whole has a sense; it is this that confers on its parts 

their content (p. 71). 

Realist position emphasized the objective reality of the world where linguistic 

categories are defined as sets of necessary and sufficient conditions strictly 

dependent on the reference to the things in the world. Its aim, in Russell’s words, is 

“axiomatization” of thought. 

 

9.1 Sense and reference 

In general semantics, the meaning of an expression is a certain kind of entity, and the 

fundamental concern of semantic theory is the nature of such entity and the 

formalization of the relationship between the two: the expression and its meaning. 

The underlying hypothesis common to all variations of realist semantics is Frege’s 

theory of reference (Frege 1892/1980). In its simplest form, the theory of reference 

defines the meaning of an expression to be its extension. All meaning is grounded in 

extension: the extension of a sentence is its truth-value and the extension of an 

expression is its referent. The notion of truth takes a central place of logic and 

semantics
33

. It is reflected in his truth-functional semantics and the Principle of 

Compositionality: 

                                                 
33

 Frege’s aim was to avoid psychologism. For Frege, as Boden points out, “[p]sychologism is any 

approach which confuses formal logic (or norms of rational thinking) with empirical facts about how 
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If our supposition that the reference of a sentence is its truth-value is correct, 

then the latter must remain unchanged when a part of the sentence is replaced 

by an expression with the same reference. And this is in fact the case... . If we 

are dealing with sentences for which the meaning of their component parts is 

at all relevant, then what feature except the truth-value can be found that 

belongs to such sentences quite generally and remains unchanged by 

substitutions of the kind just mentioned? (Frege 1892/1980, p. 35) 

Principle of Compositionality explains how the reference of a complex expression is 

determined by the reference of its parts. Sentences have compositional structure and 

are determined by their logical form and the extensions of their parts: simple 

expressions compose complex expressions, which compose sentences. The focus is 

not on the meaning of an expression as some kind of special entity, but rather on the 

truth-value; i.e. on the contribution of individual expression (via reference) to the 

determination of the truth-value of a sentence in which it occurs. To appropriately 

formalize the propositional semantics, some further constraints need to apply. 

The general problem arises when there are exceptions to such simple definition, and 

in natural languages, there are many. The following is just a short overview of some 

of the issues faced by theory of reference, upon which various realist theories of 

semantics are built. 

First obvious problem is how to deal with expressions that have no referent (e.g. 

‘Santa Claus’). Here, the truth-value cannot be established. Another problem arises 

when two expressions share the same reference, but differ in meaning. In “Über Sinn 

und Bedeutung” (1892/1980), Frege argues that expressions ‘Phosphorus’ (an 

ancient term for the morning star) and ‘Hesperus‘ (the evening star) have the same 

extension, i.e. the same referent, a planet Venus, but not the same meaning. Similar 

case is put forward by Putnam’s ‘Twin Earth experiment’ (Putnam 1975), with terms 

‘water’ and ‘H2O’. In such cases, the reference of an expression alone does not 

explain the contribution or role of individual expression in determining the truth-

value of all sentences it occurs in. Frege argued that there is more to the theory than 

just reference. To know the difference between Phosphorus and Hesperus requires 

                                                                                                                                          
people think. Frege’s point was not that people don’t—or don’t always—think logically. It was that 

whether they do or not—and how they do, when they do—is of no interest to the logician. The logical 

should always be distinguished from the psychological, since the (normative) laws of logic are not the 

(empirical) laws of thought. In modern philosophical jargon, Frege’s position was that logic, or 

rationality, can’t be “naturalized”” (Boden 2006, p. 121). Similar sentiment comes from quote of 

Lewis at the beginning of this chapter.  
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cognitive effort, i.e. to know the meaning. “Hesperus is Phosphorus” is cognitively 

significant whereas “Hesperus is Hesperus” is not. Frege’s solution to the problem is 

in defining two components of meaning: sense (Sinn) and reference (Begriffsschrift). 

What then, is the relationship between sense and reference? Frege argued that the 

sense is the “cognitive value” or “mode of presentation” (Art des Gegebenseins) of 

the referent (1892/1980, p. 56). Every expression that has an extension also has a 

sense, and the difference in cognitive significance is a difference in sense – sense 

reflects cognitive significance (Chalmers 2002). Besides reference then, expressions 

also have sense or content, i.e. a non-extensional aspect that also affects the truth-

value of a sentence. Thus, sense determines the reference. By this definition, two 

sentences can express different propositions (have different content) while having the 

same truth-value, but not vice-versa, i.e. two sentences expressing the same 

proposition (have the same content) cannot have different truth-values. For example, 

Sentences ‘Hesperus is a planet’ and ‘Phosphorus is a planet’ have different senses, 

but the same referent. Similarly, ‘sense determines the reference’ also applies to 

expressions: two expressions with the same referent can differ in content or sense 

(recall morning and evening star), but not vice versa (two expressions with the same 

content cannot differ in reference).  

9.1.1 The Fregean notion of sense for natural language 

Still, existing definition of sense seems opaque and does not offer a plausible 

semantics for natural languages. The problem with Fregean extensional semantics is 

it ascribes the ‘sense determines reference’ in a manner of rigid designator
34

. Senses 

are not mental entities, but propositions as primary bearers of truth.  Moreover, the 

truth-value of a proposition is defined absolutely, in terms of true and false. For 

Frege, senses are objective: 

The reference of a proper name is the object itself which we designate by its 

means; the idea, which we have in that case, is wholly subjective; in between 

lies the sense, which is indeed no longer subjective like the idea, but is yet not 

the object itself. The following analogy will perhaps clarify these 

relationships. Somebody observes the Moon through a telescope. I compare 

the Moon itself to the reference; it is the object of the observation, mediated 

by the real image projected by the object glass in the interior of the telescope, 

                                                 
34

 The latter is Kripke’s term (1972) for defining proper names, but Frege’s approach concerns any 

kind of expression. 
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and by the retinal image of the observer. The former I compare to the sense, 

the latter is like the idea or experience. The optical image in the telescope is 

indeed one-sided and dependent upon the standpoint of observation; but it is 

still objective, inasmuch as it can be used by several observers. At any rate it 

could be arranged for several to use it simultaneously. But each one would 

have his own retinal image. (Frege 1892/1980, p. 60) 

Such objectivity does not fare well with the semantics of natural language. In natural 

language, most expressions are not rigid; they can have different references in 

different situations. There are sentences with truth-value different given the occasion. 

For example, the sense of ‘It is really cold here now’ depends on the occasion of use. 

Hence, there is no objective notion of sense (of an expression) that could determine 

the same reference to every possible situation – the sense can vary between occasions 

of use. 

Frege was aware of this problem
35

 and argued that sense is not a universal feature of 

an expression. According to Chalmers: 

... Frege's view entails that one cannot always attach sense to expression 

types. To handle cases like this, one has to attach sense to expression tokens 

(or to expression types as used in specific contexts, or to something else that 

is tied to an occasion of use). It follows that on Frege's understanding, the 

sense of an expression should not be identified with its linguistic meaning, 

where the latter is required to be common to all tokens of an expression type. 

(Chalmers 2002, pp. 141-142) 

On such interpretation, at least the thesis that ‘sense of a sentence has an absolute 

truth-value’ should be rejected. Sentence (or an expression) cannot be true or false 

absolutely, sentence is true or false relative to a subject, context and time. Related to 

the discussion, it is important to note there seems to be an implicit paradox in Frege’s 

Principle of Compositionality, as is evident from the following quotes: 

                                                 
35

 Using the distinction between sense and reference, Frege’s semantics goes beyond the formalism of 

general theory of reference: “[f]rom the standpoint of logic as such, we need an account of the 

working of language only as it relates to truth ... Frege's philosophical concerns go a long way beyond 

anything that is the proper concern of the logician” (Dummett 1973: 83). Moreover, while he insists 

that “the truth-value of a sentence . . . is true or false. There are no further truth values” (1892/1952, p. 

63), he nevertheless admits that some cases, for example literary texts (in a sense of a Dichtung) are 

beyond reference, and hence, truth value. 

“In hearing an epic poem ... we are interested only in the sense of the sentences and the images and 

feelings thereby aroused. The question of truth would cause us to abandon aesthetic delight for an 

attitude of scientific investigation” (ibid.). The problem is, within the Fregean framework, the latter 

cannot be semantically formulated. 
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Frege says that we are interested in the significance of any part of a sentence 

only insofar as we are interested in the truth-value of the sentence. Is this not 

to say that the significance of the parts of sentences, and in particular of 

names, consists in their contribution to the truth-value of the sentences into 

which they may enter? In this case we should have to take the significance of 

sentences as primary. …it was Frege himself who had opened a new 

approach with the famous dictum in his Grundlagen: ‘Only in the context of a 

sentence does a word signify anything’. It is this statement which points to 

the conception of significance as truth-value potential. (Tugendhat 1970, pp. 

180-182; italics added) 

… Tugendhat [1970] is surely right in the substantial point he is making. It is 

that the semantics of sense and reference is primarily a semantics of whole 

sentences and not of sentence parts. ... Even when Frege expresses himself in 

terms that seem at first sight barely compatible with the thesis that sentence 

meaning is primary, the justification for assigning sense to names turns out to 

be that they must have a sense because they must make a contribution to the 

sense expressed by the whole sentence. (Sluga 1980, p.158; italics added) 

The problem of above, arguably genuine interpretation of Frege’s Principle of 

Compositionality, did not slip under the radar of most scholars. While Fodor and 

Lepore acknowledged the difficulty of the situation, Haaparanta (1985) and Dummet 

(1981) were concrete: 

The compositionality principle says that the senses of the ingredients of a 

sentence S are more basic than the sense of S, for the sense of S is 

compounded out of them. Now, if Frege holds the view that in order to 

understand the sentence, we must understand the senses of the words it 

contains, he cannot demand that in order to understand the senses of words, 

we must know the sentences in which the words occur. (Haaparanta 1985, 

p.90) 

This is a difficulty which faces most readers of Frege. … The thesis that a 

thought is compounded out of parts comes into apparent conflict, not only 

with the context principle, but also with the priority thesis; but Sluga takes no 

notice of either conflict. (Dummett 1981, p.547) 

Where Frege himself stands is a little unclear. On the one hand, it’s a famous 

Fregean view that words have meaning only as constituents of…sentences…; 

but on the other hand Frege certainly thought that the semantics of sentences 

is compositionally determined by the semantics of the words they contain 

(plus their syntax)… Whether, and in exactly what way, these doctrines can 

be reconciled is a notorious crux in Frege interpretation. (Fodor and Lepore 

1992, p. 210) 



Section 6: Realist semantics 

74 

 

Furthermore, there is a problem with reference. According to Frege, only expressions 

with an extension also have sense. How then, do we explain cases where there are 

expressions without a referent (recall ‘Santa Claus’)? 

 

9.2 Possible worlds 

A semantic theory for natural language should be able to explain how sense 

determines reference according to a particular situation or context, also in situations 

where referent is not present. According to one view (see (Kaplan 1989)), rules 

should be employed to determine content of an expression in a given situation. Rules 

would act as functions from contexts to contents and thus add additional component 

to the theory of meaning: a character of an expression that defines the content 

relative to a given situation. Kaplan argued, that in many cases the sole context of a 

given situation, “the context of utterance”, is not sufficient – the reference of an 

expression must be relativized also to a circumstance of evaluation, i.e. “the possible 

state of the world relevant to the determination of the truth or falsity of the 

sentence”
36

 (Speaks 2010).  

While this is intuitively plausible, it further adds to the complexity of meaning as 

explained by propositional semantics. To account for situational and circumstantial 

evaluation we need to redefine the semantic theory in terms of possible worlds: 

The idea is that the meaning of an expression is not what the expression 

stands for in the relevant circumstance, but rather a rule which tells you what 

the expression would stand for were the world a certain way. So, on this view, 

the content of an expression like ‘the tallest man in the world’ is not simply 

the man who happens to be tallest, but rather a function from ways the world 

might be to men—namely, that function which, for any way the world might 

be, returns as a referent the tallest man in that world (if there is one, and 

nothing otherwise). This fits nicely with the intuitive idea that to understand 

such an expression one needn't know what the expression actually refers to—

after all, one can understand ‘the tallest man’ without knowing who the tallest 

man is—but must know how to tell what the expression would refer to, given 

certain information about the world (namely, the heights of all the men in it). 

(Speaks 2010) 

                                                 
36

 This two-way approach of using both character and circumstance of evaluation to define meaning 

of an expression is also called double indexing semantics (proposed by Kamp (1971) and Kaplan 

(1989)). 
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Such functions are called intensions, hence intensional semantics. The classic 

examples of intensional semantics are Kripke’s (1959) semantics for modal logics 

and set-theoretical semantics of Montague (1974). Both are built upon extensional 

semantics of Frege and Tarski. Kripke expanded Tarski’s model-theoretic semantics 

by adding “possible” and “necessary” to the existing values of “true” and “false”. In 

Tarski’s refinement of extensional semantics, the focus is on formalization of 

semantics based on the theory of truth, and on the problem of how semantic theories 

could be consistently developed, rather than on semantics itself. In “The Concept of 

Truth in Formalized Languages” (Tarski 1958), Tarski set the foundations of 

“model-theoretic” semantics
37
. Inspired by Gödel’s incompleteness theorem (1931), 

Tarski argued that truth cannot be defined within the language itself – instead, to 

avoid contradictions, the truth in the “object language” should be observed from the 

“meta-language”. Tarski’s theory of truth is extensional in a sense that the truth of a 

predicate is determined by a definite set of objects and properties. For natural 

language, such definition is impossible, since the set of objects is infinite. Kripke’s 

modal logic, on the other hand, is intensional: we can refer to something without 

having the whole set of properties of that thing. Instead of mapping the language 

onto a single primary world, as is the case in extensional semantics, the intensional 

semantics maps the language onto a set of possible worlds. To a degree, this solves 

some of the problems of extensional semantics, including cases where there is no 

referent in the actual world. For Kripke (1980), 

A possible world isn’t a distant country that we are coming across, or viewing 

through a telescope. ... A possible world is given by the descriptive conditions 

we associate with it. What do we mean when we say ‘In some other possible 

world I would not have given this lecture today?’ We just imagine the 

situation where I didn’t decide to give this lecture or decided to give it on 

some other day. Of course, we don’t imagine everything that is true or false, 

but only those things relevant to my giving the lecture; but, in theory, 

everything needs to be decided to make a total description of the world. We 

can’t really imagine that except in part: that, then, is a ‘possible world’. ... 

‘Possible worlds’ are stipulated, not discovered by powerful telescopes. (p. 

44) 

... Most important, even when we can replace questions about an object by 

questions about its parts, we need not do so. We can refer to the object and 

ask what might have happened to it. So, we do not begin with worlds (which 

                                                 
37

 Later, Tarski’s model theoretic semantics has been expanded by Kripke (1956; 1975) and 

Davidson’s truth-conditional semantics natural languages (1967). 
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are supposed somehow to be real, and whose qualities, but not whose objects, 

are perceptible to us), and then ask about criteria of transworld identification; 

on the contrary, we begin with the objects, which we have, and can identify, 

in the actual world. We can then ask whether certain things might have been 

true of the objects. (p. 53) 

Kripke rejects Fregean view on sense and reference: proper names and natural kinds 

have a referent, but not in Fregean sense. The property cannot determine the 

reference as the object might not have that property in all worlds. Kripke 

distinguishes between designation (the mode of a reference) and the way reference is 

determined. For example, proper names and natural kinds are “rigid designators” for 

they designate the same object in every possible world. Non-rigid designators, on the 

other hand, can have different reference relative to possible worlds. 

Inspired by Kripke’s amodal logic, and by Frege’s, Russell’s and Carnap’s work on 

mathematical logic, Montague, like his predecessors, treats language as a purely 

formal system, not as psychological phenomenon.  

A central working premise of Montague’s theory … is that the syntactic rules 

that determine how a sentence is built up out of smaller syntactic parts should 

correspond one-to-one with the semantic rules that tell how the meaning of a 

sentence is a function of the meanings of its parts. (Partee 1975, p.203) 

Montague’s theory of semantics is arguably one of the most sophisticated 

achievements in the field of intensional logic. For Montague, logic and psychology 

are seen as two separate disciplines, the focus is on logic and philosophy of 

language. 

To conclude, essential to all realist theories of semantics is to provide the logical, 

truth-conditional account of language. The relationship between the two is efficiently 

summarized by Lewis (1970): 

We call the truth-value of a sentence the extension of that sentence; we call 

the thing named by a name the extension of that name; we call the set of 

things to which a common noun applies the extension of that common noun. 

The extension of something in one of these three categories depends on its 

meaning ... It is the meaning which determines how the extension depends 

upon the combination of other relevant factors. What sort of things 

determines how something depends on something else? Functions, of course; 

functions in the most general set-theoretic sense, in which the domain of 

arguments and the range of values may consist of entities of any sort 

whatever, and in which it is not required that the function be specifiable by 
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any simple rule. We have now found something to do at least part of what a 

meaning for a sentence, name, or common noun does: a function which yields 

as output an appropriate extension when given as input a package of the 

various factors on which the extension may depend. We will call such an 

input package of relevant factors an index; and we will call any function from 

indices to appropriate extensions for a sentence, name, or common noun an 

intension. 

Thus an appropriate intension for a sentence is any function from indices to 

truth-values; an appropriate intension for a name is any function from indices 

to things; an appropriate intension for a common noun is any function from 

indices to sets.” (p. 23; italics added) 

The problem with realist semantics is its primary liability to truth conditional view of 

the world, or possible worlds. In this sense, both theories succumb to a common 

underlying problem when faced with psychological aspects of meaning. If all about 

the meaning of a sentence (a proposition) is its truth condition, i.e., an account of the 

state of affairs in the real world that would make the proposition true, then such 

meaning is semantically anchored to the world indifferent of human language 

understanding.  

Following chapter argues that maximization of truth is neither sufficient nor 

necessary condition for psychologically plausible theory of semantics. 

 

10 Problems with realist view 

10.1 Objectivist metaphysics 

The implications that a realist view makes about language and cognition face some 

serious problems when viewed from the perspective of cognitive psychology. In 

what follows, I shortly revise some of the facts of realist semantics with a more 

general interpretation, and point to the problems it carries.  

To begin with, the main problem lies in metaphysical realism or, in Lakoff’s terms, 

“objectivist metaphysics” of the realist approach. For realist, reality comes with a 

unique deterministic structure in terms of entities (or sets of entities defined by the 
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common properties of the members), properties, and the relations holding among 

those properties. 

The world, as objectivist doctrine envisions it, is extremely well-behaved. It 

is made up of discrete entities with discrete logical combinations of atomic 

properties and relations holding among those entities. Some properties are 

essential; others are accidental. Properties define categories, and categories 

defined by essential properties correspond to the kinds of things that there are 

[i.e., natural kinds]. And the existence of classical categories provides logical 

relations that hold objectively in the world. (Lakoff 1987, p. 161) 

This set-theoretical framework exists independent of any human understanding – it is 

logically independent of the human mind, and something which is, in its basic 

character, metaphysically fundamental. The upshot of such structure is  

[c]lassical categorization: All the entities that have a given property, or 

collection of properties in common, form a category. Such properties are 

necessary and sufficient to define the category. All categories are of this kind. 

... 

There are natural kinds of entities in the world, each kind being a category 

based on shared essential properties, that is, properties that things have by 

virtue of their very nature. (ibid., p. 160) 

Realist approach to language and cognition assumes that the mind functions as a 

mirror of nature: the language and thought correspond to entities and categories in 

the world via symbols, and that the world is structured in a way that makes symbol-

to-world correspondences possible – that is, structured in a way that can be modeled 

by set-theoretical models. What makes such correspondence to the world possible, 

i.e. objectively definable and amenable to set-theoretical modeling, are ‘natural 

kinds’. “Natural kinds”, according to Putnam, have “some 'essential nature' which the 

thing shares with other members of the natural kind. What the essential nature is, is 

not a matter of language analysis but of scientific theory construction” (Putnam 

1975, p. 104). Natural kinds therefore represent something that exists in the world 

independently of human cognition and is attainable only through manipulation of 

symbolic structures. The realist semantics is objectively referential. 

Already in his early writings (Putnam 1975, 1975b), Putnam departs from traditional 

realist view of cognition. A much stronger argument, that shakes foundations of 

classical theory, comes some years later in form of what is called Putnam’s theorem 
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(Putnam, 1981). There, Putnam argues that model-theoretic semantics fails as a 

theory of meaning. The following tree tenets of Metaphysical realism came under 

Putnam's critique: 

(1) that “the world consists of a fixed totality of mind-independent objects”,  

(2) that “there is exactly one true and complete description of the way the 

world is”, and  

(3) that “truth involves some sort of correspondence” (Putnam 1990, p. 30). 

The casual realist reasoning could be interpreted as follows: thesis (1) is an 

underlying requirement for validity of thesis (2), both naturally suggest thesis (3), but 

thesis (3) requires a predefined or “ready-made world”, thus thesis (3) suggests thesis 

(1) (Putnam 1983, p. 211). Putnam (1981) argues that such approach, where its 

constituents are objectively determined to provide “exactly one true and complete 

description of the world”, is not only wrong but unintelligible. 

What does it mean ... to speak of mind independency? Human minds did not 

create the stars or the mountains, but this “flat” remark is hardly enough to 

settle the philosophical question of realism versus anti-realism. What does it 

mean to speak of a unique “true and complete description of the world?” (p. 

52.)  

... think of the world as consisting of objects that are at one and the same time 

mind-independent and Self-Identifying. This is what one cannot do (ibid., p. 

54) 

In (Putnam 1975, 1981), Putnam develops the view of “internal realism”. Contrary to 

traditional view, internal realism is consistent with conceptual relativity, i.e. the 

observation that truth primarily depends on the conceptual scheme that we employ, 

not on the “God's Eye View” of realist metaphysics.  The conceptual relativity is in 

the hands of the individuals, it comes from our cognition and interaction with the 

world, not from some presupposed definite reality. Hence, the metaphysical realist 

cannot accept conceptual relativity without the above theses falling apart.  

And as Lakoff (1987) point out,  

[m]odel theory is, of course, the natural mathematization of objectivist 

semantics. What Putnam is suggesting is that there can be no such possible 

mathematization. That is, objectivist semantics cannot be made precise 

without contradiction. (pp. 230-231) 
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10.2 Referential representations 

The objectivist view is strongly reflected in the classical computational approach to 

cognition. Within the realist tradition, two different theories (extensional vs. 

intensional) are divided by the question whether our perceptual access to the physical 

world is direct or mediated; with the former defending ontologically immediate and 

non-representational reference to the world, while the latter constitutes the reference 

through the representational system, i.e. via symbol system registering the presence 

of the object or the relevant aspects of its character. The latter underlies classical 

computationalism, since it aims to explain our contact with physical items as 

mediated by some form of mental representation. As Foster (2000, p. 1) points out: 

“[i]n place of the claim that our perceptual access to the physical world is direct, it 

insists that the perceiving of a physical item is always mediated by the occurrence of 

something in the mind which represents its presence to us” – our conceptual symbol 

system. 

We will call this a representational realism, where external world is mediated by 

(internal, mental) representations, and cognition itself is described as manipulation of 

abstract symbols. By this view, concepts are discrete symbols that correspond to 

entities and categories in the world. Our conceptual symbol system is innate and 

made meaningful via its capacity to correspond correctly to these entities and 

categories in the world. According to realist view, “mental representations must thus 

be ‘semantically evaluable’ – capable of being true or false, or referring correctly or 

failing to refer correctly” (Lakoff 1987, p. 163). Our representation is representation 

of external reality, a mirror of logical relations among entities and categories in the 

world, independent of belief, knowledge, perception, modes of understanding, or any 

other aspect of individual’s cognition. The success of our interacting with the world 

depends on our ability to successfully represent this external reality: “[k]nowledge 

consists in correctly conceptualizing and categorizing things in the world and 

grasping the objective connections among thing in those categories” (Lakoff 1987, p. 

163). Concepts and categories of mind are mental representations of objects and 

categories in the world, detached from any kind of nonobjective influences that could 

make our knowledge objectively inaccurate, such as products of imagination 

(metaphor, metonymy, mental imagery etc.). Meaning is based on truth: the meaning 

of a sentence is taken to be its truth conditions, the conditions under which the 
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sentence would be true. Thought then, becomes a manipulation of abstract symbols, 

which get their meanings via correspondence with entities and categories in the 

world (or possible worlds). And our language becomes the Language of Thought. 

10.2.1 Symbolic formalism, objective categories and natural language 

There are two general representational formalisms of realist approach to meaning: 

the feature list approach (Smith, Shoben and Rips 1974) and the propositional 

structure approach (Collins and Loftus 1975). Both are victims of the realist view of 

the world. The basic idea of the former is that the words and objects get their 

meaning by belonging to a category (e.g., furniture, animal, plant), which, by 

objectivist definition, requires having the right defining features (or properties). As 

Barasalou (1993) points out, this definition might perfectly sensible on the surface – 

at least In Western culture, we have gotten accustomed to such world view, which 

has prevailed from the times of Aristotel – but there are many logical and empirical 

problems with such approach. First, for realist approach to succeed, we need to have 

the set of all the necessary features and appropriate relations established beforehand. 

By such account, it doesn’t seem possible for us to know or recognize an object if 

neither the categories in the world nor the categories in our head have defining 

features. And therein lays the problem. Take a simple object such as table for an 

example: it is not enough to define its constituents (e.g., a top and legs), but we also 

need to define right relations among them (i.e., the legs must be below the top and 

support the top). Moreover, tables come in all kinds of forms (e.g., different shapes, 

number of legs, without legs, different function etc.) and it would be impossible to 

have an exhaustive list of every single necessary feature for each case. Inversely, 

imagine the set of necessary features that define a general class, i.e. comprising all 

tables, dogs, cats, etc. in the world. Or, take Lakoff’s example of a category mother: 

there is the prototypical “birth mother” that bears a child and nurtures it; a biological 

mother who provides genetic materials but does not bear the child or nurture it; a 

surrogate mother who bears the child but does not provide genetic material; adoptive 

mothers; the mother of invention, etc. The ambiguity of these examples makes the 
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notion of an objective category unrealistic. Most categories do not seem to have an 

ontological structure defined by a set of necessary and sufficient conditions
38

. 

10.3 Relations to Cognitive psychology 

Most critically, there is not much experimental evidence from cognitive science 

supporting the realist view on categorization and concept formation (cf. critical 

contributions from different areas of cognitive science, e.g, Rosch and Mervis 1975, 

Mervis and Rosch 1981, Smith and Medin 1981, Medin 1989, Anderson 1991, 

Gelman 1996, Barsalou 1983, 1985, 1999, Grossman et al. 2002, Jäkel 2007 and 

Jäger 2007, among others). Moreover, experimental research in cognitive psychology 

has shown (especially in prototype theory introduced by Rosch (1975, 1978)) that 

categories do not conform to the rules of logic and ontological view of the world as 

one based on defining features. In most cases, the structure of a category is “radial”– 

that is, the category has some central or prototypical members with marginal 

members related to these central members, both, by an extent of shared features and 

by metaphorical extension (Lakoff 1987, Lakoff and Johnson 1980). The 

deterministic structure of categories, it seems, could be appropriate only in matters of 

mathematics and logic. 

We can infer from the realist definition that essential features forming such 

categories are abstract, amodal, arbitrary elements that take on their meaning by a 

principle of compositionality. From a standpoint of cognitive psychology, such 

approach has serious logical and empirical problems. The logical problem includes 

the symbol grounding problem (Harnad 1990) and Chinese Room argument (Searle 

1980, Harnad 1989), claiming that meaning cannot arise solely from syntactic 

relations between arbitrary symbols. We need to have access to mental content: 

[f]ormal symbols by themselves can never be enough for mental contents, 

because the symbols, by definition, have no meaning (or interpretation, or 

semantics) except insofar as someone outside the system gives it to them 

(Searle 1989, p. 45). 

                                                 
38

 For exmple, even experts in biology do not agree as to what are the proper criteria for classification. 

Here, Linnaean taxonomy comes to mind: though exceptionally systematic, the groupings of 

observable characteristics and relationships in Linn ’s hierarchical classification have significantly 

changed since their conception in 18th century, as have the principles behind them (but see (Lakoff 

1987) for other examples). 
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Learning the meaning of words is not analogous to processing abstract symbol 

structures. The empirical problem, on the other hand, argues that human performance 

in category tasks is very much influenced by context and modality (Jacoby and 

Dallas 1981, Barsalou 1987, 1993, 1999, 2005, Wisniewski and Medin 1994, 

Hintzman, 1986, Hampton et al. 2006).  

The propositional structure inherits the same problems. Propositions do give 

structure to categorical knowledge and account for reasoning; for example, 

explaining necessary relations between constituents of the category table: e.g. “Legs 

are located beneath to support the table top”. But meaning is anchored in the same 

sets of necessary and sufficient conditions as is the feature list. And the tokens of the 

constituents are abstract symbolic structures manipulated by syntactic rules. This 

brings us back to the symbol grounding problem, and, indirectly, to the implicit 

paradox in Frege’s Principle of Compositionality. Further, such representation of the 

state of affairs in external world is central to Fodor’s Representational Theory of 

Mind and to computational approach to cognition in general. Fodor is quite clear: 

What I am selling is the Representational Theory of Mind ... At the heart of 

the theory is the postulation of a language of thought: an infinite set of 

‘mental representations’ which function both as the immediate objects of 

propositional attitudes and as the domains of mental processes. (Fodor 1987, 

p. 16-17) 

The inherent problem to the realist semantics is there is no plausible explanation for 

how meaning could be eventually introduced into a system of meaningless symbols. 

Alone, realist semantics cannot answer the learnability question, “a semantic 

mapping between a language and a world (or several worlds or a partial world) does 

not tell us anything about how individual users "grasp" the meanings determined by 

such a mapping” (Gärdenfors 2000, p. 214). Harnad (1987) argues that realist view is 

ungrounded: 

... the meanings of the atomic terms of its sentences cannot simply be derived 

from still more sentences without infinite regress. ...the meanings of 

elementary symbols must be grounded in perceptual categories. That is, 

symbols, which are manipulated only on the basis of their form (i.e., 

syntactically) rather than their “meaning,” must be reducible to nonsymbolic, 

shape-preserving representations. Semantics can only arise when the 

interpretations of elementary symbols are “fixed” by these nonsymbolic, 
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iconic representations and their causal connections to input and output from 

the world. (p. 550) 

Nor has Lewis’ agenda of keeping the two topics separated (i.e., logical vs. 

psychological and sociological aspects of semantics), granted the realist approach a 

superior, or at least more plausible, theory of meaning in natural languages. 

Glenberg (1997) sums it up nicely: 

How did we get ourselves into this mess? The problem stems from trying to 

develop psychological theories of meaning on the basis of philosophers' 

analyses of formal languages. Because natural language is messy, most 

philosophical accounts of meaning have been constructed within a formal 

language, such as predicate calculus. The symbols in a formal language are 

intended to be meaningless so that they can be operated on by formal 

syntactic procedures. These symbols and sentences are given meaning by 

mapping them onto elements in a formal model of the world. Not only is that 

mapping formidable (and perhaps impossible in principle, see Putnam, 1981), 

but also it requires the sorts of Aristotelian categories that do not appear to 

exist in the real world. 

Note that the philosopher's problem is very different from the psychologist's 

problem. The philosopher is dealing with a formal language the elements of 

which are designed to be meaningless, whereas the psychologist is dealing 

with a natural language with elements that are designed to convey meaning. 

The philosopher is attempting to discover the “universal” meaning of formal 

sentences, that is, what a given set of relations among elements will mean for 

all times and all places. In natural languages, however, the meaning of a 

sentence depends critically on its context as well as on the experiences of the 

individual hearing the sentence. The psychologist needs to discover how a 

natural language sentence can have a particular meaning for a particular 

individual. (p. 508) 
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Section 7: Cognitive semantics 

11 Introduction: the rise of cognitive theories 

In cognitive sciences the realist view prevailed until mid-70’s of previous century, 

when alternative theories of cognitive semantics and linguistics emerged to challenge 

the classical realist approach to cognition and its modeling in AI. But the core 

criticism came earlier, from philosophy itself: starting with Wittgenstein’s (1953) 

repudiation of realist approach to language and meaning (including his own previous 

work) as fundamentally misguided, Putnam (1975, 1981), and later from scholars 

from various fields of cognitive sciences, most notably from phenomenological 

philosopher Hubert Dreyfus (1965, 1972) and cognitive psychologist Elanor Rosch 

(1978a/b). The ‘discovery’ of family resemblance concepts (with the underlying hint 

that grammar is arbitrary) resulted in Kuhnian paradigm shift, and is arguably 

Wittgenstein’s most influential contribution to the development of cognitive 

sciences, and consequently to the demise of classical theory
39

. In Philosophical 

Investigations (1953), Wittgenstein argued that concepts and categories are not of 

fixed necessary and sufficient definitions, as is the realist mantra, but are necessarily 

context-dependent. Using an example of concept ‘game’, Wittgenstein argued there 

is no single property common to all games in virtue of which we call them ‘games’; 

instead, there is “a complicated network of similarities overlapping and criss-

crossing: sometimes overall similarities, sometimes similarities of detail” (§ 66). 

Moreover, “… the term ‘language-game’ is meant to bring into prominence the fact 

that the speaking of language is part of an activity, or of a form of life” (§ 23). What 

Wittgenstein argues is that “grammar is not abstract, but situated within the regular 

activity with which language-games are interwoven ... It is through analyzing 

language's illusive power that the philosopher can expose the traps of meaningless 

philosophical formulations” (Anat and Anat 2011). While not discussing 

psychological dimension, nevertheless, Wittgenstein’s investigation into everyday 

psychological concepts and language use had an important influence on the 

development of cognitive science. 

                                                 
39

 Later, Elanor Rosch, a cognitive psychologist strongly inspired by Wittgenstein, developed a series 

of very influential theories on concept formation and categorization. 
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12 Cognitive semantics 

Cognitive semantics theory challenges the prevalent realist view in every possible 

aspect. First, the main tenet of cognitive semantics is: meanings are mental entities. 

As we have shown, semantics is traditionally understood as a relation between 

language and the world (see Figure 6: a) and b)). This approach is generally called 

referential semantics, because it claims that sentences get their meanings by referring 

to the real objects and events. The problem with referential semantics is its 

objectivist metaphysics. Such view of the world is not psychologically real – it does 

not explain language acquisition and comprehension nor nuances in conceptual and 

categorical structure. Moreover, in the real world there are no objectively 

determinate sets or ultimate lists of necessary and sufficient features or conditions – 

we don't know or have access to such sets or lists. Meanings have to be perceptually 

grounded (Harnad 1990, Gärdenfors 1997). Therefore, referential semantics is not 

acceptable as a cognitive theory. 

In cognitive semantics, on the other hand, the emphasis is on the graded structure of 

concepts and categories of natural language. The cognitive answer to the semantic 

question (2) is words get their meanings by mappings onto conceptual structure 

(Figure 6 c)). The semantics becomes the relation (via set of associations) between 

expression and conceptual structure, i.e. mental representations of individual 

language users, not external world defined by objective facts. Instead of propositions, 

cognitive semantics operates on lexical meanings of words. As Gärdenfors (1999b, p. 

21) puts it: “meaning is conceptualization in a cognitive model.” 
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Figure 6: Semantics: a) the ontology of extensional semantics; b) the ontology 

of intensional semantics; c) the components of cognitive semantics (adapted 

after (Gärdenfors 1999a, p. 210)) 

In same vein goes the cognitivist answer to the learnability question (3): since 

meanings are conceptualizations, we get the meaning of an expression via associative 

link to our cognitive structure. And language itself is seen as a part of the cognitive 

structure, not a separate entity isolated from the user. Since meanings map onto 

individual’s conceptual structures, the notion of truth and objective reference to the 

external world become secondary, what matters, is belief. Moreover, such meaning is 

grounded. Cognitive semantics offers a natural explanation of the relationship 

between perceptual and cognitive mechanisms and thus grounding of meaning: 

Since the cognitive structures in our heads are created mainly by our 

perceptual mechanisms, directly or indirectly, it follows that meanings are, at 

least partly, perceptually grounded. This, again, is in contrast to traditional 

realist versions of semantics which claim that since meaning is a mapping 

between the language and the external world (or several worlds), meaning has 

nothing to do with perception. A consequence of this is also that language and 

semantics is not seen as separated from other forms of cognition, but interacts 

with perception, memory, concept formation, etc. (Gärdenfors 1999a, p. 211; 

italics added).  

The realist view has difficulties explaining any of the essential aspects of natural 

language related to cognition: e.g., how meanings are grasped by the individual 

language user, how perception influences categorization and cognition in general 

(i.e., how concepts and categories emerge, how we fill in partial information, etc.), 

the workings of semantic memory, etc. Ultimately, realists have a problem answering 

learnability question (3) precisely because of their exclusively formal semantics, 
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detached from perception and psychological and sociological aspects of language 

and its user. Hence, as Gärdenfors (1999a) points out, there are “insurmountable 

problems” for the realist explanation of learning new words: 

How could an associative link to the world function in these cases? I can't 

take seriously an answer from intensional semantics that presumes associative 

links between sounds and entities in merely "possible" worlds. How would 

such a link be physically realized? How could one learn something about a 

non-actual world? I conclude that realist brands of semantics have serious 

problems with the learnability question. These problems become particularly 

tangible if we consider the task of constructing a robot able to learn the 

meaning of new words that have no immediate reference in the environment 

of the robot. (p. 215) 

The point is, philosophical ‘possible worlds’ imply ontological stances that, without 

grounding, cannot explain what is intuitively meaningful to individual language user 

(for a discussion of other implications of traditional philosophical account on 

language, see for example (Brandt 2005)).  

12.1 Image-schematic representation of meaning 

The unique approach of cognitive semantics is ultimately evident in its formalization. 

Unlike syntactic structure of Fodor’s Language of Thought, cognitive models are 

image-schematic, based on geometric constructions, not propositions (Gärdenfors 

1996, p. 164). Since cognitive semantics emphasizes the relation between language 

and cognitive structure, the semantic elements are being modeled as spatial or 

topological objects. While spatial or schema-like functions are common to all kinds 

of image schemas, general definitions of what an image-schema is are quite vague 

and heterogeneous, cf. (italics added): 

... dynamic pattern that functions somewhat like the abstract structure of an 

image, and thereby connects up a vast range of different experiences that 

manifest this same recurring structure (Johnson 1987, p. 29) 

... a recurring structure of or within our cognitive processes, which establishes 

patterns of understanding and reasoning. Image schemas emerge from our 

bodily interactions, linguistic experience and historical context (Johnson 

1987, p. 256) 

The most useful way of understanding image schemas is to see them as 

mental representations of fundamental units of sensory experience (Grady 

2005, p. 44) 
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... part of our non-representational coupling with our world, just as barn owls 

and squirrel monkeys have image schemas that define their types of 

sensorimotor experience ...  

... the basis for our understanding of all aspects of our perception and motor 

activities. ...  

... activation patterns (or “contours”) in human topological neural maps 

(Johnson and Rohrer 2007, p.33) 

... dynamic analog representations of spatial relations and movements in 

space. (Gibbs and Colston 1995, p. 349) 

... abstract mental pictures with an inherent spatial structure, constructed 

from elementary topological and geometrical structures like "container," 

"link", and "source-path-goal." Such schemas are commonly assumed to 

constitute the representational form common to perception, memory, and 

semantic meaning. (Gärdenfors 2011, p. 1) 

Image-schemas reflect the systematic relations of elements constituting a language, 

but are nothing like words in a language. Moreover, they are abstract mental pictures 

with inherent spatial structure that is schematic, not picturesque. They are 

...that part of a picture which remains when all the structure is removed from 

the picture, except for that which belongs to a single morpheme, a sentence or 

a piece of text in a linguistic description of a picture ... (Holmqvist 1993, p. 

31). 

Some classic examples of image-schematic cognitive modeling are Fillmore’s frames 

(1982, 1985), image-schemas in Langacker’s theory of cognitive grammar 

(Langacker 1986, 1987), metaphoric and metonymic mappings in Lakoff (1987) and 

Lakoff and Johnson (1980), mental spaces in (Fauconnier 1985, 1997; Fauconnier 

and Sweetser 1996) and conceptual spaces in Gärdenfors (1988, 1991, 1996, 1997, 

2000). All these different variations fall under a general term ‘image schema’. A 

general characteristic of an image schema is its inherent spatial structure, composed 

of spaces or basic domains: 

It is however necessary to posit a number of 'basic domains’, that is, 

cognitively irreducible representational spaces or fields of conceptual 

potential. Among these basic domains are the experience of time and our 

capacity for dealing with two and three-dimensional spatial configurations. 

There are basic domains associated with various senses: color space (an array 

of possible color sensations), coordinated with the extension of the visual 

field; the pitch scale; a range of possible temperature sensations (coordinated 
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with positions on the body); and so on. Emotive domains must also be 

assumed. It is possible that certain linguistic predications are characterized 

solely in relation to one or more basic domains, for example time for 

(BEFORE), color space for (RED), or time and the pitch scale for (BEEP). 

However, most expressions pertain to higher levels of conceptual 

organization and presuppose nonbasic domains for their semantic 

characterization. (Langacker 1987, p. 5) 

Further, Lakoff (1987), Johnson (1987) and Lakoff and Johnson (1980) argue that 

the main vehicles of conceptual interactions among these domains are metaphoric 

and metonymic operations (the aspects of natural language completely ignored by the 

realist approach): 

We discovered that the image-schema structure of the source domain is used 

in reasoning about the target domain. Moreover, by looking at hundreds of 

cases, we found that image-schema structure and image-schematic inferences 

seemed to be "preserved" by metaphors. That is, source domain containers 

(e.g., physical traps) are mapped to containers (e.g., metaphorical traps), with 

interiors mapped to interiors and exteriors mapped to exteriors. (Lakoff and 

Johnson 1980, p. 253) 

An example of a general structure, with basic components of “container”, “source-

path-goal” and “link”, is shown in Figure 7. 

 

Figure 7: Image schemas: fundamental carriers of meaning (container, source-

path-goal and link) 

A more specific example is of an image-schema depicting a dynamic interpretation 

of English word out (Johnson 1987, p. 32-34) is shown below. In Figure 8, out is 

represented in various spatial senses by a metaphorical boundary. Possible 

interpretations are: 

1. a case where a clearly defined trajectory (TR) leaves a spatially bounded 

landmark (LM) leaving a spatially bounded landmark (LM), as in “John went 

out of the room”; 
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2. a case of where trajectory (TR) expands (LM), as in “She poured out the 

beans”; 

3. a case where containing landmark is implied and not defined at all, as in “The 

train started out for Chicago”. 

 

Figure 8: An image-schema of the English word out (adapted after (Johnson 

1987, p. 32)) 

 

12.2 Problems with image schemas 

The main problem with cognitive semantics is its variety of theories and different 

formulations of image schemas. Theories within cognitive semantics diverge on 

issues such as representation and embodiment (e.g., Varela, Thompson and Rosch 

1991, Johnson and Lakoff 2002, Mandler 2004, Johnson and Rohrer 2007, Ziemke, 

Zlatev and Frank 2007, Gibbs 2006), consciousness (Johnson and Lakoff 1999, 

Talmy 2000, Thompson 2001, Evans 2003), level of abstractness (Grady 2005), 

dynamicity (Mandler 2004), sensory modality (Johnson 1987, Gibbs 2005, Ziemke, 

Zlatev and Frank 2007, cf. Piaget 1952) and (inter)subjectivity (Tomasello et al. 

(2005), Zlatev 2005, 2007, cf. Piaget 1962), among others. Furthermore, some 

researchers argue for neural foundation of image schematic mappings, for example, 

in studies on conceptual metaphors (Lakoff 1987, Johnson 1987, Lakoff and Johnson 

1980, Gallese and Lakoff 2005), or in mappings between sensorimotor experiences 

and related brain regions. The latter has gotten much evidence from experimental 
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psychology and neuroimaging studies (e.g., Barsalou 1999, Pulvermüller 2001, 

Glenberg and Kaschak 2002, Gallese and Lakoff 2005, Rohrer 2005, Johnson and 

Rohrer 2007). 

Overall, the lack of common underlying theory is pressing. The main reason for such 

heterogeneity of the field is in cognitive approach to semantics itself. In cognitive 

semantics, the semantic structures are not independent, but closely related to other 

cognitive mechanisms, particularly perception and memory. Hence, the study of 

semantics is inherent in the study of other, more general aspects of cognition. 

The idea is that since the acquisition and use of language rest on an 

experiential basis, and since experience of the world is filtered through 

extralinguistic faculties such as perception and memory, language will of 

necessity be influenced by such faculties. We can therefore expect the nature 

of human perceptual and cognitive systems to be of significant relevance to 

the study of language itself. One of the primary tasks of cognitive linguistics 

is the ferreting out of links between language and the rest of human cognition. 

(Regier 1996, p. 27) 

Another problem, related to the issue above, is the lack of precise definition or 

formalism for image-schematic approach to modeling semantics. Without further 

constraints, the general notion of intrinsic topological or geometrical structure is too 

opaque. This became especially evident in various computational attempts of 

modeling cognitive semantics (e.g., a study by Holmqvist (1993)) where, due to the 

lack of mathematically defined parameters, the implementations of image-schematic 

representations have proven difficult. 

And finally, linguistic meanings are not only individual, but public, conventional 

entities, a part of social environment affected by “linguistic power structure” 

emerging from the community (Gärdenfors 1993). Similarly, according to 

Tomassello (2003): 

Linguistic symbols are social conventions by means of which one individual 

attempts to share attention with another individual by directing the other's 

attentional or mental state to something in the outside world (p. 8) 

In what follows, Gärdenfors’ theory of conceptual spaces (Gärdenfors 2000) is 

proposed as an appropriate representational framework for modeling cognitive 

semantics. It purports to explain the interplay between individual and social aspects 

of meaning in relation to conceptual structure and category effects, and most 
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importantly (for the current topic), it defines mathematical foundation needed for 

computational modeling of cognitive semantics. 
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Section 8: Conceptual spaces 

13 Conceptual Spaces: a framework for cognitive semantics 

In (Gärdenfors 2000), Gärdenfors proposes a novel approach to modeling cognitive 

semantics: by using a notion of a conceptual space, concepts and properties are being 

represented in space geometrically based on their quality dimensions. Since concepts 

are represented spatially as vectors, the creation of conceptual spaces is mathematical 

and thus directly applicable for computer simulations. Conceptual spaces represent 

information by geometric structures rather than by symbols and propositions. 

Information is represented by points (standing for objects or individuals), and regions 

(standing for concepts, properties and relations) in multi-dimensional space. By 

exploiting distances in the space we can represent degrees of similarity between 

objects. 

The general idea is based on cognitivist approach to semantics defining meanings as 

mental entities. Just like in an image schema, a notion of space “serves as a 

fundamental conceptual structuring device in language” (Regier 1996, p. 19). But 

unlike an image schema, conceptual spaces are a mathematically defined, based on 

“fundamental notions of geometry” (Gärdenfors 2000, p. 15). And unlike the realist 

approach to semantics and language, the conceptual spaces approach does account 

for psychologically plausible explanation of basic human cognitive processes of 

categorization and concept formation. As we have argued throughout the thesis, the 

fundamental issues of the realist approach come from its objectivist metaphysics, i.e., 

the view of the world defined in terms of necessary and sufficient conditions. The 

classical hypothesis of sets of defining features is not psychologically real (see, 

Rosch 1978, Smith and Medin 1981, Medin 1989 and Lakoff 1987). In general, there 

are no strict borders or ultimate lists of necessary and sufficient features, or any such 

criteria for category membership (in most psychological dimensions no clear-cut 

boundaries exists). Unlike the classic, realist approach then, the conceptual spaces do 

account for graded structure of categories as well as clears cases (e.g., of some 

scientific concepts). 
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13.1 Empirical evidence 

There is an overwhelming empirical evidence underlying conceptual spaces approach 

to modeling cognition and, more precisely, for the conceptual basis of meaning. 

Here, I'll limit myself on some general, but essential examples that directly refer to 

the cognitivist theory and formulation of meaning through conceptual spaces. 

13.1.1 Categorization and prototype theory 

First, take for example the category effect. Various studies reveal the category 

structure in semantic memory in terms of family resemblance: items in the same 

category are more related or similar than items in different categories (Rosch 1973, 

Rosch and Mervis 1975, Smith and Medin 1981). 

Second, in her studies of psychological principles of categorization (Rosch 1975, 

1978), Rosch defined cognitive economy and structure in the perceived world as two 

general principles that underlie categorization system: 

The first has to do with the function of category systems and asserts that the 

task of category systems is to provide maximum information with the least 

cognitive effort; the second has to do with the structure of the information so 

provided and asserts that the perceived world comes as structured information 

rather than as arbitrary or unpredictable attributes. Thus maximum 

information with least cognitive effort is achieved if categories map the 

perceived world structructure as closely as possible. (Rosch 1978, p. 28) 

These principles further affect both horizontal and vertical dimension of 

categorization. The former concerns prototype effects and “the segmentation of 

categories at the same level of inclusiveness - the dimension on which dog, cat, car, 

bus, chair, and sofa vary.” (ibid., p. 30). The vertical dimension, on the other hand, 

“concerns the level of inclusiveness of the category - the dimension along which the 

terms collie, dog, mammal, animal, and living thing vary.” (ibid., p. 30).  

There are other important considerations. Strong empirical support has been shown 

for the prototype theory (e.g., in Rosch 1973, 1975, 1978, Rips, Shoben and Smith 

1973, Mervis and Rosch 1981, Rosch and Mervis 1975, Rosch et al. 1976, and 

Lakoff 1987). The prototype theory and the studies on typicality effect have shown 

that within the same category not all category members are equal, some being 

prototypical and others less typical. Thus, the notion of prototypicality is defined as 
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‘goodness of example’, with the prototype seen as the best example or the “clearest 

case” among members of particular category. To borrow a classical example of 

prototypicality ratings (Rosch 1975), for a category ‘bird’, robin, sparrow and 

bluebird are seen as more representative than chicken, penguin or emu. What 

prototype theory purports to explain, are the asymmetries among category members 

and asymmetric structures within categories. The prototypicality effects and 

goodness-of-example ratings can be interpreted in terms of the internal structure of 

the category or a category membership
40

. To use just one example, some categories 

have “extendable boundaries”, while others do not. Thus, category ‘bird’ has strict 

boundaries in the sense that all members belong to it in absolute terms, i.e. something 

is not a bird and a fish at the same time; a ‘tall man’, however, cannot be defined by 

itself, it needs a contrast class to compare with.  

In many cases, prototypes act as cognitive reference points of various sorts 

and form the basis for inferences. The study of human inference is part of the 

study of human reasoning and conceptual structure, hence, those prototypes 

used in making inferences must be part of conceptual structure. It is important 

to bear in mind that prototype effects are superficial. They may result from 

many factors. In the case of a graded category like tall man, which is fuzzy 

and does not have rigid boundaries, prototype effects may result from degree 

of category membership, while in the case of bird, which does have rigid 

boundaries, the prototype effects must result from some other aspect of 

internal category structure. (Lakoff 1987, p. 45; italics added) 

 

13.1.2 Basic level categories 

The vertical dimension of category system, on the other hand, gives an important 

insight into the relation between inclusiveness and abstractness of category structure, 

and the notion of basic level: 

... not all possible levels of categorization are equally good or useful; rather, 

the most basic level of categorization will be the most inclusive (abstract) 

level at which the categories can mirror the structure of attributes perceived in 

the world. (Rosch 1978, p. 30; italics added). 

                                                 
40

 But see Lakoff (1987) for a different view. In short, Lakoff argues that the prototypicality ratings 

are not to be misunderstood in terms of constituting a graded membership (which has often been the 

case) in terms of some members being consequently less members of a category than others, but in 

terms of explaining the internal category structure. 
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The vertical dimension has taxonomical structure composed of various levels of 

abstraction: the greater the inclusiveness, the higher the level. The criteria for 

defining particular level of abstractness/inclusiveness are based on the probabilistic 

concept of cue validity (Rosch et al. 1976) and Tversky’s set theoretical framework
41

 

(Tversky 1977). What Rosch and colleagues have found is that this basic level of 

categorization has an important cognitive significance: 

Superordinate categories have lower total cue validity and lower category 

resemblance than do basic-level categories, because they have fewer common 

attributes; in fact, the category resemblance measure of items within the 

superordinate can even be negative due to the high ratio of distinctive to 

common features. Subordinate categories have lower total cue validity than 

do basic categories, because they also share most attributes with contrasting 

subordinate categories; in Tversky's terms, they tend to be combined because 

the weight of the added common features tend to exceed the weight of the 

distinctive features. That basic objects are categories at the level of 

abstraction that maximizes cue validity and maximizes category resemblance 

is another way of asserting that basic objects are the categories that best 

mirror the correlational structure of the environment. (Rosch 1978, p. 31; 

italics added)  

The basic level is further characterized by following conditions (cf. Rosch 1978, 

Lakoff and Johnson 1999, Lassaline, Wisniewski and Medin 1992): 

(1) it is the highest level for similarly perceived overall shapes, i.e. the highest 

level of abstraction at which we have mental image for the entire category. 

For example, there is no overall shape for furniture or animal, but there is for 

a chair or a cat; 

(2) it is the highest level for actions for interacting with category members – you 

have an idea about handling a chair or a table, but not furniture; 

(3) it is the highest level at which subjects are fastest at identifying category 

members and most of our knowledge is organized. As many have argued, the 

basic level is not ‘static’ in the sense that it is the same across different 

subject groups – it highly depends on the individual knowledge and expertise 

                                                 
41

 Cue validity measures the probability of particular attribute x (cue) as a predictor of category y 

increases with the frequency of x being associated with this category y and vice versa. Tversky’s 

criteria for “category resemblance” is defined as a difference between the weighted sum of all 

common features within a category subtracted by the sum of their distinctive features (also those 

belonging to other categories). In general, cue validity gives a more precise measure of the effect of 

contrast categories than Tversky’s approach, but differences between the two are not relevant to our 

topic. 
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(see e.g., studies by Atran 1989, Tanaka and Taylor 1991, Mervis, Johnson 

and Scott 1993, Johnson and Mervis 1997, Medin et al. 1997, Proffitt, Coley 

and Medin 2000, Johnson 2001, Bailenson et al. 2002, Ross et al. 2003, 

Augustin and Leder 2006, Holt and Beilock 2006, Ballester et al. 2008); 

(4) it is arguably the first level where one would expect names to evolve and 

therefore a first level used by children. 

Numerous empirical studies support basic-level categorization, e.g.: general studies 

by (Berlin 1972, Rosch 1978, Lassaline, Wisniewski and Medin 1992), cross-cultural 

studies (Berlin 1972, Rosch 1974), cross-domain studies (Tversky and Hemenway 

1984), studies on object categorization (Jolicoeur, Gluck and Kosslyn 1984, Rosch et 

al. 1976, Murphy and Wisniewski 1989), studies on free-naming tasks (Rosch et al. 

1976), studies on children’s language development and reasoning (Anglin 1977, 

Karmiloff-Smith 1986, 1992, Gopnik and Meltzoff 1992, Gelman 1996, Jones and 

Smith 1993, Plaut and Karmiloff-Smith 1993, Sloutsky and Fisher 2004, Medin and 

Waxman 2007); but see (Mandler and Bauer 1988, Markman 1991, Markman and 

Wisniewski 1997) for contrasting view. 

The key psychological aspects of human categorization, i.e. category, prototype and 

basic-level effects, play an important role in language and semantics. In what 

follows, I will show how the theory of conceptual spaces can account for these 

findings by employing the geometrical structure of conceptual spaces and the 

inherent notion of similarity. 

13.2 Architecture of conceptual spaces 

In conceptual spaces, the meanings of words are represented by their mappings onto 

conceptual structures. The meaning is built out of concepts which are represented in 

space by regions of quality dimensions. A conceptual space then is a geometrical 

structure based on a number of quality dimensions with inherent connection between 

distances and similarity judgments. 

13.2.1 Quality dimensions and similarity 

Gärdenfors (1988, 1991, 1996, 1997, 2000) argues that the fundamental role of 

quality dimensions is to build up the domains needed for representing concepts. In 

conceptual spaces, the dimensions are the basic structural elements that represent 
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various “qualities” or properties of objects in different domains and specify relations 

among them; some examples are color, pitch, temperature, weight, spatial 

dimensions of height, width and depth etc.). The dimensions differ in their level of 

abstraction and kind. Some of the quality dimensions are innate and part of our 

perceptual-motor system (such as color, taste, smell, pitch and space), some are 

discrete, some are learned, and still others can be culturally dependent or introduced 

by science. Furthermore, some of the quality dimensions are psychological, abstract, 

and have non-sensory qualities. Others, such as color, pitch, temperature, weight and 

spatial dimensions are all sensory dimensions that are easily quantifiable. For 

example, time and weight are one dimensional structures, former is isomorphic to the 

line of real numbers, the latter to the line of non-negative numbers. More interesting 

are quality domains in color perception, especially since color theory involves both 

physical and psychological dimensions. 

In conceptual spaces, each quality dimension has a certain geometrical structure, 

since it needs to satisfy particular structural constraints. In many cases, the structure 

of quality dimensions (e.g. sensory and physical) is metrical, meaning we can talk 

about distances along the dimensions. Since properties and objects are intimately tied 

to quality dimensions, the distances between representations (e.g. of particular 

instances of objects that are represented as points in space) offer similarity measures. 

Similarity becomes a function of distance in conceptual space; in psychological 

studies of categorization, the similarity is defined as exponentially decaying function 

of distance (Shepard 1987, Hahn and Chater 1997). And, as Gärdefnors (2000) points 

out, 

[t]here is a tight connection between distances in a conceptual space and 

similarity judgments: the smaller the distances between the representations of 

the two objects, the more similar they are. In this way, the similarity of two 

objects can be defined via the distance between their representing points in 

the space. Consequently, conceptual spaces provide us with a natural way of 

representing similarities (p. 5; italics added). 

  

13.2.2 Convex regions and Voronoi tessellation 

Conceptual spaces formulate new criteria of how properties and concepts are to be 

represented: 
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CRITERION P A natural property is a convex region of a domain in a 

conceptual space (Gärdenfors 2000, p. 71). 

CRITERION C A natural concept is represented as a set of regions in a 

number of domains together with an assignment of salience weights to the 

domains and information about how the regions of different domains are 

correlated (Gärdenfors 2000, p. 105). 

These criteria are based on the two essential notions given by geometrical or 

topological structure and its intimate connection to the notion of similarity: 

connectedness and convexity. In their most characteristic form, conceptual spaces are 

built up from convex regions. A region C in conceptual space S is convex if, for all 

points x and y in C, all points between x and y are also in C. Convexity in conceptual 

space is generated with Voronoi tessellation. Voronoi rule uses the prototypes as 

centers to define boundaries of individual regions and tessellate the space. What 

Voronoi rule does is partition the space with n points into convex regions such that 

each region contains exactly one generating point (a prototype) and every point in a 

given region is closer to its prototype than to any other. The convexity of conceptual 

spaces is thus directly expressed in representation of object’s properties: in a region 

within which two objects sharing property P are represented at points x1 and x2, any 

objects between these two points will also share property P. Moreover, within the 

conceptual spaces the similarity of the objects can be measured according to their 

position in space as well as to the “center of gravity” of the individual region they are 

part of. The delimitation of properties in conceptual spaces comes naturally and is 

intimately related to the prototype theory: the criterion P accounts for both, 

asymmetries among category members in cases of graded membership and 

asymmetric structures within categories in cases where properties have distinct 

boundaries (Rosch 1975, Lakoff 1987). Thus, the tight connection between notion of 

similarity, centrality and property in criterion P carries psychological validity: “when 

natural properties are defined as convex regions of a conceptual space, prototype 

effects are indeed to be expected.” (Gärdenfors 2000, p. 86) 

Are regions in conceptual space always convex? It is important to note that convexity 

depends on the underlying metric space. Different rules generate different 

equidistances or ‘betweenness relations’. Most commonly used Euclidean metric 

follows Pythagorean theorem and gives a constant distance regardless the rotation, 
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i.e. it is invariant to the rotation of the axis (in formula below, the exponent r = 2). In 

city-block metrics, as the name implies, the distance is measured by the sum of 

adjacent sides of the block (imagine a space filled with buildings; here, r = 1). They 

can be formulated as instances of Minkowski metric: 

  (   )    [∑(     )

 

   

]

 

 
 (1)  

The shape of the regions in conceptual space changes accordingly: under Euclidean 

metric the regions are convex, whereas city-block metric is star-shaped (under the 

city-block metric not all areas are convex). 

The selection of metric space is essentially an empirical question, since the choice of 

metrics reflects different assumptions about the psychological dimensions underlying 

the conceptual space. In general, the Euclidean metric is more appropriate for 

integral dimensions where we cannot selectively analyze individual dimensions, a 

good example are color dimensions of saturation and brightness. The city-block 

metric, on the other hand, seems a better solution for separable dimensions, such as 

color and size (see Gärdenfors 2000, Garner 1974, 1978, Goldstone 1998). In our 

case (the construction of computer model for generating conceptual spaces, presented 

in Part IV), the choice will be Euclidean metric, both because there are no readily 

available natural metric structures in the analysis of text corpora (and consequently 

no possibility to initially identify whether dimensions are discrete or separable), and 

because of specific statistical and probabilistic methods used in domain identification 

(i.e. in the analysis of latent topic structures within the corpora). 

There are further arguments for promoting convexity in conceptual spaces. There is 

strong empirical evidence for convexity, e.g. universal convexity of natural color 

categories (shown in studies of color perception and focal colors by Berlin and Kay 

(1969), Rosch (1975, 1978), Sivik and Taft (1994)), in  universal properties of color 

terms in natural languages (Berlin and Kay 1969, Jäger and van Rooij 2007), or in 

preference for convex meanings that are, according to (Jäger 2007), “the result of 

some process of (cultural) evolution” (p. 552). Similarly, Regier and Kay (2009) 

argue that language influences color perception and categorization, and further claim 



Section 8: Conceptual spaces 

102 

 

that color naming across languages is shaped by both universal and language-specific 

forces. Also, the intimate link between criterion P and prototype theory makes many 

properties perceptually grounded. For example, evidence for psychological reality of 

focal colors (Rosch 1975, 1978) shows that “many fundamental quality dimensions 

are determined by our perceptual mechanisms, and in conceptual spaces there is a 

direct link between properties described as regions of such dimensions and 

perceptions” (Gärdenfors 2000, p. 77). 

On a more speculative note, preferring convex regions instead of oddly shaped 

metrics could be attributed to the “principle of cognitive economy; handling convex 

sets puts less strain on learning, on your memory, and on your processing capacities 

than working with arbitrarily shaped regions” (Gärdenfors 2000, p. 70).  

In Part IV, we answer some practical questions. First, the computer model for 

generating conceptual spaces SpaceWalk will be introduced, along with different 

methods used for dimensionality reduction and identification. The aim is to 

empirically test the functionality of these methods in constructing conceptual spaces. 

We close overall discussion by investigating some of the cognitive underpinnings 

inherent in similarity-space and probabilistic approach, possible future applications 

for conceptual spaces, as well as challenges that probabilistic approach brings to 

cognitive science.  

  



Section 9: Methods 

103 

 

PART IV: SpaceWalk: a computational 
model for conceptual spaces 

Section 9: Methods 

14 Introduction 

This chapter discusses the construction and functionality of SpaceWalk: a computer 

model for representing semantics of conceptual spaces. The overall aim of 

SpaceWalk is to propose the basic architecture for modeling lexical semantics and to 

reflect upon, especially in terms of functionality, the interpretational value that 

conceptual spaces bring to the discussion of semantics. Unlike traditional symbolic 

and connectionist models, SpaceWalk uses similarity-space and probabilistic 

methods for measuring semantic similarity and generating the dimensions needed for 

construction of conceptual spaces. In what follows, these methods are being 

compared and evaluated. 

15 Methods for dimension identification 

The methods for dimension identification used in SpaceWalk are able to reveal latent 

semantic structure and similarity by employing different statistical and probabilistic 

learning mechanisms on natural language corpora. Our primary focus here is on 

lexical semantics, i.e. on the semantics of individual word meanings, rather than 

sentences. Traditional statistical methods, such as Latent Semantic Analysis (LSA; 

Landauer and Dumais 1997, Landauer, Foltz and Laham 1998, Landauer et al. 2006), 

essentially rely on vector calculations in high-dimensional semantic space. Here, 

similarity measures are defined by distances between word-vectors in the semantic 

space, hence the name similarity-space models or semantic vector models. These 

methods are related to connectionist research on natural language processing 

(McClelland and Kawamoto 1986, St. John and McClelland 1990, Miikkulainen 

1993, Elman 1990, Elman et al. 1996, McClelland and Elman 1986, Smolensky 

1990) and represent a bottom-up approach. The general idea is, semantics can be 

generated from language statistics by relying on simple approach of treating text 
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corpora as a ‘bag of words’, disregarding any sequential information, i.e. positioning 

of words in a sentence. Consequently, the grammatical structure is not preserved. 

This, again, is in stark contrast to symbolic approach that focuses primarily on 

compositionality and therefore on syntax and semantics of whole sentences. 

As alternative, top-down probabilistic models of cognition have been proposed as a 

more advanced and effective approach to measuring semantic similarity. For 

example, probabilistic topic models (Hofmann 1999, 2001, Blei, Ng and Jordan 

2003, Steyvers and Griffiths 2006, Blei and Lafferty 2009) are generative models 

that use probability distribution to identify the topics and gist of the collection. These 

models are based on computing probabilistic inference, encapsulated in the Bayes 

theorem. Bayes theorem aims to solve an inductive problem – a situation, where we 

cannot unambiguously identify the generating process from the observed data. The 

general premise of the Bayes theorem is going beyond the observed data to evaluate 

the probability of different hypotheses or assumptions about generating process, 

while maintaining uncertainty (Griffiths et al. 2010, p. 358). It is a formal 

characterization of a problem space, using prior and posterior probability to solve an 

inductive problem. As an example, consider a set of hypotheses H. First, we define 

prior probability p(h), which reflects a probability distribution over each hypothesis 

h∈H independent from the data d. Prior probability reflects human factor, i.e. one’s 

beliefs or inductive biases regarding hypotheses H. Next, we define the likelihood 

 ( | ), indicating the probability of each hypothesis h to be true in light of the 

information from data d., with the sum in the denominator ensuring the outcome 

sums to 1. The outcome of the Bayes theorem is the posterior probability  ( | ), 

  ( | )   
 ( | ) ( )

  ∈   ( | ) ( )
 (2)  

a probability distribution reflecting the degree of one’s belief in individual 

hypothesis based on the additional information gathered from the observed data. In 

probabilistic topic models the semantic ambiguity is represented through uncertainty 

over topics, thus we can discover hidden thematic structure of our text corpora. The 

main difference between the similarity-space and probabilistic approach is that 

probabilistic topic models, while still carrying many of the key statistical 
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assumptions behind LSA (e.g. dimensionality reduction), can identify and preserve 

interpretable topic structure rather than just an opaque semantic space of word 

associations. 

In what follows, similarity-space and probabilistic methods will be compared and 

later evaluated in SpaceWalk. These methods are commonly used in areas of 

information retrieval, natural language processing, machine learning etc. In 

SpaceWalk, these methods are being used to compute the similarity relations between 

words and documents, their topical distributions, and the dimensions needed for 

construal of semantic representations. The latter are formalized by employing 

conceptual spaces. Conceptual spaces carry both explanatory and functional role in 

modeling lexical semantics, and also serve as the main criteria for the evaluation of 

the above-mentioned methods. For example, conceptual spaces put additional 

structural constraints on high-dimensional vector representations generated by the 

similarity-space and probabilistic models and can, to an extent, mitigate some 

compositional issues characteristic of traditional connectionist models. As we shall 

see, there are important differences between methods themselves. For example, 

unlike similarity-space approach, probabilistic approach can account for basic 

properties of natural language semantics, such as synonymy and polysemy. It does 

this by identifying the latent conceptual structure via probability distributions over 

topics. By employing conceptual spaces as an additional structural constraint (based 

on criterion P together with the notion of similarity and convexity), SpaceWalk can 

account for prototype theory, graded membership and asymmetries within and across 

concepts and categories. 

15.1 Latent Semantic Analysis 

Latent Semantic Analysis or LSA (Landauer and Dumais 1997) is one of the most 

known methods used in natural language processing. It is a computational technique 

based on associative approach to word meanings. Using large text corpora, LSA 

generates high-dimensional similarity-space representations of associations between 

words. By computing the distance between word vectors, LSA extracts the ‘meaning’ 

of individual word based on its proximity to other words in semantic space. The 

input to LSA is a word-by-document co-occurrence matrix, such as that shown in 

Figure 9. 
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Figure 9: LSA: word-by-document co-occurrence matrix 

The procedure to generate a semantic space in LSA goes as follows. LSA begins 

with a word-by-document co-occurrence matrix representation of a text corpus. Each 

row represents a word and each column represents a document, and the entries 

indicate the frequency with which that word occurred in that document. An 

association function is applied to dampen the importance of each word proportionate 

to its entropy over documents, by weighing “each word-type occurrence directly by 

an estimate of its importance in the passage and inversely with the degree to which 

knowing that a word occurs provides information about which passage it appeared in 

(Landauer et al 1998, p. 276). In general, words that appear together frequently over 

the documents get assigned smaller values. Next, the Singular Value Decomposition 

(SVD; Berry, Dumais and Obrien 1995) is applied to the co-occurrence matrix. This 

is the main point where LSA model differs from probabilistic models, as is evident 

from graphical representation of LSA and LDA matrix factorizations shown Figure 

10 and Figure 12 respectively. The original matrix is generally sparse and contains 

many empty values. The role of SVD is to reduce the original matrix’s 

dimensionality to a lower latent semantic space (typically between 100 – 300 

dimensions; Deerwester et al. 1990, Dumais 1995, Martin and Berry 2006) to retain 

most of essential features and consequently remove statistical noise. The reduced 

dimensionality comes with SVD factorization of the original matrix into three 

smaller matrices, U, D, and V (Figure 10). 
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Figure 10: Graphical model of the matrix factorization in LSA 

Each of these matrices has a different interpretation. U and V matrices provide 

orthonormal basis for a similarity-space where each word/document is represented as 

a point, with diagonal D matrix providing a set of weights for the dimensions of this 

space. The output from LSA is a latent semantic space. By re-multiplying these 

matrices we can get an approximation to the original matrix in a lower dimensional 

spatial representation. It is important to note that the number of dimension retained in 

the process of SVD is an empirical issue, but the overall aim is to retain the essence 

of the original matrix and emphasize the latent correlations among words. According 

to Landauer and Dumais (1997), the measure of similarity is computed as cosine (of 

the angle) between two word vectors in the semantic space. This is an effective 

measure of the semantic association between words across the dimensions, where 

cosine of 1 gives strongest similarity, while cosine of 0 (or negative value) shows 

dissimilarity or no similarity (for technical details see (Landauer et al. 2006)).  

How does this procedure result in semantic similarity? Frequently, words that occur 

together have often no semantic similarity. However, LSA does not use only the 

information about how often word1 and word2 occur together but also how often 

they occur with all the other words in the corpus. LSA looks at the entire pattern of 

co-occurrences to define the similarity. For example, Landauer and Dumais (1997) 

tested LSA for a synonym test on Test of English as a Foreign Language (TOEFL), 

which is used as a college admission test for nonnative speakers of English and 

American universities, and received impressive results
42

. The model showed 64.4% 

accuracy, which at the time was almost identical to the performance of a large 

                                                 
42

 The test corpus was taken from Touchstone Applied Science Associates (TASA) corpus. TASA 

corpus is a collection of educational texts used in U.S. curricula from ground school up to first year of 

college, covering areas of arts, health, history and culture, home economics, natural sciences, social 

studies etc. 
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sample of college applicants who took the test. Landauer and Dumais note that such 

score would allow admission for many American universities. 

LSA’s success may indicate that conceptual information is simply not that necessary 

to explaining meaning. Because the only input of the model are words, meaning 

could just as well be represented based on associative links to other words, rather 

than through the knowledge underlying those words – that is, conceptual knowledge. 

Could that be the case? 

The general problem with similarity-space models such as LSA is that knowing what 

words are associated to one another does not specify what the meaning of the 

individual word is. As Murphy (2002) points out, one cannot understand the meaning 

of a word only by its reference to other words: “If one only knows dog by its 

similarity to cat and cow and bone … and cat by its similarity to dog and cow and 

bone … and so on, one is caught in a circle of similar words” (p. 429). The point 

being, one needs primary conceptual and categorical knowledge to be able to 

evaluate different associative relations. Further problem is that relations between 

words are extremely different and the overall word similarity generated by LSA does 

neither specify different meanings of these associations nor their gist
43

. To avoid 

ambiguity, we need to represent some context: words must be connected to our 

(conceptual) knowledge, not just other words. 

And these are exactly the things that conceptual spaces approach does well: having 

the concept explains why particular words are related. Since concepts are mental 

entities – our non-linguistic representation of the world, by connecting words to 

conceptual structure, we can explain how people can connect words to objects and 

events in the world. Thus, by hooking up words to concepts, we can break out of the 

circle of words connected to words and tie language to perception and action. 

The biggest problem for similarity-space models is that the spatial representations of 

similarities between words are relatively unstructured, lacking the conceptual 

information needed for representing various semantic relations. In what follows, I 

present two alternatives to LSA. Both were inspired by LSA, but are based on the 

notion of probability and make different statistical assumptions. 

                                                 
43

 As I will argue later, LSA cannot account for polysemy, one of the most common effects of word 

meanings. Moreover, LSA cannot express topical variety implicit in text corpora.  
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15.2 Probabilistic Latent Semantic Analysis 

As the name implies, Probabilistic Latent Semantic Analysis (pLSA; Hofmann 1999) 

is closely related to standard LSA approach, with one essential difference. pLSA is a 

topic model. Instead of using SVD to compute word and document similarity in the 

semantic space, pLSA is a generative data model (Hofmann 2001) and uses simple 

probabilistic procedure to generate documents. 

The general idea behind the topic models is that 

... documents are mixtures of topics, where a topic is a probability distribution 

over words. A topic model is a generative model for documents: it specifies a 

simple probabilistic procedure by which documents can be generated. To 

make a new document, one chooses a distribution over topics. Then, for each 

word in that document, one chooses a topic at random according to this 

distribution, and draws a word from that topic. (Steyvers and Griffiths 2006, 

p. 427) 

The upshot of such an approach is that topics are individually interpretable and that 

words can be part of more than one topic. Thus, the topic model can account for 

context. 

A more rigorous treatment of statistical assumptions behind each approach has been 

given in (Hofmann 1999, 2001, Griffiths and Steyvers 2002, Blei et al. 2003, 

Steyvers and Griffiths 2006). Here, we discuss the general notation for generative 

topic model, 

  (  )   ∑ (  |     )

 

   

 (     ) (3)  

where T is the number of topics, P(z) is the distribution over topics z in a document 

and  (  |  ) is the probability distribution over word w given topic z. The first part 

of notation  (  |     ) refers to distribution over words for topic j, whereas 

 (     ) refers to a distribution over topics for document d. Accordingly, the first 

part indicates which words are important for which topic, whereas the second part of 

notation indicates which topics are important for a particular document. 
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Compared to Hofmann’s pLSA model (1999, 2001), one important difference is 

evident. pLSA is limited in its definition concerning documents: 

  (    )   ( )∑ (  | ) ( | )

 

 (4)  

According to (Blei et al. 2003, Steyvers and Griffiths 2006), pLSA is not a complete 

generative model. While topic distributions over words are efficiently explained, 

pLSA provides no explicit probabilistic model at the level of documents: it can only 

learn the topic mixtures  ( | ) for the documents in existing training set, not for 

new, previously untrained documents. We cannot assign probability to a document 

outside of the training set. Additional problem is that the number of parameters (in 

pLSA, these are being treated individually) grows linearly with the size of the 

corpus, which results in the overfitting of the model (for a detailed analysis, see Blei 

et al. 2003, chapter 7.1).  

 

15.3 Latent Dirichlet Allocation 

Latent Dirichlet allocation (LDA; Blei et al. 2003) is a basic generative probabilistic 

topic model. LDA inherits the intuition of a general topic model: the documents 

exhibit multiple topics. The central question for LDA and topic modeling in general 

becomes, what is the hidden structure behind these documents? It tries to uncover the 

blend of latent topics as distributions over documents and words; the topics and topic 

distributions are hidden structure. Depending on a topic, words have different levels 

of probability; for example, word ‘reason’ will have high probability on topic about 

‘philosophy’, but should get low probability value on topic about ‘vegetables’. Thus, 

each document exhibits topics with different proportions and each word is drawn 

from one of the topics.  

This is the distinguishing characteristic of latent Dirichlet allocation – all the 

documents in the collection share the same set of topics, but each document 

exhibits those topics with different proportion. (Blei 2012, in print; [p. 4 in 

draft]) 
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Formally, the LDA goes as follows (but see (Blei et al. 2003, Blei and Lafferty 2009, 

Blei 2012) for more detail). LDA is a generative probabilistic model. The data are 

part of generative process which defines a joint probability distribution over 

observed and hidden random variables, with the former being words and the latter 

being the topic structure. LDA uses joint distribution to compute the posterior 

distribution of the hidden variables given the documents. 

A more formal definition (Blei 2012) is expressed in the following notation, 

 (                    )  

∏  (  )
 
   ∏  (  )

 
    (∏  (    |  )

 
    (    |         ))  

(5)  

Suppose topics are defined as      and each topic (βk) is a distribution over words. 

Then, “[t]he topic proportions for the dth document are θd, where      is the topic 

proportion for topic k in document d ... The topic assignments for the dth document 

are zd, where      is the topic assignment for the nth word in document d ... Finally, 

the observed words for document d are wd, where      is the nth word in document 

d, which is an element from the fixed vocabulary. ... With this notation, the 

generative process for LDA corresponds to the following joint distribution of the 

hidden and observed variables” (Blei 2012, p. 6) 

The notation above specifies a number of dependencies: the topic assignment      

depends on per-document topic proportions   ; the observed word      depends on 

the topic assignment      and all of the topics     . 

In LDA, the number of topics should be specified before any computation occurs (as 

we shall see later in our tests). Based on per-document topic distribution, the 

statistical inference algorithm called a Dirichlet distribution, LDA computes the 

hidden structure that generated the documents in corpus. The graphical model 

(Figure 11 below) shows the structure of LDA.  
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Figure 11: The graphical model for LDA’s hidden and observed variables 

(adapted from Blei  et al. (2003, p. 997)). The words of the document      are 

the only observed variable (shaded node). The rectangles denote replication 

for each level (N for words and D for documents). 

In Figure 11, the three levels are represented by rectangles which denote replication: 

corpus level (variables        , sampled once per document), document level 

(variables   ) and word level (variables               are sampled once for each 

word in a document). 

 

15.4 Comparing LSA and topic models (Part 1) 

All three models use a word-document co-occurrence matrix as an input, but differ in 

statistical assumptions (compare Figures 10 and 12). All use the dimensionality 

reduction to provide interpretable dimensions and the gist of the corpora, but the 

methods and the outcome are very different. 

 

Figure 12: Matrix factorization in the topic model 

For one, there is a difference between how topic distributions over documents are 

treated by pLSA and LDA. Whereas in pLSA the distribution of topics over 

documents is not intepretable, in LDA it is made explicit. As Blei et al. (2003) point 

out: 

LDA overcomes both of these problems by treating the topic mixture weights 

as a k-parameter hidden random variable rather than a large set of individual 

parameters which are explicitly linked to the training set. ... LDA is a well-

defined generative model and generalizes easily to new documents. 

Furthermore, the k+kV parameters in a k-topic LDA model do not grow with 

the size of the training corpus. (p. 1001). 

One essential advantage of topic models over similarity-space models is that 

statistical inference is flexible and can generate structured representations. LSA, on 
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the other hand, has several issues (e.g., cf. Hofmann 1999, 2001, Blei et al. 2003, 

Steyvers and Griffiths 2006, Griffiths et al. 2007): it cannot hypothesize about the 

underlying topics, the semantic space generated by SVD does not provide enough 

structural information, and it cannot account for polysemy. In generative topic 

model, the probability distribution of topics over words and documents over topics 

accounts naturally both for multiple lexical meanings (different word senses), as well 

as for topic structure implicit within documents. As Griffiths et al. (2007) show, this 

simple principle gives sufficient structure to “capture some of the qualitative 

features” and semantics of natural language. This, together with the ability to easily 

generalize to new documents, is the key advantage of probabilistic approach.  

Further analysis and comparison of similarity-space and topic models is given in the 

following chapters and in Part 2 in the Discussion. There, I will focus on LSA and 

LDA, since they are most characteristic examples of respective approach. First, I 

present the creation and exploration of conceptual spaces in SpaceWalk. 
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Section 10: Creating and exploring conceptual spaces in SpaceWalk 

16 Creating conceptual spaces 

Following is the presentation of the corpus and additional methods and procedures 

used to compute conceptual space. SpaceWalk’s architecture is reconstructed in 

MATLAB programming environment
44

, and the order of presentation below follows 

sequences of computation. 

16.1 The corpus 

Our test corpus is a collection of articles and books spanning from 1950’s to date, 

including most of the thesis’ literature. The collection covers diverse topics related to 

cognitive science, and connects domains of cognitive science with philosophy, 

psychology, linguistics, computer science, artificial intelligence and neuroscience. 

The corpus contains 248 items altogether, of which there are 194 articles and 54 

books with the average vocabulary size of 51,789 terms per document before the 

normalization and 14344 terms/document and 39,862 unique terms (for the whole 

corpus) after normalization (see Table 1)
45

.  

16.2 Methods and procedures 

1. Text parsing: make TMG 

Text to Matrix Generator (TMG; Zeimpekis and Gallopoulos 2005) is being used 

to parse the corpus and generate word-document matrix. The TMG also returns 

word and document-titles dictionary for the collection, the vectors of global 

weights, and the normalization factor for each document. The stemming is used 

(words, smaller than 2 tokens and larger than 35 tokens are ignored) together 

with a standard stop-word list (functional words that algorithm should ignore, 

e.g. ‘a’, ‘the’, etc.). Additionally, the threshold for the minimum and maximum 

local (1; inf.) and global (3; inf.) frequencies is set to filter out high-frequency 

                                                 
44

 Matlab is commonly used for algorithm development, data analysis, visualization, and numerical 

computation, and offers various tools for these domains. Most of the tools presented here are part of 

Matlab’s natural language processing toolbox. 
45

 Note that this corpus is much smaller in size than TASA corpus. For comparison, the TASA corpus 

has a vocabulary of approximately 10 million words (92,409 word types). 
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words with low semantic content. Table 1 shows the results for text 

normalization. 

Table 1: make TMG 
Results: 

Number of documents = 248 

Number of terms = 39863 

Average number of terms per document (before the normalization) = 51791.7 
Average number of indexing terms per document = 26883.2 

Sparsity = 7.89699% 

 
Removed 128 stopwords... 

Removed 3291 terms using the term-length thresholds... 

Removed 115817 terms using the global thresholds... 

Removed 0 elements using the local thresholds... 

Removed 0 empty terms... 

Removed 0 empty documents... 

 

 

2. Run LSA, pLSA or LDA: set the number of topics, dimensions and maximum 

number of iterations 

Setting the number of topics is a trial and error process – finding an optimal 

number of topics depends on the size of the corpus and the algorithm in use. 

Furthermore, it is important not to confuse the probability distribution of topics in 

a topic model with dimensionality reduction used by LSA. The topic model is a 

generative model, whereas LSA is based on SVD. Depending on the size of the 

corpus, the optimal number of topics for LDA is characteristically low (in our 

case, between 10 and 50), whereas the optimal number of dimensions for 

dimensionality reduction in SVD is much higher, generally between 100 and 300 

(see Landauer and Dumais 1997; in SpaceWalk, the SVD is set to 300 

dimensions).  The number-of-topics setting is straightforward: in case of topic 

models it defines the number of topics to start a generative process, whereas in 

case of LSA, it picks out first n most salient dimensions generated by SVD. 

 

3. Make Self Organizing Map (SOM) 

We use SOM Toolbox (Alhoniemi, Himberg and Vesanto 2002) to calculate 

SOM. The SOM (Kohonen 1995) is a tool for visualizing high-dimensional data. 

In essence, SOM is an artificial neural network that produces a low-dimensional 

(typically two-dimensional) representation of the input space of the training 

samples, called a map. The goal is to discover the underlying structure of the 

data. SOM is a topology-preserving map, since it preserves the topological 
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properties of the input space, i.e. neighborhood relations between nodes. This 

makes SOMs useful for visualizing low-dimensional views of high-dimensional 

data, akin to multidimensional scaling (MDS). A common 2-dimensional 

representation of SOM is U-Matrix (Unified Distance Matrix). U-Matrix uses the 

codebook vector, depicting the relations between the neighboring neurons in a 

color or gray scale image. The light colors depict closely spaced nodes, and vice 

versa. Thus, U-Matrix gives a general insight into the structure of high-

dimensional space: the group of light colors represents clusters while dark 

regions represent boundaries (Figure 13). We can set two general parameters to 

calculate SOM: size and input matrix. Setting the size of the SOM depends on the 

size of the corpus and number of topics. It’s a trial and error process of achieving 

optimal solution. Additionally, the input data to compute SOM is chosen between 

normalized Pz_d matrix, which gives probability of documents over topics, or 

normalized Pw_z matrix, which gives the probability of words in topics. 

 

Figure 13: U-Matrix with color code 

  

4. Project SOM: use PCA or Sammon’s projection 

a. PCA projection 

Principal Component Analysis (PCA) is a statistical technique for 

dimensionality reduction that converts a set of observations into a set of 

linearly uncorrelated variables or principal components. Consequently, in 

PCA, variance decreases linearly: first principal component has the largest 
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possible variance, with each succeeding principal component having lower 

variance. The goal of PCA is to maximize the variance in the data. 

a. Sammon’s projection 

While PCA does not preserve the structure of the dataset, Sammon's mapping 

(Sammon 1969) tries to preserve the distances and topological structure of 

dataset. A general comparison between PCA and Sammon’s projection is 

given by (Henderson 1997). 

 

5. Make plots 

a. Plot U-Matrix 

b. Plot 3D SOM Mesh 

Projection of SOM onto 3D-Mesh preserves structural relations between 

dimensions. Additionally, dimensions are color coded for easier 

identification. 

 

c. Plot centers of dimensions (topics) and most salient words or documents for 

each dimension 

Words and documents with highest values are projected onto individual 

dimension. The number of words/documents to plot can be set. To reflect 

context and multiple meanings, the words/documents can be plotted on more 

than one dimension. 

 

6. Make Voronoi tessellation: 

In SpaceWalk, the partitioning of the space into convex regions is based on a set 

of prototypes, i.e. most salient vectors of words or documents that are most 

characteristic of individual domain. These are generated in advance by one of the 

natural language processing methods (LSA, pLSA or LDA). SOM and Voronoi 

rule are then used to exploit the geometrical properties of multi-dimensional 

space. Since these properties are generated by the topical distribution over words 

and documents
46

, the space itself is naturally conceptual.  

                                                 
46

 This holds for generative models, such as LDA. I will discuss the shortcomings of LSA in later 

chapters. 
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When examining the space, it is important to compare Voronoi tessellation with 

3D-Mesh projection. Because of the compression (and consequently 

transposition) of multiple dimensions onto 2D-Voronoi space, parts of 3D 

structure, such as proportions and distances between dimensions, cannot be 

faithfully preserved. Hence, it is common for two relatively distant dimensions 

(in 3D-Mesh) to neighbor each other in 2D-Voronoi projection and vice versa. 

Both projections should be taken as two different, but complementary 

representations of conceptual space. Whereas 3D-Mesh is a useful tool when we 

need to examine the underlying structure of multiple dimensions, Voronoi 

partitioning is best for analyzing graded membership, prototypes and category 

structure within and across individual regions of conceptual space. 

We have already discussed different factors involved in modeling meaning through 

conceptual space. In next chapter, I focus on those that can be explored through 

SpaceWalk: prototype effects, probability distribution and graded membership (i.e., 

graded categorization), concepts and underlying quality dimensions. 

17 Exploring conceptual spaces 

This part focuses on exploration of conceptual spaces using LDA topic model. The 

data (top words and documents per topic) together with basic projections of the two 

alternative methods (LSA and pLSA) are in Appendix. All models (here and in 

Appendix) are trained on the corpus described in Chapter 16.1 and follow the 

calculation procedure described in Chapter 16.2. Results for LDA are presented in 

Table 2 below (see also Tables 3 and 4 in Appendix). 

Table 2: Run LDA and SOM 
run LDA 

 
LDA variational inference started with 248 documents and vocabulary of size 39863 using 10 topics and 0.000100 

minimal relative change. Total number of words in data: 3.557313e+006 (14344.00 on average per document). 

 

make SOM 

Data to use: document data (normalized Pz_d) 

SOM size: [10 x 10] 
Projection: Sammon’s projection (to preserve the distances and topological structure of dataset) 

 

Results: 

Final quantization error: 0.738 

Final topographic error:  0.036 

computing mutual distances: 100 iterations 
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Calculation procedure is the optimization, initialized randomly, and multiple 

calculations can yield slightly different results: each computation starts from a 

different position, picking out different aspects of conceptual space and quality 

dimensions involved. Thus, different computations yield different levels of 

analyticity. As consequence, in absolute terms, projections of conceptual space 

change accordingly, whereas relative relations among individual topics and internal 

structure (concepts and quality dimensions) of particular region generally remain 

consistent and coherent. For example, topics such as ‘cognitive semantics’, 

‘conceptual spaces’ and ‘quality dimensions’ involve semantically similar or related 

sets of quality dimensions and hence consistently form a common region, whereas 

topics involving unrelated or contrasting sets of dimensions, such as ‘conceptual 

spaces’ and ‘probabilistic approach’, belong to separate regions of conceptual space 

even after multiple runs of the algorithm (see Figure 14). 

These effects are strongly related to the number of topics. As a rule, smaller the 

number, more abstract or general are the topics, larger the number, more 

segmentation and detail is available in projections of conceptual space. Topics form 

regions of conceptual space, and, as already noted, the optimal number of topics is a 

trial and error process
47
. Here, I’ve decided to present a general view of the corpus 

and topics involved (e.g., philosophy, cognitive psychology, neuroscience, cognitive 

science, etc.; see corresponding regions in Figures 14 and 15), hence limiting the 

number of topics to 10. For a more detailed and segmented view of conceptual space 

30 topics would be more appropriate (see Table 6 in Appendix); in such case, 

‘cognitive semantics’ and ‘conceptual spaces’ would generally become separate 

regions of conceptual space, with more refined sets of quality dimensions, but would 

still remain strongly related semantically.  

17.1 Projections 

Following are various projections of conceptual space using SpaceWalk. Let us 

explore semantic relations and uncover the latent structure of the corpus with 

                                                 
47

 For this corpus, choosing a large number of around 50 topics results in overfitting – noise from 

functional (meaningless) words and topics start to overlap (multiple topics with the same sets of 

dimensions). 
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projections of topics, most salient dimensions (top words/concepts) and documents 

based on their probability distributions. We will do this by: 

a) comparing Voronoi and 3D-Mesh projections of conceptual space (Figures 14 

and 15), and 

b) graphing the probability distributions (Figures 16-19). 

Figures 14 and 15 show LDA projection of conceptual space in 3D-Mesh and 

Voronoi respectively. 

 

Figure 14: 3D-Mesh of conceptual space. Showing distribution of words over 

topics (Pw_z) with most salient words (top words) for each topic 
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Figure 15: Voronoi tessellation of conceptual space 

Figure 14 shows a 3D projection of topics and dimensions of conceptual space. The 

centers of individual regions are defined by a prototype (most salient member of 

individual topic) and later used for Voronoi tessellation of conceptual space (Figure 

15). Nodes and edges of the 3D mesh represent shapes of underlying quality 

dimensions. Single or multiple quality dimensions can contribute to the formation of 

one or more regions of conceptual space. Each member of conceptual space (whether 

object, property or concept – these terms are being used interchangeably, depending 

on context) is plotted on a nearby node and gravitates towards the center of particular 

region based on the strength of its membership with some members being more 

prototypical than others. Furthermore, unlike properties (recall Criterion P) concepts 

share multiple dimensions and are not constrained by particular region of conceptual 

space. In SpaceWalk, concepts are represented by probability distribution over topics 

and hence, multiple regions of conceptual space (Criterion C). This enables a natural 

categorization of concepts into convex regions of conceptual space (Figure 15), a 

representation of graded membership for both,  categories and concepts (Figures 16-

18), as well as a differentiation of lexical meanings depending on context. For the 

latter, different regions of conceptual space activate different sets of quality 
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dimensions and thus different senses (different lexical meanings) with various 

degrees of semantic similarity. For example, in Figure 18 word ‘neuron’ strongly 

features in two different contexts: as the core component (primary cell type) of the 

nervous system (topic5 ‘Neuroscience’), and as artificial neuron, the basic unit in an 

artificial neural network and the core component of connectionist modeling (topic8 

‘Cognitive modeling: symbolic vs. connectionist’). 

Figures 16-19 present a series of probability distributions of topics over conceptual 

space
48

: distribution of topics (Figure 16), distribution of words/concepts over topics 

(Figure 17 and 18) and distribution of topics over documents (books and articles 

from the corpus; Figure 19). Tables 3-6 (in Appendix) list top words and documents 

for individual topic and the selection of documents for Figure 19 (see Table 5 in 

Appendix).  

Each bar represents one topic in accordance with the prototype rule for 

discriminating conceptual space into individual regions (see Figure 15). Moreover, as 

prototype theory accounts for graded membership, each topic is to some extent 

related to other topics in conceptual space based on the probability distributions over 

underlying quality dimensions, and the strengths of these relations are visualized in 

Figures 16-19 by the lengths of bars. In effect, topics that share probability 

distributions over multiple quality dimensions (such as topic2 ‘Cognitive science’ 

and topic3 ‘Cognitive psychology’) are taken to be strongly related, whereas others, 

with a limited number of shared dimensions, are generally unrelated (e.g., compare 

topic5 ‘Neuroscience’, topic1 ‘Classical Artificial Intelligence’ and topic9 ‘Topic 

models’). What we get is a conceptual space of semantic relations based on the topic 

mixtures and probability distributions. 

By comparing different aspects of conceptual space, we can get a feel for topic 

distributions, and thus for category structure of concepts, categories, and underlying 

quality dimensions. For example, Figure 19 shows probability distribution of topics 

over documents
49

. Consider the distribution of topics for this thesis, ‘Strle-Semantics 

within’, and compare Figure 19 (section ‘Strle’) with distributions in Figures 16-18. 

Among 10 general topics that represent main regions of conceptual space (Figure 

                                                 
48

 For purpose of clarity, different color codes are being used in bar charts (Figures 16-19) and other 

plots (U-Matrix, 3D-Mesh and Voronoi in Figures 13-15). 
49

 Here, the probability distributions sum up to 1. 
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16), four topics prevail: topic2 (cognitive secience), topic8 (tradidional symbolic and 

connectionist approaches), topic9 (topic models and natural language processing) 

and topic10 (cognitive semantics, conceptual spaces). This shows where main focus 

of the thesis is regarding the general problem area of cognitive science: traditional 

models, cognitive semantics and methods for natural language processing. The 

activation of subregions of conceptual space (see Figures 16, 17 and 18) might show 

a more detailed analysis, also of different quality dimensions involved, and 

corresponds to the various topics covered in the thesis, as well as in thesis’ literature. 

In Figure 17, the distribution of concepts corresponds to a more general view of the 

topics covered: ‘similarity’ and ‘probability’ are obviously related, but have different 

probability distributions. The former is strongly activated in area of categorization 

(topic2), whereas the latter is a part of topic modeling (topic9). Similarly, ‘semantics’ 

(Figure 17) is projected in the context of cognitive science (topic2), philosophy of 

mind (topic6), traditional symbolic and connectionist paradigms (topic8), natural 

language processing (topic9) and cognitive semantics (topic10), with strongest 

probability in topic2, topic8 and topic10, corresponding to the focus of the thesis. 

There are also obvious cases of unrelated dimensions: whereas ‘raam’ is a purely 

connectionist system and belongs to topic8, ‘lsa’, ‘plsa’ and ‘lda’ are part of natural 

language processing approaches and belong to topic9 (Figure 18). Nevertheless, as a 

rule, there are no strict borders and probability distribution naturally accounts for 

graded membership. 
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Figure 16: LDA distribution of 10 topics over conceptual space. Most salient member of individual topic is chosen for distribution.  

 

 

Figure 17: LDA distribution of words/concepts over topics (general) 
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Figure 18: LDA distribution of words/concepts over topics (cognitive modeling) 

 

 

Figure 19: Probability distribution of topics over documents (here, documents are represented by authors’ names, see Table 6: LDA: List of document titles in Appendix) 
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Section 11: Conclusion 

18 Discussion 

18.1 Comparing LSA and topic models (Part 2) 

Previous chapters focused on the analysis of methods for natural language processing 

with the aim to answer the question which model is empirically and computationally 

more appropriate for generating semantic representations in conceptual spaces. One 

obvious outcome of the performed tests are different representational structures 

generated by similarity-space and probabilistic models. As shown, these 

representations significantly differ in their composition, with LSA generated space 

having in general more ‘unbalanced’ distribution compared to LDA
50

 (compare 

Figures 14 and 15 with Figure 20 in Appendix). This difference is especially evident 

in the Voronoi tessellation of the semantic space, where salience of individual 

regions is highly disproportional (e.g. topics overlap) given the topical distributions 

of the corpus. This confirms the results from comparison studies, where (Hofmann 

1999, 2001, Blei 2003, Landauer et al. 2006, Steyvers and Griffiths 2007, Griffiths et 

al. 2007) show that probabilistic models generally output more discriminative and 

hence interpretable semantic structures compared to similarity-space models. 

In what follows, I shortly review some of the qualitative differences between both 

models by pointing out their underlying principles and the effects they have on the 

interpretation of semantics in natural languages. Here, similarity-space models face 

one of the more pressing criticisms: the classical criticism of similarity judgments in 

spatial models put forward by Tversky (Tversky 1977, Tversky and Gati 1978, 1982, 

Gati and Tversky 1984, Tversky & Hutchinson, 1986). 

 

                                                 
50

 By ‘unbalanced’, for want of a better name, I mean the regions of conceptual space generated by 

LSA are highly disproportional, with one region generally overruling. This is an effect of previously 

mentioned facts: a) the sum of the vector weights in LSA is not constrained by 1, and b) LSA cannot 

account for topic distribution and hence provides only a single gist of the corpora. 
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18.1.1 Similarity, probability and meaning 

There are essential differences in the assumptions underlying similarity-space and 

probabilistic models of language and cognition. 

First, LSA is not a generative model, but a connectionist network. It is a bottom-up 

approach based on SVD and uses dimensionality-reduced word association matrix as 

a measure for spatial representation of semantic similarity. Second, the similarity-

space is computed as a cosine between vectors and based solely on the semantic 

relatedness between words (with words represented as points in undifferentiated 

Euclidean space). Such similarity-space representations follow basic metric axioms 

of Euclidean space (see below). Third, similarity-space representations are 

unstructured; the only measure of semantic relatedness given by LSA is based upon 

statistical regularities or co-occurrence effects of words within given corpus.  

Related to the points above are some major flaws of LSA-like similarity-space 

representations. Using solely word-association matrix, LSA can generate only a 

single prevalent aspect (or gist) of the corpus. Such approach gives no hint about the 

underlying thematic composition of corpora and consequently cannot credibly 

account for different senses or meanings of words (synonymy and polysemy) nor 

their topical distribution within and across documents, or context. As a by-product, 

this makes it difficult for LSA to combat the data sparsity
51

. A further problem is that 

the computation of semantic space in LSA is not constrained by a collective sum; 

there are no causal constraints between clusters in the similarity-space, and since the 

parameters grow linearly with the size of the corpus, LSA is prone to overfitting. 

LDA, on the other hand, is a generative probabilistic topic model. Unlike LSA, LDA 

uses a top-down approach and generates structured representations based on topic 

distributions: words are generated by topics and these topics are exchangeable within 

a document. This simple approach can account for basic properties of lexical 

meanings, such as polysemy and synonymy (Blei and Lafferty 2009). Since each 

topic is represented as a probability distribution over words, we can grasp multiple 

meanings of words, as well as their gist  ( | ). Moreover, the probability 

                                                 
51

 Data sparsity refers to low density of data and connections. Lexical data sparsity occurs in cases 

where we don’t have enough statistical information about certain words and/or their connections. 

Since LSA offers no other mechanisms for establishing relations between words, apart from word-

association matrix, data sparsity is a common problem. 
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distribution over topics  ( | ) is constrained by the collective sum of topic-mixture 

weights normalized to 1. This enforces a causal relation between topic distributions: 

the increase in probability of one topic consequently decreases the probability of 

other topics. The upshot of such approach is that by controlling the number of topics 

we can combat data sparsity. 

 

18.1.2 Tversky’s criticism 

Even more pressing problems for similarity-space models, especially from cognitive 

science perspective, present the results of experimental studies on human similarity 

judgments carried out by Tversky (1977; Tversky & Gati 1978, 1982, Gati & 

Tversky 1984, Tversky & Hutchinson, 1986). Tversky et al. had argued, that human 

similarity judgments violate three basic metric axioms of Euclidean space (δ is a 

metric distance function): 

a) minimality: δ(a, b) ≥ δ (a, a) = 0, 

b) symmetry: (δ(a, b) = δ (b, a)), and 

c) triangle inequality: δ(a, b) + δ(b,c) ≥ δ(a, c). 

The minimality (self-similarity) assumes that the similarity between an object and 

itself is greater than or equal to the similarity between two distinct objects. The 

notion of self-similarity is hard to test empirically, but in data scaling, self-

dissimilarities are commonly defined to be 0. More potent argument is hidden in the 

notion of symmetry, the assumption that the similarity between two points (or a point 

and itself) in Euclidean space is symmetric. Based on evidence from cognitive 

psychology experiments (e.g., Rosch 1975, 1978, Rosch and Mervis 1975, Mervis 

and Rosch 1981, Tversky 1977, Tversky and Gati 1978), this is often not the case. 

Human similarity judgments are generally asymmetric: the more prominent objects 

or prototypes are less similar compared to less prominent objects and vice versa. To 

use an example given by Tversky: the similarity of Tel Aviv to New York “exceeds 

the similarity” of New York to Tel Aviv. The point is “[w]e tend to select the more 

salient stimulus, or the prototype, as a referent, and the less salient stimulus, or the 

variant, as a subject” (Tversky 1977, p. 328). Thus, ‘a is like b’ is generally not 

equivalent to converse similarity of ‘b is like a’. Since LSA and most geometric 
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models use cosine between vectors (which is symmetrical) as a similarity measure, 

such models cannot account for the asymmetries in judgments of similarity (but see 

the discussion on the more complex measures of similarity in Krumhansl 1978, 

Nosofsky 1988, 1991, Hahn and Chater 1997). A related concept is triangle 

inequality. By definition, the length of individual edge (of the triangle) cannot be 

larger than the length total of the two remaining edges. The triangle inequality 

constraints the similarity between a and c by the similarities between a and b and 

between b and c. This implies a certain similarity constraint on all points (vertexes) 

of the triangle: if a is similar to b, and b is quite similar to c, than, according to 

triangle inequality, a and c cannot be very dissimilar. Again, psychological validity 

of such assumption has been strongly criticized. Consider Tversky’s example of the 

similarity between countries: Jamaica is similar to Cuba (taken in geographical 

context), Cuba is similar to Russia (taken in political context; at least in 1970’s), but 

Russia and Jamaica are not similar. In effect, “... the triangle inequality is likely to 

fail when people shift their frame of reference from one judgment to another” 

(Tversky and Gati 1978, p. 149-150). 

The three basic axioms of Euclidean metric characteristic for similarity-space models 

of cognition are arguably not psychologically valid criteria for modeling similarity 

judgements. Shift in the frame of reference also means shift in contextual or 

situational aspects of similarity judgments. In terms of cognitive semantics, a shift in 

reference is a conceptual shift, a shift in the underlying quality dimensions. In human 

similarity judgments (as in the example above), the perceived distances usually 

exceed the constraints of triangle inequality. Thus, similarity is not transitive. To use 

the analogy of conceptual spaces, by focusing on particular region (or part of region) 

in conceptual space, we can pick out the dimensions salient for the subject and not 

necessarily salient for the referent. Moreover, the position of particular object in 

conceptual space is further dependent on the ‘goodness of example’ in relation to the 

prototype. Using Lakoff’s example, “Pope is a bachelor” holds a ‘sort of’ relation: 

Pope is technically a bachelor, has all the formal attributes (“an unmarried adult 

male”), but is neither the best nor typical example of a ‘bachelor’ (e.g., Pope cannot 

marry). Thus, different dimensions, as well as typicality and ‘goodness of example’ 

are involved in human similarity judgments (e.g., when comparing subject to its 

referent and vice versa). 
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It is important to note that Tversky’s criticism doesn’t hold for all geometric models 

of similarity (for a detailed review, see Hahn and Chater 1997). As Krumhansl 

(1978) and Nosofsky (1991) had shown, by refining or selectively tuning the basic 

similarity-space model, e.g. by employing additional flexible attention weighing of 

dimensions, geometric models can account for asymmetries. Nevertheless, such 

modifications are generally functional and serve to solve very specific issues (e.g., 

see Johannesson 2000), with the algorithms appropriated for the task at hand, but 

lack theoretical or explanatory commitment. To account for asymmetry, especially in 

terms of stimulus and inductive biases present in human similarity judgments, 

probabilistic approaches to modeling cognition seem more promising (Griffiths et al. 

2008, 2010, Clark (in press)).  

19 Conclusion 

Admittedly, this thesis lacks rigorous analysis of special cases of symbolic and 

connectionist modeling, and more generally, a specific philosophical commitment. 

My overall aim has been to dismiss prevailing traditional accounts of modeling 

representations, especially in relation to meaning and semantics, and argue for an 

alternative approach to semantics by building a computer model. 

Parts I and II of the thesis dealt with symbolic and connectionist approaches, 

emphasizing their essential characteristics and differences. Both accounts have been 

further evaluated from the perspective of systematicity and productivity of language, 

the two properties that exhibit compositionality and show the latter is not only 

characteristic of natural language, but of human cognition in general. The notion if 

compositionality presents a problem for connectionist approach. Arguably, some 

structure in the form of functional compositionality can be achieved by modifying a 

connectionist network (as shown by Pollack’s RAAM) to simulate simple 

composition, e.g. of word tokens. But it is important to note that until now, 

connectionist functional compositionality has shown success on language tasks of a 

very limited scope, and does not scale up to more general properties of language. 

Unlike symbolic approach, neural networks simply do not have structural or 

methodological means to account for more abstract and hierarchical representations, 

and to use these same representations for further reasoning – the network does not 
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operate upon, in the sense of ‘being detached from’, as is the case for symbol 

systems, but within representational structures. In my view, this is the most pressing 

problem for connectionist approach. Hence, Fodor and Pylyshyn might be right in 

arguing connectionist compositionality is neither sufficient nor appropriate for 

modeling higher, more abstract aspects of language. Furthermore, but contrary to 

Fodor and Pylyshyn’s criticism, some researchers argue connectionist models might 

be just too powerful to carry any empirical or explanatory value. For example, 

Massaro (1988) claims that the computational power of connectionist system seems 

to be unbounded: connectionist networks can simulate almost anything. To mitigate 

this problem, Regier (1996), inspired by Feldman’s structured connectionist models 

(Feldman 1989), proposed constrained connectionism. Again, in practice, the 

constraints on the connectionist network had to be applied individually, to 

appropriately tackle each specific case, and not as a part of connectionist mechanism 

in general (see examples in Regier 1996). This opens a pressing question: to what 

extent is such connectionist system still seen as autonomuos, unlike symbol system 

exempt from pre-defined rules and procedures, reacting exclusively to the input and 

general setting of weights? 

Classical symbolic approach, on the other hand, has its own set of problems. 

Reserving itself the domain of abstract thought and problem solving, symbolic 

approach has no answer to the challenges brought up by lower-level cognition, such 

as perception and bodily experience. In a classical computational system, to solve a 

specific problem, the decisions need to be hand-coded into the system as rules, in a 

top-down manner. As consequence, such system cannot represent the emergent 

properties of the environment, i.e. cognitive and bodily interactions with 

environment, or the bottom-up influences that lower (dynamic and distributed) 

cognitive processes have on higher-level cognition. By-products are well known: 

symbol-grounding problem and frame problem. And, as has been argued in the 

discussion on semantics (Part III), rigid, set-theoretical perception of the world faces 

difficulties in its own backyard: meaning is not defined by a set of necessary and 

sufficient conditions, nor is it a part of static, ontologically defined view of the 

world, rather, meaning is a conceptual entity, affected by individual’s beliefs, 

background knowledge and context.  
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Common to both paradigms is the lack of cognitively plausible explanation of 

semantics. As argued throughout the thesis, concepts are the vehicles of meaning, 

hence the obvious need for conceptual level. Neither of traditional approaches nor 

existing hybrid formations can successfully account for conceptual representations. 

What is missing then is a proper conceptual level that could mediate between 

symbolic and sub-symbolic representations, and use conceptual representations to 

model graded structure of concepts and categories, and various influences of context.  

The proposed alternative to the traditional models of semantics is based on the theory 

of conceptual spaces (Gärdenfors 2000). My main goal has been to build a computer 

model for representing semantics of natural languages by coupling conceptual spaces 

with methods for natural language processing. The latter are necessary for generating 

quality dimensions needed to construct conceptual spaces. Two different approaches 

to natural language processing, loosely mirroring the logic of their counterparts in 

symbolic and connectionist approaches to cognition, have been implemented in 

SpaceWalk. A similarity-space model LSA, arguably one of the most prominent 

examples of bottom-up (and hence, in spirit connectionist) approach to semantic 

analysis, has been proven inferior, both functionally and theoretically, to top-down 

(and hence, in spirit symbolic) probabilistic topic model LDA. 

The effectiveness of LSA, pLSA and LDA algorithms has been widely discussed in 

scientific literature (e.g., Landauer and Dumais 1997, Seidenberg and MacDonald 

1999, Landauer et. al 2006, Blei et al. 2003, Hofmann 1999, 2001, Steyvers and 

Griffiths 2007, Griffiths et al. 2010 and Blei 2011, among others). Based on the 

results gathered from these studies, probabilistic models in general fare better than 

similarity-space models (cf. Blei et al. 2003 and Hofmann 1999). However, how 

plausible are theoretical assumptions supporting respective approach is still an 

unsettled issue. Two issues of Trends in Cognitive Science (July 2006 and August 

2010) have been devoted to connectionist and probabilistic modeling of cognition, 

with proponents of each approach generally split on the issue. Connectionists argue 

that bottom-up “emergentist accounts of cognition are more theoretically 

constraining than structured probability accounts” (Altmann (2010, p. 340), cf. 

McClelland et al. (same issue)). Proponents of probabilistic approach, on the other 

hand, argue that the top-down generative approach yields “greater flexibility for 



Section 11: Conclusion 

133 

 

exploring the representations and inductive biases that underlie human cognition” 

(Griffiths et al. 2010, p. 357; see also Lee (same issue)). Most of the scientific 

community, however, while pointing out the advantages and disadvantages of each 

approach, argues for a unified theory to modeling cognition. By connecting structural 

aspects with their emergent counterparts and perceptual substrata, the more abstract 

aspects of cognition could be grounded in perception and action (in the same issue, 

see for example, Feldman, Gopnik et al., Kruschke, and Marcus, among others). 

As has been shown, similarity-space models provide weak theoretical support for 

cognitively realistic modeling of natural language and cognition. Specifically, 

theoretical assumptions underlying similarity-space models are not supported by 

experimental evidence gathered from the studies in cognitive psychology, especially 

studies on human language and categorization (Rosch et al.) and studies on similarity 

judgments (Tversky et al.). From the perspective of human language processing, 

such models are fundamentally flawed. Admittedly, similarity-space models can lead 

to the discovery of general semantic patterns in large text corpora, and might even 

generate appropriate statistical approximations of the corpus data, or simulate some 

of the effects of language use, for example passing the synonym test (see (Landauer 

and Dumais 1997)). Nevertheless, while LSA might simulate effects of synonymy, 

these effects are generated solely through statistical operations on word association 

matrix, with little additional explanatory value. In reality, human conceptual 

structure is not the result of statistical inferences based exclusively on word 

associations, but is inherently affected by conceptual, categorical and contextual 

knowledge, let alone cultural and social influences and context (see e.g., Jäger and 

van Rooij 2007). As such, it is part of a larger abstract knowledge structure. By being 

constrained to the single view (gist of the corpora), LSA-like similarity-space models 

cannot account for these phenomena. 

Probabilistic approach brings fresh air into traditional accounts of language and 

cognition. As a generative topic model, LDA is conceptually closer to the symbolic 

approach, but overcomes many of its vices. For one, it allows for hybridity and 

coupling of different representational architectures. LDA utilizes associative, 

approximating data structures and thus allows the ‘environment’ to influence the 

representational structure of the system. Furthermore, the notion of probability 
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represents a set of top-down constraints which, taken as inductive biases
52

, can 

account for effects in human similarity judgments (Griffiths et al. 2008, 2010, Clark 

(in press)). Coupled with conceptual spaces, it offers a more flexible framework for 

creating and exploring semantic representations and aims to explain “how inductive 

biases – the constraints on learning and memory, which influence our conclusions 

from limited data – relate to the concepts ...” (Griffiths et al. 2008, p. 3503).  

The role of conceptual spaces in modeling meaning and semantics of natural 

languages is significant. In a computational model such as SpaceWalk, conceptual 

spaces add another, conceptual level onto existing semantic representations (whether 

generated by LDA, LSA or pLSA). What we get, in machine-readable form, are not 

only representations of clusters of objects, concepts, properties and similarity 

relations, but the framework that exploits the underlying quality dimensions and 

projects them onto conceptual space according to the mode of graded categorization 

(see Rosch’s prototype theory). Higher level symbolic operations can then be applied 

to manipulate these representations and form reasoning over conceptual space, e.g. 

for knowledge representation (e.g., in form of hierarchical dependencies between 

objects, concepts and categories; Strle and Marolt 2012), semantic web (Gärdenfors 

2004), or as a means of communication (Gärdenfors and Warglien 2006, 2011, 

2012). Moreover, from the top-down perspective, anchoring in conceptual spaces 

“could take advantage from top down information: high level, symbolic knowledge 

can constrain the possible shape of the (interpolated or extrapolated) trajectories” 

(Chella et al. 2003, p. 195). By connecting various levels of analyticity, e.g. by 

coupling conceptual space with the top-down and bottom-up approaches to natural 

language processing, such a system becomes truly hybrid. 

What is currently lacking is a more integrated approach of using symbolic operations 

dynamically. For example, in current version of SpaceWalk only partial snapshots of 

conceptual space are possible and the projections of alternative sets of quality 

dimensions need repeated computations. Ideally, we should be able to explore the 

conceptual space by manipulating underlying quality dimensions (e.g., by changing 

the number of topics or by changing weights of individual topics or dimensions) and 

                                                 
52

 Here (in the context of machine learning), inductive biases are understood as different factors that 

affect human judgment, e.g. prior knowledge, prejudices, expectations, etc. In Bayesian framework 

they are expressed as a prior distribution over hypotheses. 
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discovering different semantic structures on the fly. There are numerous possible 

applications for such an approach, most obvious are the areas of machine learning, 

knowledge representation and semantic web, with one example being the discovery 

and exploration of latent semantic structures in digital text collections. This remains 

a motivation for future work. 
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20 Appendix: Data and projections53 

20.1 LDA: topics, top words and documents 

Table 3: most salient words per topic (10 topics) 

Topic 1: Classical Artificial 

Intelligence (artificial life, GOFAI) 

gofai, feigenbaum, lenat, dendral, creativity, babbage, prolog, mccorduck, homo, aaron, 
cyc, alife, kurzweil, technological, eliza, boden, weizenbaum, weir, hodgson, humanlike, 

bipedalism, hacker, colby, artificialintelligence ... 

Topic 2: Cognitive Science 

(categorization, modeling, 

prototypes, exemplars) 

nosofsky, medin, tversky, goldstone, barsalou, exemplars, ratings, typicality, 

categorization, rips, shepard, mervis, judgments, prototype, kruschke, hampton, markman, 
metric, similarity, stimuli, exemplarbased, gentner, rated, trials, category, minda, 

multidimensional, rosch, prototypes, featural, ... 

Topic 3: Cognitive Psychology 

(categorization, infants, children, 

novices) 

gleitman, waxman, novices, chi, yearolds, coley, wellman, gelman, preferences, mervis, 

osherson, infants, montholds, thematic, superordinate, subcategorization, markman, 

basiclevel, transitivity, categorization ... 

Topic 4: Various (cognitive 

development, anthropology, 
linguistics, ...) 

hauser, baillargeon, chimpanzees, preverbal, autism, leslie, spelke, tomasello, wynn, 
creole, containment, boesch, societies, byrne, sperber, infants, crosslinguistic, tamarins, 

montholds, reiter, anthropology, ontogeny, infancy, gardner, hirschfeld, adulthood, 

semiotic, boroditsky, primates, lieberman, piaget, anthropologists, abductive, prosodic, ... 

Topic 5: Neuroscience (cortex, 

premotor, patients) 

gyrus, fusiform, neuroscience, medial, lateral, ventral, fmri, lobe, sulcus, prefrontal, 
categoryspecific, imaging, parietal, neuropsychologia, lesions, anterior, neuroimaging, 

cortex, cortical, premotor, bilateral, deficits, occipitotemporal, psychological, selectivity, 

patients, sts, simmons, ... 

Topic 6: Philosophy of Mind 
(intentionality, subjectivity, 

metaphysics, logic, epistemology) 

causation, intentionality, kant, hume, epistemic, phenomenal, metaphysical, intentional, 

constitutive, materialism, qualia, leibniz, crane, supervenience, objectivity, sellars, tye, 
reductive, descartes, quantum, constituted, subjectivity, intrinsic, logic, 

philosophyofmind, brentano, intersubjective, wittgenstein, consciousness, teleological, 

metaphysics, transcendental, dretske, ... 

Topic 7: Emulation, Cognition, 

Memory 

emulator, efference, latency, tulving, anterograde, egocentric, oscillations, spc, amnesia, 
emulation, grush, golgi, shock, autonoetic, recollection, circadian, paralysis, oscillatory, 

thalamocortical, broca, sherrington, oscillation, ephemeris, endogenous, occipital, 

navigation, proprioceptive, rotational, suppression, erent, kihlstrom, anesthetized, ...  

Topic 8: Traditional models 

(Computationalism & 

Connectionism; Cognitive modeling: 
symbolic vs. connectionist; 

representations, compositionality) 

connectionist, fodor, connectionism, constituents, pylyshyn, syntactic, sentences, 

distributedrepresentations, rumelhart, compositionality, systematicity, smolensky, 
semantics, churchland, elman, representational, neuralnetworks, symbol, network, 

grammar, tokens, symbols, output, architecture, machines, newell, computers, raam, 

mcclelland, connectionists, symbolic, turing, program, mental, hinton, turingmachine, 
rules, ...  

Topic 9: Topic Models 
(natural language processing) 

lda, dirichlet, blei, document, variational, topicmodels, latent, bayesian, griffiths, markov, 

posterior, topics, distributions, graphical, jordan, steyvers, corpus, lsa, distribution, 

multinomial, unsupervised, parameters, probabilistic, corpora, topic, generative, gibbs, 
algorithm, latentdirichletallocation, sampling, probability, hofmann, optimization, 

dumais, mixture, gaussian, latentsemanticanalysis, statistics, predictive, landauer, matrix, 

bayes, nonparametric, ... 

Topic 10: Cognitive Semantics 
(image schemas, conceptual spaces, 

quality dimensions) 

conceptualspaces, harnad, qualitydimensions, cognitivesemantics, metaphors, Gärdenfors, 
grounding, lakoff, symbolsystem, metaphorical, metaphor, imageschemas, voronoi, 

topological, symboliclevel, imageschematic, sensorimotor, soar, tessellation, newell, 

emotions, bickhard, grounded, intensional, rationality, metaphoric, neuralnetworks, 
operator, constructions, objectivist, turing, pragmatics, ungrounded, expressions, 

fauconnier, robotic, worlds, symbol, schemas, robot, ontology, invariants, functioning, ... 

 

Table 4: Top documents per topic (10 topics) 
Topic 1: Artificial Intelligence 
(artificial life, GOFAI) 

b-Boden-Artificial Intelligence; b-Boden-Mind As Machine A History Of Cognitive 
Science; Henderson-Ai Mirrors For The Mind 

Topic 2: Cognitive Science 

(categorization, modeling, 
prototypes, exemplars) 

Barsalou-The instability of graded structure; Collins&Quillian-Does Category Size Affect 
Categorization Time; Goldstone&Medin&Halberstadt-Similarity in context; Gregory-

Knowledge in perception; Hampton&Moss-Concepts and meaning; Zaki&Nosofsky-

Prototype and Exemplar Accounts of Category Learning 
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 Lists of top words for LDA, LSA and pLSA (Table 3, 6-8) are presented, with more salient words in 

bold. 
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Topic 3: Cognitive Psychology 
(categorization, infants, children, 

novices) 

b-Gelman-Perceptual and Cognitive Development; Mandler-Perceptual and Conceptual 

Processes in Infancy 

Topic 4: Various (cognitive 

development, anthropology, 
linguistics, ...) 

b-Mehler-Language, Brain, And Cognitive Development; b-Deacon-Symbolic Species; b-

Mandler-The Foundations Of Mind Origins Of Conceptual Thought 

Topic 5: Neuroscience (cortex, 

premotor, patients) 

Caramazza-Domain-Specific Knowledge in the Brain; Martin-The Representation of 
Object Concepts in the Brain; Martin&Chao-Semantic memory and the brain-structure and 

processes; b-Neural Basis Of Semantic Memory; McNamara-Cognitive maps and the 

hippocampus 

Topic 6: Philosophy of Mind 

(intentionality, subjectivity, 

metaphysics, logic, episteology) 

b-Essential Sources in the Scientific Study of Consciousness; b-Introduction to the Science 

and Philosophy of Mental Imagery; b-Ramsey-Representation Reconsidered; Chalmers-
Facing Up to the Problem of Consciousness; b-Crane-The Mechanical Mind; Dennett 

Intentional systems; Putnam-The Meaning of Meaning 

Topic 7: Emulation, Cognition, 
Memory 

b-Embodied Minds in Action; b-Waskan-Models And Cognition Prediction And 

Explanation In Everyday Life And In Science; Grush-Emulation and Cognition; Grush-The 
emulation theory of representation-Motor control, imagery, and perception; Menon-

Relating semantic and episodic memory systems; Tulving-What is Episodic Memory 

Topic 8: Traditional models 
(Computationalism & 

Connectionism; Cognitive 

modeling: symbolic vs. 
connectionist; representations, 

compositionality) 

Bechtel-Levels of description and explanation in cognitive science; Chalmers-Syntactic 

Transformations on Distributed Representations; Chalmers-Why Fodor and Pylyshyn Were 

Wrong; Niklasson-Connectionism and the Issues of Compositionality and Systematicity; 
Fodor&Pylyshyn-Connectionism and Cognitive Architecture-A Critical Analysis; 

Rumelhart&Mcclelland-On learning past-tense of english verbs; Van Gelder_What Might 

Cognition Be, If Not Computation; Waskan&Bechtel-Connectionism and Cognitive 
Linguistics 

Topic 9: Topic Models 

(natural language processing) 

Blei&Lafferty-Topic Models; Blei&Lafferty-Dynamic Topic Models; Blei&McAuliffe-
Supervised Topic Models; Blei-Introduction to Probabilistic Topic Models; Griffiths et al.-

Topics in Semantic Representation; Hoffman et al.-Finding Latent Sources in Recorded 

Music; Steyvers&Griffiths-Probabilistic Topic Models 

Topic 10: Cognitive Semantics 

(image schemas, conceptual spaces, 

quality dimensions) 

b-Langacker-Cognitive Grammar An Introduction; b-Gärdenfors-Conceptual Spaces: The 
Geometry of Thought; Gärdenfors-Conceptual Spaces as a Basis for Cognitive Semantics; 

Gärdenfors-Meanings As Conceptual Structures; Gärdenfors-Mental Representation, 

Conceptual Spaces and Metaphors; Harnad-The Symbol Grounding Problem; Lakoff-
Cognitive models of categorization; b-Lakoff-Women, Fire And Dangerous Things 

 

Table 5: LDA: List of document titles (see Figure 19 in the main section) 
Topic 1: Artificial Intelligence (artificial life, 

GOFAI) 

Boden-Artificial Intelligence (book) 

Topic 2: Cognitive Science (categorization, 

modeling, prototypes, exemplars) 

Johnson-Prototype Theory, Cognitive Linguistics and Pedagogical 

Grammar (article); Tversky-Features of Similarity (article) 

Topic 3: Cognitive Psychology (categorization, 
infants, children, novices) 

Gelman-Perceptual and Cognitive Development (book) 

Topic 4: Various (cognitive development, 
anthropology, linguistics, ...) 

Mandler-The Foundations Of Mind: Origins Of Conceptual Thought 
(book) 

Topic 5: Neuroscience (cortex, premotor, patients) Hart&Kraut-Neural Basis Of Semantic Memory (book) 

Topic 6: Philosophy of Mind (intentionality, 
subjectivity, metaphysics, logic, episteology) 

Haugeland-Having Thought: Essays in the metaphysics of mind (book) 

Topic 7: Emulation, Cognition, Memory 
Tulving-What is Episodic Memory (article); Grush-Emulation and 
Cognition (article) 

Topic 8: Traditional models (Computationalism & 
Connectionism; Cognitive modeling: symbolic vs. 

connectionist; representations, compositionality) 

Fodor&Pylyshyn-Connectionism And Cognitive Architecture: A Critical 
Analysis (article) 

Topic 9: Topic Models 

(natural language processing) 

Blei&Lafferty-Topic Models (article) 

Topic 10: Cognitive Semantics (image schemas, 
conceptual spaces, quality dimensions) 

Gärdenfors-Conceptual Spaces: The Geometry Of Thought (book); Strle-

Semantics within: Representation Of Meaning Through Conceptual 
Spaces (thesis) 

 

 

Table 6: LDA: 30 top words per topic (30 topics) 

Topic 1 
mindasmachine, cricket, bourdieu, crickets, theyd, babbage, nlp, cussins, hed, alife, borges, grossberg, geertz, 
governments, gazdar, aisb, priests, fathers, neuron, jespersen, vaucanson, mays, awe, licklider, repr, wars, pask, 
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hartley, behaviourism, humboldt 

Topic 2 
lda, dirichlet, blei, variational, documents, document, topicmodels, topicmodel, latent, lsa, log, markov, 
steyvers, posterior, distributions, griffiths, multinomial, topics, corpus, bayesian, corpora, graphical, 

latentdirichletallocation, distribution, unsupervised, lafferty, jordan, landauer, dumais, topic 

Topic 3 

cognitivesemantics, imageschemas, lakoff, trajector, metonymic, imageschematic, icm, schemas, 

prototypetheory, imageschema, zebra, fauconnier, constructions, Gärdenfors, conceptualspaces, mat, 

metaphor, backgrounded, prototype, container, icms, langacker, hampton, grounding, beep, sweetser, 
infinitival, hybrid, metonymy, metaphorical 

Topic 4 

reitman, halford, cannon, actr, quartercentury, schizophrenia, novick, creativity, perkins, bassok, jurisprudence, 

clinicians, polya, judicial, individualistic, salthouse, wason, duncker, disessa, kahneman, lawyers, barth, maier, 

sloman, bowden, hogarth, greenfield, kruglanski, frederick, diagrammatic 

Topic 5 
handaxes, flakes, flake, erectus, handaxe, palaeolithic, levallois, nests, habilis, knapping, bifaces, 
archaeological, bones, archeological, sortals, homo, genus, australopithecines, hunting, endocasts, 

neanderthal, afarensis, archaeology, mithen, mellars, africa, neanderthals, lithic, nest, oldowan 

Topic 6 

creativity, mozart, minda, mse, poincarã, coleridge, benzene, thagard, hamiltonian, stahl, escher, 

prototypebased, galileo, emmy, orbit, mckinley, boyle, passim, nls, lavoisier, serendipity, arcs, bosons, sellars, 

kepler, schoenberg, chs, riemannian, dunham, dalton 

Topic 7 
squire, oxidative, tulving, episodic, hippocampus, fermentation, hippocampal, atp, okeefe, phosphorylation, 
ferrier, autonoetic, amnesia, wimsatt, lobe, mishkin, endel, interlevel, parietal, enzymes, darden, roediger, 

dissociations, medial, hera, schaffner, lesions, inquiries, navigation, maplike 

Topic 8 

categoryspecific, warrington, fusiform, caramazza, chao, gyrus, dementia, hodges, deficits, modalityspecific, 

impairment, capitani, gainotti, haxby, amodal, impaired, neuroimaging, damasio, patients, lobe, naming, 

nonliving, neuropsychologia, martin, medial, frontal, tranel, anterior, fmri, shelton 

Topic 9 

chemero, goldstone, rooij, markman, antirepresentationalism, gentner, grounding, harnad, varela, carello, 
hutto, medin, brooks, bressler, nonsymbolicrepresentations, icons, gelder, representationhungry, categorical, 

regier, grossman, gibson, pss, antirepresentationalists, affordances, haselager, cerebellum, 

contextindependent, tuller 

Topic 10 

raam, systematicity, distributedrepresentations, smolensky, pollack, structuresensitive, connectionists, 

connectionism, compositionality, microfeatures, symbolsystem, pylyshyn, distributedrepresentation, 
governor, connectionist, concatenative, fodor, gelder, backpropagation, robot, hadley, dynamical, symbolic, 

level, combinatorial, haugeland, chalmers, constituents, layer, connectionistnetworks 

Topic 11 

metric, tversky, convex, conceptualspaces, additivity, triangleinequality, qualitydimensions, conceptualspace, 

topological, voronoi, krantz, beals, multidimensional, additive, canary, ratings, dissimilarity, dimensions, 
euclidean, Gärdenfors, dimension, msec, scaling, ordinal, categorizations, judgments, betweenness, similarity, 

tessellation, rosch, 

Topic 12 

dualism, intentionality, qualia, searle, materialism, weizenbaum, materialists, desires, consciousness, soul, 

cyc, nonreductive, intentional, turing, hunk, physicalism, url, functionalism, sartre, eliza, selfconscious, 
efficacious, brentano, chessplaying, reductive, turingmachine, hollow, singularity, believes, desire, 

Topic 13 
rayner, prelexical, cutler, mcqueen, norris, frauenfelder, marslenwilson, frazier, otake, distractor, acoustical, 
dyslexia, highfrequency, demuth, connine, khz, toefl, lowfrequency, nonwords, dyslexics, garnham, catalan, 

priming, deese, seidenberg, sublexical, christophe, basilar, wagemans, linebarger 

Topic 14 

phenomenality, tarahumara, dennett, whorf, firstperson, soar, fluent, heated, qualia, experiential, tye, zombies, 

recognitional, shouldnt, doesnt, band, economics, isnt, jam, mixtec, dont, axioms, paragons, comforting, didnt, 
informationprocessing, nicod, baars, ofthe, chapter 

Topic 15 
beneficiary, pfc, antisocial, impulsive, heine, ajh, acc, henrich, ultimatum, forcedynamic, volitional, violent, 
punishment, impersonal, mood, liking, ict, weird, adjunct, periphrastic, lcs, serotonin, ofc, kick, americans, 

selfinterest, willful, sue, paraphrases, pleasures  

Topic 16 

wcs, bestfit, ima, covis, animat, agr, ecg, creole, lefebvre, filoteo, tessellation, oracle, kay, informant, sing, kdd, 

cafã, categorial, yucatec, apriority, amoeba, aho, expressiveness, munsell, montrã, usability, turkish, pronoun, 
conceptualspaces, lillomartin 

Topic 17 
mcclelland, psychol, sci, tics, hinton, rumelhart, rev, connectionist, units, processing, ofthe, nets, weights, pdp, 
minsky, backpropagation, papert, bayesian, zerocrossings, networks, trends, fig, rolespecific, unit, detectors, 

probabilistic, marr, graded, ullman, sejnowski 

Topic 18 

erent, reticular, erences, laberge, erence, ect, baars, anosognosia, ective, thalamocortical, clin, ror, ects, fringe, 

steriade, cient, codelets, culty, libet, neurophysiology, spc, slowwave, hypnotic, anaesthesia, anesthesia, 
analgesia, scheibel, thalamic, awakening, wakefulness 

Topic 19 
intransitivities, wst, ect, erent, subadditivity, erence, scalability, sophia, erences, gambles, sattath, intransitivity, 
gamble, reasonbased, ects, redelmeier, overconfidence, gri, majors, quattrone, ered, wakker, slovic, ense, thaler, 

voters, manslaughter, aversion, culty, rottenstreich,  

Topic 20 

glasersfeld, gallistel, oscillators, transmitter, oscillation, endogenous, nectar, stein, lambda, maze, bearings, 

anticipatory, enaction, fourier, elapsed, bee, oscillator, environment, thesame, deg, circadian, css, onion, 
reckoning, scorpion, harth, hive, ephemeris, csus, stabilities 

Topic 21 

pelke, gelman, baillargeon, carey, domaingeneral, preschool, preschoolers, infants, landau, hirschfeld, autism, 

premack, wellman, meltzoff, tagerflusberg, bartsch, conservation, leslie, bellugi, baroncohen, flavell, baldwin, 

domainspecific, crain, hermer, karmiloffsmith, montholds, wynn, reorientation, infant  

Topic 22 
stereogram, morais, trehub, randomdot, drake, eccentricity, roughness, epithelium, slant, nonspeech, 

directionally, offcenter, redgreen, grating, contour, deutsch, spectral, transparency, julesz, jusczyk, monocular, 
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mcadams, regan, nonmusicians, hildreth, acuity, sekuler, occluding, knudsen, englishlearning 

Topic 23 
elman, tense, newport, irregulars, plunkett, symbolmanipulating, pinker, regulars, inflection, bates, 
recurrent, symbolmanipulation, axons, marchman, terrence, spinal, synaptic, subjectpredicate, shastri, marcus, 

macwhinney, turing, rewiring, savagerumbaugh, christiansen, multilayer, searle, kanzi, sherman, verbs  

Topic 24 

physicalsystem, quantum, interpreter, phenomenal, rationality, conscious, newell, searle, ips, algorithmic, 

metaphysical, successor, dretske, commonsense, laws, functioning, explanatory, discoveries, dreyfus, 
consciousness, desires, marr, humanlike, mechanics, byandlarge, intentional, administrative, writers, chapter, 

causal 

Topic 25 

emergentist, provisos, scalemodel, magnetosome, inï, sentential, explanans, keplers, nonsentential, singer, 

forethought, icm, enlightening, bucket, johnsonlaird, friston, byrne, premises, doxastic, gauntlet, modem, 

deductivenomological, explanandum, nonconcrete, imagery, kant, waskan, engel, hume, uncertainties  

Topic 26 
emulator, emulators, emulation, controller, grush, musculoskeletal, kawato, articulants, efferent, closedloop, 
offline, proprioceptive, effector, motorcontrol, mel, tendon, imagery, decety, gon, bickhard, wolpert, mss, 

calvo, plant, sensor, jeannerod, pseudoclosedloop, muscle, mock, torque 

Topic 27 

area, wernickes, stereotyping, whmovement, diachrony, benthem, marcia, diss, degraff, brocas, language, sapir, 

dels, areas, creole, creolization, andrade, nrem, ltp, creoles, grammar, malinowski, raiffa, reinhart, albright, 

geschwind, thaler, thornhill, headdriven, memory  

Topic 28 

altriciality, autistic, husserl, falsebelief, vowel, autism, archaic, abnormalities, psychologism, hobson, 
credulous, incomprehensible, bracketing, zahavi, wasons, syndrome, lived, admissible, intersubjectivity, 

interpretive, phenomenologists, neurogenesis, leibnitz, lorenz, dialogues, prepotent, marian, syndromes, 

heritability, frith 

Topic 29 

constituent, lepore, holism, dogs, arent, compositionality, constituents, doorknob, weve, rtm, redescription, 

individuation, compositional, primitive, frege, fish, correspondingly, chairs, tendentious, doorknobs, 
karmiloffsmith, evaluable, cats, bachelor, dog, syntactic, prototypes, containment, facto, productivity 

Topic 30 

heidegger, dreyfus, externalism, epistemic, merleauponty, intentionality, phenomenology, dennett, encodings, 

bickhard, varela, notebook, situated, inga, haugeland, otto, representationality, embodiment, morse, 

subpersonal, gallagher, potentialities, interactivism, encodingism, interfaces, scaffolding, hermeneutics, cyc, 
campbell, agent  

 

22.2 LSA and pLSA: dimensions/topics and top words 

Table 7: LSA: top 30 words per topic (first 10 dimensions) 

Topic 1 

patients, infants, frontal, deficits, cortical, chapter, emotional, lobe, monkeys, cortex, monkey, parietal, 

prefrontal, executive, emotions, emotion, disorders, clinical, cells, hemisphere, awareness, lesions, cultural, 

culture, deficit, kahneman, damasio, wilson, rats, cohen 

Topic 2 
theyd, hed, babbage, passim, mindasmachine, masterman, mccorduck, gofai, hadnt, lovelace, nlp, goethe, 
weizenbaum, darcy, alife, werent, emmy, vaucanson, pask, neokantian, quartercentury, chs, shrdlu, behaviourism, 

hype, repr, behaviourist, cyc, gelernter, feigenbaum 

Topic 3 

chapter, scenario, basiclevel, chapters, superordinate, barsalou, dog, dogs, dont, categorical, items, child, ahn, 

event, nominals, water, car, children, intentionally, agent, someone, phase, animals, ball, medin, containers, 

belief, book, bird, count 

Topic 4 
hypnotic, analgesia, erent, soa, lemniscus, suprathreshold, mcadams, grossberg, baars, neurons, analgesic, fringe, 
referral, anaesthesia, refractory, pandemonium, masking, metacontrast, longuethiggins, pedestal, hypnosis, 

harmonics, erences, eriksen, repp, sperling, melodies, buds, grating, cuing 

Topic 5 

embodiment, dretske, robot, kelso, churchland, bickhard, constitutive, prosodic, clausal, pronoun, robots, 

putnam, intentionality, sellars, haugeland, millikan, langacker, embodied, metaphysical, surfaces, 

disembodied, roughness, gibson, dynamical, controller, naturalism, robotics, varela, philosophyofmind, 
locative 

Topic 6 

erent, erences, erence, clin, steriade, neurophysiology, anosognosia, ect, bogen, ects, slowwave, ective, 

autonoetic, awakenings, libet, unconsciousness, rightness, codelets, culty, rem, nmda, neuron, nig, 

commissurotomy, mangan, cholinergic, baars, waking, nrem, abstract 

Topic 7 

categoryspecific, caramazza, warrington, fusiform, chao, modalityspecific, forde, gainotti, capitani, hodges, 

laiacona, dementia, haxby, gyrus, nonliving, shelton, impairment, hillis, moss, deficits, silveri, neurocase, 
lambon, barbarotto, buxbaum, garrard, tranel, gornotempini, aphasia, mahon,  

Topic 8 

hauser, chimpanzees, bickhard, thelen, dunbar, klahr, accumulator, autistic, perner, boysen, syndrome, 

deloache, chalmers, ceci, meltzoff, novick, vygotsky, primates, chimpanzee, affective, piaget, numerosities, 

troglodytes, engle, brannon, cortex, clancey, bassok, siegal, cordes 

Topic 9 

categoryspecific, riddoch, garrard, lambon, subadditivity, hja, moss, caramazza, barbarotto, capitani, funnell, 

laiacona, hillis, vegetables, wordpicture, nonliving, neurocase, silveri, hse, artefacts, sft, overconfidence, breedin, 

vignettes, hodges, devlin, forde, sartori, cipolotti, fishburn 

Topic 10 

spelke, montholds, sexual, wynn, mothers, nongeometric, knudsen, gelman, handaxes, yearolds, baillargeon, 

males, females, meat, erectus, foods, mandler, familiarization, cage, yonas, meck, gould, taxonomic, preschool, 

preschoolers, tectum, flakes, bipolar, chamber, dow 
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Table 8: pLSA: top 30 words per topic (10 topics) 

Topic 1 
actually, scientific, arises, complexity, three, abstract, text, come, assumes, component, use, thus, values, ways, 
figure, content, algorithms, cases, terms, also, estimates, solution, systems, years, topicmodel, top, unknown, 

classification, science 

Topic 2 

conceptual, allow, done, cases, difference, ask, circumstances, element, cognition, behavioral, actual, 

computational, direct, development, clear, critical, correct, better, case, animals, architecture, content, beyond, 

comments, conclusions, corresponding, available, conditions, degree 

Topic 3 
thus, positive, correctly, identity, long, provide, note, functional, wilson, finally, level, recall, set, will, point, 

remains, second, visual, model, see, studies, show, take, place, represented, press, right, specify, system 

Topic 4 
without, thus, well, way, ways, two, understanding, analysis, together, able, words, used, suggests, work, 
account, york, university, whereas, also, using, something, abstract, time, access, argued, across, will, working, 

years 

Topic 5 

process, position, notion, others, object, press, psychology, rather, quite, physical, perception, provided, 

provide, proceedings, reason, number, precisely, potential, problems, phenomena, one, respect, possible, 

research, processing, relative, place, see, relevant 

Topic 6 

introduction, inference, natural, one, press, many, given, mit, instead, include, oxford, ieee, models, maps, note, 

realistic, point, makes, particular, problem, moreover, patterns, make, news, generated, processing, including, 
main, matrix 

Topic 7 
know, internal, individual, models, instead, end, many, highly, interaction, large, just, intelligence, likely, 
important, foundation, mental, input, indeed, next, however, knowledge, interesting, involved, make, memory, 

levels, general, experience, language 

Topic 8 
stored, time, table, thus, subset, taken, tasks, simple, faster, together, takes, seen, test, understood, similar, 

response, finding, various, six, still, sets, things, undivided, equal, use, set, unless, first, structure 

Topic 9 
systems, understand, way, theories, various, center, terms, either, work, though, underlying, cover, whether, 

support, give, will, also, like, two, correct, analysis, forbears, use, time, many, wrong, fact, thus, architecture 

Topic 10 

examples, detailed, established, explain, areas, fourth, come, directly, fundamental, hardly, getting, found, counts, 

described, form, enters, fleshed, essentially, may, framework, depends, details, associated, final, functioning, 

first, issues, force 
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22.3 Projections: LSA and pLSA 

 

 

 

 

Figure 20: LSA distribution of topics in conceptual space: 3D Mesh (left) and Voronoi tessellation (right) 
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Figure 21: LSA distribution of 10 topics over conceptual space. Most salient member of individual topic is chosen for distribution.  

 

 

Figure 22: LSA distribution of words/concepts over topics (general) 
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Figure 23: LSA distribution of words/concepts over topics (cognitive modeling) 

 

 

 

Figure 24: pLSA distribution of topics in conceptual space: 3D Mesh (left) and Voronoi tessellation (right) 
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Figure 25: pLSA distribution of 10 topics over conceptual space. Most salient member of individual topic is chosen for distribution.  

 

Figure 26: pLSA distribution of words/concepts over topics (general) 
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Figure 27: pLSA distribution of words/concepts over topics (cognitive modeling) 
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Povzetek 

Semantika znotraj: Reprezentacija pomena v konceptualnih 

prostorih 

 

1 Uvod 

Doktorska naloga obravnava temeljno problematiko kognitivne znanosti, oblikovanje 

semantičnih reprezentacij. Vključuje tako teoretični kot tudi praktični oz. 

konstrukcijski vidik: proučuje strukturo in zahteve za oblikovanje reprezentacij na 

konceptualnem nivoju in izgradnjo računalniškega modela, ki bo omogočal 

semantično repezentacijo vsebin. Glavni problem večine obstoječih računalniških 

modelov je v tem, da temelje na simboličnem ali konekcionističnem/asociativnem 

pristopu, kjer učinkovito semantično oblikovanje reprezentacij ni možno, saj ta 

pristopa ne omogočata ustrezne konceptualne podlage za konstruiranje pomena. Kot 

rešitev oblikovanja semantičnih reprezentacij je predlagana teorija konceptualnih 

prostorov (Gärdenfors 2000), v navezavi z metodami in tehnikami za računalniško 

analizo jezika. Konceptualni prostori predstavljajo temeljno teoretsko podlago kakor 

tudi matematično strukturo potrebno za izgradnjo računalniškga modela. V 

nadaljevanju so predstavljena izhodišča, cilji, metode in rezultati doktorske 

disertacije. 

 

2 Izhodišča 

Glavna raziskovalna problematika zadeva izgradnjo računalniškega modela za 

oblikovanje semantičnih reprezentacij. Obstoječe rešitve večinoma temelje na 

tradicionalnih simboličnih in asociativnih pristopih k oblikovanju reprezentacij, ki pa 

so v disertaciji po kritični analizi zavrnjeni. Osnovno izhodišče in raziskovalna 

hipoteza je: pomeni so konceptualne entitete, ki jih je mogoče uspešno reprezentirati 

zgolj na konceptualnem nivoju. Slednji predstavlja vmesni nivo med obstoječima 

tradicionalnima pristopoma in, vsaj teoretično, omogoča hibridno povezovanje 
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arhitektur teh sistemov. Kot osnovna rešitev oblikovanja semantičnih reprezentacij je 

predlagana Gärdenforsova (2000) teorija konceptualnih prostorov. Ta, za razliko od 

teorestko sorodnih rešitev kognitivne semantike, omogoča matematično opredeljivo 

strukturo, ki je primerna za računalniško implementacijo in interpretacijo. Nadalje, 

teoreija konceptualnih prostorov ponuja verodostojno razlago nekaterih kognitivnih 

pojavov (npr. efekt prototipičnosti), ki so navzoči pri človekovem razumevanju 

pomena, nastajanja oz. formacije konceptov, kategorizaciji itn., a jih tradicionalna 

pristopa ne zmoreta uspešno razložiti.  

Teorija konceptualni prostorov uvaja nov pristop k oblikovanju reprezentacij na 

podlagi semantičnih razmerij med koncepti: koncepti so repezentirani v prostoru 

geometrično, na podlagi kvalitativnih dimenzij in regij katerim pripadajo. To ima kar 

nekaj konkretnih posledic tako v praktičnem (npr. konstrukciji računalniških 

modelov in simulatorjev) kot tudi teoretičnem smislu (reševanju problematike 

simboličnega in asociativnega pristopa). Ker so kvalitativne dimenzije v prostoru 

reprezentirane vektorsko, je generiranje konceptualnih prostorov matematično in 

tako neposredno prevedljivo v računalniško simulacijo. Po drugi strani pa z vpeljavo 

konceptualnega nivoja rešimo številne probleme povezovanja reprezentacij 

simboličnega in asociativnega nivoja v nek hibriden sistem.  

V nadaljevanju sta prvo na kratko predstavljeni glavni semantični teoriji znotraj 

kognitivne znanosti, referenčna in kognitivna semantika. Poseben poudarek je na 

kognitivnem pristopu, ki za razliko od tradicionalne referenčne semantike pomene 

razume kot konceptualne entitete. Nadalje so predstavljene prednosti in 

pomankljivosti tradicionalnega simboličnega in asociativnega pristopa k oblikovanju 

reprezentacij. Sledi predstavitev teorije konceptualnih prostorov, ki je temeljna 

teoretična podlaga disertacije. Teorija konceptualnih prostorov, in konceptualni vidik 

na splošno, igrata v tej disertaciji osrednjo vlogo – tako v odkrivanju številnih 

problematičnih vprašanj, ki nastanejo pri uporabi simboličnih in asociativnih 

modelov, kot tudi z vidika formalne reprezentacijske strukture in metodološkega 

okvira izgradnje računalniške aplikacije za semantično reprezentacijo vsebin (z 

delovnim imenom SpaceWalk). V ta namen, so v zadnjem delu naloge predlagane 

konkretne rešitve: z navezavo konceptualnih prostorov na različne metode 
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računalniške analize jezika dobimo nove inovativne rešitve oblikovanja semantičnih 

reprezentacij. 

 

2.1 Problematika 

Problem semantike in pomena v kognitivni znanosti obravnavata dva temeljna, a 

precej različna pristopa: tradicionalen referenčni pristop in kognitivni pristop. Znotraj 

tradicionalnega pristopa (predvsem v lingvistiki in filozofiji) je semantika razumljena 

kot razmerje med jezikom in svetom (oz. različnimi 'možnimi svetovi'). Poudarja 

objektivističen pogled na svet, kjer funkcioniranje semantičnega razmerja temelji na 

podlagi resničnostnih sodb. Ta pristop k semantiki je pogosto imenovan referenčna 

semantika, saj sklepa, da besede dobe svoje pomene z navezavo na konkretne objekte 

in dogodke v svetu. S stališča kognitivne psihologije je omenjeni vidik zelo 

problematičen. Kot prvo, ne vključuje uporabnike jezika. Ne pove nam ničesar o 

tem, kako posameznik zapopade pomene izražene v taki navezavi (Lakoff 1987, 

Gärdenfors 1997). Kot drugo, problem takega sklepanja (vsaj s kognitivnega stališča) 

je tudi v tem, da je semantična relacija definirana na podlagi resničnostnih sodb ter 

nujnih in zadostnih pogojev, ki konstituirajo nek koncept. Tretje, tak način ne zmore 

razložiti številnih psiholoških vplivov, npr. efekt prototipičnosti, s tem povezane 

delne (angl. 'graded') kategorizacije, ali vpliv konteksta na pomen, ki so navzoči v 

človekovem dojemanju jezika in sveta. Tudi s tega vidika referenčna semantika ni 

sprejemljiva kot kognitivna teorija. 

Drug pristop predstavlja kognitivna semantika. Ta izpostavlja uporabnika s tem, ko 

se osredotoča na razmerje med jezikovnim izrazom in uporabnikovo mentalno 

reprezentacijo pomena tega izraza, večinoma v obliki 'slikovnih shem' (angl. 'image 

schema'). Pomen postane konceptualna entiteta. Kot primer lahko vzamemo različne 

modele kognitivne semantike (glej npr. Lakoff 1987, Langacker 1986, 1987), kjer so 

slikovne sheme temeljni nositelji pomena. Slikovna shema je v bistvu konceptualna 

struktura, ki pripada določenemu posamezniku. Navezava na zunanji svet tu ni 

bistvena, kakor tudi ne resničnost stavkov, ta je sedaj nadomeščena s prepričanjem. 

Posledica kognitivistične pozicije, ki jo spravlja v konflikt z večino ostalih, 

realistično obarvanih semantičnih teorij je v tem, da resničnostne predpostavke sedaj 
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niso več potrebne za določitev njegovega pomena. Resničnost izraza postane 

sekundarna, s tem ko se ukvarja z razmerjem med kognitivno strukturo in svetom. V 

kognitivni semantiki je pomen pred resnico. Vendar je problem kognitivne semantike 

predvsem v tem, da so matematične strukture slikovnih shem preveč abstraktne in 

malokdaj izpeljane, in posledično niso primerne za računalniško implementacijo. V 

ta namen so potrebni matematični parametri in izmerljive metrične strukture, ki jih 

uvaja teorija konceptualnih prostorov (Gärdenfors 2000). 

 

2.1.1 Simbolični in asociacijski pristopi k oblikovanju reprezentacij 

Raziskave v kognitivni znanosti lahko delimo glede na dva med seboj povezana cilja. 

Eden je pojasnjevalen: s proučevanjem kognitivnih aktivnosti ljudi in živali, lahko 

formuliramo teorije o različnih aspektih kognicije. Teorije se testirajo z eksperimenti 

in z računalniškimi simulacijami. Drugi cilj je praktičen oz. konstrukcijski: z 

izgradnjo artefaktov kot npr. programov za igranje šaha, robotov, animacij itd., 

poskušamo konstruirati sisteme, ki lahko opravijo različne kognitivne naloge. Za obe 

vrsti ciljev je temeljni problem v tem, kako oblikovati reprezentacije, ki jih določen 

kognitiven sistem uporablja. 

V kognitivni znanosti prevladujeta dva temeljna pristopa k oblikovanju reprezentacij. 

Simbolični pristop temelji na predpostavki, da naj bi bili kognitivni sistemi 

oblikovani kot Turingovi stroji. S tega stališča, je kognicija v bistvu razumljena kot 

manipulacija abstraktnih simbolov. Drugi pristop je konekcionistični oz. asociativni, 

kjer asociacije med različnimi informacijami nosijo glavno težo reprezentacij (npr. 

umetna nevronska omrežja, angl. 'Artificial Neuron Networks' oz. ANNs). Oba 

vidika imata svoje prednosti in pomankljivosti. Pogosto sta razumljena kot 

konkurenčna, vendar rešujeta probleme na različnih nivojih in jih je bolj smiselno 

jemati kot komplementarna. Npr. simbolični pristop se ukvarja z abstraktno mislijo, 

planiranjem itn., torej z visoko-nivojski vidiki spoznavanja. Predmet asociativnega 

pristopa pa sta npr. percepcija in motorika, torej nizko-nivojski vidik. Noben od 

omenjenih pristopov ne ponuja primerne razlage in modela za oblikovanje 

semantičnih reprezentacij. Rešitev predstavlja konceptualni pristop, ki ga izraža že 

kognitivna semantika, bolj natančno pa razvije teorija konceptualnih prostorov: 
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pomeni so reprezentirani v preslikavi besed na konceptualne strukture, t.j. pomene 

sestavljajo koncepti. Koncepti reprezentirajo naše znanje oz. vedenje o stvareh v 

svetu: omogočajo nam identifikacijo novih stvari, kot tudi razumevanje njihovih 

nevidnih lastnosti (npr. obnašanje, funkcijo ali delovanje), na podlagi že 

pridobljenega znanja. Koncepti nam nudijo bistvene informacije potrebne v naši 

interakciji s svetom. Nadalje, obstaja ogromno empiričnih dokazov v prid 

konceptualni podlagi pomena besed (v nadaljevanju je predstavljeno le nekaj tistih 

primerov, ki se direktno nanašajo na temeljno teorijo disertacije, teorijo 

konceptualnih prostorov). Učinek kategorizacije (angl. 'category effect') npr., odkriva 

kategorijsko strukturo v semantičnem spominu: objekti iste kategorije so bolj sorodni 

kot objekti v različnih kategorijah (Rosch 1975). Drug primer je teorija 

prototipičnosti (prototype theory) – ta zajema raziskave učinka tipičnosti (angl. 

'typicality effect'), ki poudarjajo neenakost med posameznimi člani določene 

kategorije, z nekaterimi prototipičnimi in drugimi manj tipičnimi (npr. številne 

raziskave Rosch (1973, 1975, 1987)). Namen omenjenih raziskav je bil pokazati na 

asimetrije med člani kategorije in asimetrične strukture znotraj samih kategorij, ki bi 

jih semantična teorija morala ustrezno razložiti. Oba učinka igrata pomembno vlogo 

v teoriji konceptualnih prostorov. Znotraj tradicionalne (objektivistične) 

interpretacije kategorij in konceptov je namreč učinek prototipičnosti zelo težko 

razložiti: objekt je ali pa ni član neke kategorije in vsi člani kategorije imajo enak 

status. Posledično tradicionalni simbolni pristop omenjenih asimetrij niti ne 

predvideva niti jih ne more uspešno reprezentirati. 

 

3 Metode 

Ker konceptualni prostori predstavljajo temeljno podlago za izgradnjo 

računalniškega modela, je pomemben del raziskav namenjen vprašanjem kako 

koncepti reprezentirajo pomene in kako te reprezentacije oblikovati na primeren 

način. Če je cilj izgradnja računalniškega modela za semantično reprezentacijo 

vsebin, potem je seveda bistveno vprašanje katera struktura je najbolj primerna, tako 

iz praktičnega kot teoretskega vidika. Za generiranje konceptualnih prostorov so 

namreč potrebne dodatne metode semantične analize jezika (na podlagi katerih 
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najprej izluščimo kvalitativne dimenzije), ki pa se med seboj močno razlikujejo. 

Nadaljni problem je tudi, kako premostiti vrzel med različnimi nivoji oblikovanja 

reprezentacij. V nadaljevanju je predstavljena teorija konceptualnih prostorov. Sledi 

predstavitev prevladujoče metode za semantično analizo, latentne semantične analize 

(LSA), kasneje pa še ostale, bolj primerne rešitve. 

 

3.1 Teorija konceptualnih prostorov 

Za rešitev omenjenih problemov oblikovanja reprezentacij Gärdenfors (2000) 

predlaga konceptualno reprezentacijo informacij. Konceptualni prostor je sestavljen 

iz geometričnih struktur na podlagi kvalitativnih dimenzij. Temeljna naloga 

kvalitativnih dimenzij je v izgradnji domen oz. področij, potrebnih za reprezentacijo 

konceptov. Struktura večine kvalitativnih dimenzij je metrična  lahko govorimo o 

razdaljah vzdolž posameznih dimenzij. Nadalje, obstaja tesna povezanost med 

razdaljami v konceptualnem prostoru in ocenami podobnosti: manjša kot je razdalja 

med reprezentacijama dveh objektov, večja je podobnost. Na ta način lahko 

podobnost med dvema objektoma definiramo z razdaljo med njunima točkama v 

prostoru. Posledično nam konceptualni prostori omogočajo naravno reprezentacijo 

podobnosti. Iz tega sledi kriterij “naravni koncept je reprezentiran kot niz regij 

znotraj nekega števila področji, skupaj z dodelitvijo uteži področjem, ter informacijo 

o tem, kako so regije različnih področji povezane” (Gärdenfors 2000 str. 105). a 

natural concept is represented as a set of regions in a number of domains together 

with an assignment of salience weights to the domains and information about how 

the regions of different domains are correlated 

Drug pomemben kriterij teorije Konceptualni prostorov se nanaša na naravne 

lastnosti konceptov reprezentiranih kot “… konveksna regija področja v 

konceptualnem prostoru” (Gärdenfors 2000 str. 71). 

V teoriji Konceptualnih prostorov razdelitev prostora v konveksne ploskve oz. 

področja temelji na množici prototipov, t.j. besed, ki so najbolj karakteristične za 

posamezno domeno. Obstajajo zanimive povezave med reprezentacijo konceptov kot 

konveksnih področij in teorijo prototipičnosti razvito s strani Rosch in sodelavcev 

(glej npr. Rosch 1975, 1978, Mervis in Rosch 1981, Lakoff 1987). Če koncepte 
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definiramo kot konveksna področja konceptualnega prostora, je učinek 

prototipičnosti v bistvu za pričakovati. V konveksnem področju je pozicija (npr. 

objekta) definirana kot bolj ali manj centralna. 

Argumentacija je mogoča tudi v nasprotni smeri: če upoštevamo teorijo 

prototipičnosti, potem je reprezentacija konceptov kot konveksnih področij naravna 

posledica. Primer: predstavljajmo si, da imamo podanih nekaj kvalitativnih dimenzij 

konceptualnega prostora, npr. dimenzije prostora barve, in želimo narediti 

dekompozicijo prostora na nekaj kategorij, npr. konceptov barve. Če začnemo z 

množico prototipov p1, ..., pn obravnavanih konceptov, npr. osrednjih barv, potem naj 

bi ti bili središčne točke konceptov, ki jih predstavljajo. Informacijo o prototipih 

lahko nadalje uporabimo za generiranje konceptov s pogojevanjem, da katerakoli 

točka p pripada istemu konceptu kot najbližji prototip pi (Gärdenfors 2000). 

Dokazano je, da to pravilo generira dekompozicijo prostora  tako imenovan 

Voronoijev diagram (angl. Voronoi tessellation). Osnovna predpostavka je, da 

najbolj tipični pomen besede predstavlja prototip konveksnega področja, dodeljenega 

tej besedi. Bistvena lastnost Voronoijevega diagrama konceptualnega prostora je, da 

vedno rezultira v dekompoziciji prostora v konveksna področja. Na ta način 

Voronoijev diagram priskrbi konstruktiven geometrijski odgovor na to, kako merilo 

podobnosti skupaj z množico prototipov determinira množico kategorij. 

Metrična reprezentacija je merilo podobnosti med različnimi objekti, ki so 

reprezentirani kot točke v konceptualnih prostorih. Matematično, so te točke v 

dimenzionalnih prostorih razumljene kot vektorji. Posledično izračuni na 

konceptualnem nivoju v veliki meri vključujejo vektorske izračune, na podlagi matric 

itd. Na podlagi razdalj v in med konceptualnimi prostori lahko določimo različne 

kriterije klasifikacije (npr. Voronoijevo razdelitev, ki generira razmejitve na podlagi 

prototipov posameznih domen). 

Ena izmed metodoloških značilnosti, ki konceptualni nivo jasno loči od simboličnega 

je podobnost – ta igra centralno vlogo v reprezentacijah na konceptualnem nivoju. 

Podobnost med objekti in lastnostmi je namreč reprezentirana z razdaljami v 

prostorih; to definicijo bi težko reprezentirali na naraven način v simboličnih 

sistemih. V primeru konceptualnih prostorov, nam Voronoijev diagram omogoča 
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konkreten prikaz kako merilo podobnosti, skupaj z množico prototipov in 

kvalitativnih dimenzij, determinira množico naravnih lastnosti objektov (in 

konceptov) – v konceptualnih prostorih je semantika determinirana prostorsko. To 

pomeni, da semantičnost objektov leži znotraj kvalitativnih dimenzij konceptualnega 

prostora. Na ta način je teorija prototipičnosti vpeljana v konceptualne prostore, na ta 

način lahko tudi formuliramo nove koncepte in se jih učimo. Struktura konceptualnih 

prostorov je posledično dobra podlaga za oblikovanje semantičnih reprezentacij. 

 

3.2 Latentna semantična analiza 

Latentna semantična analiza je v svojem bistvu neke vrste asociativni model. 

Asociativni modeli, kot ime že samo pove, temeljijo na asociacijah med besedami; 

pomen določene besede je tako množica ostalih besed, na katere je ta beseda 

navezana. Na ta način, produkcija jezika in razumevanje postaneta preprosto predmet 

povezovanja niza asociacij. Mentalne reprezentacije in ostali kompleksni mehanizmi 

naj ne bi bili potrebni pri tolmačenju uporabe jezika in pomena. Ti modeli imajo 

dolgo zgodovino v psihologiji, njihova priljubljenost je bila v veliki meri pogojena z 

dejstvom, da uporabljajo malo notranjega kognitivnega procesiranja (Murphy 2002). 

Na področju semantične analize jezika je najbolj razširjena Latentna semantična 

analiza (angl. Latent Semantic Analysis oz. LSA; Landauer & Dumais 1997). Ta 

računalniška metoda temelji na asociativnem pristopu oblikovanja pomenov besed, 

vendar presega klasične asociativne modele, ki omogočajo zgolj reprezentacijo 

asociativnih povezav med besedami. Kot tehnika strojnega učenja, ki ponazarja 

kognitivno doumevanje besedila, LSA (Landauer and Dumais 1997, Landauer et al. 

2006) povzame pomen iz odstavkov na način, da analizira vzorce uporabe besed v 

več dokumentih in potem reprezentira besede in njihove kontekste kot vektorje v 

visoko-dimenzionalnem prostoru. Frekventnost pojavljanja besed je definirana v 

matrici z stolpci, ki jih sestavljajo besede in vrsticami, ki predstavljajo dokumente. 

Veliko celic stolpcev in vrstic je praznih (oz. vsebujejo 0). Z namenom, da bi ohranili 

le bistvene značilnosti, je potrebno dimenzionalnost originalne matrice reducirati s 

pomočjo SVD dekompozicije (oz. Singular Value Decomposition) na približno 300 

dimenzij. To nam omogoči oblikovanje semantične sorodnosti odstavkov in besed 

kot vektorjev, z vrednostmi proti 1 (ki izražajo stopnjo sorodnosti med enotami) in 
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nizkimi oz. negativnimi vrednostmi, tipično okoli 0,02, ki izražajo nepovezanost 

(Martin in Berry 2006). V tem semantičnem prostoru so odstavki ali besede, ki 

izražajo isti pomen, reprezentirani kot vektorji tesno skupaj, čeprav dejansko ne 

delijo skupnega izraza. Namesto tega se ti izrazi lahko pojavljajo v drugih 

dokumentih z isto temo, z redukcijo dimenzionalnosti originalne matrice na podlagi 

SVD pa so relativne jakosti teh asociacij reprezentirane kot kosinusi ali točke 

vektorjev v prostoru. Podlaga za kreiranje teh asociacij med besedami temelji na zelo 

obsežnih zbirkah dokumentov, v primeru LSA je uporabljena TASA zbirka 

(Touchstone Applied Science Associates Inc.), ki jo sestavlja korpus besedil, knjig, 

člankov in ostalega splošnega gradiva, kateremu je ameriški študent izpostavljen do 

1. letnika univerze. Pri kreiranju matrice je pomembna tudi funkcija uteževanja, ki 

temelji na frekventnosti pojavljanja besed v odstavkih in je v obratnem sorazmerju 

do pojavljanja besed preko vseh dokumentov – s tem se izniči pomembnost visoko 

frekventnih izrazov, ki ne prispevajo bistveno k razlagi pomena (Martin in Berry 

2006). 

Zakaj bi ta postopek rezultiral v semantični podobnosti? Besede, ki se pojavljajo 

skupaj, namreč pogosto nimajo semantične podobnosti. Vendar LSA ne uporablja le 

informacije o tem kako pogosto se beseda1 in beseda2 pojavljata skupaj, marveč tudi 

kako pogosto se pojavljata z vsemi ostalimi besedami v zbirki (Landauer et al. 2006). 

LSA na ta način analizira celoten vzorec dogodkov in interpretira besede kot 

podobne če se nahajajo v tematsko podobnih stavkih oz. odstavkih. Poudarjena je 

vloga konteksta: npr. pes in mačka sta si podobna, ker se pojavljata v podobnih 

stavčnih kontekstih. 

Landauer in Dumais (1997) sta med drugim preizkusila LSA na testu razpoznavanja 

sinonimov za Test of English as a Foreign Language (TOEFL), ki je uporabljan kot 

preizkus znanja angleščine za sprejem tujih študentov na ameriške univerze, in 

dobila izredne rezultate: sistem je opravil test z 64.4% uspešnostjo, kar je skoraj 

identično učinku velikega vzorca študentov, ki so test opravili. Landauer in Dumais 

(1997) zaključujeta, da je ta ocena zadovoljiva za sprejem na večino ameriških 

univerz. 
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Uspeh LSA lahko namiguje na to, da konceptualne informacije morda preprosto niso 

ključne za tolmačenje pomena: ker so edini vložek v sistem besede, bi lahko pomen 

reprezentirali kar preko povezav na druge besede, kot pa preko znanja kot osnove 

tem besedam – t.j. konceptov. Ali to drži? 

Glavni problem teh mrež asociacij je v tem, da golo vedenje katere besede tvorijo 

asociacije med seboj še ne specificira kaj pomen posamezne besede res je. Kot 

poudarja Murphy (2002 str. 429), ne moremo izluščiti pomena besed zgolj z 

referenco na ostale besede: "Če nekdo pozna psa zgolj po njegovi podobnosti z 

mačko in kravo in kostjo ... in mačko zgolj po njeni podobnosti z psom in kravo in 

kostjo ... itd., potem je ujet v krog podobnih besed". Dodaten problem je v tem, da se 

posamezna razmerja med besedami lahko bistveno razlikujejo in neka celotna 

podobnost generirana s strani LSA ne specificira podlage kot tudi ne razlik med 

posameznimi asocijacijami. Reprezentacija podrobnega poznavanja referentov besed 

uporabljenih v govoru in dojemanju ni zadovoljiva. Besede se morajo povezovati z 

našim znanjem oz. vedenjem o stvareh v svetu, ne zgolj z ostalimi besedami. To pa 

so ravno stvari, ki jih konceptualni pristop omogoča: imeti koncept nam med drugim 

tudi razloži zakaj so določene besede sorodne. Ker so koncepti mentalne entitete, 

naša ne-lingvistična interpretacija sveta, lahko le z navezovanjem besed na 

konceptualno strukturo razložimo pomene besed. Tu pride v ospredje teorija 

konceptualnih prostorov. 

 

4 Cilji in rezultati 

Predlagana alternativa tradicionalnim modelom semantike temelji na teoriji 

konceptualnih prostorov (Gärdenfors 2000). Glavni cilj je zgraditi računalniški 

model za semantično reprezentacijo, ki spaja Gärdenforsovo teorijo konceptualnih 

prostorov z metodami za semantično analizo naravnega jezika. Slednje so potrebne 

za ustvarjanje kvalitativnih dimenzij, na podlagi katerih lahko kreiramo konceptualne 

prostore (glej projekcije v Prilogi, str. 168).  

 

 



Povzetek 

188 

 

4.1 Struktura aplikacije SpaceWalk 

Pri izgradnji računalniškega modela smo uporabili in primerjali tri različne metode 

za semantično analizo jezika: LSA, pLSA (verjetnostni LSA oz. angl. 'probabilistic 

LSA') in LDA (latentna Dirichletova alokacija oz. angl. 'Latent Dirichlet 

Allocation'). Omenjene metode so potrebne za generiranje semantičnih relacij, da se 

izlušči smiselne semantične dimenzije in nato, na podlagi teh dimenzij, generira 

konceptualne prostore. Razlike med njimi so velike, tako z vidika dobljenih 

semantičnih reprezentacij kot tudi s teoretskega vidika. Testno okolje je predstavljal 

korpus člankov in knjig s področja kognitivne znanosti in sorodnih področij. 

V primeru LSA, dobimo asociacijsko mrežo besed, ki je generirana na podlagi 

pojavljivosti posamezne besede znotraj korpusa. Na ta način dobimo globalno oceno 

podobnosti med besedo1 in besedo2. Ker so prostori generirani z LSA na nek način 

tudi semantični, se je potrebno vprašati kakšen je ta ‘semantični prostor’? Semantični 

prostor (generiran z LSA) je distribuirana mreža besed, kjer so besede, sorodne v 

pomenu, tesno skupaj v prostoru. Na primer beseda ‘ugajati’ bi morala biti blizu 

besedi ‘ljubezen’ in oddaljena od besede ‘svinčnik’.Vendar so ti semantični prostori 

kreirani izključno na podlagi statistike pojavljivosti besed v besedilu. Posledično, z 

LSA generirane dimenzije ponavadi ne zagotovijo zadosten nivo nadrobnosti za 

semantično interpretacijo.  

Kot je bilo omenjeno, problem je kako premostiti vrzel med različnimi nivoji 

reprezentacij. Obstajajo številne variante asociacijskih modelov na podlagi LSA. Za 

vse pa je značilno, da so njihove omejitve v asociativnem pristopu in posledično, v 

nezmožnosti reprezentacije resničnega pomena posameznih besed, t.j. znotraj 

konteksta v katerih so nastale asociacije med konkretnim besedami. V konkretnem 

primeru imamo na eni strani visoko-dimenzionalen vektorski prostor, generiran s 

statistično metodo semantične analize jezika (LSA), na drugi strani pa konceptualne 

prostore, znotraj katerih naj bi bil poleg semantične podobnosti besed reprezentiran 

tudi vpliv konteksta. LSA tu ne ponuja zadovoljive rešitve, saj ne zmore tematske 

analize korpusa, marveč generira semantična razmerja le znotraj besed na podlagi 

statistike njihovega pojavljanja, brez dodatne strukture in navezave na tematsko 

raznolikost dokumentov. Kar, vsaj s teoretskega vidika razlage semantike, t.j. v 
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smislu vpliva konteksa, sinonimije in polisemije, ni zadosten pogoj za kreiranje 

relevantnega konceptualnega prostora. 

Alternativa statističnemu pristopu so verjetnostni modeli, ki v zadnjem času v 

literaturi kognitivne semantike dobivajo vse večji pomen (Griffiths et al. 2008, 2010, 

Clark (v tisku)). V disertaciji sta predstavljena dva: pLSA (Hofmann 1999, 2001) in 

LDA (Blei, Ng in Jordan 2003). pLSA se razlikuje od LSA v tem, da v semantično 

analizo uvaja verjetnostno metodo in s tem omogoča analizo posameznih tem znotraj 

korpusa. Vendar ima pLSA, poleg nekaterih tehničnih omejitev (npr. kot pri LSA, 

število parametrov raste linearno z velikostjo korpusa), resno pomankljivost: ni 

ekspliciten verjetnostni model in porazdelitev tem lahko izvede le na dokumentih 

znotraj učne množice, ne pa za dokumente izven le te (Blei et al. 2003). LDA (Blei et 

al. 2003) je verjetnostni tematski model, ki na podlagi verjetnostne porazdelitve 

prikaže mešanico tem znotraj dokumenta. Glede na temo, dobi beseda različno 

verjetnostno porazdelitev; npr. za besedo "um" je velika verjetnost, da pripada temi 

"filozofija", in majhna verjetnost pripadnosti temi "zelenjava". Na ta način LDA 

zagotovi reprezentacijo večih pomenov neke besede, kot tudi tematsko strukturo 

znotraj nekega dokumenta. Ta princip da zadostno strukturo za zajem nekaterih 

kvalitativnih vidikov semantike naravnega jezika, npr. sinonimijo, polisemijo in 

kontekst. To, in pa zmožnost generaliziranja na nove dokumente izven učne 

množice, je ena izmed bistvenih prednosti LDA pred ostalima metodama. Na podlagi 

LDA generiranih kvalitativnih dimenzij pridobimo neko osnovno semantično 

strukturo in lahko posledično izpeljemo bolj smiselne reprezentacije pomena na 

konceptualnem nivoju, znotraj konceptualnih prostorov. 

 

5 Zaključek 

Dva različna pristopa k obdelavi naravnega jezika, statistični in verjetnostni pristop, 

ki odražata logiko tradicionalnega simboličnega in asociativnega pristopa do 

kognicije, sta bila implementirana v računalniški model. O učinkovitosti obeh se je 

na široko razpravljalo v znanstveni literaturi (npr. Landauer in Dumais 1997, 

Seidenberg in MacDonald 1999, Landauer et. Al 2006, Blei et al. 2003, Hofmann 

1999, 2001, Steyvers in Griffiths 2007 , Griffiths et al. 2010, Blei 2011). Na podlagi 
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rezultatov pridobljenih iz teh študij, so verjetnostni modeli na splošno bolj primerni 

za semantično analizo kot statistični (Blei et al. 2003, Hofmann 1999). Kot se je 

izkazalo, z vidika kognitivne znanosti statistični modeli ne zagotavljajo dobre 

teoretične ali praktične podlage za semantično analizo naravnega jezika. Teoretične 

predpostavke, na katerih temelje statistični izračuni semantične podobnosti, ne 

podpirajo osnovnih rezultatov raziskav kognitivne psihologije, npr. raziskav o 

kategorizaciji (Rosch et al.) ali raziskav o podobnostnih sodbah (Tversky et al.), ki so 

temelj človekove interpretacije pomena. Res je, da omenjeni statistični pristop lahko 

generira semantično podobnost z analizo nekega korpusa besedil, in morda celo 

simulira nekatere učinke uporabe jezika, kar dokazuje že omenjeni test 

razpoznavanja sinonimov. Vendar so ti učinki ustvarjeni zgolj na podlagi pojavnosti 

besed in razen asociativne mreže besed ne generirajo nobene dodatne semantične 

strukture. Človekova konceptualna struktura pa ni zgolj rezultat statističnega 

sklepanja na podlagi besednih zvez, marveč nanjo vpliva konceptualni in kategorični 

vidik, predhodno znanje in kontekst, ter kulturni in družbeni vplivi (Jäger in van 

Rooij 2007). V tem pogledu je verjetnostni pristop drugačen in bolj primeren za 

oblikovanje semantičnih reprezentacij. Kot generativni tematski model, je LDA sicer 

konceptualno bližje simboličnemu pristopu k oblikovanju reprezentacij, vendar 

odpravlja večino njegovih slabosti. Ker generira osnovno hierarhično strukturo, s tem 

omogoči povezovanje različnih nivojev reprezentacij in je prvi korak k hibridnemu 

pristopu. LDA na eni strani izkorišča asociativni pristop in tako omogoča, da 'okolje' 

vpliva na semantično strukturo. Po drugi strani pa verjetnosti pristop predstavlja 

sklop 'top-down' omejitev, ki jih lahko interpretiramo kot efekt indukcije, oz. učinek 

pristranskosti (v obliki predsodkov, mnenj ali predhodnega znanja) na človekovo 

sklepanje (Griffiths et al. 2008, 2010, Clark (v tisku)). Skupaj s teorijo konceptualnih 

prostorov, nam verjetnostni pristop omogoča bolj prožen okvir za ustvarjanje in 

raziskovanje semantičnih reprezentacij. 

Vloga konceptualnih prostorov je ključna za razumevanje in reprezentacijo pomena 

in semantike naravnega jezika. Konceptualni prostori obstoječim kvalitativnim 

dimenzijam generiranim z LDA, LSA, ali pLSA, dodajo dodaten, konceptualni nivo. 

Kar dobimo, v strojno berljivi obliki, ni zgolj reprezentacija lastnosti, konceptov in 

podobnostnih relacij, marveč formalni okvir, ki izkorišča kvalitativne dimenzije na 
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način, ki ustreza izsledkom raziskav kognitivne psihologije (npr. teoriji 

prototipičnosti). 

Obstajajo številne možnosti za aplikacijo predstavljenega modela. Poleg podpore 

raziskavam kognitivne znanosti, tako pojasnevalnim kot konstrukcijskim (kot so npr. 

problematika oblikovanja reprezentacij, formacija konceptov, semantična 

reprezentacija vsebin, itd.), je prihodnost semantičnih modelov predvsem na 

področju strojnega učenja (in umetne inteligence na splošno), reprezentacije znanja, 

digitalnih vsebin in semantičnega spleta. V tem kontekstu je namen predlaganega 

modela lahko dvojen: na eni strani bi služil kot sistem strukturiranja informacij v 

semantične oz. konceptualne geometrijske strukture, kot to predvideva teorija 

konceptualnih prostorov, po drugi strani pa takšna reprezentacija sama po sebi 

omogoča uporabniški vmesnik za dostop do teh vsebin. Uporabnik bi tako lahko 

pregledoval konceptualne prostore, posamezna konveksna področja konceptov, 

različne pomene besed, semantične relacije itn. 

V prihodnosti je predviden bolj celosten in dinamičen pristop in možnost 

pregledovanja konceptualnega prostora z manipulacijo kvalitativnih dimenzij, npr. s 

spreminjanjem števila tem ali s spremembo teže posameznih tem, in s tem odkrivanje 

alternativnih semantičnih povezav. V sedanji različici računalniškega modela so 

namreč mogoči le delni posnetki konceptualnega prostora in morebitne projekcije 

alternativnih skupin kvalitativnih dimenzij potrebujejo nadaljnje izračune. Teorija 

konceptualnih prostorov predstavlja temelj za nadaljne, bolj metodološke raziskave 

bistvenih kognitivnih vprašanj o oblikovanju semantičnih reprezentacij, učenju in 

formaciji konceptov, kategorizaciji itn. V tem kontekstu lahko predstavljeni 

računalniški model služi kot eksperimentalno orodje in pomoč omenjenim 

raziskavam. To ostaja motivacija za nadaljnje delo. 

 

 


