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1. INTRODUCTION 

 

1.1. The research problem 

 

The Stavnja river valley is known with intensive mining and metallurgical activities for more than 100 

years. In municipality of Vareš, three abandoned iron ore deposits (Smreka, Brezik and Droškovec), 

abandoned lead, zinc and barite deposit Veovača and abandoned ironwork Vareš are located. City 

Breza is located in the southern part of the study area, known with brown coal mining. Assessment of 

trace metalsdistribution and contamination has been evaluaed using the total trace metal 

concentration is soil/sediment samples and attic dust. In order to achieve a spatial distribution of 

anthropogenic and geogenic elements various predicting modelling techniques have been applied. 

 

Long period of ore mining and processing had left significant consequences on the whole valley. 

However,the valley had been selected as a study area because of several reasons. High 

concentrations of particular elements are released into environment not only by anthropogenic 

activities but also by natural erosion and weathering reactions of parental rocks what contribute to the 

environmental assessment complexity. The valley has a very interesting geology, which can be 

represented by isolated lithological units where the oldest are on the north and younger on the south. 

This regular layout is quite unique and makes this study area more engaging and challenging for the 

geochemical investigation. Here are essential two types of contamination, atmospherical and river 

transport, respectively. The valley of river Stavnja is very narrow, surrounded with steep hills and 

contamination is transported down to the river accumulating into alluvial sediments. Even the 

atmospheric particles have the direction N–S. Problem of contamination along the river can be 

demonstrated as anisotropic appearance between the layered (isotropic) lithological units. The 

problem is quite complicated, and being discussed for the last several decades. Some problems can 

be solved by using denser and more regular sampling grid, but in this study area is impossible due to 

the remained minefields. During the last war (1992–1995) the area has been place of intensive military 

operation, between three major ethnic groups in Bosnia and Herzegovina, making the sampling more 

difficult and very restricted. According the available maps about 5.7 km
2
 or 5.5% of the study area is 

covered by remain minefields. 

 

Because of study complexity such as the anthropogenic, geogenic, morphological impact as well as 

sampling restriction due to remained minefields, three various prediction methods of trace element 

concentrations have been developed. Following three predictive methods have been applied: the 

Segment Kriging, Polynomial Multiple Regression and Artificial Neural Network - Multilayer 

Perceptron. The spatial variability of soil trace elements is an important part of environmental 

supervision and ecosystem evaluation. Kriging has successfully been applied in investigating and 

mapping of hazardous soil trace elements around the world, but unfortunately in the narrow and long 

study area with complex geology, such as the Stavnja valley, this classical interpolation method is 

providing model of prediction with deficiencies so called ―Bull eyes effect‖. This problem arise mainly 

from the fact that the classical interpolation methods such as the kriging depends only from the 

chemical concentrations but not from another (geo) spatial data such as geological background 

(parental rocks and its chemistry), pedogenic processes, shape of study area, aspect, slope, altitude, 

climatic conditions, etc. For example the aspect or insolation is directly proportional to the land 

temperature and inversely proportional to the humidity of area. Important assumption is that 

contaminant concentrations change with distance and direction from the emission objects primarily 

influenced by atmospheric processes such as regional and local wind directions, daily temperatures, 

temperature inversions in lower areas and closed basins. This can be solved by introducing two new 

parameters: Distance and Azimuth. 
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Due to high cost and timeconsuming nature of soil sampling, research in developing methods for the 

creation of soil maps based in various prediction methods is becoming increasingly important. 

Development of linear and nonlinear predicton methods that use secondary attributes sourced from 

the DEM, land use, and remote sensing in combination with sparse and expensive soil measurements 

has been sharpening focus of research. Consequently, the potential for using such information to soil 

mapping at the within field extent is greater than ever before. Appling various modelling techniques for 

trace metal distributin in soil have been applied and compared among each other. As well the best 

combination of prediction method and secondary information has been selected. Each aforementioned 

applied modelling techniqueby itself helped us in reconstruction simultaneously different processes 

that influenced the entire study area.  

 

 

1.2. The goals of doctoral dissertation 

 

 Determination of concentration levels and spatial distribution of chemical elements in secondary 

materials (such as soil, river sediments and attic dust) along the Stavnja valley, 

 

 Assessment of the natural background according to lithology and the proportion of influence of 

mining and metallurgy activities on distribution of chemical elements in secondary materials (soil, 

river sediments and attic dust) along the Stavnja valley, 

 

 Identification of main geochemical associations and their spatial distribution by using multivariate 

statistical approach, 

 

 To design the various models of trace metal dispersion around the major emitters, using linear and 

nonlinear predicting methods: Segmental Kriging (SK), Multiple Polynomial Regression (MPR), and 

Artificial Neural Network – Multilayer Perceptron (ANN-MP), 

 

 Identification of optimal methodology for geochemical research in the area of former military 

operations (with remain minefields and/or suspected mined areas), according to the sampling 

material, sampling density, data processing and interpretation of results 
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2. THEORETICAL BACKGROUND  

 

2.1. Contamination 

 

Contamination is an undesirable change of physical, chemical, or biological feature of natural 

environment, which is caused by human activities and which is harmful for human beings. 

Contamination particles infiltrate very easily in soil, water, and atmosphere. There are two types of 

pollutants: biodegradable pollutants (e.g. organic sewage) and non-biodegradable pollutants (e.g. 

trace elements, pesticides, thermic contamination, photochemical smog, disposal of nuclear waste, 

etc). 

 

An area of spot contamination is much more contaminated than areas met with diffuse contamination; 

anyway, consequences of this kind contamination are only local. Examples of spot contamination are 

traffic, industrial and energy activity, various dumps and dumps waste materials (Yaron et al., 1996). 

Contents of trace elements are very high and they decrease with distance (Mattigod and Page, 1983). 

Example of linear soil contamination is contamination alongside roads and railways. Intensity of 

contamination depends upon type and density of traffic, while meteorological factors influence scope 

of contamination in extant (dominant permanent winds) and relief. 

 

The most frequent cause for soil contamination with trace elements is diffuse contamination, where 

soil is polluted over air, not only locally, but also in larger distance from source of contamination in the 

surroundings of industrial and urban centres. Trace elements are usually present in the air at low 

concentration, and they are less dangerous (Yaron et al., 1996). Different emissions of substances to 

the air in gaseous, liquid, or solid state are transported by the air and fall on the soil surface according 

to time circumstances, there because of constant contamination accumulate in soil. 

 

 

2.2. Trace elements in soil 

 

2.2.1. Soil physical, biological and chemical interactions 

 

The soil as a physical, biological, and chemical filter is nature's purifying agent and place where 

pollutant sinks. However, in soil environments physical, biological, and chemical processes are not 

independents processes but rather interactive processes. These phrases signify the important role 

soils play in cleansing our environment of pollutants in terms of our food, surface water, and 

groundwater resources. There are several dynamic interactive processes, which in turn can be 

influenced by various biogeochemical factors that govern metal behaviour rendering the predictability 

of the fate and effects of trace elements in the environment rather cumbersome. These include abiotic 

and biotic processes and factors in heterogeneous environmental media. Therefore, a background 

understanding of the various biogeochemical processes, i.e., from the landscape to the molecular 

level, and relevant factors is in order (Adriano, 1986, 2001; Siegel, 2002). 

 

Soil is product of weathering and may or may not contain organic matter but quite often contain air and 

water or soil is natural body that contain mineral particles, organic matter, living organisms, water and 

air, and include physical, chemical, and biological processes (Gerrard, 2000). Chemical weathering of 

bedrock and soil formation are important geological processes and play a critical role in maintaining 

terrestrial ecosystems. For example, the conversion of bedrock to soil not only provides habitat for the 

vast majority of terrestrial organisms, but also supplies nutrients available to primary producers for 

food production. In addition, chemical weathering acts as a buffer to acidification of catchments 

caused by acid precipitation at regional scales (Drever and Hurcomb, 1986; Johnson et al., 1981; 

Huang et al., 2013). In spite of the importance of chemical weathering and soil formation for natural 
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environment and for sustaining life on earth, our knowledge of many aspects of these processes is still 

limited. For example, accurate weathering and soil formation rates in natural environment and their 

quantitative dependences on environmental factors (such as the prevailing acid precipitation) are still 

poorly understood. However, this kind of information is indispensable for the understanding of the 

biogeochemical cycling and for the development of sustainable land use strategies. The rates at which 

weathering and soil formation proceed depend on the environmental factors, such as climate, 

vegetation, parent material, topography, and soil age. Although numerous studies have been 

performed to investigate the effect of various environmental factors on chemical weathering rates 

(White and Blum, 1995; Von Blanckenburg, 2005; Guicharnaud and Paton, 2006; Taylor et al., 2012), 

much of the literature isolated one predominant factor by assuming that other factors remain constant 

and did not assess the synergistic effects of several factors functioning together. 

 

 

2.2.2. Distribution of trace elements in soil 

 

Soils contain trace elements of various origin: lithogenic elements which are directly inherited from the 

lithosphere, pedogenic elements which are of lithogenic origin, but their concentration and distribution 

in soil layers and soil particles are changed due to pedogenic processes or anthropogenic elements 

which are all those deposed into soil as direct or indirect results of man's activities. The behaviour of 

trace elements in soil and in consequence their bioavailability differs as to their origin. However, 

regardless of the forms of the anthropogenic trace elements in soil, their phytoavailability is 

significantly higher than those of pedogenic origin (Kabata-Pendias and Pendias, 2001). 

 

Trace elements are group of elements having specific gravities greater than 5 g/cm
3
. To this group 

belong very toxic such as Pb, Cd, Hg, As and U, which have negative influence on living organisms. 

Among them, exist also elements that are essential for the organisms such as Cu, Mn, Fe, Zn, Co, Cr, 

Se, B and Mo (Baudo, 1987). Stumm and Morgan (1996) distinguish atmophile and lithophile trace 

elements. As, Pb and Cd, which are easier transported by air than by water, belong to the first group. 

Because of that, the main source of environmental contamination with these elements is air 

transportation. The main representatives of lithophile trace elements are Co, Cr and Mg, which are 

more likely transported by water than by air. For this reason, the main source of contamination with 

these elements is water transportation. Many properties such as pH, Eh, organic matter in soil, cation 

exchange processes, and part of clay minerals and oxides of Fe, Mn ad Al, affect the trace elements 

mobility. Most of the metals in upper layer of soil are present in adsorbed form. Simple ions are 

changed into solution, become mobile and accessible to the plants. Some of the trace elements are 

easily transported from surface to ground water (Kabata-Pendias and Pendias, 2001). 

 

Anthropogenic contamination with trace elements is represented by industrial emissions, gaseous and 

dust material from thermal power plants, fumes from houses and transport emission. Smelters and 

mines are the biggest destructors of environment. Concentration of trace elements such as Cd, Cr, 

Cu, Hg, Mn, Pb and Zn exceed for several decades times the natural background. Mining and ore 

processing have a huge influence of environment because the metals are present in minerals in low 

concentrations, and after their processing left a big amount of waste, that still contain minute amount a 

trace elements and chemicals. Trace metal contamination as a consequence of mining, smelting and 

ironworking as well their toxic and harmful impact on human health has recently become a subject of 

many studies around the world (Hoskin et al., 2000; Budkovič et al., 2003; Borůvka et al., 2005; Chen 

et al., 2005; Moller et al., 2005; Wang et al., 2005; Bretzel and Calderisi, 2006; Stafilov et al., 2013). 
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2.2.3. Determining of critical values of trace elements in soil 

 

European countries are using different methods for the determining of critical values and harmfulness 

of trace elements on living organisms. Referent points are commonly used for the determination of soil 

contamination. Those points represent possible unpolluted soil areas, which have similar physical, 

chemical, and biological properties and are situated on the same bedrocks as the area that is being 

studied. Soil contamination is easily and properly defined with examples of referent and polluted 

locations. 

 

The Dutch Standards are environmental pollutant reference values (i.e., concentrations in 

environmental medium) used in environmental remediation, investigation and clean-up. Barring a few 

exceptions, the target values are underpinned by an environmental risk analysis wherever possible 

and apply to individual substances. In most cases, target values for the various substances are related 

to a national background concentration. The soil remediation intervention values indicate when the 

functional properties of the soil for humans, plants and animals is seriously impaired or threatened. 

They are representative of the level of contamination above which a serious case of soil contamination 

is deemed to exist. The target values for soil are listed below in Table 1 (Layla Resources Ltd, 2011). 

 

 

Table 1: The Standard list 

 

Metal 

Target value 

(mg/kg) 

Intervention value 

(mg/kg) 

As 29 55 

Ba 200 625 

Cd 0.8 12 

Cr 100 380 

Co 20 240 

Cu 36 190 

Hg 0.3 10 

Mo 10 200 

Ni 35 210 

Pb 85 530 

Zn 140 720 

 

 

2.3. Atmospheric transport 

 

2.3.1. Definition of attic dust 

 

The name dust is used in a variety of ways, and with different meanings. These range from the 

material that accumulates on the earth's surface, such as on streets and in living and working 

environments, to the particulate material suspended in the atmosphere. Atmospheric dust, or 

atmospheric particulate matter, originates from a wide variety of natural processes and anthropogenic 

activities, including volcanism, forest fires, rock/crust degassing, combustion of fossil fuels, agricultural 

practices, industrial manufacturing, and construction activities (Fergusson, 1992; Ozaki et al., 2004; 

Tasdemir and Kural, 2005; Wilson and Pyatt, 2007). The discrete airborne particles that compose 

atmospheric dust consist of a complex mixture of metals, acids, biogenic material, and other organic 

and inorganic compounds that may represent health risks. Through several exposure routes (such as 

inhalation, skin contact, absorption in mucosal membranes of eyes and airways, swallowing and 
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ingestion) the particles may reach into humans, especially children (Cizdziel and Hodge, 2000; 

Molhave et al., 2000). 

 

Many authors recognize the great importance of studying chemical compositions of atmospheric 

particles and their interaction between soils, street sediment, attic dust and household dust. Toxic 

metals are ubiquitous in environmental compartments as low natural concentrations, and they have 

been always present in a minute amount in our environment. There are so many sources for releasing 

dust into the environment. The most important human activities that emit significant amounts of toxic 

metals are transportation and industrial production. Mining activities, ore processing and the 

processing of waste are found as significant emitters of trace metals in the air, particularly an open pit 

metal mining. The open pits and ore tailings are quite often unprotected surfaces from which fine grain 

particles are carried away by wind or water. Transportation distance might be very long under 

favourable conditions. These elements get distributed among soils, air, surface dust and water. As 

metals cannot be degraded or decomposed, they are usually accumulated in the environments 

(Banerjee, 2003; Imperato et al., 2003; Pacyna et al., 2007; Agarval, 2009; Šajn et al., 2011). As a 

matter of fact, metal contamination has become a global environmental problem, owing to the large 

scale atmospheric transport. It is noticeable that humaninduced metals have been detected even in 

snow samples in Greenland and Antarctica (Gorlach and Boutron, 1992; Candelone et al., 1995; Hong 

et al., 1996; Boutron et al., 1998; Van de Velde et al., 2005; Hur et al., 2007). 

 

 

2.3.2. Sources of trace elements in attic dust 

 

In geochemical studies, the term "dust" usually refers to street dust and household dust. Household 

dust represents an important vector for the ingestion and consequent accumulation of toxic 

substances by humans, particularly by young children. Household dust has many internal and external 

sources, including garden soil, road dust, human hair and skin, carpet and clothing fibers, paint chips 

and fungi, resulting in a heterogeneous matrix of organic matter and inorganic and metallic particles. 

Trace elements, like Cd, Cu, Pb and Zn, exist in many of these sources and therefore exhibit 

considerable enrichment in the household environment relative to their crustal abundances (Culbard et 

al., 1988; Fergusson and Kim, 1991; Fergusson, 1992; Rasmussen, 2004). Toxic metals find their way 

into residential homes either as airborne dust (e.g., leaded gasoline emissions from motor vehicles) or 

through items used or activities carried out within the house (e.g., renovating or types of heating). 

 

However, contaminated residential dust provides a critical link in the exposure pathway for most young 

children. Through their hand-to-mouth actions, many children are inadvertently ingesting the metal 

toxins. In some cases, a child may not exhibit conspicuous pica activity, yet he/she may still be 

ingesting over 50 mg of lead from traces of dust, dirt or soil (Mielke et al., 1989). In Birmingham, 

England, the daily uptake of lead for a two yearold was estimated to be 36 mg (Davies et al., 1990). 

Rasmussen et al. (2004) showed that ingestion of house dust is the main exposure pathway for Pb 

(69%) for children living in contaminated areas. 

 

Atmospheric particles are tiny particles of solids or liquids suspended in air. These particles vary in 

size and density (Finlayson-Pitts and Pitts, 2000). Particles 0.005-0.1 µm in diameter are primary 

particles produced from high temperature combustion processes and gas condensation. Metals 

emitted by those processes into the atmosphere have high solubility and reactivity, especially under 

the low pH, and can be carried far away from the sources by the atmosphere. Such processes could 

contribute particle matter to the atmosphere, pedosphere and hydrosphere under certain dynamic 

conditions (Hršak et al., 2003; Avila and Rodrigo, 2004; Hou et al., 2005). 
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A particular type of household dust is attic dust. It represents dust deposited in the attics abandoned 

by inhabitants, so that tenant influence is minimized. The attic dust is derived predominantly from 

external sources, such as aerosols deposit and soil dusting, and less from household activities. While 

household dust is a material to which we are exposed daily, attic dust clearly shows the size and 

shape of the anomaly produced by atmospheric contamination (Šajn, 2005, 2006). The attic dust as 

sampling material has the advantage that its composition remains constant, i.e., chemically 

unchanged, with time. Investigations of attic dust chemistry therefore reveal the average historical 

state of the atmosphere (Šajn, 1999, 2003). 

 

 

2.3.3. The historical record of atmospheric contamination 

 

The use of undisturbed attic dust has the advantage of being a measurement, albeit indirect, of air 

contamination. An attic dust measurement provides an integrated measure based upon the above 

variables over time; it is, therefore, closer to the endpoint in the process continuum from sources to 

exposure and, ultimately, effects (Lioy, 1990). The use of attic dust was also successful in tracing 

plutonium aureole in Nevada, which was a result of atomic bomb experiments (Cizdziel et al., 1998; 

Cizdziel et al., 1999). Several investigations of attic dust as an important indicator of contamination 

have also been studied in West Balkan, mostly around contamination sources such as ironworks, 

smelters, mines, ore deposits, and waste dumps. Systematic studies were done all over Macedonia, 

especially around the places where mining and ore processing left significant consequences for the 

environment. Baseline data regarding trace metal levels have been established by comparing different 

sampling media: soil, attic dust, moss and lichen (Bačeva et al., 2011; Balabanova et al., 2010, 2011). 

 

The use of undisturbed attic dust as a tool for reconstructing historical air contamination was 

evaluated in many geochemical studies in Slovenia. The first studies were mostly limited to individual 

industrial facilities, concerning health effects of particulate matter (Gspan and Hrašovec, 1993). 

According to the Slovenian Environment Agency, measurements of suspended particulate matter were 

performed in Ljubljana, Maribor in Celje during 90’s at several monitoring sites. However, the first 

systematic study of soil, street sediment and attic dust wascompletedin 1999 for entire territory (Šajn, 

1998, 1999, 2003). The chemical composition of selected urban deposits (household dust and attic 

dust) and their relation to spatial macrolocation (rural/urban environments), geological background, 

topsoil composition, dominant natural/anthropogenic factors and other influential factors have been 

described by Šajn at al., 2012. Attic dust was also used for tracing the mercury halo in the Idrija area 

(Gosar at aI., 2002, 2006) and contamination of trace elements in Celje area (Šajn, 2005; Ţibret, 2008; 

Ţibret and Šajn, 2008b), Meţica area (Šajn at aI., 2000; Šajn, 2006) and Litija area (Jemec and Šajn, 

2007, Šajn and Gosar, 2007). 

 

 

2.4. Impact of metal ore mining and processing 

 

The impact of metal ore mining and processing are responsible for some of the largest releases of 

trace elements into the environment. This type of industry include several important source of trace 

elements from a) the mining and milling operations with problems of grinding, concentrating and 

transporting ores, and disposal of tailings along with mine and mill waste water and b) the 

smelterrefinery process with problems of concentrating, haulage, storage, sintering, atmospheric 

discharges and blowing dust (Dudka and Adriano, 1997; Singha et al., 2005; Navarro et al., 2008). 

The environmental concern in mining areas is primarily related to physical disturbance of the 

surrounding landscape, spilled mine tailings, emitted dust and acid mine drainage (AMD) transported 

into rivers. Excessive accumulation of trace elements in agricultural soils around mining areas, 
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resulting in elevated trace metal uptake by food crops, is of great concern because of potential health 

risk to the local inhabitants (McLaughlin et al., 1999; Adriano, 2001; Pruvot et al., 2006). 

 

Most metals in the soil upper layers appear in adsorbed form. Free ions go over to solution, become 

mobile and accessible to plants. They can go over to surface and groundwater. Contamination of soil 

is strongly endangering vegetation. High share of toxic substances can appear in plants, and through 

nutritive cycle reach human being. Particles of household dust that do not fall down on soil can 

accumulate directly in human organism through inhaling or ingestion and cause poisoning (Fergusson, 

1992). The consumption of plants produced in contaminated areas, as well as ingestion or inhalation 

of contaminated particles is two principal factors contributing to human exposure to metals. Potential 

health risks to humans and animals from consumption of crops can be due to trace metal uptake from 

contaminated soils via plant roots as well as direct deposition of contaminants from the atmosphere 

onto plant surfaces (McBride, 2003). Mining has some unique features such as natural background 

contamination (enrichment) associated with mineral deposits, industrial activities and contamination in 

the three-dimensional subsurface space, problem of long term remediation after mine closure, 

problem of secondary contaminated areas around mine sites, land use conflicts and abandoned 

mines. These problems require special tools to address the complexity of the environmental problems 

of mining related contamination (Jordan, 2009). Natural background contamination, often present in 

mining areas due to underlying mineralisation, adds to the complexity of the environmental 

assessment of contamination at mining sites. Knowledge of the mineralogy of trace metal bearing 

phases is important in understanding their stability, solubility, mobility, bioavailability and toxicity, 

modelling their future behaviour, and developing remediation strategies (Hudson-Edwards, 2003). 

 

Mines produce large amounts of waste because the ore is only a small fraction of their total volume of 

the mined material. Even in highgrade ores is generally just a several percentage of their total mass. 

Mining itself affects relatively small areas but the tailings and waste rock deposits close to the mining 

area are important sources of contamination In many areas worldwide present and historical mining 

and smelting activities are causing a variety of environmental problems such as elevated metal 

concentrations in soils/sediments, dispersion of toxic metals in soil and water and ecological damage 

caused by extensive metal contamination (Ashton et al., 2001; Lee, 2003; Navarro et al., 2004; 

Gomes and Favas, 2006; Chopin and Alloway, 2007; Navarro et al., 2008;Jordan, 2009; García-

Lorenzo et al., 2012). 

 

On the territory of present day Bosnia and Herzegovina, mining and metallurgy are counted among 

the oldest forms of industry. The earliest recorded evidence of this dates back to the Neolithic Age, but 

major mineral exploration and mine development are began during Medieval times. Throughout 

Bosnia lead, copper, and silver mines have opened. The most important mines were situated in the 

middle Bosnia basin (Kamenica, Olovo, Dusina and Deţevica) and in eastern Bosnia basin 

(Srebrenica and their surrounding). The mines attracted foreign entrepreneurs who established 

settlements, colonies, and caravan parks. Large natural resources – especially coalmines (Tuzla, 

Doboj, Banovići, Ugljevik, Gacko, Breza, Kakanj, Zenica, etc.), Fe mines (the Majdan Mountain, Vareš, 

Ljubija) Pb and Zn mines (Olovo, Vareš and Srebrenica) bauxite mines (Buţim, Jajce, Mostar and 

Vlasenica) led Bosnia to total prosperity. First ironworks, steelworks, and smelters were built during 

the Austro-Hungarian period. Between the two World Wars, the stagnation of industrial production is 

noticed; anyway, during the Communism, industrialization of Bosnia and Herzegovina increased. 

During the war in Bosnia from 1992 to 1995, most major mineral production facilities were damaged 

significantly, and pre-war levels of production had only recently been achieved by some producers. 

Aluminum producer, Aluminij d.d. Mostar and iron and steel producer, ArcelorMittal Zenica were the 

most economically important companies in the mineral industry in terms of the value of their output in 

last couple of years (Brininstool, 2007). 

  

http://www.sciencedirect.com/science/article/pii/S0048969708011121#bib25
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3. MATERIALS AND METHODS 

 

3.1. Description of the study area 

 

3.1.1. Geographical description of study area 

 

The river Stavnja has a length about 35 km, located in the Central Bosnia and Herzegovina, northern 

from the capital Sarajevo (Figure 1). Approximately, in its valley live 30000 inhabitants, mostly settled 

in two small cities Vareš and Breza. The valley belongs to the temperate continental mountain climate 

zone, with cold winters and moderately warm summer. In general, autumn is warmer than spring.The 

Stavnja catchment area is large about 180 km
2
, including only three bigger tributaries on left side, the 

Mala River, the Ponikva and the Ţalja but the study area is large c. 104 km
2
 (Figures 2 and 3). The 

river valley is a very narrow valley surrounded with steep hills with average width about 5 km. 

According to a north base line, the whole valley has an azimuth 17 degrees. The river Stavnja springs 

at 1080 m, but ends at 430 m. Most of the study area is covered by forest 57 km
2
 or 55%. Meadows, 

pastures and cultivated land cover 37.4 km
2
 or 36%, settlements 4.5 km

2
, industrial zone 1.2 km

2
, and 

open mine pits 3.6 km
2
 (Figure 3). 

 

 

 
 

Figure 1: Location of study area  
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Figure 2: Landsat multispectral images. Set from 1990, before of civil war in B&H. A – 

Composite of visible bands (B1, B2 and B3); B – Composite of infrared bands (B4, B5 and B7) 

 

 

The study area is rich with archaeological findings from different epochs. In the municipality of Vareš 

were found the remaining of metallurgical activities dating back to Bronze Age. On several 

surrounding locations are found remains of copper artefacts from prehistorically period, the mining 

tools and lamps from the Roman era. Ottoman government has been pried with this region because of 

craftsmen and their very qualitative products. With the arrival of Austrians all area had a biggest 

prosperity. Even Saxons moved in the new industrial area. In the town centre itself, there is an old 

stone arched bridge from Ottoman period, the oldest preserved Catholic Church of St. Michael in 
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Bosnia and Herzegovina. The church are among the oldest preserved in Bosnia and date back to 

1643. The remaining of the medieval royal city and castle Bobovac is located close to Vareš. Ruins of 

Basilica from the 5
th
 Centuryare preserved. In the city centre Breza. On several locations of the study 

area are preserved lots of monumental medieval tombstones. 

 

 

 
 

Figure 3: Land use map  
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Figure 4: The Iron open pits, Smreka (left) and Brezik (right) 

 

 

 
 

Figure 5: Abandoned ironworks Vareš 

 

 

In the region of Vareš municipality, mineral exploitation begun already in the Antique period but with 

arrival Austrians to Bosnia, Vareš admire revival in economy aspect. The iron ore deposits are 

conducted to the Triassic structures. The mine Vareš is the oldest and largest in Bosnia and 

Herzegovina, comprising of three areas of exploitation: Smreka, Droškovac and Brezik (Figure 4). The 

mining zones of aforementioned areas make one geological unit. In 1991, open pit’s reserves and 

resources in the mentioned three Fe ore deposits have been deemed to 169 million tonnes. Beside 

the main iron ore minerals, hematite and siderite there are present various metal ore sulphides of Cu, 

Pb, Zn, As, Sb and Sn. Lead, zinc and barite Veovača open pit is situated about 10 km eastern of 

Vareš. Sulphide mineralization is associated with layers of barite and have volcanogenic – 

sedimentary genesis. Inside of these deposits hydrothermal processeshave formedsome minor 



Alijagić, J.: Application of multivariate statistical methods and artificial neural network for separation badrock 
background and influence of mining and metallurgy activities on distribution of chemical elements in the Stavnja 
valley (Bosnia and Herzegovina). PhD thesis. University of Nova Gorica, 2013. 
 

13 

veinsriched with various minerals. Lead – zinc mineralization is basically associated to Droškovac iron 

deposit. Together with main minerals galena, sphalerite and barite are associated another minerals 

such as pyrite, marcasite, tetraedrite, antimonite, chalcopyrite, cinnabar, realgar, calcite, quartz, 

limonite, covelline, etc.Construction of the ironworks and metal foundry in Vareš begin in 1891.Until 

1991,it was operated within one company called ―Mine and Ironworks Vareš‖. The ironworks have 

been the second largest ironworks in Bosnia and Herzegovina. All activities in the ironworks have 

ended in 1998, when two furnaces were overthrown because of disuse technology and unprofitability. 

Metal foundry still works but with much reduced capacity. The ironworks are situated in upper part of 

the valley, under the urban zone (Figure 5). 

 

A town Breza with surrounding settlements is developed on river terraces of the river Stavnja. It is 

known with brown coal mining. This coal basin belongs to the Central Bosnian coal basin that lies 

along the river Bosna. Comparing to the mines and ironworks in municipality of Vareš where all 

industry is abandoned, this mine is still active (Figure 6). 

 

 
 

Figure 6: Town Breza (left) and brown coal open pit (right) 

 

 

3.1.2. Geological description of study area 

 

Geology of the study area is taken from the Basic Geological Map, sheets Vareš (L 34-133) and 

Sarajevo (K 34-1), scale 1: 100,000 (Jovanović at al., 1977; Olujić et al., 1978; Pamić et al., 1978). 

The study area is a part of the Durmitor nappe. The most important geotectonic unit of Vareš 

metallogenic district belongs to the Central ophilote zone. Advanced rifting magmatism produced 

spilites, ophitic basalts and diabases, and scarce keratophyres, interlayered with Ladinian sedimentary 

rocks. Deposits related to magmatism include cinnabar deposits, Mn-oxide deposits, monomineralic 

and polymetalic barite deposits, and siderite–hematite deposits. The deposits are placed within a 

sigmoid shaped curved belt, 2 to 5 km wide and 25 km long (Palinkaš et al., 2008). 

 

The outcropping stratigraphic sequence exposes rock formations spanning from the Upper Triassic to 

more recent times. Ten major lithological units have beenisolated (Figure 7). The river Stavnja 

perpendicularly crosses the lithological units, from the oldest one in the north to the youngest in south 

of the study area. The younger Quaternary layers are developed along present watercourse or 

something higher in gravel–conglomerate terraces. 
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Figure 7: Map of isolated lithological units 

 

 

The oldest Upper Triassic clastite rocks (T1) in the study area are represented by slate, quartz–mica–

chlorite schists, metasandstone, and chert. These rocks also include sandstone, subordinate shale 

and marly shale. Lower and Middle Triassic (T2,3)is represented by massive and thick bedded 

limestone with chert noduls. There is a part with the Anisian limestones and dolomites, hematite and 

siderite shale. These are followed by crinoide limestone and dolomitic limestone. Same ages are 
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spilite and tuff (tuffaceous sandstone), which are found northern of Vareš. Unseparated volcanic 

sedimentary formations represent about 1000 m thick complex of rocks. Jurassic and Cretaceous 

clastic carbonate series (J,K) have direction NW–SE, represented by marly shale, limestone, 

sandstone, conglomerate, breccia, and chert. Jurassic and Cretaceous Pogari series is formed by 

breccias and sandstones (JK). Most of the study area is covered with flysch sediments. Turonian–

Senonian flysch (K2
2,3

) is built-up of conglomerate, breccia, limestone, marle and siltstone. 

Cenomanian–Turonian flysh (K2
1,2

) is represented by limestone breccias, limestone, sandy limestone, 

shale, sandstone and chert (Pamić et al., 1978). 

 

On the south of research area is found Oligo clastite complex (Ol). Those sediments are represented 

by variegated series (conglomerate, sandstone, limestone, marl, and clay) and sandstone 

conglomerate and limestone with coal beds. Older Miocene transitional zone (
2
M2) represented by 

thin-bedded marl and sandstone and roof limestone zone (
1
M2) includes sandy limestone with roof 

coal bed. The youngest sediments are Holocene ages represented by the Quaternary terraces (t) and 

Quaternary alluvium (a1). Younger Quaternary layers are developed along present watercourse or 

something higher in gravel-conglomerate terraces (Pamić et al., 1978). 

 

Vareš, siderite–hematite sedimentary exhalative (SEDEX) deposits, Smreka, Droškovac and Brezik, 

are locus typicus mineralisation of the Mid Triassic, advanced Tethyan rifting phase (Red Sea stage). 

The deposits contain hydrothermal, stratiform siderite–hematite–chert beds. The mineralisation form 

part of the Anisian and Ladinian sequences and displays a distinct vertical zoning, reflecting a gradual 

change of redox conditions in the depositional environment. The sequence starts with bituminous, 

thinly bedded shales with pyrite and base metal sulphides, overlain by barite and siderite, deposited 

under reducing conditions. Overlying clastics and oolithic limestone are succeeded by hematite shale, 

hematite ±chert beds, deposited in oxidizing environment. Major minerals are siderite, manganese rich 

hematite, barite, pyrite, marcasite, chalcopyrite, galena, sphalerite, tetrahedrite and Pb-sulphosalts. 

Veovača Pb, Zn, Ba deposit contains ore breccia or ore conglomerates with dm to msized clasts 

cemented by barite and Pb–Zn sulphides. Microcrystalline dark barite is accompanied with galena and 

sphalerite. Barite from the Veovačamine is typical for Triassic SEDEX deposits elsewhere in the 

Dinarides (Palinkaš et al., 2008). 

 

 

3.2. Sampling design 

 

Regarding the primary purpose of research, experience (Šajn, 2005, 2006; Alijagić, 2008; Alijagić and 

Šajn,2006, 2010; Stafilov et al., 2008a, 2008b) and some sampling difficulties (such as narrow gorge, 

inaccessible terrain and remained minefields), the sampling grid have been prepared so that the soil 

profiles were raised to the river flow transversely. In this way, changes of environmental chemisms 

according to distance from the source of contamination, a change in altitude, and a transport mode 

(atmospheric or water transport of trace elements) have been followed. According to the above issues, 

we have to design the sampling grid covering the geogenic distributions of elements, as well as 

anthropogenically induced anomalies caused by atmospheric and water transport. 

 

The sampling grid was set up respecting a presence of the minefields as well. Whereas, the reliability 

of the mine maps is relatively low, we put special emphasis on integration and communication with 

residents. In many places, the sampling points were moved according to the suggestions of local 

residents. Researches from the Croatian Geological Survey have already faced such problems 

shareing with us their experience and providing a many useful suggestions. Even the area covered 

with the minefield is relatively small (5.5%), possibility of their encounters is much higher. At the same 

time, the sampling grid has been created so that all the main lithological units are covered. Various 

lithological units are enriched with various chemical elements, which during natural processes are 
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released into soil. Determination of parental material will help in reconstruction of the environmental 

chemism and baseline data regarding trace metal levelsin the study area. For this purpose,various 

sampling materials are collected such as automorphic (cambisol) and alluvial soils (fluvisol), river 

sediments and attic dust. 

 

 

 
 

Figure 8: Samplingsiteswith determined zones 
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Sampling was performed into two phases. Inthe first phase of sampling (2009), the entire valley (c. 35 

km) has been covered with 12 profile lines set to cross a river flow. In the area of former intensive 

mining operations as well, sampling grid has been sparse, but in urban and industrialized areas the 

sampling grid was denser (Figure 8). Second phase of sampling (2011) includes sampling on the 

edges of study area, and following lithological units: Triassic spilites and tuffs, Oligocene clastit 

complex, Miocene carbonate and clastites series, which are not covered well by sampling during the 

first phase. Some additional samples were collected on places where some anomalies occur, such as 

an Arsenic anomaly. Total number of soil samplingsites from both sampling phases is 111, attic dust 

15, and river sediments 17. 

 

The Figure 8 provides also the main determined zones. Zone 1 is concerned as a probably polluted 

area and it is located in the upper part of the Stavnja valley. There are collected only automorphic soil 

at 24 sampling sites. Those sampling locations are mainly situated in the industrial zone and represent 

the area with biggest expected influence on environment. This zone is marked with the ellipse. The 

Zone 2 is determined as unpolluted zone. This zone is divided into two zones, Zone 2a and Zone 2b, 

respectively. Zone 2a is located around the Zone 1, and there are collected soil samples at 27 

sampling sites. Zone 2b is situated around the Zone 3, whit 50 sampling sites. The last zone is Zone 

3, located in the lowest part of the Stavnja valley. This zone is concerned as contaminated zone, with 

high content of trace elements. In this zone, soil samples are collected solely at the alluvial plain, at 10 

sampling sites. 

 

From the geological view, 10 soil sampling sites are located on the Quaternary alluvium, 9 on the 

Quaternary river terraces, 8 on the Miocene clastic series, 5 on the Miocene carbonate series, 6 on 

the Oligocene clastite complex, 28 on the Cretaceous flysch, 16 on the Jurassic and Cretaceous 

clastic carbonate series, 6 on the Jurassic and Cretaceous breccias and sandstones, 19 on the 

Triassic limestone and 4 samples on the Triassic clastites, spilites and tuff. 

 

 

3.3. Sampling materials 

 

3.3.1. Soil 

 

In geochemical studies, soils represent the most widespread sampling material for environmental 

assessment due to their availability and relatively undemanding sampling method. Disadvantage is 

only high variability of soil chemism, which can be dispatched by taking composite samples. According 

to mentioned sampling problem, one soil sample represents the composite material collected at the 

central sample point itself and at four points within the radius of 50 m around it. At each sampling 

point, topsoil (0-5 cm) and subsoil (20-30 cm) are collected and the mass of such a composite was 

about 1 kg (Borůvka et al., 2005; Chen et al., 2005; Salminen et al., 2005; Bretzel and Calderisi, 2006; 

Tembo et al., 2006; Alijagić, 2008). The distribution of elements that can reflect natural processes are 

indicated by elements that rarely or never participate in technogenic processes. Their contents usually 

change gradually across the landscape. Naturally caused chemism of soil is characteristic for deeper 

soil horizons. For the anthropogenic accumulation of chemical elements is characterized by explicit 

increase in concentration, appearing from the relatively low natural background. The anomalies occur 

close to industrial zones, mines, smelters and ironworks (Šajn, 2005; Alijagić and Šajn, 2006; 

Cappuyns et al., 2006; Stafilov et al., 2008a, 2008b). High concentrations of anthropogenically entered 

chemical elements are characterized mainly for surface soil horizon. 
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Figure 9: Sampling of automorphic soil 

 

 

 
 

Figure 10: Sampling of alluvial soil  
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According to the sampling sites collected soil can be genetically divided into two main groups, the 

automorphic soil and alluvial soil, respectively. Automorphic soils (FAO, 2006) are defined as well 

drained soils. All automorphic soils belong to the Cambisol (type of developed soil), collected at 

meadow and pastures. Total number of collected cambisol topsoil (0-5 cm) and subsoil (20-30 cm) is 

222 (Figures 8, 9 and 10). 

 

Soils developed only on the youngest Quaternary material, alluvium are called fluvisol (FAO 

classification). Alluvial soils (fluvisol) are poorly drained soils, form because of the permanent or 

periodical presence of groundwater, precipitation, or floodwater in or on the soil profile. From the 10 

sampling site are collected samples of alluvial sediments.  

 

After sampling, each soil sample is described into separate inscription list. The inscription list contain 

following information: ID number, Sample label, Sampling material, Sample coordinates: Lon 

(WGS84), Lat (WGS84), and Altitude, Name of location, Year of sampling, Area, Land use, Lithology, 

Pollution, Soil Texture, Soil Structure, Soil Skeleton, Soil org. matter (Appendices A and B). The 

inscription lists and all samples are stored at Geological Survey of Slovenia. 

 

 

3.3.2. River sediment 

 

When it rains, soil and debris from the surrounding land are eroded and washed into streams. As the 

rivers move they are carrying soil, sand, and sediment along with them and deposit on the river bed. 

River sediments are contemporary materials that keep emerging, which means that their chemism 

reflects the current state of the environment. Concentrations of chemical elements are result of 

weathering constant. Active stream sediment represents the fine to mediumgrained bed load material 

(silty–clayey sandy), which is transported by running water (Salminen et al., 2005). Increased 

concentrations of trace elements represent the current transfer of trace elements as a result of 

leaching from abandoned (nonrecultivated) open pits, mining and smelting waste residues (Šajn, 

2005, 2006). High concentrations of trace elements in river sediments are usually, a strong indicator of 

contamination of alluvial (flood) planes, which are important agriculture areas. 

 

 

 
 

Figure 11: Sampling of stream sediments 
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In geochemical studies, river sediments are widespread sampling material that gives current 

assessment state of the environment. Sampling is more difficult compared to the soil. Local variability 

is abolished by taking composite samples (Kunwar et al., 2005). Each stream sediment sample 

comprises material taken from 5-10 points over a stream stretch of 250 - 500 m. Prior to stream water 

and stream sediment collection, it is important to identify the 250 - 500 m stream stretch where 

obvious signs of contamination can be avoided and suitable sediment can be collected from 5-10 

different locations. Sites should be located at least 100 m upstream of roads and settlements. Stream 

sediment sampling should start from the water sampling point and the other subsamples should be 

collected up stream (Salminen et al., 2005). Along the river Stavnja at 17 localities the river sediments 

are collected (Figures 8 and 11). 

 

 

3.3.3. Attic dust 

 

Close to the selected soil sampling sites the old houses were chosen with intact attic carpentry. A 

particular type of household dust – the attic dust will be studied in this work. To avoid collecting 

particles of tiles, wood and other construction materials, the attic dust samples were brushed from 

parts of wooden constructions that were not in immediate contact with roof tiles or floors. Attic dust 

represents stable sampling material with very low variability with distance. Only problem with attic dust 

is extremely difficult sampling. Total number of collected samples is 15 (Figures 8 and 12). 

 

The attic dust as sampling material has the advantage that its composition remains constant, i.e. 

chemically unchanged, with time. Investigations of attic dust chemistry therefore reveal the average 

historical state of the atmosphere. In previous geochemical studies the use of attic dust as a sampling 

medium was established (Cizdziel et al., 1999; Šajn, 2003, 2005, Ţibret, 2008; Ţibret and Šajn, 2008a, 

2008b). 

 

 

 
 

Figure 12: Sampling of attic dust 
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3.4. Sampling preparation and analyses 

 

The samples (soil samples and river sediments) were air dried to begin with, and subsequently were 

completely dried in a fan drier at 40°C. The sample preparation have been done in several following 

steps: (1) Disintegration – manual grinding of solid samples using a ceramic mortar and pestle; (2) 

Homogenizing – breaking of samples down into smaller parts and blending to make them more 

uniform in texture and consistency; (3) Removing roots and/or rock fragments– manual separation of 

impurities; (4) Splitting – reducing the weight of samples to less than 0,5 kg after grinding or 

disintegration procedure; (5) Quartering – dividing of the disintegrated granular sample into 

subsamples with identical quality and quantity; (6) Sieving– dry manual passing of samples through a 

2 mm nylon mesh and (7) Pulverizing mechanically breaking down the particles of dry samples 

(Salminen et al., 2005). The samples of attic dust were prepared for chemical analysis only by sieving 

through a 0.125 mm nylon mesh (Šajn, 2003, 2005). 

 

All samples were analysed in at the ACME, Ltd. laboratory in Vancouver, Canada (ACME Labs, 2010, 

2011). Determination of 36 chemical elements (Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, 

Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Th, Ti, Tl, U, V, W and Zn) was performed by 

inductively coupled plasma mass spectrometry (ICP-MS) after aqua regia digestion (mixture HCl, 

HNO3 and water). Sample splits of 0.5g are leached in hot (95°C) Aqua Regia for one hour. At the 

ACME Analytical Laboratories, quality control was ensured by analyzing duplicate samples and 

blanks. The measurement accuracy was determined by measuring certified standards in each 

analytical set: DS7 and OREAS45PA for the first set of samples (2010) DS8 and OREAS45CA for the 

second set of samples (2011). 

 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a very powerful tool for trace and 

ultratrace elemental analysis. ICP-MS is rapidly becoming the technique of choice in many analytical 

laboratories for the accurate and precise measurements needed for today’s demanding applications. 

In ICP-MS, a plasma or gas consisting of ions, electrons, and neutral particles is formed from Argon 

gas. The plasma is used to atomize and ionize the elements in a sample. The resulting ions are then 

passed through a series of apertures (cones) into the high vacuum mass analyzer. The isotopes of the 

elements are identified by their mass-to-charge ratio (m/e) and the intensity of a specific peak in the 

mass spectrum is proportional to the amount of that isotope (element) in the original sample. 

 

The results of chemical analyzes of 26 selected elements (Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, 

Hg, La, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Th, Ti, Tl, V, W and Zn) of all samples are shown in Appendices C 

and D. 
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4. DATA PROCESSING 

 

All data processing and calculations, geostatistical data interpretation and visualization (mapping) 

have been performed by using following softwares: Statistica (Stat Soft Inc., 2012), Autodesk MAP 3D 

(Autodesk Inc., 2012), ArcINFO (ESRI Inc.,2004) and Surfer (Golden Software Inc., 2012). 

 

 

4.1. Data acquisition 

 

In the recent years, geographical information systems (GIS) are used for spatial data management 

and manipulation. For this purpose various spatial data were acquired by digitalization of existing 

topographic maps: (1) Vareš 4 (475-4) in scale 1:50000; Vareš 4-1 (475-4-1), (2) Vareš 4-2 (475-4-2), 

Vareš 4-3 (475-4-3), Vareš 4-4 (475-4-4), Sarajevo 2-2 (525-2-2), Sarajevo 2-1 (525-2-1) in scale 

1:25000 (provided by the Geodetic survey of Bosnia and Herzegovina); (3) Google Earth maps 

(Google Inc., 2010), (4) maps Breza-Vareš, scale 1:50000, (5) Breza-Podlugovi, Brgule, Karaule, in 

scale 1:10000 (provided by BH Mine Action Centre, in Sarajevo), (6) geological maps Vareš (L 34-

133) and Sarajevo (K 34-1) in scale 1:100000 (provided by Geological Survey of Slovenia and 

Geological Survey Federation of Bosnia and Herzegovina); (7) 80m SRTM Digital Elevation Model 

(CGIAR Consortium for Spatial Information, 2011.); (8) 30m ASTER Digital Elevation Model (U.S. 

Geological Survey, 2011a) and (9) Landsat multispectral satellite images – 7 bands (U.S. Geological 

Survey 2011b). 

 

All aforementioned maps were used for obtaining as much as possible geospatial data that were 

included into the databases. For data processing two databases have been prepared. One database 

includes following information for 254 samples: Identification number, Sample label, Sampling 

material, Land use unit (Figure 3), Lithological unit (Figure 7), Defined zones (Figure 8), Latitude, 

Longitude, Absolute distance from the ironworks chimneys (Figure 13a), Elliptical distance from the 

ironworks chimneys (Figure 13b), Distance from the river Stavnja (Figure 13c), Altitude (Figure 14a) 

Altitude above the bottom of Stavnja valley (Figure 14b), Terrain Slope (Figure 14c), Aspect, Plan 

Curvature (Figure 15a), Profile Curvature (Figure 15b), Tangent Curvature (Figure 15c), and Landsat 

spectral bands 1-7 (Table 2, Figure 16). Beside the aforementioned geospatial data and multispectral 

image bands, this data base includes the analytical data (26 selected elements: Ag, Al, As, Ba, Bi, Cd, 

Co, Cr, Cu, Fe, Ga, Hg, La, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Th, Ti, Tl, V, W and Zn). 

 

For a modelling of spatial distribution of particular elements with Artificial Neural Network and Multiple 

Polynomial Regression, a recall grid has been used. This means that whole study area is divided to 50 

x 50 m grid cell. Total number of recall points is 41471. This database includes only geospatial data 

and Landsat multispectral image bands mentioned before. 

 

 

4.1.1. Topographic and geological data 

 

The maps are constructed with the limitation of representing 3D realworld objects into 2D 

representation, which involves some distortion of the shape, area, distance and direction of spatial 

objects. Du to fact that the topographic maps (1:25000 and 1:50000) were reambulated in late 70’s, to 

get more realistic spatial data the maps from Google Earth and multispectral satellite images have 

been combined. Particular land use units are digitalized and isolated directly from the Google Earth in 

form of KML files. Such maps have been georeferenced, what means that we defined its existence in 

physical space, establishing its location in terms of map projections or coordinate system. According to 

Hill, 2006 the term is used both when establishing the relation between raster or vector images and 

coordinates, and when determining the spatial location of other geographical features. This procedure 
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is thus imperative to data modelling in the field of GIS and other cartographic methods. When data 

from different sources need to be combined and then used in a GIS application, it becomes essential 

to have a common referencing system. Different maps may use different projection systems. 

Georeferencing tools contain methods to combine and overlay these maps with minimum distortion. 

 

Beside the topographic maps, the basic geological map (1:100000) has been digitalized and vectored 

too. Isolation of major lithological units is also important step for determination natural and 

anthropogenic background. The maps (1:25000 and 1:10000) of remain minefields and possible 

minefields were obtained from the BH Mine Action Centre, in Sarajevo. Data about the minefields 

were isolated from then and incorporated into previously digitalized topographic maps. 

 

Given data were presented into three different projection systems: topographic, geological and 

minefield maps in the Gauss Kruger (zone 6) projection with a Hermanns-Kogel datum; the Google 

Earth and ASTAR in Unprojected Lat/Long projection with a World Geodetic System 1984 (WGS84) 

datum; and satellite images in the Universal Transverse Mercator (UTM 34N) projection with a WGS84 

datum. All aforementioned data have been converted into one projection system Gauss Kruger. 

 

 

4.1.2. DEM and Terrain modeling (geomorphometry) 

 

Digital Elevation Model (DEM) is a quantitative representation of the Earth's surface providing basic 

information about the terrain relief (Guth, 2006). DEM is an important tool for a geomorphometry, its 

derived attributes (such as slope, aspect, drainage area and network, curvature, topographic index, 

etc.) which are important parameters for information extraction or assessment of any process using 

terrain analysis (Wolock and Price, 1994). Providing all these geomorphometrical data, DEM is 

prerequisite in different applications such as water flow modelling (Jain and Singh, 2003), volcanic 

hazards (Vassilopouloua et al., 2002), terrain visualization and mapping (Spark and Williams, 1996), 

flood simulation and management (Ramlal and Baban, 2008, Honghai and Altinakar, 2011), climate 

and meteorological studies (Thornton et al., 1997), etc. The outcomes of the models depend on the 

accuracy of DEM (Zhang and Montgomery, 1994; Mukherjee et al., 2013). 

 

Figure 13 provides following geospatial information: (A) a cyclic distance from the ironwork Vareš (the 

main source of contamination); (B) an elliptic distance from the ironworks Vareš; and (C) the distance 

from the Stavnja. These three shapes of distance are prepared in scale 1:5. The cyclic and elliptic 

distances have been calculated from the ironworks chimney. For easier understanding each distance 

is presented by different color in seven equal percentile classes. Several following morphological 

spatial information: (A) an altitude,(B) an altitude above the bottom of the Stavnja valley, and (C) a 

slope are provided in Figure 14. Altitude is distance measurement between referent point (the sea 

level) and object. The altitude above the river has been calculated from a surface that has a river 

incline.  

 

Terrain Aspect calculates the downhill direction of the steepest slope (i.e. dip direction) at each grid 

node. It is the direction that is perpendicular to the contour lines on the surface, and is exactly 

opposite the gradient direction. Terrain Aspect values are reported in azimuth, where 0 degrees points 

due North, and 90 degrees points due East. Terrain Slope (Figure 14c), calculates the slope at any 

grid node on the surface. Terrain Slope is reported in degrees from zero (horizontal) to 90 (vertical). 

For a particular point on the surface, the Terrain Slope is based on the direction of steepest descent or 

ascent at that point (Terrain Aspect). This means that across the surface, the gradient direction can 

change. Grid files of the Terrain Slope can produce contour maps that show isolines of constant 

steepest slope (Moor et al., 1993).  

http://www.sciencedirect.com/science/article/pii/S030324341200195X#bib0075
http://www.sciencedirect.com/science/article/pii/S030324341200195X#bib0245
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Figure 13: A – Absolute distance from the ironworks chimneys; B –Elliptical distance from the 

ironworks chimneys (ratio 1/5); C – Distance from the river Stavnja 

 

 

Plan Curvature (Figure 15a), reflects the rate of change of the Terrain Aspect angle measured in the 

horizontal plane, and is a measure of the curvature of contours. Negative values indicate divergent 

water flow over the surface, and positive values indicate convergent flow. Plan Curvature calculates 

the curvature of the surface in the horizontal plane, or the curvature of the contour. Negative 

curvature, shown with a gray fill, indicates areas of divergent flow. Profile Curvature (Figure 15b), 

determines the downhill or uphill rate of change in slope in the gradient direction (opposite of slope 

aspect direction) at each grid node. Grid files of Profile Curvature produce contour maps that show 

isolines of constant rate of change of steepest slope across the surface. Negative values are convex 

upward and indicate accelerated flow of water over the surface. Positive values are concave upward 

and indicate values are concave upward and indicate slowed flow over the surface. Profile Curvature 
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Figure 14: A – Altitude above the sea level (absolute); B – Altitude above the bottom of Stavnja 

valley (relative); C – Terrain Slope 

 

 

measures the curvature of the surface in the direction of gradient. Negative curvature, shown with a 

gray fill, indicates a convex upward surface and accelerated water flow. Tangential Curvature (Figure 

15c) measures curvature in relation to a vertical plane perpendicular to the gradient direction, or 

tangential to the contour. The negative and positive areas are the same as for Plan Curvature, but the 

curvature values are different. Tangential Curvature measures the curvature of the surface in the 

vertical plane perpendicular to the gradient direction. Negative curvature, displayed with gray fill, 

indicates divergent flow conditions. 

 

The mathematical definitions, general review of the methods, and applications of topographic analysis 

(terrain slope, terrain aspect, plan curvature, profile curvature and tangential curvature) were taken 

from Mitasova and Hofierka (1993) and Moor et al. (1993).  
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Figure 15: A – Plan terrain curvature, B – Profile terrain curvature, C – Tangent terrain 

curvature 

 

 

4.1.3. Satellite images 

 

Since 1972, Landsat satellites have continuously acquired space based images of the Earth’s land 

surface, coastal shallows, and coral reefs. A joint effort of the U.S. Geological Survey (USGS) and the 

National Aeronautics and Space Administration (NASA), was established to routinely gather land 

imagery from space. Landsat satellites have since provided worldwide science and 

resourcemanagement communities with an archive of spacebased land remotely sensed data - a 

valuable resource for people who work in agriculture, geology, forestry, education, regional planning, 

mapping, and global change research (U.S. Geological Survey, 2011c). 
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Figure 16: Relative intensity of radiation Landsat spectral bands. A – Visible spectrum, 0.45 – 

0.69 µm (Bands 1-3); B – Infrared spectrum, 0.76 – 0.90 µm (Band 4); C– Thermal radiation, 10.4-

12.5 µm 

 

 

Landsats 5 and 7 each complete approximately 14 full orbits of the Earth each day. While each 

satellite has a 16-day full Earth coverage cycle, their orbits are offset to allow 8-day repeat coverage 

of any Landsat scene area on the globe. Landsat 7 carries the Enhanced Thematic Mapper Plus 

(ETM+), with 30-meter visible, near-IR, and shortwave infrared bands, a 60-meter spatial resolution 

thermal band, and a 15-meter panchromatic band (Table 2).  

 

Moreover, since 2008 the USGS) has freely provided all archived Landsat images, along with newly 

acquired Landsat 7 (launched in 1999) ETM+ SLC-off and Landsat 5 (launched in 1984) TM images 

with less than 40% cloud cover , thereby enabling free access to multiple images of the same sectors. 

Each band of Landsat data in the GeoTIFF format is delivered as a grayscale, uncompressed, 8-bit 
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string of unsigned integers.GeoTIFF is a format that enables referencing a raster image to a known 

geodetic model or map projection. A metadata (MTL) file is included with data processed through the 

Level-1 Product Generation System (LPGS). A file containing the ground control points (GCP) used 

during image processing is also included. A processing history (WO) file is included with data 

processed through the National Landsat Archive Production System (NLAPS) (U.S. Geological Survey 

2011c). 

 

 

Table 2: Landsat spectral bands 

 

Spectral bands 

Wavelength 

(µm) 

Resolution 

(ms) Use 

Band 1 (blue) 0.45–0.52 30 

Bathymetric mapping; distinguishes soil from 

vegetation; deciduous from coniferous vegetation. 

Band 2 (green) 0.52–0.61 30 

Emphasizes peak vegetation, which is useful for 

assessing plant vigor. 

Band 3 (red) 0.63–0.69 30 Emphasizes vegetation slopes. 

Band 4 (IR) 0.76–0.90 30 Emphasizes biomass content and shorelines. 

Band 5 (IR) 1.55–1.75 30 

Discriminates moisture content of soil and 

vegetation; penetrates thin clouds. 

Band 6 (thermal) 10.4–12.5 120/60 

Useful for thermal mapping and estimated soil 

moisture. 

Band 7 (IR) 2.08–2.35 30 
Useful for mapping hydrothermally altered rocks 

associated with mineral deposits. 

 

 

In order to evaluate the capability of mapping contaminated areas from both Landsat TM and ETM 

data, we processed and analysed two available images for the study area (187 path and 29 row): one 

acquired by the TM sensor on 1990 and one acquired by ETM on 2005. The selected scenes provided 

cloud-free pixels. Extracting information from satellite imagery often involves image interpretation 

techniques as well as GIS integration of other spatial data. Multispectral satellite imagery offers 

several advantages, such as: a large number of data records, the availability of repeated images of a 

single place at different times, and the fact that virtually the entire planet is covered. We used images 

from 1990, in period of intensive mining and smelting and from 2005 after the civil war, period when 

the production was stopped (Figures 2 and 16). 

 

 

4.2. Statistic methods 

 

All statistical analyzes were performed in the software Statistica 11 (Stat Soft Inc., 2012) in the next 

modules: Basic Statistic/Tables (basic statistic), ANOVA (analysis of variance), SANN (automated 

neural networks) and GRM (general regression models). 

 

 

4.2.1. Basic statistic 

 

Much of statistics therefore, deals with the organization, presentation, and summary of data. One of 

the most common and useful presentation of data sets is the frequency table and its corresponding 

graph, the histogram. The important features of most histograms can be dividing into three categories: 

measures of location (mean, geometric mean, median, etc.), measures of spread (standard deviation) 

and measure of shape (skewness, kurtosis and the coefficient of variation).  
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The mean (X), is the arithmetic average of the data values. The geometric mean (XG) is the product of 

all scores to the power of 1/n (one over the valid number of cases). The geometric mean is useful in 

instances when we know that the measurement scale is not linear. Note that if a variable contains 

negative values or a zero (0), then the geometric mean cannot be calculated. The median (Md) value 

is the value that "splits the sample in half," given the respective variable. Fifty percent of the cases will 

fall below the median, and fifty percent will fall above the median. If the median value is very different 

from the mean, then the distribution of data is skewed (Isaaks and Srivastava, 1989). The standard 

deviation (S) is simply the square root of the variance. It is often used instead of the variance since its 

units are the same as the unit of variable being describe. The standard error of the mean (SX) gives an 

indication of how close a sample mean might be to the population mean. The standard error of the 

sample mean is given by the square root of the sample size. This means that the larger the sample 

size, the smaller the standard error of the mean. More specifically, the size of the standard error of the 

mean is inversely proportional to the square root of the sample size (Harris, et al., 2005). 

 

The most commonly used statistic for summarizing the symmetry is a quantity called the coefficient of 

skewness (A). The coefficient of skewness suffers even more than the mean and variance from 

sensitivity to erratic high values. A single large value can heavily influence the coefficient of skewness 

since the difference between each data value and the mean is cubed. In geochemical data sets, 

positive skewness is typical when the variable being described is the concentration of a minor 

element. The coefficient of kurtosis (E) is a measure of how "wide" or "skinny" ("flat" or "peaked") the 

distribution is for the respective variable, relative to the standard normal distribution (for which the 

kurtosis is equal to 0). It is also sometimes referred to as the fourth moment of the distribution. Higher 

kurtosis means more of the variance is the result of infrequent extreme deviations, as opposed to 

frequent modestly sized deviations. The coefficient of variation (CV) is a statistic that is often used as 

an alternative to skewness to describe the shape of the distribution. It is used primarily for distribution 

whose values are positive and whose skewness is also positive; though it can be calculated for other 

type of distribution, its usefulness as an index of shape becomes questionable. It is defined as the 

ratio of the standard deviation to the mean. A coefficient greater than one, indicates the presence of 

some erratic high sample values that may have a significant impact on the final estimation. 

 

The Kolmogorov – Smirnov test (KS) is nonparametric test of equality of onedimensional probability 

distributions used to compare a sample with a reference probability distribution (one-tiled KS test), or 

to compare two samples (two-tiled KS test). Simply, KS test tries to determine if two datasets differ 

significantly. The advantage of this test lies in the fact that in a comparison with a continuous 

theoretical distribution it is not necessary to construct discrete classes first since here one measures 

the maximum difference between the cumulative distribution function. The Kolmogorov–Smirnov test 

can be modified to serve as a goodness of fit test. The Chi-Square test (χ
2
) is a statistical test 

commonly used to compare observed data with data we would expect to obtain according to a specific 

hypothesis. This test checks the null hypothesis that a set of measurements can be taken as a sample 

of a random variable with a given distribution(Honerkamp, 2002;Stat Soft Inc., 2012). 

 

 

4.2.2. Data transformation 

 

Transforming data means performing the same mathematical operation on each piece of original data. 

If the original data is simply multiplied or divided by a specific coefficient or a constant is subtracted or 

added we talk about linear transformations. But these linear transformations do not change the shape 

of the data distribution and, therefore, do not help to make data look more normal. 

 

It is often observed that environmental variables are Log-normal (Krige, 1951, 1960; Rose at al., 1979) 

or positively skewed (Zhang et al., 1995; Zhang and Selinus, 1998), and data transformation is 
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necessary to normalise such data sets. Logarithmic transformation is widely applied in order to 

normalise positively skewed data sets. However, it is observed that data sets in environmental 

sciences do not always follow the Log-normal distribution (Zhang C.S and Zhang S., 1996; Zhang and 

Selinus, 1998). In such cases, a power transformation is needed, and Box–Cox transformation is one 

of the most frequently used of these (Box and Cox, 1962; Jobson, 1991; Zhang C.S. and Zhang, C. 

1996; Zhang et al., 1998; McGrath, et al., 2004). Each data transformation can dampen the difference 

between extreme values (Gringarten and Deutsch, 2001). 

 

The Box-Cox transformation is given by: 

 

𝑦 =  
𝑋𝜆−1

𝜆
;     𝜆 ≠ 0 (1) 

 

𝑦 = 𝑙𝑛 𝜆 ; 𝜆 = 0 (2) 

 

where y is the transformed value, and x is the value to be transformed. For a data set (x1, x2 … xn), the 

parameter λ is estimated based on the assumption that the transformed values (y1, y2 … yn) are 

normally distributed. When λ=0, the transformation becomes the logarithmic transformation. 

 

 

4.2.3. Analysis of variance (ANOVA) 

 

Analysis of variance is the most widely used tool of modern (post-1950) statistics by researcher 

workers in the substantive fields of biology, chemistry, sociology, education, agriculture and so forth. 

The methodology was originally developed by Sir Ronald A. Fisher who gave the name of ―analysis of 

variance‖. Nowadays, the analysis of variance models are widely used to analyse the effects of the 

independent variables under study on the dependent variable or response measure of interest. It is a 

technique by which variations associated with different factors or defined sources may be isolated and 

estimated. The purpose of analysis of variance (ANOVA) is to test for significant differences between 

means by comparing variances. More specifically, by partitioning the total variation into different 

sources (associated with the different effects in the design), we are able to compare the variance due 

to the between groups (or treatments) variability with that due to the within groups (treatment) 

variability. Under the null hypothesis (that there are no mean differences between groups or 

treatments in the population), the variance estimated from the within groups (treatment) variability 

should be about the same as the variance estimated from between groups (treatments) variability 

(Sahai and Ageel, 2000). 

 

F-test is any statistical test in which the test statistic has an F-distribution under the null hypothesis. It 

is most often used when comparing statistical models that have been fit to a data set, in order to 

identify the model that best fits the population from which the data were sampled. Exact F-tests mainly 

arise when the models have been fit to the data using least squares. 

 

 

4.2.4. Enrichment ratio 

 

The enrichment ratio (ER), defined as the ratio of grade of a metal element in a deposit to the crustal 

abundance of the metal, is proposed for assessing mineral resources. According to the definition, the 

enrichment ratio of a polymetallic deposit is given as a sum of enrichment ratios of all metals (Shoji, 

2002). This ratio has been calculated by dividing the average concentrations regarding to sampling 

material, determined zones or soil layer. This simple ratio does not need any normalization, because it 

is based on previously defined the groups of elements. These calculations the contribution of 
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anthropogenic influence with trace has been detected, and makes this ratio very useful. Using these 

ratios it was possible to reveal an increase or decrease between various sampling material such as 

soil, attic dust, moss, stream sediments or between material that contain background values and 

increased values. Even it is very simple ratio, but provides a much better measure for comparison and 

has been used in many studies (Balabanova et al., 2010; Stafilov et al., 2010a,2010b; Bačeva et al., 

2011; Balabanova et al., 2011; Šajn et al., 2012). 

 

 

4.3. The multivariate statistical method 

 

Multivariate analysis involves observation and analysis of more than one statistical variable at a time. 

The technique is used to perform trade studies across multiple dimensions while taking into account 

the effects of all variables on the responses of interest. 

 

 

4.3.1. Bivariate statistical method (correlations) 

 

Statistical relationships between two variables can be measured by correlation. Correlations are useful 

because they can indicate a predictive relationship that can be exploited in practice. In general 

statistical usage, correlation can refer to any departure of two or more variables from independence, 

but most commonly refers to a more specialized type of relationship between mean values. Measure 

of the correlation between two variables is expressed by correlation coefficient, and the most common 

is Pearson correlation coefficient (r), which is mainly sensitive to a linear relationship between two 

variables. Other correlation coefficients have been developed to be more robust than the Pearson 

correlation, or more sensitive to nonlinear relationships. 

 

The correlation coefficient (r) is actually a measure of how close the observed values come to falling 

on a straight line. If correlation r = +1, then the scatterplot will be a straight line with a positive slope; if 

r = -1, then the scatterplot will be a straight line with a negative slope. For |r| < 1 the scatterplot 

appears as a cloud of points that becomes fatter and more diffuse as |r| decreases from 1 to 0. It is 

important to note that r provides a measure of the linear relationship between two variables. If the 

relationship between them is not linear, the correlation coefficient may be a very poor summary 

statistic. 

 

 

4.3.2. The cluster analysis 

 

Cluster analysis is a generic name for a variety of mathematical methods, numbering in the hundreds 

that can be used to find out which objects in a set are similar. Mathematical methods of cluster 

analysis accomplish this mathematically. Instead of sorting real objects, these methods sort objects 

described as data. Objects with similar descriptions are mathematically gathered into the same cluster. 

For a variety of research goals, researches need to find out which objects in a set are similar and 

dissimilar. The best known of these research goals is the making of classifications. One reason that 

cluster analysis is so useful is that researches in all fields need to make and revise classification 

continually. 

 

Most common applications used certain methods of hierarchical cluster analysis. Methods of 

hierarchical clustering follow a prescribed set of steps, the main ones being: (1) collect a data matrix 

whose columns stand for the objects to be cluster analysed and whose rows are the attributes that 

describe the objects; (2) optionally standardize the data matrix; (3) using the data matrix or the 

standardized data matrix, compute the values of a resemblance coefficient to measure the similarities 
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among all pairs of objects; (4) use a clustering method to process the values of the resemblance 

coefficient, which results in a diagram called a tree, or dendrogram, that shows the hierarchy of 

similarities among all pairs of objects. From the tree the clusters can be read off. But within these 

steps there is the freedom to choose among alternative ways of standardizing the data matrix, of 

choosing a resemblance coefficient, and of choosing a clustering method (Romesburg, 2004). 

 

Cluster analysis is not one method, but type of proceedings, that is used to arrange a set of cases into 

clusters. The aim is to establish a set of clusters such that cases within a cluster are more similar to 

each other than they are to cases in other clusters (Templ et al., 2008). Known is more cluster 

techniques, which are based on agglomeration more elements according to their composition, giving 

different results. Hierarchical clustering is chosen based on correlation coefficient (r). 

 

 

4.3.3. The factor analysis 

 

Factor analysis is not a single statistical method but rather represents a complex array of 

structureanalysing procedures used to identify the interrelationship among a large set of observed 

variables. Factor analysis can be used for theory and instrument development and assessing 

construct validity of an established instrument when administered to a specific population. Once the 

international structure of a construct has been established, factor analysis may also be used to identify 

external variables that appear to relate to the various dimension of the construct of interest. 

 

There are two basic types of factor analysis: exploratory and confirmatory. Exploratory factor analysis 

(EFA) is used when the researcher does not know how many factors are necessary to explain the 

interrelationship among a set of characteristics, indicators, or items. Therefore, the researcher uses 

the techniques of FA to explore the underlying dimensions of the construct of interest. In Contrast, 

confirmatory factor analysis (CFA) is used to assess the extent to which the hypothesized organization 

of a set of identified factors fits data. It is used when the researcher has some knowledge about 

underlying structure of the construct under investigation. CFA could also be used to test the utility of 

the underlying dimensions of a construct identified through EFA, to compare factor structures across 

studies, and to test hypotheses concerning the linear structural relationship among a set of factor 

associated with a specific theory or model (Pett et al., 2003). 

 

Factor analysis (FA) derives from numerous variables a smaller number of new, synthetic variables 

called factors (Le Maitre, 1982). The factors contain large part information of original variables, and 

they may have certain meanings. The factor analysis was performed on variables standardized to zero 

mean and unit of standard deviation (Davis, 1986; Reimann et al., 2002; Filzmoser, 2005). As a 

measure of similarity between variables, the productmoment correlation coefficient (r) was applied. For 

orthogonal rotation, the varimax method was used. 

 

 

4.4. Prediction methods 

 

4.4.1. Kriging (Segment Kriging) 

 

Since the methods were first developed by Krige for use in the mining industry and formalized by 

Matheron (1971), various forms of kriging have been devised. The Kriging interpolation algorithms are 

an important group of geostatistical techniques, which have played an important role in many 

geological fields (Van Beers and Kleijnen, 2004). Over the last 20 years, geostatistical methods like 

kriging have been used successfully to investigate the spatial variability of continuously varying 

environmental parameters and to incorporate this information into mapping (Burrough and Mc Donnell, 
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1998). Geostatistics provides an advanced methodology which facilitates quantification of the spatial 

features of soil parameters and enables spatial interpolation (Stein et al., 1997; Carlon et al., 2001). In 

addition, geostatistics has become a useful tool for the study of spatial uncertainty and hazard 

assessment (Goovaerts, 1999, 2001). 

 

The geostatistics approach consists of two parts: one is the calculation of an experimental variogram 

from the data and the model fitting, and the second is the estimation or prediction at unsampled 

locations. The variogram model mathematically specifies the spatial variability of the data set and the 

resulting grid file. The interpolation weights, which are applied to data points during the grid node 

calculations, are direct functions of the variogram model. 

 

A variogram (or semi-variogram) is used to measure the spatial variability of a regionalized variable, 

and provides the input parameters for the spatial interpolation of variogram kriging (Webster and 

Oliver, 2001). It can be expressed as: 

 

𝛾 𝑥 =
1

2𝑁(ℎ)
   𝑍𝑥𝑖 − 𝑍(𝑥𝑖 + ℎ)  

𝑁(ℎ)

𝑖=1
 (3) 

 

where γ(h) is the semivariance at a given distance h; Z(xi) is the value of the variable Z at the xi 

location, and N(h) is the number of pairs of sample points separated by the lag distance h. If the 

variogram rises and stabilises around some value, then it has reached a sill (C); i.e. theoretically the 

sample variance. It could be the case that the variogram does not reach a sill, indicating that it 

corresponds to phenomena with an unlimited capacity for dispersion. The distance at which the 

variogram reaches the sill is called the range (a); beyond it, data are independent. Discontinuities at 

the variogram origin could be present; such an unstructured component of variation at h=0 is known 

as nugget effect (Co) which may be due to sampling errors and short scale variability. The calculation 

of the variogram is done in several orientations to assess if the spatial variability is the same in all 

directions. If it is, the distribution is called isotropic, otherwise it is anisotropic. Then, the variogram plot 

is fitted with a theorical model, such as spherical, exponential, linear or Gaussian models. It is possible 

to have a combination of two or more models (nested structure), with a total variance result of added 

variances of each model. The fitted model provides information about the spatial structure as well as 

the input parameters for kriging interpolation. Among the several estimation methods, kriging is the 

most popular because it ―is a collection of generalised linear regression techniques for minimising and 

estimating variance defined from a prior model for a covariance‖ (Olea, 1991). 

 

Kriging is not just used to estimate unsampled areas it is also used to build probabilistic models of 

uncertainty about the unknown, but estimated predicted values (Deutsch and Journel, 1998). The 

kriging estimates can be mapped, to reveal the overall trend of data. Maps provide helpful visual 

displays of the spatial variability in the field and can be used for the summarization and representation 

of soil properties where natural hazards can be identified (Goodchild et al., 1993). As in conventional 

statistics, a normal distribution for the variable under study is desirable in linear geostatistics (Clark 

and Harper, 2000). To increase the accuracy of the geological model, Kriging on a large data set is a 

necessity but also computationally demanding. Although the storage requirements only scale linearly 

with the number of observations in the dataset, the computational complexity in terms of memory and 

speed, scale quadratically and cubically respectively (Ingram and Cornford, 2010). 

 

The kriging method used in the thesis is modified. In case we know a geological composition of the 

study area, it is possible to use this innovative and modified method of kriging in individual units in 

case the chemistry of parental material is showing extreme anomaly, comparing to the surrounding 

population. Good examples are: Pb distribution, which concentrations are in Quaternary alluvium than 

in automorphic soil or distribution of Cr and Ni on the Jurassic and Cretaceous clastic carbonate 

series. They exceed for several times or several ten times exceed from other population level 
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variation. The same can be observed for Ti distribution on the Triassic clastites, spilite and tuff. Using 

this method we are entering some kind of subjectivity, but we avoid so called ―Bull’s effect‖, which is 

typical in such cases. Extremely high differences on small distances cannot be properly solved by any 

polynomial.  

 

 

4.4.2. Multiple Polynomial Regressions 

 

Multiple regression is a statistical method for studying the relationship between a single dependent 

variable and one or more independent variables. There are two major uses of multiple regression: 

prediction and causal analysis. In a causal analysis, the independent variables are regarded as 

causes of the dependent variable (Allison, 1999). 

 

Multiple polynomial regression (MPR) is a form of linear regression in which relationship between the 

independent variable x and the dependent variable y is modelled as an nth order polynomial. Multiple 

polynomial regression fits a linear relationship between the value of x and the corresponding 

conditional mean of y, and has been used to describe linear phenomena. Although polynomial 

regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the 

sense that the regression function E(y|x) is linear in the unknown parameters that are estimated from 

the data. For this reason, polynomial regression is considered to be a special case of multiple linear 

regression. The goal of regression analysis is to model the expected value of a dependent variable y 

in terms of the value of an independent variable (or vector of independent variables) x. In simple linear 

regression, the model: 

 

𝛾 = 𝑎0 + 𝑎1 𝑥 +  𝜀 (4) 

 

is used, where ε is an unobserved random error with mean zero conditioned on a scalar variable x. In 

this model, for each unit increase in the value of x, the conditional expectation of y increases by a1 

units. 

 

In general, we can model the expected value of y as an nth order polynomial, yielding the general 

polynomial regression model: 

 

𝛾 = 𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥
2 +  𝑎3 𝑥

3 + ⋯ + 𝑎𝑚  𝑥
𝑚 +  𝜀 (5) 

 

Conveniently, these models are all linear from the point of view of estimation, since the regression 

function is linear in terms of the unknown parameters a0, a1 ... a
m
. Therefore, for least squares 

analysis, the computational and inferential problems of polynomial regression can be completely 

addressed using the techniques of multiple regression. This is done by treating x, x
2
 ... x

m
 as being 

distinct independent variables in a multiple regression model. 

 

Although polynomial regression is technically a special case of multiple linear regressions, the 

interpretation of a fitted polynomial regression model requires a somewhat different perspective. It is 

often difficult to interpret the individual coefficients in a polynomial regression fit, since the underlying 

monomials can be highly correlated. The correlation can be reduced by using orthogonal polynomials. 

 

Polynomial regression is one example of regression analysis using basis function to model a 

functional relationship between two quantities. A drawback of polynomial bases is that the basic 

functions are "non-local", meaning that the fitted value of y at a given value x = x0 depends strongly on 

data values with x far from x0 (Magee, 1998). 
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The goal of polynomial regression is to model a nonlinear relationship between the independent and 

dependent variables (technically, between the independent variable and the conditional mean of the 

dependent variable). This is similar to the goal of nonparametric regression, which aims to capture 

nonlinear regression relationships. Therefore, nonparametric regression approaches such as 

smoothing can be useful alternatives to polynomial regression. Some of these methods make use of a 

localized form of classical polynomial regression (Isaac et al., 2012). 

 

The MPR model provides information regarding the influence of the combined interactions of the 

estimator variables on the response, the major conceptual limitation of the regression techniques is 

that one can only ascertain relationships, but never be sure about the underlying casual mechanism 

(Sahu et al., 2009 and Singh et al., 2010). 

 

Polynomial regression models are usually fit using the method of least square, because it is a 

standard approach to the approximate solutions of systems with more equations than unknown 

variables. But this method has not given good results as a cubic polynomial regression. During the 

method development, and after many different regressions approaches, the cubic polynomial 

regression gave the best results for the set of data used in the thesis.Even this method is very 

demanding and time consuming due to fact that several data transformation and conversion had to be 

done prior its application. The polynomial multiple regressions fitted the most of predicted results. 

 

4.4.3. Artificial neural networks (Multilayer perceptron) 

 

A neural network is a system of programs and data structures that approximate the operation of the 

human brain. The main challenge, in addition to acquiring sufficient field and analytical data to model 

the relationships between each, is to actually produce a modelling system that can handle a large 

number of input and output parameters. There are many statistical and expert system approaches 

capable of handling complex mathematical transformations of this nature, but one approach that is 

relatively easy to implement, reliable and popular for this type of work is artificial neural networks 

(ANNs) (Aitkenhead et al., 2012). These have been used extensively in environmental modelling 

where parameter modelling using large, noisy datasets has been a requirement. Their use in 

modelling soil characteristics is well demonstrated (Aitkenhead et al., 2007; Elshorbagy and 

Parasuraman, 2008; Anagu et al., 2009; Aitkenhead et al., 2012). 

 

The success of the method can be laid down to the following reasons: (A) They can model extremely 

complex systems and due to their nature can be used to model nonlinear natural systems (linearity in 

the sense of mathematical properties of additivity and homogenuosity); when using linear algebra (ie 

most of multivariate statistics) to describe nonlinear systems we always have to make an 

approximations; (B) There is no limitation with the dimensionality of the problem; it can be arbitrary, 

depending on the CPU speed and memory; (C) Due to well developed learning algorithms they are 

easy to use (Ţibret and Šajn, 2010; Ţibret et al., 2012) 

 

A neuron is a processing unit in a neural network. It is a node that processes all fan-in from other 

nodes and generates an output according to a transfer function called the activation function. The 

activation function represents a liner or nonlinear mapping from the input to the output and is denoted 

by σ(ξ). A neuron is linked tp other neurons by variable synapses (weights). Simple neuron model 

have been proposed by McCulloch and Pitts. The McCulloch and Pitts model, however, contains a 

number of simplifying assumptions that do not reflect the true behaviour of biological neurons (Figure 

17). 
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Figure 17: Biological neuron (left) and a mathematical model of McCulloch 

and Pitts neuron (right) 

 

 

The output of neuron is given by: 

 

𝜉 =  𝑤𝑖𝑥𝑖−𝑏 = 𝑤𝑇𝑥 − 𝑏
𝑛

𝑖=1
 (6) 

 

   𝑦 = 𝜎 (𝜉) (7) 

 

where𝑥𝑖 is the ith input, wi is the link weight from the ith input, w = (wi...wn)
T
,x = (x1...xn)

T
, b is a 

threshold or bias, and 𝑛 is the number of inputs. The activation function σ(ξ) is usually some 

continuous or discontinuous function mapping the real numbers into the interval (-1,1)  or (0,1) (Du 

and Swamy, 2006). 

 

Different function can be used as activation function but the most used is sigmoidal activation function. 

Standard sigmoidal activation function has the following form: 

 

𝜎 (𝜉) =  
1

1 + 𝑒−𝜉
 (8) 

 

There is only 1 output drawn on Figure 18, but the number of outputs can be arbitrary. There are also 

other types of neurons, such as neurons with radial basis activation function or neurons in 

topologically ordered computational maps, also called Kohonen maps and many others. In every 

neural network we can also find input neurons where the data is presented in the network and output 

units where we can read processed data. The interconnected network of these three basic units can 

be called neural network (Haykin, 1999; Kohonen, 2001). 

 

Multilayer perceptron (MP) is the earliest and the simplest neural network model. Rosenblatt used a 

single-layer perceptron for the classification of linearly separable patterns. The multilayer perceptrons 

can be used for the classification of linearly inseparable patterns, and can also work as universal 

approximators. MPs are feedforward neural networks (FNNs) with one or more layers of units between 

the input and output layers (Du and Swamy, 2006). 
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Figure 18: Multilayer perceptron architecture 

 

 

Based on the connection pattern (architecture), ANNs can be grouped into two categories feedforward 

networks, in which graphs have no loops, and recurrent (or feedback) networks, in which loops occur 

because of feedback connections. 

 

In the most common family of FNNs, neurons are organized into layers that have unidirectional 

connections between them. Different connectivity yield different network behaviors. Generally 

speaking, feedforward networks are static, that is, they produce only one set of output values rather 

than a sequence of values from a given input. Feedforward networks are memoryless in the sense 

that their response to an input is independent of the previous network state. Recurrent, or feedback, 

networks, on the other hand, are dynamic systems. When a new input pattern is presented, the 

neuron outputs are computed. Because of the feedback paths, the inputs to each neuron are then 

modified, which leads the network to enter a new state. Different network architectures require 

appropriate learning algorithms (Jain et al., 1996). 
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5. RESULTS AND DISCUSSION 

 

5.1. Reliability of analyses 

 

All samples and replicates were submitted to the laboratory in a random order. This procedure 

assured an unbiased treatment of samples and a random distribution of possible drift of analytical 

conditions for all samples. 

 

Sensitivity of the analysis, in the sense of the lower limit of detection for 254 samples, was adequate 

for 33 out of 36 determined elements, i.e. B (242 samples), S (137 samples) and Se (129 samples) 

were below the lower detection limit and were removed from the final database used in the statistical 

analysis, since their contents in the majority of analyzed samples were below the lower detection limit 

of the analytical method or on detection limit of the analytical method (Table 3). Exceptions are Ag and 

W because it has less than one third under DL, and is used in further statistical analyses, because of 

their high content grouped and clearly show certain geochemical trends. 

 

Geological standard materials DS7 (n=7), DS8 (n=5), OREAS45CA (n=7) and OREAS45PA (n=5) 

were used for estimating trueness (ACME Labs, 2010, 2011). Trueness of the analytical method for 36 

elements was estimated by calculation of relative systematic error between determined (XA) and 

recommended values (XP) of geological standards using following equation:  

 

T=
 XA - XP  

XP
 100 [%] (9) 

 

Most of the elements show very low deviations from the recommended range of values, i.e. the mean 

of all determined elements in the standards generally differs by less than 15% of the recommended 

values. Large absolute deviations were observed only for B, Mo, Sb and Na (Figure 19). 

Recommendation and analyzed values of the standard materials are listed in the Appendix E. 

 

Precision is a measure of repeatability of determining a parameter in the same sample regardless of 

deviation from the true value (Rose at al., 1979). Precision (P) was tested by relative differences 

between pairs of analytical determinations (x1, x2) of the same sample using equation: 

 

P=
2 X1 - X2 

 X1+X2 
 100 [%] (10) 

 

Fifteen(2010, 2011) randomly selected samples were replicated for estimation of precision. Precision 

was considered good, since of the 36 elements only Na,V, Se and S showed large deviations greater 

than 15%. A very large deviation (> 50%) shows only the analysis of Au (Figure 20). 

 

Estimation of trueness and precision of two analysed set of data had been performed by t-test 

(Harvey, 2000) (Table 4). According to the provided results of precission, it is clear that there is no 

significant differences between particular elements in both analysed sets of data (2010, 2011) but 

results of trueness showing several significances: Au, Hg, Sb, and Sr (DS7); Cr, Mn, Mo, and Sb 

(OREAS45PA); and Co, Na, and V (OREAS45CA). The results of analysis of duplicate samples for 

precision estimation are listed in the Appendix F. 

 

The reliability of analytical procedures was considered adequate for majority of analyzed elements for 

using the determined elemental contents in further statistical analyses. Four following elements Au, B, 

S and Se are removed from the further statistical analyses. 
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Table 3: Number of measurements under DL and above UL (n=254) 

 

 

Unit DL UL Min Max N (DL) N (UL) 

Ag mg/kg 0.1 100 <0.10 11 75 - 

Al % 0.01 10 0.62 3.8 - - 

As mg/kg 0.5 10000 3.7 590 - - 

Au µg/kg 0.5 100 <0.50 44 31 - 

B mg/kg 20 2000 <20 92 242 - 

Ba mg/kg 1 10000 14 1700 - - 

Bi mg/kg 0.1 2000 0.10 13 - - 

Ca % 0.01 40 0.070 16 - - 

Cd mg/kg 0.1 2000 0.10 14 - - 

Co mg/kg 0.1 2000 1.9 64 - - 

Cr mg/kg 1 10000 10 460 - - 

Cu mg/kg 0.1 10000 5.3 450 - - 

Fe % 0.01 40 0.98 19 - - 

Ga mg/kg 1 1000 2.0 10 - - 

Hg mg/kg 0.01 50 0.040 3.7 - - 

K % 0.01 10 0.060 0.50 - - 

La mg/kg 1 10000 2.0 40 - - 

Mg % 0.01 30 0.070 4.1 - - 

Mn mg/kg 1 10000 200 >10000 - 1 

Mo mg/kg 0.1 2000 0.10 17 - - 

Na % 0.001 5 0.001 1.0 - - 

Ni mg/kg 0.1 10000 4.0 500 - - 

P % 0.001 5 0.015 0.27 - - 

Pb mg/kg 0.1 10000 25 2800 - - 

S % 0.05 10 <0.050 4.4 137 - 

Sb mg/kg 0.1 2000 <0.10 88 5 - 

Sc mg/kg 0.1 100 0.70 11 - - 

Se mg/kg 0.5 100 <0.50 8.8 129 - 

Sr mg/kg 1 10000 4.0 320 - - 

Th mg/kg 0.1 2000 0.20 6.6 - - 

Ti % 0.001 5 <0.001 0.23 12 - 

Tl mg/kg 0.1 1000 0.10 2.5 - - 

U mg/kg 0.1 2000 0.20 3.7 - - 

V mg/kg 2 10000 <2.0 130 1 - 

W mg/kg 0.1 100 <0.10 16 98 - 

Zn mg/kg 1 10000 43 7100 - - 

 

DL – Detection limit; UL – Upper limit; Min – minimum (all samples), Max – Maximum (all samples); N 

(DL) – number of measurement under DL; N (UL) – number of measurement above DL 

 

 

In order to reduce a dimensionality of tables and images, beside the aforementioned four elements 

(Au, B, S and Se), following six elements Ca, K, Na, P, Sr, and U were eliminated from the further 

analysis, in case they are not showing a logical connection with other chemical elements or their 

tendency to form independent cluster or factors in the application of multivariate statistical analysis. So 

following 26 elements: Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Hg, La, Mg, Mn, Mo, Ni, Pb, Sb, Sc, 

Th, Ti, Tl, V, W and Zn have been used in further statistical treatments. 
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Table 4:Estimation of trueness and precision on the basis of t-test regarding to analysed set of 

samples 

 

 
Precision Precision DS7 DS8 OREAS45PA OREAS45CA 

 
(2010) (2011) (2010) (2011) (2010) (2011) 

Ag 0.04 N.S. -0.02 N.S. -1.59 N.S. -0.64 N.S. -1.37 N.S. -0.25 N.S. 

Al 0.07 N.S. -0.03 N.S. 1.04 N.S. -0.41 N.S. -0.93 N.S. 0.48 N.S. 

As 0.15 N.S. 0.01 N.S. 1.69 N.S. 1.72 N.S. 0.49 N.S. -0.07 N.S. 

Au -0.10 N.S. -0.81 N.S. -2.68 * -0.10 N.S. -1.78 N.S. -0.76 N.S. 

B – 
 

– 
 

-1.00 N.S. – 
 

– 
 

– 
 

Ba 0.02 N.S. -0.11 N.S. 2.11 N.S. -1.83 N.S. 0.19 N.S. -0.90 N.S. 

Bi -0.01 N.S. 0.21 N.S. 0.61 N.S. 0.61 N.S. – 
 

– 
 

Ca -0.01 N.S. -0.05 N.S. 0.29 N.S. -0.69 N.S. -1.30 N.S. -1.02 N.S. 

Cd 0.00 N.S. 0.00 N.S. -0.69 N.S. -0.15 N.S. -0.40 N.S. – 
 

Co 0.14 N.S. 0.23 N.S. -0.33 N.S. -0.95 N.S. 0.41 N.S. -3.34 * 

Cr 0.04 N.S. 0.09 N.S. 0.90 N.S. -1.21 N.S. -5.07 * -0.51 N.S. 

Cu 0.02 N.S. 0.13 N.S. -0.12 N.S. -0.57 N.S. -0.99 N.S. -0.15 N.S. 

Fe 0.01 N.S. -0.05 N.S. -0.23 N.S. -0.46 N.S. -0.96 N.S. 1.30 N.S. 

Ga 0.42 N.S. 0.40 N.S. -0.35 N.S. -0.20 N.S. -1.30 N.S. -0.22 N.S. 

Hg -0.01 N.S. 0.08 N.S. -2.52 * 0.00 N.S. -1.00 N.S. 0.41 N.S. 

K -0.05 N.S. -0.04 N.S. -0.38 N.S. -1.00 N.S. 0.57 N.S. -0.22 N.S. 

La -0.03 N.S. -0.13 N.S. 2.12 N.S. -0.37 N.S. -1.75 N.S. 0.61 N.S. 

Mg 0.02 N.S. 0.01 N.S. -1.25 N.S. -1.23 N.S. 0.57 N.S. 0.15 N.S. 

Mn 0.06 N.S. -0.03 N.S. -0.52 N.S. -0.29 N.S. -4.24 * -1.74 N.S. 

Mo 0.05 N.S. 0.00 N.S. 0.36 N.S. -1.08 N.S. 4.21 * -1.63 N.S. 

Na 0.08 N.S. -0.03 N.S. 2.20 N.S. -0.67 N.S. -0.23 N.S. 4.69 * 

Ni 0.02 N.S. 0.05 N.S. 0.17 N.S. 0.23 N.S. 0.18 N.S. -0.32 N.S. 

P 0.05 N.S. -0.14 N.S. -0.96 N.S. -0.65 N.S. -1.08 N.S. -1.61 N.S. 

Pb -0.01 N.S. -0.03 N.S. -0.27 N.S. -0.19 N.S. -0.82 N.S. 0.62 N.S. 

S 0.07 N.S. -0.09 N.S. 0.62 N.S. -0.50 N.S. – 
 

– 
 

Sb 0.04 N.S. -0.04 N.S. 4.59 * -0.61 N.S. 5.48 * – 
 

Sc -0.02 N.S. -0.16 N.S. -1.10 N.S. 0.76 N.S. -1.35 N.S. -2.66 N.S. 

Se -0.20 N.S. 0.50 N.S. 0.21 N.S. 0.03 N.S. -0.52 N.S. 0.17 N.S. 

Sr 0.04 N.S. -0.08 N.S. 2.71 * -0.21 N.S. -0.19 N.S. 0.87 N.S. 

Th -0.08 N.S. 0.13 N.S. 0.49 N.S. 0.67 N.S. 0.53 N.S. -0.84 N.S. 

Ti 0.04 N.S. -0.12 N.S. 0.31 N.S. -0.34 N.S. 1.13 N.S. -0.30 N.S. 

Tl 0.05 N.S. 0.27 N.S. -0.06 N.S. -0.36 N.S. – 
 

– 
 

U 0.02 N.S. – 
 

0.35 N.S. – 
 

-1.16 N.S. – 
 

V 0.04 N.S. -0.19 N.S. -0.47 N.S. -1.84 N.S. -1.80 N.S. -5.66 * 

W 0.00 N.S. -0.49 N.S. 0.91 N.S. 1.21 N.S. – 
 

– 
 

Zn 0.08 N.S. 0.03 N.S. -1.07 N.S. -0.75 N.S. -0.64 N.S. 0.49 N.S. 

 
NS – no significance; * – significance at p<0.05  
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Figure 19: Average absolute trueness of analysed chemical elements 

 

 

 
 

Figure 20: Precision of analysed chemical elements (n=15) 
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5.2. Basic chemical properties of sampling materials 

 

The methods of parametric and nonparametric statistics were used and normality of data distributions 

were tested (Snedecor and Cochrane, 1967). Test of normal and Log-normal distribution in soil 

samples is showed in table 5. According to the results of normality tests and visual inspection of 

histograms for 26 elements in 222 soil samples, only 3 elements (Sc, Th, and V) have natural 

distribution. Normality for the other elements (Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Hg, La, Mg, 

Mn, Mo, Ni, Pb, Sb, Ti, Tl, W and Zn) was considered using logarithms values. 

 

The distribution of data was tested for normality by skewness, kurtosis, Kolmogorov–Smirnov (KS) 

test, and Chi Square test (χ
2
). The shape of physical and chemical properties distribution was 

described by skewness. The skewness and kurtosis are positive for elements that have the normal 

distribution. Similar pattern is observed for the Log-normal distribution, only several elements have a 

negative skewness or kurtosis. The positive kurtosis indicates a relatively peaked distribution whereas 

the negative one indicates a flat distribution compared to the normal distribution. The significance level 

tested at p<0.01 and p <0.05. 

 

 

Table 5: Tests of Normal and Log-normal distribution – soil samples (n=222) 

 

 Normal Log-normal 

 Dis A E KS χ
2
 A E KS χ

2
 

Ag Log 3.61 16.05 0.37** 193.9** 1.09 -0.03 0.25** 28.0** 

Al Log 0.77 0.78 0.08N.S. 20.5* -0.17 -0.24 0.05N.S. 3.8N.S. 

As Log 5.20 30.62 0.30** 215.9** 0.44 0.60 0.07N.S. 8.2* 

Ba Log 1.95 2.89 0.31** 379.1** 0.89 -0.19 0.16** 48.1** 

Bi Log 3.47 13.87 0.35** 444.4** 1.41 1.84 0.24** 47.5** 

Cd Log 2.73 8.73 0.29** 312.4** 0.62 0.21 0.15** 26.7** 

Co Log 1.47 3.60 0.10* 39.7** -1.09 6.10 0.06N.S. 11.5** 

Cr Log 2.61 7.94 0.23** 104.8** 0.28 0.43 0.08N.S. 12.3** 

Cu Log 3.45 14.14 0.23** 135.5** 0.51 1.77 0.08N.S. 11.3** 

Fe Log 2.26 8.13 0.17** 52.8** 0.16 3.29 0.10* 15.3** 

Ga Log 0.66 0.50 0.15** 26.2** -0.22 -0.24 0.15** 16.3** 

Hg Log 3.04 9.07 0.33** 104.0** 1.34 1.01 0.18** 39.0** 

La Log 1.50 3.64 0.16** 38.9** -0.12 0.58 0.09N.S. 6.4N.S. 

Mg Log 2.51 7.82 0.20** 148.9** 0.08 -0.62 0.07N.S. 0.8N.S. 

Mn Log 2.42 6.24 0.21** 168.6** 0.44 1.22 0.10* 26.6** 

Mo Log 4.70 26.20 0.30** 71.9** 1.30 2.55 0.14** 22.2** 

Ni Log 1.99 4.46 0.19** 87.5** -0.49 1.14 0.07N.S. 4.4N.S. 

Pb Log 2.69 8.24 0.31** 303.8** 1.00 -0.21 0.18** 22.9** 

Sb Log 4.36 24.66 0.34** 264.8** 0.36 -0.17 0.11* 15.8** 

Sc N 0.73 1.79 0.08N.S. 13.2* -1.22 2.97 0.12** 33.6** 

Th N 0.42 0.61 0.08N.S. 4.0N.S. -1.31 2.54 0.13** 31.6** 

Ti Log 5.12 29.17 0.34** 231.0** 0.77 0.96 0.16** 2.2N.S. 

Tl Log 2.79 10.50 0.26** 26.9** 0.52 0.07 0.20** 7.6* 

V N 1.58 4.82 0.11* 18.3* -2.17 16.36 0.09* 17.2** 

W Log 5.18 29.58 0.38** 82.0** 1.83 2.85 0.30** 8.4* 

Zn Log 3.32 13.03 0.31** 58.3** 1.22 0.59 0.20** 14.3** 

 

Dis. – distribution (N  –  Normal, Log – Log-normal); A – skewness; E – kurtosis; KS – Kolmogorov-Smirnov test; χ2 – Chi-Square test; 

NS – no significance; * – significance at p<0.05; ** – significance at p<0.01  
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Table 6: Descriptive statistics of measurements (I) – soil (n=222), stream sediments (n=17) and 

attic dust (n=15) samples 

 

 

Material X XG Md Min Max P25 P75 S SX CV 

Ag Soil 0.69 0.18 0.10 <0.10 11 <0.10 0.30 1.5 0.099 213 

Ag S. Sediment 1.4 0.81 1.3 <0.10 3.6 0.30 2.6 1.2 0.28 83 

Ag A. Dust 2.4 1.64 1.4 0.50 7.4 0.70 3.5 2.3 0.60 96 

Al Soil 1.7 1.58 1.6 0.65 3.8 1.3 2.0 0.58 0.039 35 

Al S. Sediment 1.1 1.12 1.1 0.83 1.8 0.99 1.2 0.25 0.060 22 

Al A. Dust 1.0 1.01 1.0 0.62 1.3 0.95 1.1 0.15 0.039 15 

As Soil 45 27 32 3.7 590 12 45 74 5.0 164 

As S. Sediment 18 16 18 5.9 33 9.6 23 8.1 2.0 45 

As A. Dust 51 44 51 16 97 23 81 27 7.1 54 

Ba Soil 300 200 150 41 1700 110 270 340 23 113 

Ba S. Sediment 570 450 580 130 1300 210 820 350 85 62 

Ba A. Dust 40 34 30 14 87 19 54 24 6.1 60 

Bi Soil 0.68 0.48 0.40 0.10 6.1 0.30 0.50 0.84 0.057 124 

Bi S. Sediment 0.39 0.36 0.40 0.20 0.80 0.20 0.50 0.18 0.044 46 

Bi A. Dust 3.2 1.72 1.2 0.40 13 0.70 5.0 4.0 1.0 125 

Cd Soil 0.96 0.63 0.50 0.10 7.2 0.40 0.90 1.1 0.076 118 

Cd S. Sediment 0.74 0.70 0.70 0.40 1.6 0.60 0.80 0.29 0.070 39 

Cd A. Dust 3.9 3.1 2.7 1.4 14 2.1 3.8 3.4 0.87 86 

Co Soil 23 21 21 7.2 64 16 27 9.5 0.63 42 

Co S. Sediment 14 14 13 11 18 13 14 1.8 0.45 13 

Co A. Dust 13 11 10 6.2 33 8.2 11 8.4 2.2 64 

Cr Soil 83 64 66 10 460 39 89 72 4.8 87 

Cr S. Sediment 66 62 69 38 120 48 76 22 5.4 34 

Cr A. Dust 63 58 56 31 120 43 70 28 7.1 44 

Cu Soil 55 44 42 5.3 360 30 61 51 3.4 92 

Cu S. Sediment 68 61 64 27 120 38 89 30 7.3 45 

Cu A. Dust 150 120 100 46 450 79 170 120 30 76 

Fe Soil 3.5 3.3 3.3 0.98 10 2.9 3.8 1.2 0.081 35 

Fe S. Sediment 3.2 3.1 3.2 2.1 4.5 2.8 3.6 0.66 0.16 21 

Fe A. Dust 5.7 4.2 3.4 2.0 19 2.4 4.7 5.6 1.4 97 

Ga Soil 4.8 4.6 5.0 2.0 10 4.0 6.0 1.6 0.11 33 

Ga S. Sediment 3.2 3.2 3.0 3.0 5.0 3.0 3.0 0.66 0.16 21 

Ga A. Dust 3.3 3.3 3.0 2.0 5.0 3.0 4.0 0.72 0.19 22 

Hg Soil 0.30 0.15 0.11 0.040 2.7 0.08 0.23 0.49 0.033 166 

Hg S. Sediment 0.52 0.34 0.42 0.060 1.5 0.14 0.73 0.44 0.11 86 

Hg A. Dust 1.7 1.23 1.7 0.24 3.7 0.63 2.7 1.2 0.31 71 

La Soil 12 11 11 2.5 40 9.0 15 5.7 0.38 46 

La S. Sediment 6.8 6.6 6.0 6.0 12 6.0 7.0 1.7 0.41 25 

La A. Dust 6.6 6.3 6.0 3.0 10 5.0 8.0 2.0 0.52 31 

 

X –mean; XG – geometrical mean; Md – median; Min – minimum; Max – maximum; P25 – lower quartile; P75 – upper quartile; S – standard 

deviation; SX – standard error of mean; CV – coefficient of variation (%); Values of Al, Fe, Mg and Ti are in %, remaining elements in mg/kg 
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Table 7: Descriptive statistics of measurements (II) – soil (n=222), stream sediments (n=17) and 

attic dust (n=15) samples 

 

 

Material X XG Md Min Max P25 P75 S SX CV 

Mg Soil 0.63 0.41 0.42 0.070 4.1 0.19 0.78 0.67 0.045 106 

Mg S. Sediment 1.0 0.97 1.1 0.69 1.5 0.81 1.2 0.22 0.054 22 

Mg A. Dust 0.63 0.61 0.61 0.42 0.99 0.52 0.75 0.15 0.040 25 

Mn Soil 2200 1800 1600 200 10000 1200 2400 1700 120 80 

Mn S. Sediment 1900 1800 1800 1000 3500 1300 2300 760 190 40 

Mn A. Dust 2100 1600 1500 590 6200 910 2100 1900 480 87 

Mo Soil 0.77 0.56 0.50 0.10 7.9 0.40 0.70 1.0 0.068 131 

Mo S. Sediment 0.84 0.73 0.90 0.20 1.6 0.50 1.1 0.41 0.10 49 

Mo A. Dust 4.8 3.4 2.8 1.3 17 1.6 4.0 4.8 1.3 101 

Ni Soil 120 89 90 10 500 59 140 94 6.3 80 

Ni S. Sediment 78 75 78 49 130 60 88 23 5.5 29 

Ni A. Dust 79 71 66 36 140 43 120 37 9.5 47 

Pb Soil 190 93 62 25 1700 43 160 280 19 150 

Pb S. Sediment 240 190 220 46 570 120 340 150 37 64 

Pb A. Dust 820 490 380 140 2800 230 1100 920 240 112 

Sb Soil 5.3 1.48 1.1 <0.10 88 0.60 3.3 11 0.75 210 

Sb S. Sediment 14 8.7 14 1.0 39 2.6 21 11 2.8 80 

Sb A. Dust 27 20 19 4.3 80 9.7 36 23 5.9 85 

Sc Soil 4.3 4.0 4.2 0.70 11 3.4 5.2 1.7 0.11 38 

Sc S. Sediment 3.2 3.1 3.1 2.4 4.0 2.8 3.5 0.47 0.11 15 

Sc A. Dust 2.1 1.99 2.2 0.90 3.1 1.6 2.7 0.68 0.18 32 

Th Soil 2.7 2.4 2.5 0.40 6.6 2.0 3.4 1.1 0.072 40 

Th S. Sediment 1.9 1.83 1.9 1.1 2.2 1.8 2.0 0.25 0.061 14 

Th A. Dust 0.89 0.70 1.00 0.20 1.8 0.40 1.2 0.53 0.14 60 

Ti Soil 0.013 0.005 0.004 <0.001 0.23 0.002 0.008 0.031 0.002 239 

Ti S. Sediment 0.039 0.034 0.033 0.012 0.087 0.026 0.058 0.022 0.005 55 

Ti A. Dust 0.018 0.016 0.017 0.006 0.036 0.013 0.023 0.009 0.002 49 

Tl Soil 0.37 0.29 0.30 0.10 2.3 0.20 0.50 0.32 0.021 85 

Tl S. Sediment 0.19 0.17 0.20 0.050 0.30 0.10 0.30 0.087 0.021 46 

Tl A. Dust 0.70 0.50 0.40 0.10 2.5 0.30 0.90 0.66 0.17 94 

V Soil 43 40 40 <2.0 130 32 51 18 1.2 43 

V S. Sediment 37 36 37 26 49 30 40 7.1 1.7 19 

V A. Dust 39 38 41 20 61 29 47 11 2.8 28 

W Soil 0.26 0.10 0.10 <0.10 5.2 <0.10 0.10 0.69 0.046 262 

W S. Sediment 0.29 0.22 0.30 0.10 0.70 0.10 0.40 0.20 0.048 69 

W A. Dust 3.5 1.96 1.5 0.60 16 0.90 2.9 4.5 1.2 129 

Zn Soil 310 180 130 43 3100 98 260 460 31 146 

Zn S. Sediment 260 240 260 120 470 170 290 100 25 40 

Zn A. Dust 1800 1100 800 270 7100 540 1400 2200 560 122 

 

X –mean; XG – geometrical mean; Md – median; Min – minimum; Max – maximum; P25 – lower quartile; P75 – upper quartile; S – standard 

deviation; SX – standard error of mean; CV – coefficient of variation (%); Values of Al, Fe, Mg and Ti are in %, remaining elements in mg/kg 

  



Alijagić, J.: Application of multivariate statistical methods and artificial neural network for separation badrock 
background and influence of mining and metallurgy activities on distribution of chemical elements in the Stavnja 
valley (Bosnia and Herzegovina). PhD thesis. University of Nova Gorica, 2013. 
 

45 

Descriptive statistical parameters are used to describe all basic information of the data set included in 

the entire study. This method helps us to simply large amounts of data in a sensible way. Simpler 

summery data for soil, stream sediments and attic dust are provided in Tables 6 and 7. Values of Al, 

Fe, Mg, and Ti are expressed in percentages, but other 22 elements in mg/kg. Mean (X), geometric 

mean (XG), median (Md), minimum (Min), maximum (Max), lower quartile (P25), upper quartile (P75), 

standard deviation (S), Standard error of mean (SX) and coefficient of variation (CV) were determined 

for all data. 

 

Comparing the summarized data it is possible to see how concentrations of particular element are 

varying between the sampling media. Some concentrations are high (or even extremely high) in one 

media but not in two other sampling media, or opposite. This showing us meaning of presence various 

type of contamination, as well as various transport processes (such as water transport, 

atmospherically transport, mobility etc.) 

 

 

Table 8: Results of Analysis of Variance (ANOVA) regarding to sampling materials between 

determine zones (polluted and unpolluted), lithological units and soil layers 

 

 Soil Soil Soil A. Dust S. Sediment 

 F (Zone) F (Lito) F (Layer) F (Zone) F (Zone) 

n 222 222/154* 222 15 17 

Ag* 362.5** 2.4* 1.0
N.S.

 0.0N.S. 20.0** 

Al 5.9** 17.5** 5.1* 5.7* 1.8
N.S.

 

As 1.3
N.S.

 13.0** 0.3N.S. 0.0
N.S.

 2.9
N.S.

 

Ba* 118.4** 9.8** 3.0 N.S. 1.2
N.S.

 0.1
N.S.

 

Bi* 118.6** 3.9** 0.1 N.S. 0.1
N.S.

 14.6** 

Cd* 123.8** 3.7** 3.6
N.S.

 1.0
N.S.

 9.7** 

Co 11.3** 42.6** 6.0* 0.0
N.S.

 8.5* 

Cr 0.2
N.S.

 76.6** 1.1
N.S.

 1.2
N.S.

 4.3
N.S.

 

Cu* 46.6** 16.8** 0.3
N.S.

 1.9
N.S.

 8.4* 

Fe* 20.7** 9.4** 8.7** 0.4N.S. 12.5** 

Ga 37.2** 22.6** 3.3
N.S.

 1.2
N.S.

 3.4
N.S.

 

Hg* 180.0** 2.9** 0.3
N.S.

 8.2* 3.1
N.S.

 

La 2.3
N.S.

 6.5** 4.8* 0.4
N.S.

 0.2
N.S.

 

Mg 33.1** 58.5** 0.0
N.S.

 0.2N.S. 1.5
N.S.

 

Mn* 161.4** 3.9** 0.9
N.S.

 1.1
N.S.

 24.2** 

Mo* 73.8** 6.5** 0.8
N.S.

 4.5
N.S.

 10.3** 

Ni 0.0
N.S.

 63.5** 1.1
N.S.

 3.9
N.S.

 2.7
N.S.

 

Pb* 484.2** 5.8** 0.1
N.S.

 2.6
N.S.

 19.6** 

Sb* 170.7** 4.1** 1.8
N.S.

 0.0
N.S.

 20.3** 

Sc 0.4
N.S.

 14.0** 9.2** 1.0
N.S.

 8.4* 

Th 2.2
N.S.

 9.1** 26.2** 1.0
N.S.

 10.1** 

Ti 28.0** 33.1** 0.2
N.S.

 0.0N.S. 12.8** 

Tl* 49.2** 2.5* 0.9
N.S.

 4.3
N.S.

 10.7** 

V 1.3
N.S.

 37.7** 4.0* 1.4
N.S.

 3.3
N.S.

 

W* 129.4** 2.8** 0.5
N.S.

 0.1
N.S.

 12.3** 

Zn* 302.9** 3.7** 0.4
N.S.

 0.1
N.S.

 13.4** 

 

n – number of observation; F – ratio (ANOVA); NS – no significant; (* – significance at p<0.05; ** – 

significance at p<0.01. ). * – In the example of distribution of Ag, As, Ba, Bi, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Sb, 

Tl, W and Zn (automorphic soil) only samples from the Zone 2 (unpolluted area) were respected. 
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Figure 21: Distribution of F ratios (ANOVA) in soil between the determined zones 

regarding to group of elements (n=222) 

 

 

 
 

Figure 22: Distribution of F ratios (ANOVA) in soil between the lithological units 

regarding to group of elements (n=154) 
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To study the population differences between and within determined zones (Zone 1, 2a, 2b and 3) and 

defined lithological unit ANOVA method are provided (Table 8, Figures 8, 21 and 22). The 

development of the theory of ANOVA, the variance between means of determined zones and 

geological unit vs. the variance within each mean of particular element the F ratio (between/within) is 

calculated. Average concentration levels of particular elements for the soil depth are used because 

significant difference is not noticed. However, they are so small compared to ranges through the 

complete study area. 

 

It can be observed that statistically significant difference for all soil samples is between natural 

distribution and anthropogenic impact. Particular elements of the natural distribution generally showing 

a very low F ratio compare to the anthropogenic impact. Among the anthropogenically introduced 

chemicals, the lowest F ratios have Fe, Cu, Tl, and Mo (between 20 and 70). The highest F ratios 

have Zn, Ag, and Pb (between 300 and 500), what is several times higher than average ratio for this 

group of elements (Table 8, Figures 8 and 21). Completely different situation is provided by 

distribution of F ratio between isolated lithological units and particular chemical elements in the zone 2 

(unpolluted zone). Two highest ratios have Ni and Cr because their origin is completely natural and 

depends solely from the parental material (Table 8, Figures 8, and 22). 

 

Three summary tables that are providing average concentrations through the determined zones (1, 2a, 

2b and 3) in soil horizons (Table 9), average concentrations of elements in basic lithological units of 

topsoil (Table 10), and average concentration of elements in basic lithological units of subsoil (Table 

11) are represented. 

 

ER is measure for comparison and has been used for comparison between the determined zones and 

various sampling material. Figure 23 represents the ER between two zones, polluted Zone 1 and 

unpolluted Zone 2 in automorphic soil. This ER reveals concentration levels of particular elements 

between anthropogenic contamination and natural enrichment. Their ratio represents a level of human 

activities in study area. This comparison shows that the most of anthropogenic elements is strongly 

enriched in the Zone 1, especially the five following elements Ag, W, Sb, Pb, and Zn. Their ER is 

between 6 and 14 times higher, whereas natural elements only have between 1 and 2. They do not 

show significant deviation, and their distribution depends on the terrain geology. 

 

Similar observation is noticed comparing the soil from Zone 3 (alluvial soil) and Zone 2 (Figure 24). 

Alluvial soil represents an amount of transported material down the river. The results are showing that 

alluvial plains are depleted by chemical elements in topsoil, what is logical if we consider the fact that 

the ironworks Vareš do not operate last two decades and have not contributed additional 

contamination. Strongly enriched are Hg, Pb, Sb, and Ag, from 10 to 40 times. Most of anthropogenic 

elements have the ER between 5 and 15.  

 

Dividing the concentration of attic dust and topsoil, intensity of air transport of contaminants in the past 

is detected. The geogenic elements are depleted in the attic dust but in other hand the contaminants 

transported by atmosphere are more enriched. In the study area Tl, Zn, Cd, Pb, Mo, Ag, Hg, Bi, Sb, 

and W are showing enrichment in the attic dust between 2 to 4 times (Figure 25). 

 

And the last comparison, ER of alluvial soils (Zone 3) and stream sediments reveals different between 

former conditions and current river transport, because the stream sediment represent a material 

deposited on the alluvial plains during the flood periods. There is a particular enrichment of 

anthropogenic elements such as Ag, Zn, Pb, Mn, Tl, Cd, and Bi, which are enriched from 2 to 3.5 

times (Figure 26). From these ratios is possible to conclude that intensity of human impact is much 

lower than several decades ago. Equivalent to this, amount of transported contaminants is much less 

than during the intensive mining and smelting. 
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Table 9: Averageconcentrations of chemical elements according to determined zones (polluted 

and unpolluted) and soil layers 

 

 Zone 1 Zone 2a Zone 2b Zone 3 

 

Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil 

Ag 1.3 1.3 0.12 0.072 0.100 0.085 3.4 4.2 

Al 1.9 2.0 1.9 2.2 1.3 1.5 1.5 1.6 

As 29 31 8.9 9.5 69 79 37 39 

Ba 720 600 210 120 140 140 740 530 

Bi 1.2 1.4 0.35 0.31 0.37 0.37 1.5 1.9 

Cd 1.9 1.7 0.51 0.28 0.52 0.50 2.6 2.9 

Co 23 24 22 27 21 24 15 14 

Cr 92 92 100 120 63 72 72 69 

Cu 90 92 30 33 40 43 100 110 

Fe 4.4 4.6 2.8 3.3 3.0 3.5 3.6 3.8 

Ga 5.3 5.4 5.2 6.3 4.3 4.7 2.8 2.7 

Hg 0.46 0.44 0.11 0.078 0.12 0.13 1.4 1.3 

La 13 14 7.8 9.6 13 15 10 11 

Mg 0.99 1.0 0.83 1.0 0.24 0.24 0.89 0.89 

Mn 2600 2600 1400 1500 1300 1500 6500 7200 

Mo 1.6 1.5 0.40 0.34 0.49 0.50 1.4 1.4 

Ni 130 130 120 140 100 110 96 89 

Pb 400 410 60 50 52 51 680 800 

Sb 9.1 9.2 1.0 0.73 1.2 1.0 27 31 

Sc 4.1 4.4 3.1 4.1 4.4 5.2 4.0 4.2 

Th 2.6 3.0 1.3 2.1 2.8 3.7 2.0 2.4 

Ti 0.020 0.021 0.017 0.022 0.003 0.003 0.022 0.024 

Tl 0.55 0.57 0.19 0.21 0.30 0.34 0.65 0.72 

V 46 49 40 48 39 44 41 43 

W 0.81 0.78 0.069 0.059 0.066 0.058 0.56 0.53 

Zn 740 740 130 110 110 110 770 870 

 

Zone 1 – polluted area, automorphic soil, the upper part of the Stavnja valley (n=24); Zone 2a – unpolluted area, automorphic soil, 

the upper part of the Stavnja valley (n=27); Zone 2b – unpolluted area, automorphic soil, the lower part of the Stavnja valley 

(n=50); Zone 3 – polluted area, alluvial soil, the lower part of the Stavnja valley (n=10) ; Values of Al, Fe, Mg and Ti are in %, 

remaining elements in mg/kg 
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Table 10: Average concentrations of chemical elements according to basic lithological units – 

topsoil (0-5 cm) 

 

 

Clastites 

(JK) 

Clastites 

(T) 

Carbonates 

(T) 

Series 

(JK) 

Flysch 

(K) 

Clastites 

(Ol) 

Carbonates 

(M) 

Clastites 

(M) 

Terraces 

(Q) 

Alluvium 

(Q) 

Ag* 0.083 0.20 0.10 0.14 0.10 0.083 0.060 0.094 0.13 3.4 

Al 2.1 2.9 1.5 2.0 1.3 1.3 1.1 1.4 1.5 1.5 

As* 8.7 6.2 6.9 11.1 72.0 98.3 38.7 37.9 48.3 36.7 

Ba 170 240 200 290 120 90.5 87.2 140 250 740 

Bi 0.37 0.33 0.39 0.31 0.38 0.33 0.30 0.39 0.39 1.5 

Cd* 0.57 0.50 0.42 0.50 0.51 0.62 0.50 0.44 0.60 2.6 

Co 15.7 23.9 13.5 36.5 20.4 23.2 22.4 19.2 21.2 14.7 

Cr 54.5 68.4 31.7 220 50.9 96.5 83.0 43.8 66.6 72.4 

Cu* 30.7 19.6 17.4 42.3 43.4 36.9 29.8 34.2 40.8 100 

Fe* 2.9 3.5 2.0 3.3 3.0 3.2 2.6 2.9 3.1 3.6 

Ga 5.7 7.8 4.7 5.5 4.2 5.0 3.6 4.3 4.6 2.8 

Hg* 0.083 0.17 0.091 0.15 0.10 0.11 0.14 0.13 0.12 1.4 

La 6.3 7.3 10.8 10.5 13.3 14.3 11.2 11.1 14.6 10.4 

Mg 0.49 1.6 0.55 1.5 0.21 0.20 0.19 0.36 0.34 0.89 

Mn* 1500 1300 1200 1600 1500 1400 930 1100 1500 6500 

Mo* 0.46 0.28 0.33 0.44 0.46 0.52 0.36 0.58 0.57 1.4 

Ni 41.5 88.1 39.2 280 80.7 130 130 85.6 110 96.3 

Pb* 55.0 74.2 68.4 58.8 47.4 51.8 46.4 47.4 69.3 680 

Sb* 0.84 0.97 1.1 1.3 1.1 0.55 0.40 1.0 1.9 27.2 

Sc 0.84 6.1 2.5 4.8 4.3 5.0 3.9 3.8 4.6 4.0 

Th 1.2 1.1 2.1 2.1 2.7 2.6 2.1 3.0 3.2 2.0 

Ti 0.014 0.14 0.005 0.012 0.003 0.005 0.003 0.003 0.004 0.022 

Tl* 0.17 0.18 0.20 0.21 0.34 0.33 0.20 0.21 0.24 0.65 

V 46.0 88.8 27.1 51.7 41.2 50.8 32.6 24.8 36.1 41.5 

W 0.050 0.050 0.075 0.081 0.073 0.058 0.050 0.050 0.072 0.56 

Zn* 140 160 140 130 110 100 99.2 100 140 770 

 

Clastites (JK) – Jurassic and Cretaceous breccias and sandstones (n=6); Clastites (T) – Triassic clastites, spilite and tuff (n=4/2*); 

Carbonates (T) – Triassic limestone; (n=19/8*); Series (JK) – Jurassic and Cretaceous clastic carbonate series (n=16/8*); Flysch (K) – 

Cretaceous flysch (n=28/25*); Clastite (Ol) – Oligocene clastite complex (6); Carbonates (M) – Miocene carbonate series (n=5); Clastites 

(M) – Miocene clastic series (n=8); Terraces (Q) – Quaternary river terraces (n=9); Alluvium (Q) – Quaternary alluvium (n=10). * – In 

assessing the background of Ag, As, Ba, Bi, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Sb, Tl, W and Zn (automorphic soil) only samples from the Zone 

2 (unpolluted area) were respected; Values of Al, Fe, Mg and Ti are in %, remaining elements in mg/kg 
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Table 11: Average concentrations of chemical elements according to basic lithological units – 

subsoil (20-30 cm) 

 

 

Clastites 

(JK) 

Clastites 

(T) 

Carbonates 

(T) 

Series 

(JK) 

Flysch 

(K) 

Clastites 

(Ol) 

Carbonates 

(M) 

Clastites 

(M) 

Terraces 

(Q) 

Alluvium 

(Q) 

Ag 0.058 0.050 0.069 0.10 0.076 0.067 0.060 0.069 0.14 4.2 

Al 2.4 3.3 1.7 2.3 1.5 1.6 1.1 1.4 1.7 1.6 

As 9.0 5.4 7.3 12 82 110 41 41 54 39 

Ba 100 110 130 130 110 85 90 140 270 530 

Bi 0.27 0.20 0.38 0.28 0.39 0.33 0.28 0.38 0.38 1.9 

Cd 0.22 0.35 0.28 0.29 0.41 0.53 0.54 0.44 0.68 2.9 

Co 20 30 15 40 24 27 27 21 24 14 

Cr 66 80 33 240 59 110 97 45 74 69 

Cu 33 21 17 48 48 42 31 33 44 110 

Fe 3.5 4.5 2.5 3.9 3.6 3.7 3.0 3.1 3.5 3.8 

Ga 6.3 9.3 5.1 6.3 4.8 5.7 3.6 4.0 5.0 2.7 

Hg 0.077 0.065 0.060 0.097 0.11 0.12 0.23 0.13 0.12 1.3 

La 7.5 9.5 12 12 15 16 13 12 16 11 

Mg 0.56 1.8 0.58 1.7 0.21 0.23 0.17 0.37 0.34 0.89 

Mn 1600 1300 1200 1700 1600 1500 1100 1200 1700 7200 

Mo 0.40 0.20 0.28 0.37 0.46 0.48 0.40 0.54 0.59 1.4 

Ni 53 110 42 310 94 160 160 92 120 89 

Pb 42 63 67 42 44 51 48 46 71 800 

Sb 0.60 0.30 1.0 0.82 1.1 0.31 0.36 0.80 1.8 31 

Sc 3.3 7.4 2.9 5.4 5.2 6.3 4.8 4.0 5.3 4.2 

Th 1.8 1.7 2.7 2.7 3.5 3.8 3.2 3.7 3.8 2.4 

Ti 0.021 0.17 0.005 0.012 0.003 0.004 0.003 0.003 0.004 0.024 

Tl 0.17 0.20 0.23 0.24 0.40 0.40 0.18 0.23 0.27 0.72 

V 52 110 28 59 47 58 37 26 41 43 

W 0.050 0.050 0.063 0.069 0.062 0.050 0.050 0.050 0.061 0.53 

Zn 100 150 120 110 100 99 99 94 130 870 

 

Clastites (JK) – Jurassic and Cretaceous breccias and sandstones (n=6); Clastites (T) – Triassic clastites, spilite and tuff (n=4/2*); 

Carbonates (T) – Triassic limestone; (n=19/8*); Series (JK) – Jurassic and Cretaceous clastic carbonate series (n=16/8*); Flysch (K) – 

Cretaceous flysch (n=28/25*); Clastite (Ol) – Oligocene clastite complex (6); Carbonates (M) – Miocene carbonate series (n=5); Clastites 

(M) – Miocene clastic series (n=8); Terraces (Q) – Quaternary river terraces (n=9); Alluvium (Q) – Quaternary alluvium (n=10). * – In 

assessing the background of Ag, As, Ba, Bi, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Sb, Tl, W and Zn (automorphic soil) only samples from the Zone 

2 (unpolluted area) were respected; Values of Al, Fe, Mg and Ti are in %, remaining elements in mg/kg 
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Figure 23: Enrichment ratio of Zone 1 (polluted area – automorphic soil) versus Zone 2 

(unpolluted area – automorphic soil) 

 

 

 
 

Figure 24: Enrichment ratio of Zone 3 (polluted area – alluvial soil) versus Zone 2 (unpolluted 

area – automorphic soil) 
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Figure 25: Enrichment ratio of attic dust versus topsoil 

 

 

 

 
 

Figure 26: Enrichment ratio of alluvial soil versus stream sediment 
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5.3. Geochemical associations and their distributions 

 

The degree of chemical elements associationin soil was assessed with the linear coefficient of 

correlation r (Le Maitre, 1982) between their contents in the samples. It was qualitatively assumed that 

the absolute values of r between 0.5 and 0.7 indicate good association and those between 0.7 and 1.0 

strong association between anthropogenically distributed elements (Table 12). The correlation 

coefficients between naturally distributed chemical elements represent opposite situation. Only several 

good or strong correlations are showed in table 13. Based on a several stronger correlation 

coefficients (0.8 - 0.93) is possible to extract the group that associates Co, Ni and Cr. With this group 

relatively good correlation has Scandium. Second correlation that merges Ga and Al, has the matrix of 

correlation coefficient 0.79.  Tl is showing both distributions, natural and anthropogenic respectively. 
 

 

Table 12: Matrix of correlation coefficients (group of 14 selected principally anthropogenically 

distributed elements, n=222) 

 

Ag 1.00 

             Ba 0.83 1.00 

            Bi 0.86 0.74 1.00 

           Cd 0.80 0.69 0.79 1.00 

          Cu 0.70 0.61 0.77 0.67 1.00 

         Fe 0.45 0.46 0.53 0.42 0.77 1.00 

        Hg 0.84 0.69 0.80 0.74 0.74 0.47 1.00 

       Mn 0.74 0.60 0.69 0.70 0.70 0.49 0.70 1.00 

      Mo 0.77 0.71 0.80 0.75 0.78 0.65 0.74 0.67 1.00 

     Pb 0.94 0.81 0.86 0.86 0.65 0.45 0.82 0.73 0.76 1.00 

    Sb 0.87 0.79 0.77 0.78 0.65 0.42 0.75 0.69 0.80 0.88 1.00 

   Tl 0.57 0.43 0.65 0.71 0.54 0.44 0.48 0.63 0.61 0.62 0.55 1.00 

  W 0.86 0.78 0.87 0.75 0.77 0.58 0.81 0.65 0.84 0.86 0.82 0.54 1.00 

 Zn 0.92 0.83 0.89 0.85 0.72 0.57 0.81 0.74 0.80 0.96 0.85 0.65 0.89 1.00 

 

Ag Ba Bi Cd Cu Fe Hg Mn Mo Pb Sb Tl W Zn 

 

 

Table 13: Matrix of correlation coefficients (group of 13 selected principally naturally 

distributed elements, n=222) 

 

Al 1.00 

            As -0.25 1.00 

           Co 0.27 0.10 1.00 

          Cr 0.29 0.07 0.80 1.00 

         Ga 0.79 -0.17 0.38 0.24 1.00 

        La 0.15 0.53 0.21 0.14 0.17 1.00 

       Mg 0.69 -0.40 0.14 0.38 0.34 -0.18 1.00 

      Ni 0.19 0.22 0.82 0.93 0.16 0.22 0.29 1.00 

     Sc 0.28 0.43 0.60 0.57 0.29 0.45 0.03 0.65 1.00 

    Th -0.07 0.55 0.21 0.05 0.02 0.63 -0.29 0.18 0.41 1.00 

   Ti 0.46 -0.10 0.05 0.28 0.16 0.08 0.54 0.17 0.18 -0.26 1.00 

  Tl 0.22 0.52 -0.02 0.09 0.02 0.39 0.17 0.13 0.25 0.25 0.27 1.00 

 V 0.48 0.13 0.49 0.55 0.45 0.30 0.19 0.45 0.57 0.05 0.59 0.24 1.00 

 

Al As Co Cr Ga La Mg Ni Sc Th Ti Tl V 
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The hierarchical agglomerate clustering was pronounced for the combination of Pearson r distance 

with Ward’s method (amalgamation rule). Results of cluster analysis are showed in form of hierarchical 

dendrogram (Figure 27). The dendrogram of cluster analysis givesthe results for 26 remaining 

chemical elements and their mutual connecting to four groups. Firs group links Al, Ga, ti, Sc, and V, 

second group links Mg, Co, Cr, and Ni, third group links Fe, Cu, Mo, W, Ba, Ag, Sb, Hg, Mn, Bi, Zn, 

Cd, and Pb, and the last group links As, Tl, La, and Th. First two groups join on 75%, but third and 

fourth groups on 80%. These two subgroups join to each other at 100%. 

 

 

 
 

Figure 27: Cluster analysis dendrogram showing element relationship 

(n=222, 26 selected elements) 

 

 

In the factor analysis (FA), 222 samples of soil for 26 selected elements were considered. FA isolated 

five synthetic variables F1-F4, which are connected regarding to geochemical similarities, with 

principal total variability of 75% (Table 14). 

 

The Factor 1 (F1) is strongest and represents 38% of entire variability of remaining elements. The F1 

associate the high concentration of Pb, Zn, Hg, Cd, Cu, Bi, Ag, Sb, Mo, W, Mn, Ba, Fe, and Tl. The 

group represents chemical elements that are the most probably anthropogenically distributed, 

associated to the city Vareš (the main industrial and mine zone) and alluvial sediments found 

downstream of the river Stavnja. Three next factors, F2, F3, and F4 respectively, conduct elements 

that are most probably naturally distributed. F2 is the second strongest factor including 13.5% of entire 

variability. This factor associates Ni, Cr, Co, and Mg. F3 associates Th, La, As, and Sc, including 

10.4% of entire variability. The last factor is F4. This factor scores last four elements Al, Ti, V, and Ga, 

including 13% of entire variability (Table 14). 

  



Alijagić, J.: Application of multivariate statistical methods and artificial neural network for separation badrock 
background and influence of mining and metallurgy activities on distribution of chemical elements in the Stavnja 
valley (Bosnia and Herzegovina). PhD thesis. University of Nova Gorica, 2013. 
 

55 

Table 14: Matrix of dominant rotated factor loadings (n=222, 26 selected elements) 

 

F1 F2 F3 F4 Comm 

Pb 0.95 -0.08 -0.04 0.09 91.3 

Zn 0.94 0.08 -0.02 0.05 89.1 

Hg 0.92 -0.03 -0.07 -0.04 84.7 

Cd 0.91 -0.07 0.08 0.07 85.0 

Cu 0.91 0.22 0.11 -0.04 87.9 

Bi 0.89 0.01 0.04 0.04 79.5 

Ag 0.86 -0.10 -0.08 0.01 75.9 

Sb 0.85 -0.06 -0.08 -0.03 72.9 

Mo 0.83 0.18 0.08 -0.07 73.5 

W 0.81 0.23 0.00 -0.06 71.6 

Mn 0.75 -0.16 0.00 0.07 59.2 

Ba 0.73 0.08 -0.11 -0.05 55.5 

Fe 0.68 0.39 0.26 0.23 73.6 

Tl 0.57 -0.08 0.49 0.19 60.4 

      Ni 0.07 0.95 0.04 0.12 92.1 

Cr 0.08 0.93 -0.07 0.18 90.3 

Co -0.11 0.89 0.15 0.19 86.0 

Mg 0.21 0.54 -0.36 0.52 73.8 

      Th -0.05 0.03 0.77 -0.13 61.7 

La 0.01 -0.07 0.75 0.08 57.8 

As -0.01 0.04 0.71 -0.04 51.3 

Sc 0.00 0.36 0.62 0.46 73.3 

      Al 0.05 0.16 -0.02 0.88 80.7 

Ti 0.09 -0.06 -0.21 0.81 71.4 

V 0.08 0.30 0.25 0.80 80.3 

Ga -0.24 0.22 0.14 0.79 74.6 

Prp.Totl. 38.1 13.5 10.4 13.1 75.1 

Expl.Var 9.90 3.50 2.71 3.42 
 

Eigen. 10.02 4.86 2.61 2.05 

  

F1 ... F4 – Factor loadings; Com – Communality in %; Prp.Totl – Principal total variance in %; 

Eigen – Eigenvalues;Expl.Var – Expalanated variance; Red color represent anthropogenically 

distributed geochemical association 

 

The results of principal component analysis (PCA) (Figure 28) are providing a similar information as 

the results of factor analysis.  From the factor loading plot can be concluded even when the factor 

groups have been compared within each other (F1 vs. F2 and F1 vs.F3), aforementioned geochemical 

asociations are clearly agglomerated.  But same as in the factor analysis several elements show both 

distributions, natural and anthropogenic, respectively. Talium is one typical example, where several 

results (Tables 12 and 14, Figure 28) discover its both origin, but in this study an anthropogenic origin 

is prevailing compare to natural. Similar tendency can be noticed for Fe, Mg, and Sc. 

 

Distribution of F1 scores regarding to the determined zones provides very high concentration of Pb, 

Zn, Ag, Sb, Hg, Cd, W, Bi, U, Mo, Mn, Ba, Sr, Ca, Cu, Tl, Fe and As which are found around the city 

Vareš (Zone 1 – mining and industrial zone) (Figures 8 and 29 ). But the highest concentrations of 

those elements are determinate in the alluvial sediment (Zone 3). Distribution of F1 scores in all soil 
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samples according to the basic lithological units and soil layer. This distribution shows that the highest 

concentrations of those elements are again determinate in the alluvial sediment (Zone 3). If we only 

consider the samples from Zone 2 (unpolluted area) which represents background of automorphic soil 

we can see their low concentrations according to different lithological units (right). But again the 

highest concentrations are associated to the alluvial soil (Quaternary alluvium). 

 

 
 

Figure 28: Factor loadings plots: Factor 1 vs. Factor 2 (left) and Factor 1 vs. Factor 3 (right) 

 
 
According to the depth of sampling, there is no observed significant difference. In the area of the Zone 

1, those differences are minimal what can be attributed with strong anthropogenic influence. The 

higher values of F1 in topsoil are noticed on the sites of Zone 2, which are typically anthropogenically 

introduced chemical elements. In the Zone 3 (alluvial soil) is reverse situation. Increased values of F1 

are found in subsoil (Figure 29).The background valus include the automorphic soil from the Zone 2. 

Their values are marked with dark red and green colour, and their concentrations are at some 

lithological units similar or lower but much lower in alluvioum and Jurassic and Cretaceous clastic 

carbonate series. Distribution of F1 scores in soil according to the river distance showing that the 

increased concentrations are found almost along the entire river valley (Figure 30). Rapid increase of 

elements is noticeable around the mines and ironwork, but once again the increased values are found 

in alluvial sediments.  

 

Distribution of F2 scores according to the depth and determined zones is showing opposite situation 

than F1 (Figures 8 and 31). Concentration of Cr, Co, Ni, and Mg are almost the same in Zone 1, 

because they do not depend on the parental rocks in that part of study area. But in Zone 2 their 

concentrations are increase in subsoil, in depth that is closer to the parental material. They decreased 

values are found in alluvial sediments, this means that some amount of those elements is transported 

down to the river. 

 

Distribution of F2 scores according to the isolated lithological unitsclearly shows that the highest 

concentration of Cr, Ni, Co, and Mg are found in the Jurassic and Cretaceous clastic carbonate series. 

Those elements are introduced in the environment during natural processes, processes of weathering 

and erosion. This can be explained with the fact that concentrations are usually higher in deeper soil 

horizons of each isolated lithological unit, except in Quaternary alluvium.  
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Figure 29: Distribution of Factor 1 scores (Pb, Zn, Hg, Cd, Cu, Bi, Ag, Sb, Mo, W, Mn, Ba, Fe and 

Tl) through the determined zones (left) and isolated lithological units (right) in soil layers. 

Darked coloured bares represent an assessment of background values in automorphic soil of 

Zone 2 (unpolluted area) 

 
 

 
 

Figure 30: Distribution of Factor 1 scores (Pb, Zn, Hg, Cd, Cu, Bi, Ag, Sb, Mo, W, Mn, Ba, Fe and 

Tl) in soil according to the river distance 
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Figure 31: Distribution of Factor 2 scores (Ni, Cr, Co and Mg) through the determined zones 

(left) and isolated lithological units (right) in soil layers 

 

 

Values of F3 scores (Th, La, As, and Sc) according to the zones are showing similar observation as 

the previous Factor score. In all three zones their concentrations are increased in subsoil. The highest 

concentrations are found in Zone 2b (Figures 8 and 32). Their distributions are increasing to the 

downstream, and highest values are found in Oligocene clastite complex, than in Cretaceous flysch 

and the Quaternary river terraces. Even for the distribution of F2 is characterized that increased 

values are found in subsoil of all isolated lithological units. Very interesting increase in background 

values is noticed through the Zone 1 and especially in Zone 2. In the main industrial zone background 

concentrations are lower comparing to concentration of automorphic soil, but concentration of Th, La, 

As, and Sc in all alluvial soil are decreased compering to the automorphic soil of Zone 2. 

 

Distribution of F4 scores (Al, Ti, V, and Ga) according to the depth, the determined zones and the 

main lithological units are provided in Figure 33. It is very interesting that their concentrations are not 

varying a lot between the soil horizons. Significant difference is observed only in the Triassic clastites, 

spilite and tuff. Their distribution is strongly affected by weathering processes, same as in the two 

previous factors. 

 

Beside the four main patterns of geochemical associations also exist two secondary associations with 

very weak correlations, Ca and Sr (high concentrations related to the Miocene Carbonates and 

Quaternary alluvium), and P and K, enriched in topsoil, but without clear spatial distribution pattern. 

According to the rule that for association is needed minimal 3 elements, these two sub-associations 

are not concerned as particular geochemical groups. 

  



Alijagić, J.: Application of multivariate statistical methods and artificial neural network for separation badrock 
background and influence of mining and metallurgy activities on distribution of chemical elements in the Stavnja 
valley (Bosnia and Herzegovina). PhD thesis. University of Nova Gorica, 2013. 
 

59 

 
 

Figure 32: Distribution of Factor 3 scores (Th, La, As, Sc and Tl) through the determined zones 

(left) and isolated lithological units (right) in soil layers. Darked coloured bares represent an 

assessment of background values in automorphic soil of Zone 2 (unpolluted area) 

 

 

 
 

Figure 33: Distribution of Factor 4 scores (Al, Ti, V, Ga and Mg) through the determined zones 

(left) and isolated lithological units (right) in soil layers  
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5.4. Linear mathematical methods vs. artificial neural networks (ANN-MP) 

 

5.4.1. (Geo) Spatial data 

 

Collecting of geospatial data have already begun with data acquisition. From the land use map and 

Digital Elevation Model (DEM) many geospatial data had been sourced and later used in modelling. 

The main purpose of use such parameters (data), is helpful in preparation of spatial distribution of 

particular elements as a final product. Geochemical maps, as finial products are necessary in 

understanding both, natural and anthropogenic processes. 

 

Due to high cost and time-consuming nature of soil sampling, research in developing methods for the 

creation of soil maps from sparse soil data is becoming increasingly important. In recent years, the 

development of prediction methods (linear and nonlinear) that use secondary attributes sourced from 

the DEM, land use, and remote sensing in combination with sparse and expensive soil measurements 

has been sharpening focus of research. Consequently, the potential for using such information to soil 

mapping at the withinfields extent is greater than ever before. Appling various modelling techniques 

different prediction methods for soil prediction were compared, but we also choose the best 

combination of prediction method and secondary information. Various modelling techniques help us in 

reconstruction simultaneously different processes that influenced the entire study area. They main 

purpose is not only the isolation of hotspots with highest concentrations, but they are providing a 

spatial distribution pattern of particular trace elements. Simultaneously they distinguish natural and 

anthropogenic influences as well as transportation pattern (such as atmospheric or water transport). 

Studying aforementioned fact, it will help us in better interpretation and understanding processes that 

happened in some certain period time that they are related to. 

 

All aforementioned data were used for preparing two spatial distribution models using two predicting 

methods, modelling by Multiple Polynomial Regression (MPR) and Artificial Neural Network - 

Multilayer Perceptron (ANN-MP), respectively. For both modelling methods a recall grid has been 

used. The whole study area is divided to 50 x 50 m grid. Total number of recall points is 41.471. 

Beside the standard position parameters each particular recall point is also described by some new 

geospatial parameters (Figures 13 - 15). The both methods were treated by same conditions and 

same software packages, Statistica 11 (Stat Soft Inc., 2012) and Surfer 11 (Golden Software Inc., 

2012). The segment Kriging (SK) is linear method and concerns the sparse measured data only. 

 

Modelling by ANN-MP had been done by using a huge number of input data, 240 of hidden units and 

25 train networks. Appling for the best model we try to change some input data, number of neurons, 

as well as the number of training networks. Our experience showed that more neurons and more 

architecture are giving better results. Models were constructed for each particular element, then for 

groups of element extracted by factor analysis. Each particular model is trained to 25 networks but 

only 5 logical networks have been retained, and finally an average model of retained 5 networks has 

been calculated. Each training model contain summery table with following parameters: Training 

perfection, Test perfection, Validation perfection, All perfection, Training error, Test error, Validation 

error, Training algorithm, Hidden activation, and Output activation. Modelling by MPR is much more 

difficult than ANN-MP. Many data conversion, corrections and transformation had to be done priory we 

get useful models. The main reason that we used so many different input data lies in the fact that this 

method is very demanding compare to the ANN-MP. 

 

Developedmethods and procedures, especially ANN-MP, MPR as a control method, and SK as 

modified, worldwide successfully established methodhave been usedto predict theconcentrationof four 

leadingelementsPb, Ni, Ti, andAs from already identifiedgeochemicalassociation.Furtherprocessingof 

the factorscores valuesareavoidedbecause they representthe new syntheticvariables arecalculatedand 
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presented asthe standardvalue, which means thatthosemethodscan determinerelativeenrichment 

relations only. In any case,withany certainty, we cannot judgetheprediction of absolutevalues. 

 

The essence ofwholeapproachis thatunder the same conditionsallthreetested methodsshould 

givesome stabledistribution results ofthe anthropogenicallyenrichedelements, what was 

theprimarygoal of this research, as well asnaturalenrichment. The expected resultsmust bestablein all 

cases. Procedures, approach, preparing data andcalculations weredevelopedso longuntil they become 

stable. The stable procedures are procedures that under the same conditionscorrectlypredict 

thedistributionof elementsthat represent thegeochemicalcharacteristics of landscape. Estimation of 

reliability of predictions and model applicability lies in fact that all given models are repeatable. 

Sodevelopedprocedures are notrandomorspecific toa particular itemoran isolatedarea, but such 

modelcanbe usedanywhere, even inthe distribution ofsomeotherobservations. Wecriticallyevaluate 

themethodsaccording to thesignificance of theappliedtransformations, similarity between models, as 

well as stabilityof predictions. Basically this represents thebiggestcontribution to the developmentof 

science. 

 

Sincecomputer equipmentallowing us to prepare a very largenumber of solutionsinreal time, we used 

the principle which has been used for knotting the Enigma coding system (the Germancoding 

systemin theSecond World War). The principle is very simple. Discardillogicalsolutionsandfocus 

onthose whoare logical. The basic principle (principle of Ockham cat) has applied: everything 

thathappensaround usmust belogicaland indeedsimple. 

 

 

5.4.2. Stability and significance of models 

 

Predictivedistributionsof the four elements, which representthe dominantgeochemicalpattern ofthe 

study area, have been reported.Briefly, thedistribution ofPbrepresentsthe impact of miningand 

smelting, distributions of Ni and Ti represent an influenceorlithology ornaturaldistributions. But the 

most interestingis "vague" naturaldistribution ofAs,which is not expected andrepresents a realscientific 

challenge. 

 

The most important fact is that all three prediction methods SK, ANN-MP, and MPR predict real values 

precisely and not just some relative relationships. The first attempts with artificial intelligence were 

performed on the factor scores, expressed as standardized values. The first testing methods were 

based on the relative values which correspond to the true distributions. Much later the real 

concentrations of elements have been predicted. For this crucial step, lots of experience is needed. 

Particularly difficult was the MPR method. This linear method is very demanding method, and for its 

development is needed more time than for artificial inteligence. Table 15 provides basic statistical 

parameters of raw vales and predicted values of all three methods (SK, MPR, and ANN-MP). The 

results confirm the previous assumptions. Work with raw values in linear methods does not bring the 

desired results, because the minimal values are obtained by linear polynomial methods, SK and MPR 

are negative. For Pb and Ti, the negative values are on 25 percentile, which is in our case about 

10.000! Comparing the average values between raw data and predictions can be concluded that the 

averages of raw data are the highest. ANN-MP is giving slightly lower values. But with should be 

careful, because the high average values are result of concentrated sampling design in area of large 

human impact. High natural values of Ni and Ti are consequence of weathering processes of parental 

material, and the sampling grid is concentrated at some places as well. Their detailed description will 

be discussed later in following chapter.  
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Table 15: Comparison between the statistical parameters of raw data (n=111) and predicted 

values (n=41471) 

 

 

Method Transformation X Md Min Max P10 P90 P25 P75 

As Raw data Normal 45 33 3.9 550 7.5 70 12 45 

As SK Normal 59 38 2.2 490 6.6 130 14 64 

As MPR Normal 58 50 -150 250 5.0 120 22 88 

As ANN-MP Normal 55 47 8.8 240 16 100 27 73 

As Raw data Log-normal 27 33 3.9 550 7.5 70 12 45 

As SK Log-normal 30 35 4.6 450 7.3 90 13 56 

As MPR Log-normal 26 34 0.08 310 6.3 72 14 50 

As ANN-MP Log-normal 27 36 3.0 100 8.3 60 15 49 

As Raw data Box-Cox 26 33 3.9 550 7.5 70 12 45 

As SK Box-Cox 28 35 4.6 450 7.3 88 13 55 

As MPR Box-Cox 25 33 0.18 390 6.4 70 13 49 

As ANN-MP Box-Cox 26 34 4.3 100 8.5 58 14 47 

Ni Raw data Normal 120 91 11 490 34 230 61 140 

Ni SK Normal 110 87 20 440 38 200 61 140 

Ni MPR Normal 110 93 -160 440 32 230 63 120 

Ni ANN-MP Normal 100 77 44 390 60 210 66 120 

Ni Raw data Log-normal 89 91 11 490 34 230 61 140 

Ni SK Log-normal 86 83 18 430 36 200 58 130 

Ni MPR Log-normal 79 79 9.0 890 34 200 52 110 

Ni ANN-MP Log-normal 80 77 20 290 33 180 63 120 

Ni Raw data Box-Cox 91 91 11 490 34 230 61 140 

Ni SK Box-Cox 87 83 19 430 36 200 58 130 

Ni MPR Box-Cox 81 80 7.7 800 34 210 53 110 

Ni ANN-MP Box-Cox 82 77 26 270 36 190 64 120 

Pb Raw data Normal 190 62 26 1700 35 470 42 160 

Pb SK Normal 100 55 6.8 1700 36 230 42 79 

Pb MPR Normal 93 58 -410 1200 -63 290 -10 150 

Pb ANN-MP Normal 90 54 -100 1600 10 190 31 87 

Pb Raw data Log-normal 94 62 26 1700 35 470 42 160 

Pb SK Log-normal 65 54 27 1600 36 180 42 73 

Pb MPR Log-normal 59 48 3.7 2100 32 150 38 76 

Pb ANN-MP Log-normal 52 41 26 1900 31 120 34 64 

Pb Raw data Box-Cox 72 62 26 1700 35 470 42 160 

Pb SK Box-Cox 56 52 27 1600 36 150 41 69 

Pb MPR Box-Cox 53 47 11 2300 35 120 40 70 

Pb ANN-MP Box-Cox 50 45 27 2300 32 120 37 65 

Ti Raw data Normal 0.013 0.0035 0.0005 0.22 0.0015 0.027 0.0025 0.0080 

Ti SK Normal 0.011 0.0034 -0.001 0.19 0.0020 0.018 0.0027 0.0053 

Ti MPR Normal 0.014 0.0084 -0.12 0.32 -0.0094 0.033 -0.0015 0.019 

Ti ANN-MP Normal 0.0083 0.0006 0.0005 0.18 0.0005 0.015 0.0006 0.0064 

Ti Raw data Log-normal 0.0049 0.0035 0.0005 0.22 0.0015 0.027 0.0025 0.0080 

Ti SK Log-normal 0.0037 0.0032 0.0006 0.18 0.0016 0.0093 0.0025 0.0045 

Ti MPR Log-normal 0.0030 0.0029 0.0001 0.23 0.0010 0.0089 0.0020 0.0045 

Ti ANN-MP Log-normal 0.0035 0.0028 0.0010 0.40 0.0016 0.011 0.0019 0.0049 

Ti Raw data Box-Cox 0.0042 0.0035 0.0005 0.22 0.0015 0.027 0.0025 0.0080 

Ti SK Box-Cox 0.0034 0.0031 0.0006 1.2 0.0015 0.010 0.0024 0.0044 

Ti MPR Box-Cox 0.0027 0.0027 0.0001 0.79 0.0012 0.0076 0.0019 0.0041 

Ti ANN-MP Box-Cox 0.0030 0.0027 0.0010 0.051 0.0017 0.0081 0.0018 0.0048 
 

X –mean; Md – median; Min – minimum; Max – maximum; P25 – P75 – quartile range; P10 – P90 – 10-90 percentile range; Values of Ti are 

in %, remaining elements in mg/kg  



Alijagić, J.: Application of multivariate statistical methods and artificial neural network for separation badrock 
background and influence of mining and metallurgy activities on distribution of chemical elements in the Stavnja 
valley (Bosnia and Herzegovina). PhD thesis. University of Nova Gorica, 2013. 
 

63 

The quality of givenpredictions, is examinedwithregression(cubic polynomial) 

betweenpredictedandobservedvalues. It is clear thatthis applies only tothe method ofANN-MP 

andMPR that estimate content according to the spatial parameters(Table 16). A feature for segment 

kriging cannot be verified because this method uses a linear variogram and the method itself does not 

depend on spatial parameters. These distributions are only affected by changes in concentrationand 

distancebetween the observations. Sosignificance of themodelisalways 100%, theoreticallyof course. 

 

 

Table 16: Regression between observed and predicted values (n=111) according to used 

prediction method and data transformation 

 

 

Transformation Method R D (%) F ratio 

As Normal ANN-MP 0.48 23 10 

As Log-normal ANN-MP 0.78 62 57 

As Box-Cox ANN-MP 0.79 63 59 

Ni Normal ANN-MP 0.87 76 120 

Ni Log-normal ANN-MP 0.89 80 140 

Ni Box-Cox ANN-MP 0.85 73 95 

Pb Normal ANN-MP 0.99 97 1200 

Pb Log-normal ANN-MP 0.97 94 570 

Pb Box-Cox ANN-MP 0.93 87 240 

Ti Normal ANN-MP 0.98 96 890 

Ti Log-normal ANN-MP 0.84 70 84 

Ti Box-Cox ANN-MP 0.73 54 62 

As Normal MPR 0.59 35 19 

As Log-normal MPR 0.78 60 55 

As Box-Cox MPR 0.79 62 59 

Ni Normal MPR 0.90 80 220 

Ni Log-normal MPR 0.90 81 160 

Ni Box-Cox MPR 0.90 81 160 

Pb Normal MPR 0.97 94 540 

Pb Log-normal MPR 0.95 90 510 

Pb Box-Cox MPR 0.94 88 260 

Ti Normal MPR 0.96 92 410 

Ti Log-normal MPR 0.84 70 83 

Ti Box-Cox MPR 0.78 60 54 

 

R – correlation coefficient (cubic polynomial regression), D (%) – determination coefficient (%); F – ratio 

(ANOVA test) 

 

 

Comparison of two prediction methods (ANN-MP and MPR) of four selected elements (As, Ni, Pb, and 

Ti) three data transformations (Normal, Log-normal, and Box-Cox) have been performed. The 

regression between observed and predicted values has been calculated by polynomial regression 

coefficient (R), determination coefficient (D) expressed in (%), and F ratio, respectively (Table 16). 

Even in some cases the R and D are showing very significant correlation coefficient (even greater than 

0.85) but they distributions are either scatteredin plots or the scatterplots itself aremuch skewed. 

According to the statisticalsignificance it seems that the presentedpredictionmodels, whatever on used 

transformation, their F test demonstrate quite important statistical significance. But those tests should 

be approached with some attention. Their significance should be proven by different methods, 

otherwise it can rapidly lead to some wrong interpretation. Due to this fact, it was assumed that the 
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model is significant only if a regression coefficient R is higher than 0.75 and determination coefficient 

D > 50%. In case that R is higher than 0.90 and D > 80%, we talk about high significance. The 

correlation coefficientis calledregression coefficientin the text, since it is nota simplecorrelation 

coefficient ofthe straight linea+bxbutthe cubicpolynomialcorrelation coefficient(a+bx+cx
2
+dx

3
). The 

best predictions according the transformations (Table 16, Figures 34 and 35) for both methods are 

related to the lead distribution, element introduced into environment by human activities. It can be 

explained due to fact that the structure of geospatial data was primarily designed to predict the 

anthropogenic distributions, but the models are successful solved the natural distributions of Ni and Ti 

with high significance as well. But Arsenic is showing the lowest significance and prediction of its 

distribution is very vague (Table 16, Figures 34 and 35). 

 

According to the results from Table 16 can be concluded that the predictions obtained with MPR are 

better that predictions obtained by ANN-MP. But this information should be treated with reserve, 

because the method of artificial intelligence has developed first and gave very good results. MPR 

method has been developed in order to prove the artificial intelligence as well its superiority. But it was 

terrible wrong. The linear methods are extremely useful too. But what is the difference? ANN-MP 

obtaines a quite highly significant results with a small number of input data (only several geospatial 

parameters) but in other hand the MPR is very demanding method and work with this method need 

much more mathematical knowledge and much more geospatial data. This is a main difference 

between two aforementioned methods. 

 

Before application of both methods, data transformation is essential, and special attention was paid. 

This prepreparation part is time consuming but necessary. In many literatures is noted that the data 

transformations are necessary to adjust a cloud of data to Gaussian (normal) distribution or by 

portioning the data, especially the use of multivariate statistical methods (Rose et al., 1979; 

Pawlowski-Glahn and Egozcue, 2006;Rasmussen et al., 2001; Pawlowski-Glahn et al., 2007) or MPR 

based on parametric statistic. Inpractice, however,the transformationis usedthatcalculated resultsdo 

not gobelow zero.It isveryhard to imagine thenegative values of any trace element.Mathematically it is 

possible. Practicallymost of thetopologicalequations fail in case of huge observations variability over a 

short distance. This means thattheinterpolationsinan environment of lowvalues, 

onehighvaluecausesextreme deviations, in 2D projection known as a ―Bull’s eye effect‖ (circles with 

verylowvalues,next toextremely high values). That problem has been successfully solved using the 

data transformation. This applies particularly for the natural logarithm or decade logarithm because it 

is clear that antilogarithm values cannot be below zero.  

 

The prediction significance has been checked between following transformation: untransformed data, 

logarithm base 10 (most common method), and Box-Cox transformation, which is quite complex, but 

much better than the previous two. What is advantage of the Box-Cox transformation compare to 

logarithmic data? Rose et al., 1979 is mentioned that the main elements are normally distributed, but 

the trace elements have lognormal distribution. In general is true.For simplicity in calculations one 

transformation for all variables has been used, but feature distribution is verified by tests already 

mentioned in Chapter 4. Raises at the same time the question of the method reliability, since not all 

distributions at all levels are under the same rules. The Box-Cox transformation actually adjusts data 

to the Gaussian distribution, is mathematically very complex, specific for each observation such as the 

distribution of elements, but it gives much better results. 
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Figure 34: Regression plots of predicted versus observed values of Lead according to 

predicting methods and transformations; ANN-MP (A – Normal, B – Log-normal, C – Box-Cox) 

and MPR (D – Normal, E – Log-normal, F – Box-Cox) 

 

 

Figures 34 and 35 are providing twoextreme eventssuch asPb distribution, the best predicted by both 

methods, and vague distribution of As, the least predicted distribution by ANN-MP and MPR, 

respectively. It is clear fromFigure 34 (A and D) that regressionsbetweenobservedandpredictedvalues 

presented with untransformed data (normal values) is practically useless, because the majority of data 

is concentrated in area of low values and converging toward the high. The regression line is influenced 

by several extreme values only. The logarithmic transformation slightly improve the results (Figure 34 

– B and E), but the most stable regression is obtained by Box-Cox transformed data (Figure 34 – C 

and F). 

 

Similarly is with evaluation of prediction stability for the distribution of As. Correlation diagrams (Figure 

35 – A and D) are showing that real effective connection between observed and predicted values for 

normal values do not exist. After using the logarithmic and Box-Cox data transformation the prediction 

stability models are significantly improved (Figure 35 – B, C, E, and F) for both methods. Actual power 

connection shown with the determination coefficient D (Table 16) confirms the assumption. 

 

According the all aforementioned facts can be concluded that data transformation is necessary, can 

be logarithmic in some superficial or fast treatment, but the Box-Cox are much better, and are 

available in various software. Work with raw data, especially if they are highly asymmetric can lead to 

some wrong conclusions and wrong data interpretation. 
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Figure 35: Regression plots of predicted versus observed values of Arsenic according to 

predicting methods and transformations; ANN-MP (A – Normal, B – Log-normal, C – Box-Cox) 

and MPR (D – Normal, E – Log-normal, F – Box-Cox) 

 

 

 

Table 17: Regression of predicted values between the data transformations within a prediction 

models in range of 0.1 – 99.9 percentiles (n=41388) 

 

  

  Normal vs. Log-normal   Normal vs. Box-Cox Log-normal vs. Box-Cox 

 

Method R D (%) F ratio R D (%) F ratio R D (%) F ratio 

As SK 0.97 93 1.9E5 0.96 92 1.6E5 1.00 100 6.0E7 

Ni SK 1.00 99 2.2E6 1.00 99 2.6E6 1.00 100 2.6E8 

Pb SK 0.98 96 4.5E5 0.95 89 1.1E5 0.99 99 1.3E6 

Ti SK 0.79 63 2.3E4 0.98 96 3.0E5 0.93 87 8.9E4 

As MPR 0.83 68 3.0E4 0.81 65 2.6E4 1.00 100 1.5E7 

Ni MPR 0.95 90 1.3E5 0.96 91 1.5E5 1.00 100 2.9E7 

Pb MPR 0.82 67 2.8E4 0.73 53 1.5E4 0.97 94 2.3E5 

Ti MPR 0.79 62 2.2E4 0.71 50 1.4E4 0.97 95 2.5E5 

As ANN-MP 0.77 59 2.0E4 0.76 58 1.9E4 0.99 99 1.2E6 

Ni ANN-MP 0.95 90 1.3E5 0.93 86 8.2E4 0.99 98 6.8E5 

Pb ANN-MP 0.91 82 6.3E4 0.85 73 3.7E4 0.94 89 1.1E5 

Ti ANN-MP 0.80 64 2.5E4 0.67 45 2.5E4 0.93 86 8.6E4 

 

R – correlation coefficient (cubic polynomial regression), D (%) – determination coefficient (%); F – ratio (ANOVA test) 
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Figure 36: Regression plots of predicted values of Lead after data transformations;  

ANN-MP (A – Normal vs. Box-Cox, B – Log-normal vs. Box-Cox)and 

MPR (C–Normal vs. Box-Cox, D – Log-normal vs. Box-Cox) 

 

 

Significance of the model prediction has been performed by calculating the regression 

coefficient(Table 17) and with inspection of regression correlograms between the predictedvalues

within eachpredictions method,ANN-MPand MPR.The significance has been examined in a range of 

predicted level from 0.1-99.9 percentiles (or 41388 recall points), which means that the lowest and the 

highest values in total 83 have been excluded from the further treatment. They deviate significantly 

from the total number of recall points (41471), calculated values for each variable. In the mentioned 

rage all calculated values have very realistic values what confirm the model significance and 

confirmation. 

 

According to the intercorrelations, the predicted results regard to the transformation within the same 

method not showing significant differences. The lowest determination coefficients are within As and Ti, 

but partially for Pb, between normal values and transformed data (normal vs. Log-normal and normal 

vs. Box-Cox). Even this low D values are generally looking quite highly significant. The best 

intercorrelations are found between Log-normal and Box-Cox transformations. They are in the rank of 

physical laws. The lowest determination correlation within these data transformation has been found 

for Ti, 86%. According to the table can be concluded that there is no very significant difference 

between natural (normal) values and transformed data. But it is a wrong conclusion, because the 

significance with large number data (in this case 41388) is not same as significance with sparse 
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number of observations. With large number of data everything becomes statistically significant, which 

of course in not true.  
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Figure 37: Regression plots of predicted values of Arsenicafter data transformations;  

ANN-MP (A – Normal vs. Box-Cox, B – Log-normal vs. Box-Cox) and 

MPR (C – Normal vs. Box-Cox, D – Log-normal vs. Box-Cox) 

 

 

Regressions between transformations within two predictive methods for Pb and As are provided in 

scatterplots with fitted regression lines in Figures 36 and 37. There are showing a visible sense of the 

statistical relationship within each prediction method. It is evident that the Pb distribution is tending to 

exponential form, but this is affected by several values with very high concentrations. The scatterplots 

for both methods are showing quite similar tendency what is the result of strong asymmetric 

distribution. It is typical for anthropogenic elements, where extreme high values deviate from the low 

values of parental rocks. Differences between transformed data are almost negligible for both 

methods. But differences between correlations within normal and transformed data for MPR are much 

higher than correlations within Log-normal and Box-Cox transformations. But is not case for the 

artificial intelligence. It can be explained with fact that ANN-MP is less influenced by transformations 

than MPR, because MPR is based on parametric statistic but ANN-MP not, it is nonlinear 

mathematical method (Figures 36 and 37). 

 

Arsenic is showing the lowest tendency for any geochemical trend, but differences are much higher 

between normal values and transformed data in both cases (Figure 38 – A and C), respectively. 

Between transformed data there is almost no difference with no regard to prediction method. This can 

be visualized for MPR, especially. There is no significant difference between logarithmic and Box-Cox 

transformation.  
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The scatterplots (Figures 37 and 38 – A and C) are presenting also very interesting predictions that 

include the negative natural values as well. For us is quite unthinkable to imagine the negative values 

of any particular element but obviously for the prediction method is not. Majority of prediction 

concentration for both, Pb and As is below zero.  

 

The differences between two predictions methods according the same data transformation have been 

examined as well (Table 18, Figure 38). It can be concluded that both models are providing mutual 

similarities, because the determination coefficient in all cases is higher than 50%. Major differences 

and lower determination coefficient is found for asymmetric distributions of As an Pb, in both cases for 

untransformed data (52% and 57%). Much better correlations are between transformed data, but slight 

deviations for naturally distributed Ni and Ti is noticed, where asymmetric distribution is not significant. 

 

 

Table 18: Regression between predicted values (ANN-MP vs. MPR) according to data 

transformation in range of 0.1 – 99.9 percentiles (n=41388) 

 

 

Transformation R D (%) F-ratio 

As Normal 0.72 52 1.5E4 

As Log-normal 0.91 82 6.3E4 

As Box-Cox 0.92 84 7.3E4 

Ni Normal 0.92 85 7.6E4 

Ni Log-normal 0.91 83 6.9E4 

Ni Box-Cox 0.90 80 5.6E4 

Pb Normal 0.75 57 1.8E4 

Pb Log-normal 0.91 84 7.0E4 

Pb Box-Cox 0.89 79 5.3E4 

Ti Normal 0.80 65 2.5E4 

Ti Log-normal 0.88 78 4.8E4 

Ti Box-Cox 0.83 68 3.0E4 

 

R – correlation coefficient (cubic polynomial regression), D (%) – determination 

coefficient (%); F – ratio (ANOVA test) 

 

 

Figure 38 is presenting the correlograms between two applied methods. Same as in previous 

examples, the two different models, the most successful model (Pb) and less successful model have 

been chosen. Pb and As for predicted values do not showing the real correlation between normal 

values, despite the typical regression coefficient. The scatterplots in both cases are providing disperse 

distributions, concentrated in the lower, converging to the area of higher values. The fitted regression 

line connecting only a small number of calculated values in the area of high values. 

 

Completely opposite situation is with the Box-Cox transformations. The clouds are narrow and 

represent the real correlations between data obtained by two different prediction methods. These 

results are basically the confirmation for the previous claim that methods for its validation have to 

provide similar results. In this case we are talking about distribution of chemical elements, but it can be 

applied for distribution of any kind of observation. 
 



Alijagić, J.: Application of multivariate statistical methods and artificial neural network for separation badrock 
background and influence of mining and metallurgy activities on distribution of chemical elements in the Stavnja 
valley (Bosnia and Herzegovina). PhD thesis. University of Nova Gorica, 2013. 
 

71 

 
 

Figure 38: Regression plots of ANN-MP versus MPR predicted values after data transformation; 

Lead (A – Normal values, B – Box-Cox values; 

Arsenic (C – Normal values,D –Box-Cox values) 

 

 

5.4.3. Predicting of Lead anthropogenic distribution 

 

Lead is common anthropogenic chemical element, which concentrations depend on human activities. 

The mean value in soil 190 mg/kg, in stream sediment 240 mg/kg, and 820 mg/kg in attic dust (Tables 

6 and 7). The median values are 62 mg/kg (soil), 220 mg/kg (stream sediments), and 280 mg/kg (attic 

dust), respectively. Maximum values in these three sampling materials are 1700 mg/kg, 570 mg/kg, 

and 2800 mg/kg. The F ratio for Pb in ANOVA is deviate significantly from the other anthropogenic 

elements, and showing its anthropogenic nature (Figure 21). Table 9 is clearly presenting the average 

concentrations in all three determined zones. In the Zone 1, its concentrations are basically the same 

in both soil horizons (400 and 410 mg/kg). In the Zone 2 the concentrations are significantly lower, 

between 50-60 mg/kg, but in the Zone 3, its concentrations are again drastically increased to 680 

mg/kg in topsoil and 800 mg/kg in subsoil. High concentrations in alluvial soil are consequences of 

long lasting mining and smelting in upper part of valley, which is transported by Stavnja and its 

tributaries. It is very interesting for anthropogenic element that concentrations are higher in subsoil but 

it can be explained by fact that almost all activities stopped more than 20 years ago. 
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Enrichment ratio between determined zones and sampled material is clearly showing human impact in 

study area. ER between the contaminated zones (Zone 1 and Zone 3) and uncontaminated Zone 2, 

are higher 8 and 15 times (Figures 23 and 24), and it is noticeable that are alluvial soil highly 

influenced by human impact. Atmospheric transport is proved by the ER between attic dust and topsoil 

(Figure 25). Lead concentrations are higher 3 times in attic dust than in topsoil. The last ratio is 

providing significant information about historical and current river transportation (Figure 26). Current 

sediments contain much lower concentration of trace elements, because the main sources of 

contamination do not operate. 

 

Distribution of Pb is showing significant anomalies in Zone 1 and Zone 3 (Figure 39). This distribution 

is consequences of human activities in main industrial zone and river transport downstream. Extreme 

mobility of Pb causes that concentration varying between sol depths,from 700-800 mg/kg, 

respectively. Increased values in subsoil are due to fact that intensive mining and ore processing 

activities were 20 years ago. Comparing to the Standard List, its values are higher 9 times in topsoil 

and 10 times in subsoil. Background values (dark red and green bares) through the lithological units 

are less than 80 mg/kg. The lowest values are found in Jurassic and Cretaseous clastic carbonate 

series, Cretaceous Flysch, Oligocene clastite complex, Miocene carbonates, Miocene clastites, and 

Quaternary river terraces. To assess a background values for the Zone 2, only soil samples from 

automorphic soil were considered. The background values are presented with more intensive colours.  

 

Distribution of Pb according to the distance is provided in Figure 40. Here we can see that extreme 

concentration 1700 mg/kg is noticed in the central part of mining and smelting area. Its concentration 

is decreasing slowly downstream in form of finest grains. Even in the lower part of the Zone 2 Pb 

content do not decrease above 400 mg/kg. How big contrast between natural enrichment (green 

colour) and human impact (blue and light read) is also provided in same figure. Along the entire valley, 

natural enrichment is about 50 mg/kg. This means that human impact increased its concentration for 

more than 30 times.  

 

The predictions of spatial distribution of Pb concentrations in soil using three predicting methods are 

presented in Figure 41. All three models, A) Segment Kriging (SK), B) Multiple Polynomial Regression 

(MPR), and C) Artificial Neural Network – Multilayer perceptron (ANN-MP) identify hotspots with high 

concentration of Pb. These predicting models are showing arrangement in concentrations across the 

study area. For a graphical display of spatial distribution, the maps with percentile distribution have 

been used, where different colours represent different concentration arrangements. 

 

The spatial distribution pattern of Pb is reconstructing its main pathway in study area. These models 

are providing similar pattern of Pb concentration hotspots, indicating the same source of 

contamination. In the upper part of study area, all three models are providing the same shape of 

contamination areola. This part of the study area is surrounded by steep hills, and the contamination 

areola is caused by the main wind direction which is N-S. River transport of clay fine grain is 

transported down into alluvial sediments. Eroded material has been transported down the river and 

embedded in alluvial plain of urban zone Breza, where intensive agriculture is present. Spatial 

distribution with SK is improved, contamination along the river is continuous (no discontinuous circles 

so called ―Bull’s eye effect‖), but still not strict as it is provided in two another models. 

 

The Segment Kriging includes only sparse soil measurements (n=111), connecting the concentrations 

of Pb in the particular ranges and this change in concentrations cannot be so perfect as with the 

remaining two predictive methods, which include much more spatial data. Due to this fact, MPR and 

ANN-MP are showing more realistic arrangement in concentrations than SK. In other hand, their 

similarities are reconfirmation, refinement and in same time validation of different models. All models 

are repeatable, what is another success in such modelling.  
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Figure 39: Distribution of Lead concentrationsthrough the determined zones (left) and isolated 

lithological units (right) in soil layers. Darked coloured bares represnt an assessment of 

background values in automorphic soil of Zone 2 (unpolluted area) 

 

 

 
 

Figure 40: Distribution of Lead in soil according to river distance 
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Figure 41: Spatial distribution of Lead using various predicting methods: A – Segment kriging 

(SK); B – Multiple polynomial regression (MPR); C – Artificial neural network – Multilayer 

perceptron (ANN-MP) 

 

 

Distribution of lead within the lithological units according to the raw data and prediction methods is 

presented in Figure 42. The data transformation used in all three prediction methods is Box-Cox 

because it gave the best results but also because mutual comparison. There is no significant 

difference between raw data and transformed data used for each particular prediction method. At 

some lithological units, the raw data are showing a bit higher values, but it is more subjective. The 

clear anomaly is on quaternary alluvium, where maximal values rich 610 mg/kg (raw data) and 540 

mg/kg (Segment Kriging), respectively. 
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Figure 42: Distribution of Lead values in isolated lithological units according to raw data and 

prediction methodsafter using the Box-Cox transformation 

 

 

5.4.4. Predicting of Nickel natural enrichment 

 

The mean values for Ni are 120 mg/kg in soil, 78 mg/kg for stream sediment, and 79 mg/kg in attic 

dust. The median values are 90 mg/kg, 78 mg/kg, and 66 mg/kg for soil, stream sediments, and attic 

dust. Maximum values are found in soil, 500 mg/kg what is logical because its concentrations depend 

on parental rocks (Tables 6 and 7). The value of F ratio is more than 60 times higher comparing to 

other naturally distributed chemical elements (Figure 22). Only Cr has the F ratio higher. The average 

concentrations for three determined zones (Table 9) are showing that there are no significant 

differences between values among them. This can be explained with fact that determined zones 

contain more isolated lithological units. Natural anomalies are usually connected to the one or two 

lithological units, and the average values are much lower and not showing the real concentrations. 

 

Tables 10 and 11 are providing average content of Nickel in topsoil and subsoil. Here is possible to 

see increase and decrease in its average content within the isolated geological units. Difference in 

concentration through the soil horizons is claiming that this element is naturally introduced into 

environment. Its concentrations are increasing with depth, but maximum average levels are found in 

the Jurassic and Cretaceous clastic carbonate series, 280 mg/kg and 310 mg/kg, respectively. 

Distribution of Nickel in soil samples (Figure 43) according to the determined zones is not showing 

significant anomalies within the determined zones. Only slight anomalies are noticeable in subsoil of 

Zone 2a. Distribution according to the lithological units is showing more precisely which parental 

material is enriched with Ni. Natural enrichment is higher than target (8 - 9 times) and intervention 

values provided in Table 1. The lowest enrichment found on Jurassic and Cretaceous breccias and 

sandstones and Triassic carbonates, about 50 mg/kg. Even this low values are higher than the target 

values. 
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Figure 43: Distribution of Nickel concentrations through the determined zones (left) and 

isolated litological units (right) in soil layers 

 

 

 
 

Figure 44: Distribution of Nickel values in isolated lithological units according to raw data and 

prediction methods afterusing theBox-Cox transformation  
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Figure 45: Spatial distribution of Nickel using various predicting methods: A – Segment kriging 

(SK); B – Multiple polynomial regression (MPR); C – Artificial neural network – Multilayer 

perceptron (ANN-MP) 

 

 

Distribution of Nickel within the main lithological units according to the raw data ad prediction methods 

is presented in Figure 44. It can be seen that the Jurassic and Cretaceous Clastites are again clearly 

isolated from the other lithological units. The maximum values with transformed and raw data are 

between 280 and 300 mg/kg. Average values of Box-Cox transformation within the prediction data as 

well as raw data do not vary so much. At two more units,Oligocene clastite complex and – Miocene 

carbonate series are showing a slight increase of Ni, which concentration exceeds the target values 

for 5-6 times. 
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Spatial distributions of Ni within three predicting methods are provided in Figure 45. Arrangement of Ni 

across the study valley in all three models is pretty well identify. This distribution is clearly conducted 

to the parental material in upper part of study area. The highest concentrations are found in Jurassic 

and Cretaceous flysch series composed by marly shale, limestone, sandstone, conglomerate, breccia, 

and chert. Northern from the city Vareš, enrichment is present only on Triassic clastites what is clearly 

isolated in ANN-MP model. 

 

All three models are presenting a significant enrichment through all study area southern from the 

Jurassic and Cretaceous flysch. ANN-MP and MPR isolated two more lithological units (the Miocene 

carbonates and the Oligocene clastite) with significant enrichment of Ni. ANN-MP prediction very 

precise distinguish border between alluvial sediments (material that is transported by Stavnja and 

other tributaries) and Miocene carbonates and Oligocene clastites. 

 

 

5.4.5. Predicting of Titanium natural enrichment 

 

The mean values for Ti are 0.013% in soil, 0.039% for stream sediment, and 0.018% in attic dust, but 

the median values are 0.004%, 0.033%, and 0.017% for soil, stream sediments, and attic dust 

respectively. Maximum values are found in soil, what indicate its natural enrichment (Tables 6 and 7) 

but the mean and median values are much higher in stream sediments. This high values are 

describing Ti mobility as well its ability to incorporate into finest clay size particles and transport far 

from the source of contamination. The lowest (Table 9) values are found in the Zone 2b in both soil 

horizons. However, the average concentrations of Ti across the major lithological units are showing 

that there is no difference in concentrations through the depth (Tables 10 and 11). Enrichment ratio 

between determined zones (Figures 23 and 24) is not showing a significant enrichment because it is 

conducted to only particular geological units and more samples make the results smoother. Even the 

ER between the sampling media (Figure 25) does not presenting significant results, but concentrations 

of Ti are slightly higher in attic dust than in topsoil. 

 

Similar distribution pattern within the isolated lithological units are provided in Figures 46 and 47. 

There are showing that there is no almost any difference within soil horizons or within raw data and 

prediction methods. The significant increase in concentration is conducted to the Triassic Clastites in 

range 0.14 - 0.17%. It is clear that this parental material contains much more Ti than other in study 

area. Those rocks are the main source of Ti, which is transported by water in alluvial sediments. 

 

Prediction models of Ti spatial distribution are isolating the highest concentrations in Triassic clastites 

and tuffaceous sandstones, but also along the entire alluvial sediments. ANN-MP and MPR are 

providing significant information according its transportation downriver. In upper part of the study area, 

high concentrations of Ti are conducted to almost all tributaries. The spatial distributions show the 

materials that carry on Ti particles concentrate on the lower parts and in the form of finest grains 

transport and embed into alluvial sediments. Their enrichment occur in Jurassic and Cretaceous flysch 

and Jurassic and cretaceous breccia and sandstones. Southern part of study area (Oligocene clastite 

complex, Miocene clastitc series and Miocene carbonates with coal layers) is enriched too. At several 

places, SK provides its concentration in form of concentric circles, which is pretty incorrect comparing 

with other two models. 
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Figure 46: Distribution of Titanium concentrations through the determined zones (left) and 

isolated lithological units (right) in soil layers 

 

 

 
 

Figure 47: Distribution of Titanium values in isolated lithological units according to raw data 

and prediction methodsafter using the Box-Cox transformation  
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Figure 48: Spatial distribution of Titanium using various predicting methods: A – Segment 

kriging (SK); B – Multiple polynomial regression (MPR); C – Artificial neural network – 

Multilayer perceptron (ANN-MP) 

 

 

5.4.6. Prediction of ambiguous Arsenic distribution 

 

Arsenic is good example of vague distribution, and is influenced by human impact and natural 

background. The mean value for As in soil is 45 mg/kg, 18 mg/kg in stream sediments and 51 mg/kg in 

attic dust (Table 6). The median values are a bit lower in soil, 32 mg/kg but same as the mean values for 

stream sediments and attic dust. The maximum values are found in soil 590 mg/kg (more than 10 times 

higher than intervention values), then in attic dust 97 mg/kg, and 33 mg/kg in stream sediments. High 

concentrations of As in attic dust are due to combustion processes during metallurgical processes, but 

high concentrations in soil are conducted to the outcropping rocks, and claim its natural origin.  
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Figure 49: Distribution of Arsenic concentrations through the determined zones (left) and 

isolated lithological units (right) in soi lyers.Dark coloured bares reprsentan assessmentof 

background values in automorphic soil of Zone 2 (unpolluted area) 

 

 
 

Figure 50: Distribution of Arsenic in soil according to the river distance 
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Figure 51: Distribution of Arsenic values in isolated lithological units with accoding to raw data 

and prediction methodsafter using the Box-Cox transformation 

 

 

The highest values are found in the unpolluted Zone 2b (Table 9), where average concentration in topsoil 

is 69 mg/kg and in subsoil 79 mg/kg. The lowest values are found in Zone 2a, 8.9 mg/kg in topsoil and 9.5 

mg/kg in subsoil. Tables 10 and 11 are providing average content of Arsenic in topsoil and subsoil for 

each particular lithological unit. Cretaceous flysch and Oligocene clastite complex have the maximum 

concentrations. 

 

Distribution of Arsenic in both soil horizons according to determined zones and basic lithological units 

is showed in Figure 49. Arsenic has a similar distribution as F3 scores. Its increased values are found 

in lower part of unpolluted area (Zone 2b), on two isolated lithological units K-Flysch (70 mg/kg in 

topsoil and 80 mg/kg in subsoil) and Ol-Clastites (100 mg/kg in topsoil and 110 mg/kg in subsoil). 

Average value of As in Zone 2b is between 70-80 mg/kg. The lowest observed concentrations are in 

Zone 2a or J,K-Clastites and T-Clastites. Distribution of Arsenic along the Stavnja, from source to the 

mouth is representing significant enrichment in the mining area between 20-55 mg/kg (Figure 50). But 

extremely high enrichment is found around 20
th
 km from the source where As is released from the 

outcropping rocks. Maximal average concentration of As is more than 170 mg/kg, or 5.5 times higher 

than optimum value or more than 3 times higher than intervention value comparing to the Standard 

List. 

 

Distribution of Arsenic within the lithological units according to the raw data and prediction methods is 

presented in Figure 51. The data transformation used for all three prediction methods and raw data 

again not provide significant differences. Similar distribution pattern is showed in Figure 49.Differences 

between these two patterns is that raw data and transformed data are calculated for one depth, an 

average value for both soil horizons. 
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Figure 52: Spatial distribution of Arsenic using various predicting methods: A – Segment 

kriging (SK); B – Multiple polynomial regression (MPR); C – Artificial neural network – 

Multilayer perceptron (ANN-MP) 

 

 

The spatial predictions of As using three prediction methods are represented in Figure 52. These 

prediction models are providing arrangement in concentrations that is not clearly conducted for any 

isolated lithological unit, comparing to Ni and Ti, respectively. Applied models show interesting trend in 

concentration increase from North to South. Slight enrichment with As is visible around the mining 

area in SK and MPR models. This can be explained with weathering of arsenopyrite (iron arsenic 

sulphide, FeAsS), which is common mineral in Fe mines. ANN-MP model, that has been superior 

method before, in this case has not detected enrichment around the mining area, most probably 

because As is mostly naturally enriched and the presence of some human impact made some 

confusions inside this modelling. This special type of spatial distribution cannot be applied to any other 

distribution, either anthropogenic or natural used in study area. 
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Vague distribution of Arsenic can be probably explained with its enrichment in independent 

outcropping rocks. The highest concentrations are found in Oligo-Miocene variegated series with coal 

layers in direction NW-SE. This is direction of the main Central Bosnian coal basin that lays between 

Sarajevo and Zenica, along the river Bosna. 

 

 

5.5. Contamination and natural enrichment of chemical elements (application of models) 

 

5.5.1. Anthropogenic impact 

 

The spatial distributions of three common anthropogenic chemical elements Cd, Pb, and Zn according to 

the Standard List are presented in Figure 53.For a graphical display of spatial distribution, the maps with 

target and intervention values have been used, where different colours represent different 

concentration arrangements. In the scale used for its distribution we used five ranges: Two green 

colours represent the ranges under the target values; the light green is one half of target values; the 

yellow range represents the target values, the orange is one half of the sum of both, target and 

intervention, and the red range is presenting intervention values. 

 

According to the Standard List, the target value for Cd is 0.8 mg/kg, for Pb 85 mg/kg, and for Zn 140 

mg/kg. Intervention value for Cd is 12 mg/kg, for Pb 530 mg/kg, and for Zn 720 mg/kg. High 

concentrations of these three chemical elements exceed their intervention vales only in Zone 1 and 

alluvial sediments. Several samples with their high concentration are collected from these two units 

with maximum concentrations in range 4.0 - 7.2 mg/kg Cd, 880 - 1700 mg/kg Pb and 1500 - 3100 

mg/kg Zn. 

 

Maximum concentration of Cd is 7.2 mg/kg, Pb 1700 mg/kg, and Zn 3100 mg/kg. If we compare these 

values to their target values, they exceed for 9 times for Cd, 20 times for Pb, and 22 times for Zn, 

respectively. Even the intervention values are exceeded more than 3 times for Pb, and 4 times for Zn. 

 

Almost all entire area is not contaminated with aforementioned group, except the two isolated units. 

Fine grained clay size particles are transported far from the source of contamination what have been 

detected by three applied methods. The concentrations under the target values are detected at 73 km
2
 or 

70% of entire study area with SK, 70 km
2
 or 68% with MPR and 77 km

2
 or 74.5% with ANN-MP.The first 

model extract about 28 km
2
 or 27% between target values and intervention (yellow and orange colour), 

the second model about 31km
2
 or 30%, and the third model about 24 km

2
 or 23%. The range that 

represent concentrations higher that intervention values is isolated on about 2.5 km
2
 or 2.5% of study area 

with SK and ANN-MP and 2 km
2
 or 2% with MPR (Table 19). 

 

 

5.5.2. Natural enrichment 

 

The spatial distribution of natural enrichment is presented in summarized map of Co, Ni, and Cr (Figure 

54). These predicting models are showing arrangement in natural enrichment across the study area. 

For a graphical display of spatial distribution, the maps with target and intervention values are 

presented, where different colours represent change within them. In the scale used for its distribution 

we used five ranges: Two green colours represent the ranges under the target values; the light green 

is one half of target values; the yellow range represents the target values, the orange is one half of the 

sum of both, target and intervention, and the red range is presenting intervention values. 
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Figure 53: Spatial distribution of Cd–Pb–Zn pollution according to the Standard list 

recommendation: A – Segment kriging (SK); B – Multiple polynomial regression (MPR); 

C – Artificial neural network – Multilayer perceptron (ANN-MP) 

 

 

According to the Standard List, the target value for Ni is 35 mg/kg, Co 20 mg/kg, and Cr 100 mg/kg, 

but intervention value for Ni is 210 mg/kg, Co 240 mg/kg, and Cr 380 mg/kg. The maximum 

concentration of Ni is 500 mg/kg, Co 64 mg/kg, and Cr 460 mg/kg. Comparing these values to the 

target values of Standard List, natural enrichment exceed 14 times for Ni, 3 times for Co, and 46 

times. Comparing to the intervention values, they exceed for Ni 2.5 times and for Cr more than one 

time. It seems that the major enrichment is from Ni and Cr. 
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Figure 54: Spatial distribution of natural enrichment Co–Cr–Niaccording to the Standard list 

recommendation: A – Segment kriging (SK); B – Multiple polynomial regression (MPR); 

C – Artificial neural network – Multilayer perceptron (ANN-MP) 

 

 

All three models identify one major hotspot with its intervention concentration, the Jurassic and 

Cretaceous flysch, but also some outcropping rocks on Oligocene clastite complex. The first model 

isolates about 9 km
2
 or 9% of total study area (103.7 km

2
), under the range of target values (two green 

colours), the second model about 11.2 km
2
 or 11%, and the last model about 8.6 km

2
 or 8%. Almost all 

entire study area is enriched with these elements (yellow and orange colour), where all three applied 

models isolated majority of the entire territory: SK and ANN-MP about 85 km
2
 or 82% and MPR 82 

km
2
 or 79% (Table 19). Intervention values are found at 10 km

2
 or 10% of entire study area with all 

applied models. 
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Figure 55: Spatial distribution of Arsenic according to the Standard list recommendation: A – 

Segment kriging (SK); B – Multiple polynomial regression (MPR); 

C – Artificial neural network – Multilayer perceptron (ANN-MP) 

 

 

The spatial distribution of Arsenic according to the Standard list within all prediction methods is 

provided in Figure 55. The target value for As is 29 mg/kg and the intervention value is 55 mg/kg. 

Comparing the values for As with the Standard list, its concentrations exceed the target values at 35 

km
2
 with SK, 38 km

2
 with MPR and 41 km

2
 with ANN-MP (Table 19). In area between 18-26 km

2
 its 

concentrations exceed the intervention value for As. Comparing the surfaces of all selected elements 

(Pb, Zn, Cr, Ni) that includes major anthropogenic impact and natural enrichment, the natural 

enrichment with Arsenic is the greatest. This enrichment has been absolutely unexpected, and needs 

spatial attention in future investigations. 
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Table 19: Areas of natural enrichment and pollution according to the Standard list 

recommendation 

 

Anthropogenic origin (Cd-Pb-Zn) 

Target level 

(km
2
) 

Intervention level 

(km
2
) 

SK 28 2.5 

MPR 31 2.2 

ANN-MP 24 2.6 

Natural origin (Co-Cr-Ni) 

  SK 85 9.7 

MPR 82 10 

ANN-MP 85 10 

Natural origin (As) 

  SK 35 26 

MPR 38 20 

ANN-MP 41 18 

Total (As-Cd-Co-Cr-Ni-Pb-Zn) 

  SK 64 37 

MPR 67 30 

ANN-MP 68 30 

 

 

Total contamination (As-Cd-Co-Cr-Ni-Pb-Zn) that include anthropogenic impact and geogenic 

enrichment, respectively exceed their target values at two thirds of the entire study area, and one third 

their values exceed the intervention values. The total contamination is not simple summery of these 

two types of contamination,but is necessary to mention that some spatial distrubiotions are 

overlapping and those final values are seems lower that summery of their particular distributions. 

 

5.6. Possibility of using satellite images and their application 

 

Use of satellite images increase in recent years. In order to evaluate the capability of mapping 

contaminated areas from both LANDSAT TM and ETM data, we processed and analysed two 

available images for the study area (187 path and 29 row): one acquired by the TM sensor on 27 June 

1990 and one acquired by ETM on 14 June 2005. The selected scenes provided cloud-free pixels. 

Sourcing information from satellite imagery often involves image interpretation techniques as well as 

GIS integration of other spatial data. 

 

Satellite multispectral images are showing interesting and significant correlation with maps of 

contamination of entire study area (Figure 16). Some particular bands are showing significant 

correlation with soil chemism, with both anthropogenic contamination and natural enrichment, 

respectively. It seems that negative correlations of Arsenic are showing some similarities with 

hydrothermal changes, but unfortunately these assumptions are not confirmed yet. The main 

disadvantage of satellite images is shadowing. Due to fact that the study area is in quite hilly, one side 

of the valley is always shaded, does not metter from wich side is the satellite comming. Big problem 

are also destroyed surface area around the mines. The satellite multispectral images might be quite 

useful additional source of information used in data interpretation, but the softwares for their 

corrections are quite expensive. The given results are pretty useful, but still so many problems should 

be solved. Hopeffuly this problem will be solved Together with colleagues from the German Aerospace 

Center.  
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Table 20: Matrix of correlation coefficient between elements (As, Pb, Ni and Ti) and selected 

Landsat multispectral bands (set from 1990 and 2005) 

 

 
Transformation       B1       B4       B5       B6       B1       B2       B3       B4       B5       B6       B7 

  

1990 1990 1990 1990 2005 2005 2005 2005 2005 2005 2005 

As Normal 0.03 0.09 0.11 0.10 0.11 0.14 0.09 0.14 0.20 0.04 0.10 

As Log-normal 0.18 0.06 0.09 0.30 0.38 0.36 0.24 0.13 0.33 0.15 0.24 

As Box-Cox 0.20 0.06 0.09 0.32 0.39 0.37 0.25 0.12 0.33 0.16 0.24 

Ni Normal -0.03 -0.12 -0.01 0.07 -0.02 -0.05 -0.01 -0.10 -0.08 0.00 -0.04 

Ni Log-normal 0.09 -0.14 0.01 0.27 0.17 0.10 0.10 -0.08 0.01 0.08 0.05 

Ni Box-Cox 0.08 -0.14 0.01 0.26 0.15 0.09 0.09 -0.08 0.00 0.08 0.05 

Pb Normal 0.21 -0.30 -0.12 0.27 0.30 0.21 0.24 -0.20 0.02 0.30 0.18 

Pb Log-normal 0.24 -0.34 -0.18 0.26 0.32 0.20 0.26 -0.30 -0.05 0.33 0.21 

Pb Box-Cox 0.22 -0.33 -0.22 0.21 0.28 0.17 0.23 -0.33 -0.10 0.31 0.21 

Ti Normal -0.14 -0.27 -0.34 -0.16 -0.06 -0.16 -0.06 -0.32 -0.33 -0.06 -0.14 

Ti Log-normal 0.07 -0.32 -0.23 0.08 0.16 0.07 0.13 -0.27 -0.20 0.11 0.03 

Ti Box-Cox 0.11 -0.31 -0.18 0.13 0.20 0.13 0.17 -0.22 -0.14 0.16 0.08 

 

 

Some matrix correlation between selected elements and selected Landsat multispectral bands (from 

1990 and 2005) are provided in Table 20. According to the previous experiences, the data 

transformations have been used again for 111 soil measurements. From the table could be seen that 

Log-normal and Box-Cox, generally. Statisticaly significant correlations are those positive: B1 1990, 

B6 1990, B1 2005, B2 2005, B3 2005, B6 2005, B7 2005. Log-normal and Box-Cox data 

transformations for As have more significant correlations than normal valus. Significant positive 

correlations for Ni, is found only in B6 1990. But Pb as most of trace elemnts has significant correlation 

within all transformations. This might be a result of thevalley shape, which is followed by the satellite. 

Normal values of Titanium show the negative correlations for eacha band. 

 

 

5.7. Validation and ANN-MP model applicability in various case studies 

 

From the very beginning, we want to achieve two main goals; one is a construction of a very stable ANN-

MP model with possibility of repeatability, and second one is the model application within various 

geochemically and morphologically study areas. This means that once when model is prepared should be 

applicable under similar conditions (such as input data, number of hidden units, number of training 

networks), solving a problem of spatial distribution of particular trace elements or their geochemical 

groups (chapters 4.4. and 5.4).  In order to show a validation and ANN-MP model applicability in three 

other study cases: Zenica, Bosnia and Herzegovina; Kosovska Mitrovica, Kosovo; and Kavadarci, 

Macedonia. Number of input data had been increased compare to the PhD thesis due to fact that ANN-

MP can calculate the distribution with less parameter, and more uncertainties. 

 

 

5.7.1. The case study Zenica (B&H) 

 

Zenica area (52 km
2
) is located in the valley of the river Bosna, about 70 km north from Sarajevo. 

Construction of the iron and steel works in Zenica began in 1892. Through the years new facilities were 

built and the production was dramatically expanded and become the biggest ironwork in former 

Yugoslavia. The rapid growth in coal, iron, and steel production over a long period of time left significant 

trace metal contamination throughout the area.  The entire area had been covered by sampling grid with a 

density of one sample per square kilometre, but in urban and industrial zones the density was increased. 
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At 60 sampling sites, topsoil and subsoil were collected. Determination of 41 elements was performed 

area (Alijagić, 2008; Alijagić and Šajn, 2010). 

 

One anthropogenic geochemical association (Ag, Cd, Pb, Sb and Zn) is result of historical activities of the 

ironworks Zenica, but also coal mining and other anthropogenic influences in the past. The high 

concentrations of these elements exceed the New Dutch List target values covering most of the study 

area. Two geogenic geochemical associations: F1 (Ce, La, Nb, Ta and Th) and F2 (Co, Cr and Ni) are 

influenced mainly by lithology. The high concentration of particular elements of F1 are found in carbonate 

rock and Quaternary river terraces, but the second group is related to the Vranduk series— Jurassic–

Cretaceous flysch rocks. Two elements, Ni and Cr are showing the highest natural enrichment in the 

entire area (Alijagić, 2008; Alijagić and Šajn, 2010). Comparing to the Stavnja Valley, this study area is 

wider but surrounded with high hills. The geology units have direction NW-SE, same as the coal belt. 

 

 

 
 

Figure 56: Distribution of factor scores (Ag-Cd-Pb-Sb-Zn) in Zenica area (B&H): 

A – Universal kriging; B – Artificial neural network – Multilayer perceptron (ANN-MP) 

 

 

The spatial distribution of Factor 1 score (Ag, Cd, Pb, Sb and Zn) is provided in Figure 56. The figure 56A 

is obtained by common method, the universal kriging, but the Figure 56B by ANN-MP. It is obvious that 

the prediction map of spatial distribution obtained by ANN-MP  is more realistic and provides the some 

information that are not visible in A such as elongated contamination halo along the entire river valley and 

concentration of contamination along the tributaries. This method has been successful in identification the 

natural enrichment as well. The spatial distributions of particular elements are clearly connected to the 

particular geological units. 
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5.7.2. The case study K. Mitrovica (Kosovo) 

 

Mining and metallurgic activities in Kosovo have a long history. The Trepča Mine Limited in K. Mitrovica 

was built in 1927 and produced lead, arsenic and cadmium from the 1930 until 2000. The smelter close to 

Zvečan commenced work in 1939. Because of the smelter and three huge tailing dams, environmental 

pollution in K. Mitrovica increased dramatically. The smelter has been working sporadically since the 1999 

conflict between Kosovo’s Albanian and Serb population in Kosovo. There was also a unit for production 

of fertilisers and batteries. The study area is also known with polymetallic deposits (Pb, Zn, Mn and Cr) 

Stari Trg, with important deposits of lead and zinc. 

 

The entire study area (c 300 km
2
) was covered by 156 sampling sites, composite topsoil samples.  

According to the results obtained by factor analysis and the trends on geochemical maps, one 

anthropogenic (Ag, Pb, Sb, Bi, Zn, Cd, As, Cu, Hg, Au, Tl, and Mo) and four natural geochemical 

associations F2 (Co, Ni, Cr, Sc, Mg, and Fe), F3 (Ba, La, Mo, Th, Tl, and U), F4 (Ga, Al, K, and V), F5 (Ca 

and Sr) have been established.  

 

 

 
 

Figure 57: Distribution of factor scores (Ag-As-Au-Bi-Cd-Cu-Hg-Pb-Sb-Zn) in K. Mitrovica area 

(Kosovo): A – Universal kriging; B – Artificial neural network – Multilayer perceptron (ANN-MP) 
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The association includes high concentrations of anthropogenic elements are mainly influenced by mining 

and processing activities. In the vicinity of Zvečan and K. Mitrovica, their concentrations exceed the 

intervention values of the New Dutch list at 152 km
2
. Comparing the results with the European median 

values their concentrations are much higher: Pb by 20-fold, Cd 11-fold, Hg 5.5-fold, As 4.6-fold, Zn 4.2 

and Cu 3.2-fold (Aliu et al., 2009, Aliu, 2010; Stafilov et al., 2010a; Šajn and Alijagić, 2012; Šajn et al., 

2013). 

 

The spatial distributions of Factor score (Ag-As-Au-Bi-Cd-Cu-Hg-Pb-Sb-Zn) obtained by universal kriging 

and ANN-MP are provided in Figure 57. Both distributions very clearly isolate the contamination halo, but 

the distribution obtained by artificial intelligence giving more information about the contamination 

transport. This study area is geologically and morphologically different than the Stavnja and Bosna 

valleys, because the lowland is changed to hilly. Eroded material had been transported down from the 

mine Stari Trg to the river Ibar, and from there is transported so far from the main sources, mines and 

smelter. Also, some materials are transported by local wind, and expand the areola of contamination. With 

this method four geogenic associations have been isolated and concentration of particular elements has 

been very clearly associated to entire geological unit. 

 

 

5.7.3. The case study Kavadarci (Macedonia) 

 

The study area is located in the south-central part of Macedonia, in Tikveš valley, about 100 km south 

from the capital Skopje. The city is well known by Ferro-Nickel smelter FENI, but also famous by its 

vineyards and it is main vine production region in Macedonia. The complete investigated region (360 km
2
) 

was covered by 172 sampling sites. 

 

Several geogenic and anthropogenic geochemical association were established according to the 

statistical analyses. The most interesting association is geochemical association of As–Sb–Tl. Their 

concentrations in soil are similar to the European averages or above them but in other side in the 

Holocene alluvial sediments of the rivers Crna Reka (32 mg/kg As, 4.8 mg/kg Sb and 1.4 mg/kg Tl) and 

Vardar their concentrations are very high. Their average enrichment ratios exceed the average of the total 

investigated area by 4 to 4.5 times. Higher content of As and Sb have been found on Paleozoic-Mesozoic 

rocks (SW part of investigated area) and Tl on the Pleistocene tuff (SE part of investigated area) what 

suggest their geogenic influences. This enrichment is consequence of natural erosion from the mine 

deposits Alšar (As-Sb) on Koţuf Mountain, but also from the mine activities. 

 

Construction of geochemical maps using universal kriging methods (Figure 58 A) is quite useful in 

determination of distribution patterns, but in such a maps are present mistakes called Bull’s eye effect 

because in the isotropic space appears elongated division. This can only be solved by denser sampling 

grid. Applying the ANN-MP the above mistakes have been avoided and constructed geochemical maps of 

contamination are much better, especially from the geological point of view (B). Distribution of As-Tl-Sb is 

clear limited to the specific geological units, the Holocene alluvium. It was sucesful in identification some 

other geogenic geochemical association such as Al–Fe–Ga–Sc–V is related to the Paleozoic and 

Mesozoic rocks; Co–Cr–Mg–Ni ti the Eocene upper flysch zone; Ba–La–Th–U to the Pleistocene tuff. 

 

This method successfully solved several geomorphology and geology of different study areas. According 

to the presented results of those case studies we can confirm the model stability as well as its applicability 

representing the milestone in geochemical map construction(Stafilov et al., 2008a, 2010b; Ţibret et al., 

2012; Stafilov et al., 2013; Šajn and Alijagić, 2012). 
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Figure 58: Distribution of factor scores (As-Sb-Tl) in Kavadarci area (Macedonia):  

A – Universal kriging; B – Artificial neural network – Multilayer perceptron (ANN-MP) 

 

 

5.8. Geochemical investigations in areas of former military operations 

 

Geochemical investigations in areas of former military operations are very complex and difficult; 

especially challenge is preparing a sampling design and sampling itself. From our experience, we 

could not set out any regular sampling grid, but many sampling sites were moved according to 

suggestions of local residence. 

 

For the sampling in the remained minefields there is no one rule or several rules for safe sampling, 

only several advices. Basically, we can say that only rule is that there is no rule. The study site for my 

PhD has been the place of military operation during the last war (1992-95). In the valley, three ethnic 

groups (Orthodox, Catholics and Bosniaks) were lived close to each other, what resulted to massive 

conflict, destruction, killing and burning. 

 

The maps of minefields are useful but there are not 100% confident, only about 70-80%. If your entire 

life depends on such maps, you realise that their confidence is not as high as it should be. Due to this 

fact is necessary to talk with local people who spend their time during and after the war there. 

Otherwise they can provide you some incorrect information. At one sampling point happened to us that 

two different persons told us two different stories. Later on we realised that one of them is basically 

lives in other country. Other good example is that some people used a garden near their house for 

cultivation for several years before a tractor activated an unexploded projectile. 
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Figure 59: High risk sampling locations 

 

 

At places of intensive military operations so many minefields are still remained, especially parts of the 

strategic importance such as roads, industrial objects, bridges, etc. Before such sampling it is 

important: to learn as much as possible about the sampling site (political situation, ethnic groups); to 

have a map with remained minefields and possible minefield; talk to the local people, and be aware of 

any object that looks like a mine, such as the wire or small tins, etc. Also good advice about sampling 

itself is not recommended to go alone, rather in group of two or three people maximum, if possible with 

one local. Distance between the persons who are doing sampling should be about 40 m, in case that 

one activate remained mine that another can help to injure person or call for help. 

 

 

 
 

Figure 60: Appropriate sampling locations 

 

 

Sampling around burned houses or similar object is not recommended too, because of possibility that 

some unexploded projectiles are present. Also never do sampling around the bridges, because they 

are usually the objects that divide two military sides/ conflict groups and quite often around them are 

the remained minefields. On a way to the sampling point and on a way back is good to use the same 

route, avoiding any bushes, high grass or forest. If possible use existing routes, or hard surface. For 

soil sampling is more safe if choose the meadows and pastures, the places used for grazing livestock 
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(cows, sheeps, goats, etc.). During the digging of soil profiles, everyone should be aware that 

unexploded mine can be activated. Sampling in such areas is very risky, because during the sampling 

a spade is stabbed into depth of 30 cm. Total number of sampling sites is 111, but each sampling site 

is composed by minimum five subsamples. Then can be easily calculated the risk during the 

sampling.Same is for the river sediments sampling. Here is problem that some unexploded projectiles 

can be transported far from the minefields, and can be embedded in deeper layers of some thicker 

sediment. Also everyone should be aware of any wires or mine look like objects. 

 

Generally for whole territory of Bosnia and Herzegovina is big problem of unexploded projectile that 

are castaway everywhere in nature, especially in rivers and forests, even The Stabilization Force 

(SFOR) several years after the war organized anonymous action for collecting any kinds of weapons. 

 

Aforementioned applied models allow us to be very flexibile with sampling, this means that the 

sampling points can be moved and arranged to the field conditions without a fear that the final results 

will be incomplete.   
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6. CONCLUSION 

 

Along the Stavnja Valley, intensive mining and smelting activities have been occurred for more than 

100 years. Diverse mineral occurrence, especially Iron deposits and Lead-Zinc deposits make this 

study area interesting for geochemical research. Also, the study area has been place of intensive 

military operation during the last war, 1992-1995, what resulted with numerous remained minefields, 

and made this research more complex. 

 

The present study has been carried out to establish baseline data regarding the trace metal levels in 

the Stavnja valley. For this purpose different sampling materials were sampled: soil (automorphic and 

alluvial), river sediments, and attic dust. At 143 sampling sites, 111 soil samples from topsoil (0-5 cm) 

and subsoil (20-30 cm), 17 river sediments, and 15 samples of attic dust have been collected. 

Analysis of 36 chemical elements (Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, 

Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Th, Ti, Tl, U, V, W and Zn) was performed at the ACME, 

Ltd. laboratory in Vancouver, Canada. With various sampling material two important processes such 

as river transport and atmospheric transport have been determined, as well as natural enrichment and 

anthropogenic impact. 

 

All data were treated with various statistical methods in order to extract as much as possible 

information about natural and anthropogenic processes. One anthropogenic and three geogenic 

geochemical associations were establish on the basis of visually indicated similarity of geographic 

distribution of elemental patterns in the topsoil and subsoil; comparisons of basic statistic parameters, 

comparisons of enrichment ratios, correlation coefficient matrices, results of cluster and factor 

analyses. The Factor 1 associates the high concentration of Pb, Zn, Hg, Cd, Cu, Bi, Ag, Sb, Mo, W, 

Mn, Ba, Fe, and Tl. The group represents chemical elements that are the most probably 

anthropogenically distributed, associated to the main industrial and mine zone, and alluvial sediments 

found downstream of the river Stavnja. Three next factors, F2 (Ni, Cr, Co, and Mg), F3 (Th, La, As, 

and Sc), and F4 (Al, Ti, V, and Ga) are associating elements that are most probably naturally 

distributed and influenced by lithology. 

 

Spatial distributions of particular trace elements are helping in reconstruction its main pathway in study 

area, but simultaneously isolate their hotspots. Problem of contamination along the river represents an 

anisotropic appearance between the isotropic lithological units, and cannot be solved completely by 

standard interpolation kriging methods, based only on sparse soil measurements. Two new powerful 

linear and nonlinear modelling techniques are applied for solving it. They arrangement in 

concentration across the Valley are more realistic and picturesquely, because they include more 

geospatial and geomorphological data such as geological background, land use, aspect, slope, 

altitude, etc. Including all aforementioned facts, it will help us in better interpretation and 

understanding processes that happened in some certain period time that they are related to.Various 

modelling techniques help us in reconstruction different processes that influenced the entire area. 

They main purpose is not only the isolation of hotspots with highest concentrations, simultaneously 

they distinguish natural and anthropogenic influences as well as transportation pattern (such as 

atmospheric or water transport). 

 

Four following elements Pb, Ni, Ti, and As have been chosen for further detailed inspection. Lead is 

typical anthropogenic element, introduced solely by mining and smelting activities. Two isolated 

hotspots are the mine industrial zone and alluvial sediments, respectively. Its maximum detected value is 

1700 mg/kg, comparing to the target value of Standard List, Pb exceed for 20 times, and even 3 times 

comparing to the intervention value. The spatial distribution of this trace element is good example of river 

transport, where the fine grained materials are transported far from the source of contamination and 

embedded in alluvial sediments. Nickel and Titanium are typical natural elements, whose enrichment 

depends mainly of the parental material degradation. All three applied isolated clearly the lithological units 
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with their highest concentrations. Comparing these values to the target and intervention values of 

Standard List, natural enrichment exceed 14 times and 2.5 times for Ni, respectively. Contrary to these 

two cases, distribution of Arsenic is pretty ambiguous because does not belong to specific isolated 

lithological unit or group of units, but independent outcropping rocks rich with this trace element. 

According to the Standard List, its concentrations exceed 3 times target value, and 2 times 

intervention value. 

 

Summarised maps that comprise solely three anthropogenic trace elements (Pb-Zn-Cd) and three natural 

trace elements (Ni-Co-Cr) according to the Standard List provide information about overall anthropogenic 

impact and natural enrichment of study area. The results are very impressive; all provided models show 

that natural enrichment is much higher than anthropogenic impact. About 71% or 73 km
2
 is under target 

values, in range between target and intervention values about 26.5% or 26 km
2
, and over than 

intervention values only about 2-2.5% or 2-2.5 km
2
 of entire study area for Pb-Zn-Cd. Natural enrichment 

(Ni-Co-Cr) is showing opposite situation, only about 9% or 10 km
2
 is under target values, about 84 km

2 
or 

80% between intervention and target values, and over intervention values 10% or 10 km
2
 of study area. 

 

Three applied models are repeatable, what means that very similar spatial distribution can be obtained 

under the same conditions unrestricted times. Also very important characteristic of each particular 

modelling is that one model isolates all hotspots simultaneously. In other hand, their similarities are 

reconfirmation, refinement and in same time validation of different models. All models are repeatable, 

what is another success in such modelling. 

 

Modelling with ANN-MP and MPR is representing a milestone in geochemical investigations and 

maping. Main advantages of those methods are first of all that we can construct very eventful and 

complete maps with spatial distribution of particular elements or geochemical association, sampling at 

high risky sites can be avoided (such as the Stavnja valley), also number of sampling sites can be 

reduced but the maps can still remain very qualitative. Reduce number of samples means in same 

time less timecomsuming operations such as is sampling itself and analytical measurements. 

 

Using all various statistical and modelling techniques, the five goals of doctoral dissertation have been 

successfully achieved. 
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7. SUMMARY 

 

The Stavnja river valley is known with intensive mining and metallurgical activities for more than 100 

years. In the upper valley, three abandoned iron mines Smreka, Brezik, and Droškovec (two open pits, 

and one underground), abandoned Lead-Zinc-Barite Veovača mine, and abandoned ironwork Vareš 

are situated. In the Southern part, in vicinity of town Breza a brown coal open pit is located. In the 

steep and hilly study area living approximately 30.000 inhabitants, mostly settled in the two small cities 

Vareš and Breza. The study area has been place of intensive military operation during the last war, 

1992-1995, what resulted with numerous remained minefields. The mentioned area is an exceptional 

polygon for applying linear and nonlinear mathematical methods such as Segment Kriging, Polynomial 

Multiple Regression and Artificial Neural Network - Multilayer Perceptron, because very narrow and 

elongated anthropogenic anomaly with increased concentrations of trace elements, almost 

perpendicularly intersects the isolated lithological units. 

 

The main purpose of the thesis has been an identification of optimal methodology for geochemical 

research in the area of former military operations (with remains minefields or high risk areas), 

according to various sampling medium, sampling design, data processing and data interpretation. 

Content and spatial distributions of trace elements have been determined, a geogenic background 

according to the main isolated lithological units and anthropogenic impact on their distribution in 

various secondary sampling material (such as soil, river, and attic dust) have been identified. The 

main geochemical associations and their spatial distribution have been identified by using multivariate 

statistics. The optimal methodology for spatial distribution predictions of concentrations using these 

linear and non-linear mathematical methods have been established and tested. 

 

The sampling design has been initiated to provide high quality environmental geochemical baseline 

data for the Stavnja Valley. The data are based on sampling of soil, stream sediment and attic dust 

collected from all over study area. High quality and consistency of the obtained data are ensured by 

using standardised sampling methods and by treating and analysing all samples in the same way. 

Preparation of sampling design has been the most challenging part, because of the remained 

minefields from the last war (1992-1995). At 143 sampling sites, 111 soil samples from each soil 

horizon (topsoil and subsoil), 17 river sediments, and 15 samples of attic dust have been collected. 

Analysis of 36 chemical elements (Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, 

Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Th, Ti, Tl, U, V, W and Zn) was performed at the ACME, 

Ltd. laboratory in Vancouver, Canada. Beside the chemical analyses, various geospatial data Web 

available freely (Digital Elevation Model DEM, satellite images, Google Earth topography) or in 

archives in public institutions in Slovenia or Bosnia and Herzegovina (topographical and geological 

maps) have been obtained. 

 

Chemical analysis and obtained spatial data have been processed by the univariate, bivariate, and 

multivariate statistical methods. The concentration ratios according to the lithological units and 

determined zones are identified but also the statistical tests for statistical significance and 

assumptions have been performed. Based on multivariate statistical methods (clusters and factor 

analysis), four dominant geochemical associations were extracted. The Factor 1 associates the high 

concentration of Pb, Zn, Hg, Cd, Cu, Bi, Ag, Sb, Mo, W, Mn, Ba, Fe, and Tl. The group represents 

chemical elements that are the most probably anthropogenically distributed, associated to the main 

industrial and mine zone, and alluvial sediments found downstream of the river Stavnja. Three next 

factors, F2 (Ni, Cr, Co, and Mg), F3 (Th, La, As, and Sc), and F4 (Al, Ti, V, and Ga) are associating 

elements that are most probably naturally distributed and influenced by lithology. 

 

The main problem of linear interpolation methods (including kriging), based only on mutual distances 

are elongated, highly isotropic halo contaminants which lie mostly in isotropic distributions conducted 
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to the particular lithological unit. While it should be consider a fact that the study area is highly risky, 

and the sampling design had to be adjusted. For this purpose, the segment kriging method has been 

developed and successfully applies. This method concerns an interpolation within the area where 

individual concentrations extremely deviate. Because this method is highly subjective, one linear 

method of Multiple Polynomial Regression and nonlinear method of artificial intelligence have been 

developed additionally. These two methods are based on fact that spatial distribution of particular 

chemical element or groups of elements depends on lithological background and geospatial data, but 

less their mutual distances. All three prediction methods are evaluated according to their stability and 

significance under the condition that all methods are carried out under the same conditions. Each 

particular prediction method had to solve successfully distributions, anthropogenic and natural, 

respectively. Detailed data processing has been performed at four leading elements: As, Pb, Ni, and 

Ti. Each of them is leading element of geochemical association isolated by statistical approaches. For 

those elements absolute prediction accuracy was evaluated, not only relative relations. 

 

All three methods have been proven as very successful for predicting a spatial distribution of elements 

which represent a main geochemical pathway. The most significant models are that show 

anthropogenic Lead distribution, and less significant for vague Arsenic distribution. Segment kriging is 

a very useful, but requires a quite good knowledge of geology or mutual spatial relationships. In other 

hand, the method is also highly subjective. Ordinary multiple regression was found to be useless. 

Unexpectedly good results were obtained by multiple polynomial regressions (MPR), which is based 

on a cubic polynomial. But a big disadvantage of this method is that a large number of derivative 

spatial variables must be used, which is a mathematically complex as well as time consuming. At the 

same time it also raises the question of subjectivity. The best method is found a nonlinear method 

Artificial Neural network - Multi-layer perceptron (ANN-MP). The method is comparable to the previous 

one and it obtains a reliable model with less spatial variables, and the subjective influence is avoided. 

 

Based on the above methods an environmental pollution assessment with trace elements has been 

performed. Anthropogenically distributed chemical elements Pb, Zn, and Cd exceed the intervention 

values (the Standard List) only at 2.5 km2, despite all expectances. Natural enrichment with Ni and Cr 

exceeds the intervention values at 10 km2. The biggest surprise is natural enrichment with As. Its 

values exceed the intervention values at 30 km2, nearly a third of study area. 

 

It can be concluded that even in inaccessible terrain (such as mined areas or risky areas) the 

geochemical research is possible, even if there are based on sparse measurements. Using data 

processing methods such as multivariate statistical methods (cluster and factor analysis) and 

advanced nonlinear Artificial intelligence, the major geochemical trends as well as the reliable spatial 

distribution models can be determined. It is also the fact that the most reliable spatial data is Web 

available freely. 
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7. POVZETEK 

 

Raziskano ozemlje (dolina reke Stavnje) je znano po svoji več kot 100-letni rudarski in metalurški 

dejavnosti.V zgornjem delu doline sta locirana dva opuščena površinska kopa ţelezove rude Smreka 

in Brezik, rudnik ţelezove rude Droškovec, zapuščen površinski kop Pb-Zn-Ba rude Veovača, ter 

zapuščeni obrati nekdanje ţelezarne Vareš.V spodnjem (juţnem) delu doline, v bliţini Breze, se 

nahajajo opuščeni ter še aktivni površinski kopi, in rudnik rjavega premoga Breza. Raziskano ozemlje 

zajema predvsem hribovit svet in strmo dolino, območje na katerem ţivi okrog 30000 prebivalcev, 

predvsem v dveh večjih mestih Breza in Vareš. Raziskano ozemlje je bilo prizorišče intenzivnih 

vojaških operacij v zadnji vojni (1992-1995) posledica česa so danes številna ugotovljena (in tudi 

neugotovljena) minska polja ali območja visokega tveganja. Navedeno območje predstavlja izjemen 

poligon za preverjanje uporabnosti in stabilnosti linearnih in nelinearnih matematičnih metod kot so 

segmentno krigiranje (SK), multipla polinomska regresija (MPR) in umetna inteligenca - večslojni 

perceptron (ANN-MP), kjer ozka in zelo izdolţena anomalija antopogenega povišanja vsebnosti 

kemičnih prvin skoraj pravokotno seka pravilno zaporedje litoloških enot. 

 

Glavni namen raziskovalnega dela je bila identifikacija optimalne metodologije geokemijskih raziskav 

na področju nekdanjih vojaških operacijah (ostanki minskih polj ali območja visokega tveganja) glede 

na vzorčno sredstvo, gostoto vzorčenja, način obdelave podatkov in interpretacijo samih rezultatov. 

Ugotovljene so bile vsebnosti in prostorska porazdelitev kemijskih elementov, opredeljena naravna 

ozadja glede na litološke enote, ter deleţ vpliva nekdanjega rudarjenja in metalurške dejavnosti na 

porazdelitev kemičnih elementov v drugih materialih (tla, rečni sedimenti in podstrešni prah). Z 

uporabo metod multivariatne statistike so bile ugotovljene glavne geokemijske povezave in njihova 

prostorsko porazdelitev.Ugotovljena in preverjena je bila tudi optimalna metodologija napovedi 

prostorske porazdelitve koncentracij kemijskih elementov z uporabo navedenih linearnih in nelinearnih 

matematičnih metod. 

 

Vzorčni načrt je bil izdelan z namenom zagotavljanja enakomerne pokritosti raziskanega ozemlja s 

posebnim poudarkom na izogibanju območjem visokega tveganja. Osredotočili smo se na vzorčenje 

zgornje in spodnje leţeče talne plasti, rečnih sedimentov in podstrešnega prahu. Sama priprava in 

izvedba vzorčnega načrta je bilo zelo zahtevna predvsem zaradi obstoječih minskih polj ali 

neeksplodiranih eksplozivnih sredstev. Na 143 lokacijah vzorčenja je bilo zbranih 111 vzorcev zgornje 

(0-5 cm) in spodnje leţeče talne plasti (20-30 cm), 17 vzorcev rečnih sedimentov, ter 15 vzorcev 

podstrešnega prahu. Analiza 36 kemijskih elementov (Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, 

Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Th, Ti, TI, U, V, W in Zn) je bila 

opravljena v laboratoriju ACME, Vancouver (Kanada) po razklopu vzorcev z zlatotopko. Razen 

kemičnih analiz zbranega vzorčnega materiala, smo glede na zastavljene naloge, v raziskavo vključili 

številne prostorske podatke, ki so večinoma prosto dostopni na svetovnem spletu (digitalni model 

reliefa, satelitski posnetki, Google Earth topografija) in v arhivih javnih institucij v Sloveniji in Bosni in 

Hercegovini (topografske in geološke karte). 

 

Kemijske analize in prostorski podatki so bili obdelani z metodo univariatne, bivariatne in multivariatne 

statistike. Ugotovljena so bila tudi koncentracijska razmerja glede na litološke enote in definirana 

območja, ter opravljeni številni statistični testi s katerimi smo preverjali statistično značilnost naših 

domnev. Na osnovi multivariatnih statističnih metod (klasterska in faktorska analiza) smo določili štiri 

prevladujoče geokemijske povezave. Povezava Ag-Ba-Bi-Cd-Cu-Fe-Hg-Mn-Mo-Pb-Sb-Tl-W-Zn 

zdruţuje tipične »teţke kovine« in obenem predstavlja najmočnejši vzorec porazdelitve kemičnih 

elementov. Ugotovaljena povezava je vezana predvsem na okolico nekdanjih izkopov rude ţeleza in 

opuščene ţelezarne Vareš, ter na aluvialne sedimente reke Stavnje. Anomalija je jasno izraţena, zelo 

podolgovata in predstavlja predvsem obogatitev antropogenega izvora, ki je posledica nekdanjega 
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rudarjenja in topilništva.Ostale ugotovljene geokemične grupe Co-Cr-Mg-Ni, Al-Ga-Ti-V in As-La-Sc-

Th, predstavljajo vpliv preperevanja posameznih litoloških enot. 

 

Glavni problem vseh linearnih interpolacijskih metod (vključno s krigiranjem), torej metod 

napovedovanja ki temeljijo le na medsebojnih razdaljah, predstavljajo podolgovate, izjemno izotropne 

avreole onesnaţenja, ki leţijo na predvsem izotropnih distribucijah, vezanih na posamezne litološke 

enote. Obenem moramo upoštevati dejstvo, da je raziskano ozemlje visoko tvegano in je bila vzorčna 

mreţa temu dejstvu prirejena.V ta namen smo razvili in uporabili metodo segmentnega krigiranja (SK), 

ki dejansko predstavlja interpolacijo znotraj posameznega območja, kjer posamezne vrednosti 

značilno in močno izstopajo.Ker je navedena metoda močno subjektivna smo dodatno uporabili 

linearno metodo multiple polinomske regresije (MPR) ter kot glavno, nelinearno metodo umetne 

inteligence - večslojnega perceptrona (ANN-MP). Navedeni metodi temeljita na dejstvu, da na 

porazdelitev posameznega kemičnega elementa ali povezave elementov vplivajo predvsem litološka 

podlaga in prostorski parametri, v precej manjši meri njihove medsebojne oddaljenosti. Vse tri metode 

napovedovanja (SK, MPR in ANN-MP) smo ovrednotili glede na njihovo stabilnost in značilnost pod 

osnovnim pogojem, da je postopek izpeljan pod enakimi pogoji, kar pomeni, da so te metode morale 

uspešno rešiti antropogeno, kakor tudi naravno povzročene distribucije. Izračune smo opravili na 

vodilnih elementih, ugotovljenih na geokemičnih povezavah med Pb, Ni, Ti in As, ker smo ocenjevali 

tudi absolutno točnost napovedi, ne pa le relativne odnose, kar pri obdelavi faktorskih vrednosti ni 

mogoče. 

 

Vse tri navedene metode so se pokazale kot zelo uspešne za napovedovanje prostorskih porazdelitev 

prvin, ki ponazarjajo glavne geokemične trende. Najbolj značilni modeli so izpeljani v primeru 

antropogene porazdelitve Pb najslabši toda še zmeraj visoko značilni v primeru naravne, toda nejasne 

distribucije As. Segmentno krigiranje (SK), je sicer zelo uporabno, zahteva pa zelo dobro poznavanje 

geologije ali pa medsebojnih prostorskih odnosov. Metoda je obenem močno subjektivna.Navadna 

multipla regresija se je izkazala kot neuporabna. Nepričakovano dobre rezultate pa smo dobili z 

metodo multiple polinomske regresije (MPR), ki temelji na kubičnem polinomu. Pomanjkljivost metode 

je v tem, da moramo uporabiti večje število izvedenih prostorskih spremenljivk, kar je matematično 

zahtevno in zelo zamudno.Obenem se tudi postavlja vprašanje subjektivnosti.Kot najboljša metoda se 

je pokazala nelinearna metoda umetne inteligence - večslojnega perceptrona (ANN-MP). Metoda je 

primerljiva s prejšnjo, le da zanesljiv model pridobimo ţe s precej manjšim številom prostorskih 

spremenljivk, ter se na ta način izognemo tudi subjektivnemu vplivu. 

 

Na osnovi navedenih metod je bila izpeljana ocena onesnaţenosti okolja s »teţkimi kovinami«. 

Navkljub pričakovanju se je pokazalo, da antropogeno povzročene vsebnosti Pb, Zn in Cd presegajo 

priporočeno kritično vrednost (The Dutch Standards) na le pribliţno 2.5 km
2
. Naravno obogatene 

vsebnosti Cr in Ni preseţejo omenjeno vrednost na pribliţno 10 km
2
. Največje presenečenje raziskave 

pa su naravno obogatene vsebnosti As. Priporočeno kritično vrednost preseţejo na pribliţno 30 km
2
, 

torej na skoraj tretjini raziskanega ozemlja. 

 

Zaključimo lahko, da je tudi na teţko dostopnem terenu (minirana območja, ali območja visokega 

tveganja) mogoče izpeljati geokemične raziskave, ki temeljijo na nepravilnih, dokaj redkih mreţah 

vzorčenja. Z uporabo naprednih metod obdelave podatkov, kot so multivariatne statistične metode 

(klasterska in faktorska analiza) ter z uporabo predvsem nelinearne metode umetne inteligence - 

večslojnega perceptrona (ANN-MP) mogoče določiti glavne geokemijske trende kakor tudi zanesljive 

modele prostorske porazdelitve elementov. Pomembno je tudi dejstvo, da je večina zanesljivih 

prostorskih podatkov dostopna na svetovnemu spletu. 
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Appendix A: Locations and basic properties of sampled materials (I) 

 

Sample Material Lon (WGS84) Lat (WGS84) Altitude (M) Location Year Area 

T-01/1 (0-5) Topsoil 18.33095 44.19802 1113 Sjenokos 2011 Rural 
T-01/2 (0-5) Topsoil 18.34598 44.19091 1071 Strijica 2009 Rural 
T-01/3 (0-5) Topsoil 18.36298 44.19426 1089 Zaruđe 2009 Rural 
T-02/1 (0-5) Topsoil 18.33179 44.18713 1164 Sjenokos 2009 Rural 
T-02/2 (0-5) Topsoil 18.34180 44.18490 966 Stavnja (Zg. tok) 2009 Rural 
T-02/3 (0-5) Topsoil 18.34947 44.18246 1066 Javornik 2009 Rural 
T-03/1 (0-5) Topsoil 18.32086 44.17997 1159 Pobrin Han 2009 Rural 
T-03/2 (0-5) Topsoil 18.33692 44.17857 922 Vareš (Stijenje) 2009 Rural 
T-03/3 (0-5) Topsoil 18.34059 44.17388 1024 Zabrezje 2009 Rural 
T-04/1 (0-5) Topsoil 18.31483 44.17303 1094 Vijenac 2011 Natural 
T-04/2 (0-5) Topsoil 18.32878 44.17165 999 Vijenac (Veleski p.) 2009 Rural 
T-04/3 (0-5) Topsoil 18.33492 44.16992 887 Lijepovići 2009 Rural, Urban 
T-04/4 (0-5) Topsoil 18.34399 44.16522 1162 Kapetanovići 2011 Rural 
T-05/1 (0-5) Topsoil 18.32991 44.16509 842 Vareš - Benići 2009 Urban 
T-05/2 (0-5) Topsoil 18.33116 44.16303 911 Vareš (Terzijino B.) 2009 Rural 
T-06/1 (0-5) Topsoil 18.28727 44.17289 1173 Semizova Ponikva 2011 Rural 
T-06/2 (0-5) Topsoil 18.30338 44.16807 1120 Stijene 2011 Rural 
T-06/3 (0-5) Topsoil 18.31928 44.16528 1066 Vareš (W) 2009 Rural 
T-06/4 (0-5) Topsoil 18.32474 44.16431 947 Vareš 2009 Rural 
T-06/5 (0-5) Topsoil 18.32598 44.16129 829 Vareš (Put mira 29) 2009 Urban 
T-06/6 (0-5) Topsoil 18.32784 44.15806 902 Vareš 2009 Rural 
T-06/7 (0-5) Topsoil 18.33854 44.15448 1122 Diknići 2009 Rural 
T-06/8 (0-5) Topsoil 18.35758 44.15484 1186 Borak 2011 Rural 
T-07/1 (0-5) Topsoil 18.27961 44.15481 1366 G. Rajčevac 2011 Rural 
T-07/2 (0-5) Topsoil 18.29245 44.16082 1161 Kicelj 2011 Rural 
T-07/3 (0-5) Topsoil 18.30939 44.15604 922 Papale 2011 Rural 
T-07/4 (0-5) Topsoil 18.32313 44.15421 804 Vareš (C.R.) 2009 Industrial, Urban 
T-08/1 (0-5) Topsoil 18.31699 44.14698 903 G. Rajčevac 2009 Rural 
T-08/2 (0-5) Topsoil 18.32065 44.14754 827 D. Rajčevac 2009 Rural, Urban 
T-08/3 (0-5) Topsoil 18.32258 44.14704 788 Vareš - Majdan (N) 2009 Industrial, Urban 
T-08/4 (0-5) Topsoil 18.33168 44.14604 1024 Mlakve 2009 Rural 
T-08/5 (0-5) Topsoil 18.34286 44.14466 1109 Brezik 2009 Rural 
T-09/1 (0-5) Topsoil 18.31999 44.14249 818 Vareš (Metalska ul. 20) 2009 Rural, Urban 
T-09/2 (0-5) Topsoil 18.32135 44.14179 775 Vareš (Metalska ul. 20) 2009 Industrial, Urban 
T-10 (0-5) Topsoil 18.31888 44.13898 773 Vareš - Majdan (N) 2009 Industrial, Urban 
T-11/1 (0-5) Topsoil 18.28798 44.14440 1371 Mijakovačke p. 2011 Rural 
T-11/2 (0-5) Topsoil 18.30092 44.14040 1279 Perun 2009 Natural 
T-11/3 (0-5) Topsoil 18.31177 44.13955 897 Vareš - Majdan (W) 2009 Rural 
T-11/4 (0-5) Topsoil 18.31724 44.13457 764 Vareš - Majdan 2009 Urban 
T-11/5 (0-5) Topsoil 18.31942 44.13356 828 Vareš - Majdan 2009 Rural, Urban 
T-11/6 (0-5) Topsoil 18.32717 44.13570 1054 Gar 2009 Rural 
T-11/7 (0-5) Topsoil 18.34157 44.13719 1093 Tisovci 2011 Rural 
T-12/1 (0-5) Topsoil 18.30517 44.13248 1022 Bor 2009 Rural 
T-12/2 (0-5) Topsoil 18.31143 44.13039 762 Prnjavor 2009 Rural 
T-12/3 (0-5) Topsoil 18.32115 44.12805 915 Stupni Do (W) 2009 Rural 
T-12/4 (0-5) Topsoil 18.32880 44.12411 988 Stupni Do (E) 2009 Rural 
T-13/1 (0-5) Topsoil 18.29201 44.12645 1397 Karasanovina 2011 Rural 
T-13/2 (0-5) Topsoil 18.30779 44.12130 745 Podjavor 2009 Rural, Natural 
T-14/1 (0-5) Topsoil 18.28798 44.11356 1076 Planinica 2011 Rural 
T-14/2 (0-5) Topsoil 18.30451 44.11160 685 Pajtov Han (N) 2009 Rural 
T-14/3 (0-5) Topsoil 18.32087 44.11352 1133 Mir 2011 Rural 
T-15/1 (0-5) Topsoil 18.29677 44.10476 881 Samari 2009 Rural 
T-15/2 (0-5) Topsoil 18.30786 44.10106 670 Pajtov Han (S) 2009 Rural 
T-16/1 (0-5) Topsoil 18.29735 44.09565 1008 Striježevo 2009 Rural 
T-16/2 (0-5) Topsoil 18.31305 44.09192 643 Pajtov Han (S) 2009 Rural 
T-16/3 (0-5) Topsoil 18.32926 44.09122 953 Budoželje 2009 Rural 
T-16/4 (0-5) Topsoil 18.34011 44.08596 1027 Budoželje 2011 Rural 
T-17/1 (0-5) Topsoil 18.28258 44.08318 971 Brda (N) 2011 Rural 
T-17/2 (0-5) Topsoil 18.29619 44.08648 616 Strana (Stavnja) 2011 Natural 
T-17/3 (0-5) Topsoil 18.31411 44.07640 1237 Budoželjska pl. 2011 Rural 
T-18/1 (0-5) Topsoil 18.27547 44.07554 961 Brda 2011 Rural 
T-18/2 (0-5) Topsoil 18.28299 44.07091 951 Brdo 2009 Rural 
T-18/4 (0-5) Topsoil 18.29233 44.06811 606 Dabravine (Hodžići) 2009 Rural 
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Sample Material Lon (WGS84) Lat (WGS84) Altitude (M) Location Year Area 

T-18/5 (0-5) Topsoil 18.30074 44.06185 835 Pomenići 2009 Rural 
T-19/1 (0-5) Topsoil 18.27473 44.05472 826 Vardište 2011 Rural 
T-19/2 (0-5) Topsoil 18.28384 44.05032 784 Vardište 2009 Rural 
T-19/3 (0-5) Topsoil 18.29407 44.05836 561 Dabravine (S) 2009 Rural 
T-19/5 (0-5) Topsoil 18.30984 44.04647 778 Neprivaj (W) 2011 Rural 
T-19/6 (0-5) Topsoil 18.32335 44.04423 1013 Neprivaj 2011 Rural 
T-20/1 (0-5) Topsoil 18.26042 44.04782 751 Koščane 2011 Rural 
T-20/2 (0-5) Topsoil 18.28132 44.04256 532 Nedići 2011 Natural 
T-20/3 (0-5) Topsoil 18.29357 44.04096 819 Trtorići 2009 Rural 
T-20/4 (0-5) Topsoil 18.31823 44.03175 1042 Slivno 2011 Rural 
T-21/1 (0-5) Topsoil 18.24629 44.03797 683 G. Breza 2011 Rural 
T-21/2 (0-5) Topsoil 18.26147 44.03843 706 Smrekovica 2011 Rural 
T-21/3 (0-5) Topsoil 18.26994 44.03438 615 Sutješčica 2011 Rural 
T-21/5 (0-5) Topsoil 18.27682 44.03284 547 Vrankamen 2009 Rural 
T-21/6 (0-5) Topsoil 18.27626 44.02665 560 Vrankamen 2011 Rural 
T-21/7 (0-5) Topsoil 18.29038 44.02768 905 Orpeč (Vrh) 2011 Rural 
T-21/8 (0-5) Topsoil 18.30220 44.02374 1015 Seoce - Crni vrh 2011 Rural 
T-22/1 (0-5) Topsoil 18.23617 44.02686 638 Breza (Blaca) 2011 Rural 
T-22/2 (0-5) Topsoil 18.25130 44.02111 531 Breza (Založje) 2011 Rural 
T-22/3 (0-5) Topsoil 18.25689 44.02663 550 Smrekovica 2011 Rural 
T-22/4 (0-5) Topsoil 18.26201 44.02109 498 Breza (Centre) 2009 Urban 
T-22/6 (0-5) Topsoil 18.26666 44.01967 506 Breza (N) 2009 Rural, Urban 
T-22/7 (0-5) Topsoil 18.27551 44.01486 570 Borak 2011 Rural 
T-22/8 (0-5) Topsoil 18.29823 44.00829 886 Vlahinje 2011 Rural 
T-24/1 (0-5) Topsoil 18.24690 44.00634 681 Mahala 2011 Rural 
T-24/2 (0-5) Topsoil 18.25536 44.00853 479 Breza (S) 2009 Rural, Urban 
T-24/4 (0-5) Topsoil 18.26347 44.00303 475 Potkraj 2009 Rural 
T-24/5 (0-5) Topsoil 18.27389 44.00046 499 Izbod 2011 Rural 
T-24/6 (0-5) Topsoil 18.28502 43.99454 545 Erići 2011 Rural 
T-25/1 (0-5) Topsoil 18.25426 43.99714 465 Potkraj - Breza 2011 Rural 
T-26/1 (0-5) Topsoil 18.24848 43.99411 506 Potkraj 2011 Rural 
T-26/2 (0-5) Topsoil 18.25208 43.98983 458 Župča - Vrbovik 2009 Rural 
T-26/4 (0-5) Topsoil 18.25864 43.98814 456 Podžupča 2009 Rural 
T-26/5 (0-5) Topsoil 18.27329 43.98649 523 Župča 2011 Rural 
T-27/1 (0-5) Topsoil 18.24419 43.97834 454 Ilijaš (Lješevo) 2011 Rural 
T-27/2 (0-5) Topsoil 18.24719 43.98194 442 Vrbovik 2011 Rural 
T-27/4 (0-5) Topsoil 18.25092 43.97617 447 Podlugovi 2011 Rural 
T-27/5 (0-5) Topsoil 18.25938 43.97715 502 Sovrle 2011 Rural 
A-15/3 (0-5) Topsoil 18.30897 44.10086 651 Pajtov Han (S) 2009 Rural 
A-18/3 (0-5) Topsoil 18.29099 44.07187 583 Dabravine (Hodžići) 2009 Rural 
A-19/4 (0-5) Topsoil 18.29542 44.05754 561 Dabravine 2009 Rural 
A-21/4 (0-5) Topsoil 18.27481 44.03284 519 Vrankamen 2009 Rural 
A-22/5 (0-5) Topsoil 18.26500 44.01756 483 Breza (N) 2009 Rural, Urban 
A-23 (0-5) Topsoil 18.25985 44.01109 478 Breza 2009 Urban 
A-24/3 (0-5) Topsoil 18.25940 44.00333 472 Potkraj 2009 Rural, Urban 
A-25/2 (0-5) Topsoil 18.25858 43.99419 460 Podžupča 2009 Rural 
A-26/3 (0-5) Topsoil 18.25400 43.98813 454 Župča 2009 Rural, Urban 
A-27/3 (0-5) Topsoil 18.24524 43.97780 442 Podlugovi 2011 Rural 
T-01/1 (20-30) Subsoil 18.33095 44.19802 1113 Sjenokos 2011 Rural 
T-01/2 (20-30) Subsoil 18.34598 44.19091 1071 Strijica 2009 Rural 
T-01/3 (20-30) Subsoil 18.36298 44.19426 1089 Zaruđe 2009 Rural 
T-02/1 (20-30) Subsoil 18.33179 44.18713 1164 Sjenokos 2009 Rural 
T-02/2 (20-30) Subsoil 18.34180 44.18490 966 Stavnja (Zg. tok) 2009 Rural 
T-02/3 (20-30) Subsoil 18.34947 44.18246 1066 Javornik 2009 Rural 
T-03/1 (20-30) Subsoil 18.32086 44.17997 1159 Pobrin Han 2009 Rural 
T-03/2 (20-30) Subsoil 18.33692 44.17857 922 Vareš (Stijenje) 2009 Rural 
T-03/3 (20-30) Subsoil 18.34059 44.17388 1024 Zabrezje 2009 Rural 
T-04/1 (20-30) Subsoil 18.31483 44.17303 1094 Vijenac 2011 Natural 
T-04/2 (20-30) Subsoil 18.32878 44.17165 999 Vijenac (Veleski p.) 2009 Rural 
T-04/3 (20-30) Subsoil 18.33492 44.16992 887 Lijepovići 2009 Rural, Urban 
T-04/4 (20-30) Subsoil 18.34399 44.16522 1162 Kapetanovići 2011 Rural 
T-05/1 (20-30) Subsoil 18.32991 44.16509 842 Vareš - Benići 2009 Urban 
T-05/2 (20-30) Subsoil 18.33116 44.16303 911 Vareš (Terzijino B.) 2009 Rural 
T-06/1 (20-30) Subsoil 18.28727 44.17289 1173 Semizova Ponikva 2011 Rural 
T-06/2 (20-30) Subsoil 18.30338 44.16807 1120 Stijene 2011 Rural 
T-06/3 (20-30) Subsoil 18.31928 44.16528 1066 Vareš (W) 2009 Rural 
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Sample Material Lon (WGS84) Lat (WGS84) Altitude (M) Location Year Area 

T-06/4 (20-30) Subsoil 18.32474 44.16431 947 Vareš 2009 Rural 
T-06/5 (20-30) Subsoil 18.32598 44.16129 829 Vareš (Put mira 29) 2009 Urban 
T-06/6 (20-30) Subsoil 18.32784 44.15806 902 Vareš 2009 Rural 
T-06/7 (20-30) Subsoil 18.33854 44.15448 1122 Diknići 2009 Rural 
T-06/8 (20-30) Subsoil 18.35758 44.15484 1186 Borak 2011 Rural 
T-07/1 (20-30) Subsoil 18.27961 44.15481 1366 Goruške p. 2011 Rural 
T-07/2 (20-30) Subsoil 18.29245 44.16082 1161 Kicelj 2011 Rural 
T-07/3 (20-30) Subsoil 18.30939 44.15604 922 Papale 2011 Rural 
T-07/4 (20-30) Subsoil 18.32313 44.15421 804 Vareš (C.R.) 2009 Industrial, Urban 
T-08/1 (20-30) Subsoil 18.31699 44.14698 903 G. Rajčevac 2009 Rural 
T-08/2 (20-30) Subsoil 18.32065 44.14754 827 D. Rajčevac 2009 Rural, Urban 
T-08/3 (20-30) Subsoil 18.32258 44.14704 788 Vareš - Majdan (N) 2009 Industrial, Urban 
T-08/4 (20-30) Subsoil 18.33168 44.14604 1024 Mlakve 2009 Rural 
T-08/5 (20-30) Subsoil 18.34286 44.14466 1109 Brezik 2009 Rural 
T-09/1 (20-30) Subsoil 18.31999 44.14249 818 Vareš (Metalska ul. 20) 2009 Rural, Urban 
T-09/2 (20-30) Subsoil 18.32135 44.14179 775 Vareš (Metalska ul. 20) 2009 Industrial, Urban 
T-10 (20-30) Subsoil 18.31888 44.13898 773 Vareš - Majdan (N) 2009 Industrial, Urban 
T-11/1 (20-30) Subsoil 18.28798 44.14440 1371 Mijakovačke p. 2011 Rural 
T-11/2 (20-30) Subsoil 18.30092 44.14040 1279 Perun 2009 Natural 
T-11/3 (20-30) Subsoil 18.31177 44.13955 897 Vareš - Majdan (W) 2009 Rural 
T-11/4 (20-30) Subsoil 18.31724 44.13457 764 Vareš - Majdan 2009 Urban 
T-11/5 (20-30) Subsoil 18.31942 44.13356 828 Vareš - Majdan 2009 Rural, Urban 
T-11/6 (20-30) Subsoil 18.32717 44.13570 1054 Gar 2009 Rural 
T-11/7 (20-30) Subsoil 18.34157 44.13719 1093 Tisovci 2011 Rural 
T-12/1 (20-30) Subsoil 18.30517 44.13248 1022 Bor 2009 Rural 
T-12/2 (20-30) Subsoil 18.31143 44.13039 762 Prnjavor 2009 Rural 
T-12/3 (20-30) Subsoil 18.32115 44.12805 915 Stupni Do (W) 2009 Rural 
T-12/4 (20-30) Subsoil 18.32880 44.12411 988 Stupni Do (E) 2009 Rural 
T-13/1 (20-30) Subsoil 18.29201 44.12645 1397 Karasanovina 2011 Rural 
T-13/2 (20-30) Subsoil 18.30779 44.12130 745 Podjavor 2009 Rural, Natural 
T-14/1 (20-30) Subsoil 18.28798 44.11356 1076 Planinica 2011 Rural 
T-14/2 (20-30) Subsoil 18.30451 44.11160 685 Pajtov Han (N) 2009 Rural 
T-14/3 (20-30) Subsoil 18.32087 44.11352 1133 Mir 2011 Rural 
T-15/1 (20-30) Subsoil 18.29677 44.10476 881 Samari 2009 Rural 
T-15/2 (20-30) Subsoil 18.30786 44.10106 670 Pajtov Han (S) 2009 Rural 
T-16/1 (20-30) Subsoil 18.29735 44.09565 1008 Striježevo 2009 Rural 
T-16/2 (20-30) Subsoil 18.31305 44.09192 643 Pajtov Han (S) 2009 Rural 
T-16/3 (20-30) Subsoil 18.32926 44.09122 953 Budoželje 2009 Rural 
T-16/4 (20-30) Subsoil 18.34011 44.08596 1027 Budoželje 2011 Rural 
T-17/1 (20-30) Subsoil 18.28258 44.08318 971 Brda (N) 2011 Rural 
T-17/2 (20-30) Subsoil 18.29619 44.08648 616 Strana (Stavnja) 2011 Natural 
T-17/3 (20-30) Subsoil 18.31411 44.07640 1237 Budoželjska pl. 2011 Rural 
T-18/1 (20-30) Subsoil 18.27547 44.07554 961 Brda 2011 Rural 
T-18/2 (20-30) Subsoil 18.28299 44.07091 951 Brdo 2009 Rural 
T-18/4 (20-30) Subsoil 18.29233 44.06811 606 Dabravine (Hodžići) 2009 Rural 
T-18/5 (20-30) Subsoil 18.30074 44.06185 835 Pomenići 2009 Rural 
T-19/1 (20-30) Subsoil 18.27473 44.05472 826 Vardište 2011 Rural 
T-19/2 (20-30) Subsoil 18.28384 44.05032 784 Vardište 2009 Rural 
T-19/3 (20-30) Subsoil 18.29407 44.05836 561 Dabravine (S) 2009 Rural 
T-19/5 (20-30) Subsoil 18.30984 44.04647 778 Neprivaj (W) 2011 Rural 
T-19/6 (20-30) Subsoil 18.32335 44.04423 1013 Neprivaj 2011 Rural 
T-20/1 (20-30) Subsoil 18.26042 44.04782 751 Koščane 2011 Rural 
T-20/2 (20-30) Subsoil 18.28132 44.04256 532 Nedići 2011 Natural 
T-20/3 (20-30) Subsoil 18.29357 44.04096 819 Trtorići 2009 Rural 
T-20/4 (20-30) Subsoil 18.31823 44.03175 1042 Slivno 2011 Rural 
T-21/1 (20-30) Subsoil 18.24629 44.03797 683 G. Breza 2011 Rural 
T-21/2 (20-30) Subsoil 18.26147 44.03843 706 Smrekovica 2011 Rural 
T-21/3 (20-30) Subsoil 18.26994 44.03438 615 Sutješčica 2011 Rural 
T-21/5 (20-30) Subsoil 18.27682 44.03284 547 Vrankamen 2009 Rural 
T-21/6 (20-30) Subsoil 18.27626 44.02665 560 Vrankamen 2011 Rural 
T-21/7 (20-30) Subsoil 18.29038 44.02768 905 Orpeč (Vrh) 2011 Rural 
T-21/8 (20-30) Subsoil 18.30220 44.02374 1015 Seoce - Crni vrh 2011 Rural 
T-22/1 (20-30) Subsoil 18.23617 44.02686 638 Breza (Blaca) 2011 Rural 
T-22/2 (20-30) Subsoil 18.25130 44.02111 531 Breza (Založje) 2011 Rural 
T-22/3 (20-30) Subsoil 18.25689 44.02663 550 Smrekovica 2011 Rural 
T-22/4 (20-30) Subsoil 18.26201 44.02109 498 Breza (Centre) 2009 Urban 
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Sample Material Lon (WGS84) Lat (WGS84) Altitude (M) Location Year Area 

T-22/6 (20-30) Subsoil 18.26666 44.01967 506 Breza (N) 2009 Rural, Urban 
T-22/7 (20-30) Subsoil 18.27551 44.01486 570 Borak 2011 Rural 
T-22/8 (20-30) Subsoil 18.29823 44.00829 886 Vlahinje 2011 Rural 
T-24/1 (20-30) Subsoil 18.24690 44.00634 681 Mahala 2011 Rural 
T-24/2 (20-30) Subsoil 18.25536 44.00853 479 Breza (S) 2009 Rural, Urban 
T-24/4 (20-30) Subsoil 18.26347 44.00303 475 Potkraj 2009 Rural 
T-24/5 (20-30) Subsoil 18.27389 44.00046 499 Izbod 2011 Rural 
T-24/6 (20-30) Subsoil 18.28502 43.99454 545 Erići 2011 Rural 
T-25/1 (20-30) Subsoil 18.25426 43.99714 465 Potkraj - Breza 2011 Rural 
T-26/1 (20-30) Subsoil 18.24848 43.99411 506 Potkraj 2011 Rural 
T-26/2 (20-30) Subsoil 18.25208 43.98983 458 Župča - Vrbovik 2009 Rural 
T-26/4 (20-30) Subsoil 18.25864 43.98814 456 Podžupča 2009 Rural 
T-26/5 (20-30) Subsoil 18.27329 43.98649 523 Župča 2011 Rural 
T-27/1 (20-30) Subsoil 18.24419 43.97834 454 Ilijaš (Lješevo) 2011 Rural 
T-27/2 (20-30) Subsoil 18.24719 43.98194 442 Vrbovik 2011 Rural 
T-27/4 (20-30) Subsoil 18.25092 43.97617 447 Podlugovi 2011 Rural 
T-27/5 (20-30) Subsoil 18.25938 43.97715 502 Sovrle 2011 Rural 
A-15/3 (20-30) Subsoil 18.30897 44.10086 651 Pajtov Han (S) 2009 Rural 
A-18/3 (20-30) Subsoil 18.29099 44.07187 583 Dabravine (Hodžići) 2009 Rural 
A-19/4 (20-30) Subsoil 18.29542 44.05754 561 Dabravine 2009 Rural 
A-21/4 (20-30) Subsoil 18.27481 44.03284 519 Vrankamen 2009 Rural 
A-22/5 (20-30) Subsoil 18.26500 44.01756 483 Breza (N) 2009 Rural, Urban 
A-23 (20-30) Subsoil 18.25985 44.01109 478 Breza 2009 Urban 
A-24/3 (20-30) Subsoil 18.25940 44.00333 472 Potkraj 2009 Rural, Urban 
A-25/2 (20-30) Subsoil 18.25858 43.99419 460 Podžupča 2009 Rural 
A-26/3 (20-30) Subsoil 18.25400 43.98813 454 Župča 2009 Rural, Urban 
A-27/3 (20-30) Subsoil 18.24524 43.97780 442 Podlugovi 2011 Rural 
S-01 S. Sediment 18.36298 44.19426 1089 Zaruđe 2009 Rural 
S-02 S. Sediment 18.34180 44.18490 966 Stavnje (Zg. tok) 2009 Rural 
S-03 S. Sediment 18.33692 44.17857 922 Vareš (Stijenje) 2009 Rural 
S-04 S. Sediment 18.33492 44.16992 887 Lijepovići 2009 Rural, Urban 
S-06 S. Sediment 18.32598 44.16129 829 Vareš (Put mira 29) 2009 Urban 
S-07 S. Sediment 18.32313 44.15421 804 Vareš (C.R.) 2009 Industrial, Urban 
S-09 S. Sediment 18.32162 44.14407 785 Vareš - Majdan (N) 2009 Industrial, Urban 
S-11 S. Sediment 18.31724 44.13457 764 Vareš - Majdan 2009 Urban 
S-13 S. Sediment 18.30779 44.12130 745 Podjavor 2009 Rural 
S-15 S. Sediment 18.30897 44.10086 651 Pajtov Han (S) 2009 Rural 
S-17 S. Sediment 18.29564 44.08585 616 Stavnja - Strana 2009 Natural 
S-18 S. Sediment 18.29099 44.07187 583 Dabravine (Hodžići) 2009 Rural 
S-20 S. Sediment 18.28103 44.04347 537 Nedići 2009 Natural, Rural 
S-22 S. Sediment 18.26761 44.02140 495 Breza 2009 Rural, Urban 
S-23 S. Sediment 18.25985 44.01109 478 Breza 2009 Urban 
S-26 S. Sediment 18.25400 43.98813 454 Župča 2009 Rural, Urban 
S-27 S. Sediment 18.24524 43.97780 442 Podlugovi 2011 Rural 
P-01/2 Attic dust 18.34598 44.19091 1071 Strijica 2009 Rural 
P-02/1 Attic dust 18.33179 44.18713 1164 Sjenokos 2009 Rural 
P-02/3 Attic dust 18.34947 44.18246 1066 Javornik 2009 Rural 
P-05/1 Attic dust 18.32991 44.16509 842 Vareš - Benići 2009 Urban 
P-06/5 Attic dust 18.32598 44.16129 829 Vareš (Put mira 29) 2009 Urban 
P-08/4 Attic dust 18.33168 44.14604 1024 Mlakve 2009 Rural 
P-09/2 Attic dust 18.32135 44.14179 775 Vareš (Metalska ul. 20) 2009 Industrial, Urban 
P-10 Attic dust 18.31888 44.13898 773 Vareš - Majdan (N) 2009 Industrial, Urban 
P-11/4 Attic dust 18.31724 44.13457 764 Vareš - Majdan 2009 Urban 
P-15/2 Attic dust 18.30786 44.10106 670 Pajtov Han (S) 2009 Rural 
P-16/1 Attic dust 18.28943 44.09500 952 Striježevo 2009 Rural 
P-19/2 Attic dust 18.28407 44.05292 832 Vardište 2009 Rural 
P-19/3 Attic dust 18.29407 44.05836 561 Dabravine (S) 2009 Rural 
P-20/3 Attic dust 18.29357 44.04096 819 Trtorići 2009 Rural 
P-22/4 Attic dust 18.26201 44.02109 498 Breza (Centre) 2009 Urban 
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Appendix B: Locations and basic properties of sampled materials (II) 

 

Sample Land use Lithology Pollution Texture Structure Skeleton Org. 

matter T-01/1 (0-5) Meadow Series (JK) Not visible Clay loam Granular Non Humic 
T-01/2 (0-5) Meadow Clastites (JK) Not visible Sity clay loam Granular Non Humic 
T-01/3 (0-5) Meadow Clastites (JK) Not visible Sity clay loam Granular Non Humic 
T-02/1 (0-5) Meadow Clastites (JK) Not visible Sity clay loam Granular Roughly Humic 
T-02/2 (0-5) Meadow Clastites (JK) Not visible Sity clay loam Granular Non Humic 
T-02/3 (0-5) Meadow Clastites (JK) Not visible Clay loam Granular Non Humic 
T-03/1 (0-5) Meadow Carbonates (T) Not visible Sity clay loam Granular Non Humic 
T-03/2 (0-5) Meadow Carbonates (T) Not visible Sity clay loam Granular Non Humic 
T-03/3 (0-5) Meadow Carbonates (T) Not visible Sity clay loam Granular Non Humic 
T-04/1 (0-5) Forest Clastites (T) Industry Silty clay Granular Non Organic 
T-04/2 (0-5) Meadow Clastites (T) Not visible Sity clay loam Granular Non Humic 
T-04/3 (0-5) Meadow Clastites (T) Households Sity clay loam Granular Non Humic 
T-04/4 (0-5) Meadow Clastites (T) Industry Silty loam Granular Non Humic 
T-05/1 (0-5) Garden Carbonates (T) Households Loam Granular Mixed Humic 
T-05/2 (0-5) Meadow Carbonates (T) Industry Sandy clay loam Granular Non Humic 
T-06/1 (0-5) Meadow Carbonates (T) Industry Clay loam Granular Non Humic 
T-06/2 (0-5) Meadow Carbonates (T) Not visible Sity clay loam Granular Non Humic 
T-06/3 (0-5) Meadow Carbonates (T) Not visible Sity clay loam Granular Non Humic 
T-06/4 (0-5) Meadow Carbonates (T) Not visible Sandy clay loam Granular Non Humic 
T-06/5 (0-5) Garden Carbonates (T) Industry Sandy clay Crumb Mixed Humic 
T-06/6 (0-5) Meadow Carbonates (T) Industry Sity clay loam Granular Non Humic 
T-06/7 (0-5) Meadow Carbonates (T) Not visible Sity clay loam Granular Non Humic 
T-06/8 (0-5) Meadow Carbonates (T) Not visible Silty loam Granular Non Humic 
T-07/1 (0-5) Meadow Carbonates (T) Not visible Loam Granular Non Humic 
T-07/2 (0-5) Meadow Carbonates (T) Not visible Sity clay loam Granular Non Humic 
T-07/3 (0-5) Meadow Carbonates (T) Industry Silty loam Granular Non Humic 
T-07/4 (0-5) Abandoned land Series (JK) Industry Sandy clay loam Granular Mixed Humic 
T-08/1 (0-5) Meadow Carbonates (T) Not visible Silty clay Crumb Non Humic 
T-08/2 (0-5) Meadow Carbonates (T) Industry Silty clay Crumb Non Humic 
T-08/3 (0-5) Abandoned land Series (JK) Industry Clay loam Granular Mixed Humic 
T-08/4 (0-5) Meadow Series (JK) Not visible Sity clay loam Granular Non Humic 
T-08/5 (0-5) Meadow Series (JK) Not visible Sity clay loam Granular Non Humic 
T-09/1 (0-5) Meadow Series (JK) Industry Clay loam Granular Non Humic 
T-09/2 (0-5) Garden Series (JK) Industry Clay loam Granular Mixed Humic 
T-10 (0-5) Garden Series (JK) Industry Loam Crumb Mixed Humic 
T-11/1 (0-5) Meadow Clastites (JK) Not visible Loam Granular Non Humic 
T-11/2 (0-5) Meadow Series (JK) Not visible Clay loam Granular Non Humic 
T-11/3 (0-5) Meadow Series (JK) Not visible Clay loam Granular Non Humic 
T-11/4 (0-5) Abandoned land Series (JK) Industry Sandy clay Granular Mixed Humic 
T-11/5 (0-5) Meadow Series (JK) Industry Clay loam Granular Non Humic 
T-11/6 (0-5) Meadow Series (JK) Not visible Clay loam Granular Non Humic 
T-11/7 (0-5) Meadow Clastites (JK) Industry Silty loam Granular Non Humic 
T-12/1 (0-5) Meadow Series (JK) Not visible Clay loam Granular Non Humic 
T-12/2 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-12/3 (0-5) Meadow Series (JK) Not visible Clay loam Granular Non Humic 
T-12/4 (0-5) Meadow Series (JK) Not visible Clay loam Granular Non Humic 
T-13/1 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-13/2 (0-5) Meadow Flysch (K) Not visible Sity clay loam Granular Non Humic 
T-14/1 (0-5) Meadow Flysch (K) Not visible Loam Granular Non Humic 
T-14/2 (0-5) Meadow Flysch (K) Not visible Silty loam Granular Non Humic 
T-14/3 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-15/1 (0-5) Meadow Flysch (K) Not visible Silty loam Granular Non Humic 
T-15/2 (0-5) Meadow Flysch (K) Not visible Silty loam Granular Non Humic 
T-16/1 (0-5) Meadow Flysch (K) Not visible Silty clay Crumb Non Humic 
T-16/2 (0-5) Meadow Flysch (K) Not visible Silty loam Granular Non Humic 
T-16/3 (0-5) Meadow Flysch (K) Not visible Silty loam Granular Non Humic 
T-16/4 (0-5) Meadow Clastite (Ol) Not visible Clay loam Granular Non Humic 
T-17/1 (0-5) Meadow Flysch (K) Not visible Sity clay loam Granular Non Humic 
T-17/2 (0-5) Forest Flysch (K) Traffic Silty clay Granular Non Organic 
T-17/3 (0-5) Meadow Flysch (K) Not visible Silty loam Granular Roughly Humic 
T-18/1 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-18/2 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-18/4 (0-5) Meadow Flysch (K) Not visible Sity clay loam Granular Non Humic 
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Sample Land use Lithology Pollution Texture Structure Skeleton Org. 

matter T-18/5 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-19/1 (0-5) Meadow Flysch (K) Not visible Sity clay loam Granular Non Humic 
T-19/2 (0-5) Meadow Flysch (K) Not visible Sity clay loam Granular Non Humic 
T-19/3 (0-5) Meadow Flysch (K) Not visible Sity clay loam Granular Non Humic 
T-19/5 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-19/6 (0-5) Meadow Flysch (K) Not visible Sity clay loam Granular Non Humic 
T-20/1 (0-5) Meadow Clastite (Ol) Not visible Sity clay loam Granular Non Humic 
T-20/2 (0-5) Forest Flysch (K) Not visible Silty clay Granular Non Organic 
T-20/3 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-20/4 (0-5) Meadow Clastite (Ol) Not visible Clay loam Granular Non Humic 
T-21/1 (0-5) Meadow Karbonates (M) Not visible Sity clay loam Granular Non Humic 
T-21/2 (0-5) Meadow Karbonates (M) Not visible Clay loam Granular Non Humic 
T-21/3 (0-5) Meadow Clastite (Ol) Industry Clay loam Granular Non Humic 
T-21/5 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-21/6 (0-5) Meadow Clastite (Ol) Industry Clay loam Granular Non Humic 
T-21/7 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-21/8 (0-5) Meadow Flysch (K) Not visible Clay loam Granular Non Humic 
T-22/1 (0-5) Meadow Clastites (M) Industry Sity clay loam Granular Non Humic 
T-22/2 (0-5) Meadow Clastites (M) Industry Sity clay loam Granular Non Humic 
T-22/3 (0-5) Meadow Karbonates (M) Traffic Sity clay loam Granular Non Humic 
T-22/4 (0-5) Garden Terraces (Q) Traffic Sity clay loam Granular Mixed Humic 
T-22/6 (0-5) Meadow Terraces (Q) Traffic Silty clay Crumb Non Humic 
T-22/7 (0-5) Meadow Clastites (M) Not visible Loam Granular Non Humic 
T-22/8 (0-5) Meadow Karbonates (M) Not visible Silty clay Granular Non Humic 
T-24/1 (0-5) Meadow Clastites (M) Industry Clay loam Granular Non Humic 
T-24/2 (0-5) Meadow Terraces (Q) Agriculture Clay loam Granular Non Humic 
T-24/4 (0-5) Meadow Terraces (Q) Agriculture Silty clay Granular Non Humic 
T-24/5 (0-5) Meadow Clastites (M) Industry Silty clay Granular Non Humic 
T-24/6 (0-5) Meadow Karbonates (M) Agriculture Silty loam Granular Non Humic 
T-25/1 (0-5) Meadow Terraces (Q) Industry Silty clay Granular Non Humic 
T-26/1 (0-5) Meadow Clastites (M) Not visible Loam Granular Non Humic 
T-26/2 (0-5) Meadow Terraces (Q) Agriculture Clay loam Granular Non Humic 
T-26/4 (0-5) Meadow Terraces (Q) Agriculture Clay loam Granular Non Humic 
T-26/5 (0-5) Meadow Clastites (M) Not visible Sity clay loam Granular Non Humic 
T-27/1 (0-5) Meadow Clastites (M) Not visible Sandy clay loam Granular Non Humic 
T-27/2 (0-5) Meadow Terraces (Q) Not visible Clay loam Granular Roughly Humic 
T-27/4 (0-5) Meadow Terraces (Q) Not visible Silty loam Granular Non Humic 
T-27/5 (0-5) Meadow Clastites (M) Not visible Clay loam Granular Non Humic 
A-15/3 (0-5) Meadow Alluvium (Q) Not visible Sandy loam Structureless Non Humic 
A-18/3 (0-5) Meadow Alluvium (Q) Not visible Sandy loam Structureless Non Humic 
A-19/4 (0-5) Meadow Alluvium (Q) Not visible Sandy loam Structureless Non Humic 
A-21/4 (0-5) Meadow Alluvium (Q) Not visible Sandy loam Structureless Non Humic 
A-22/5 (0-5) Meadow Alluvium (Q) Agriculture Sandy loam Structureless Non Humic 
A-23 (0-5) Meadow Alluvium (Q) Households Sandy loam Structureless Non Humic 
A-24/3 (0-5) Meadow Alluvium (Q) Agriculture Sandy loam Granular Non Humic 
A-25/2 (0-5) Meadow Alluvium (Q) Agriculture Sandy loam Granular Non Humic 
A-26/3 (0-5) Meadow Alluvium (Q) Agriculture Sandy loam Granular Non Humic 
A-27/3 (0-5) Meadow Alluvium (Q) Industry Sandy loam Structureless Non Mineral 
T-01/1 (20-30) Meadow Series (JK) Not visible Clay loam Subangular Non Mineral 
T-01/2 (20-30) Meadow Clastites (JK) Not visible Silty clay Crumb Non Mineral 
T-01/3 (20-30) Meadow Clastites (JK) Not visible Silty clay Crumb Non Mineral 
T-02/1 (20-30) Meadow Clastites (JK) Not visible Sity clay loam Subangular Roughly Mineral 
T-02/2 (20-30) Meadow Clastites (JK) Not visible Sity clay loam Crumb Rounded Mineral 
T-02/3 (20-30) Meadow Clastites (JK) Not visible Clay loam Crumb Rounded Mineral 
T-03/1 (20-30) Meadow Carbonates (T) Not visible Sity clay loam Crumb Non Mineral 
T-03/2 (20-30) Meadow Carbonates (T) Not visible Silty clay Crumb Roughly Mineral 
T-03/3 (20-30) Meadow Carbonates (T) Not visible Sity clay loam Crumb Non Mineral 
T-04/1 (20-30) Forest Clastites (T) Industry Silty clay Subangular Roughly Mineral 
T-04/2 (20-30) Meadow Clastites (T) Not visible Sity clay loam Crumb Non Mineral 
T-04/3 (20-30) Meadow Clastites (T) Households Sity clay loam Subangular Roughly Mineral 
T-04/4 (20-30) Meadow Clastites (T) Industry Silty loam Subangular Rounded Mineral 
T-05/1 (20-30) Garden Carbonates (T) Households Loam Granular Mixed Humic 
T-05/2 (20-30) Meadow Carbonates (T) Industry Sandy clay loam Crumb Non Mineral 
T-06/1 (20-30) Meadow Carbonates (T) Industry Clay loam Crumb Non Mineral 
T-06/2 (20-30) Meadow Carbonates (T) Not visible Sity clay loam Crumb Non Mineral 
T-06/3 (20-30) Meadow Carbonates (T) Not visible Sity clay loam Crumb Non Mineral 
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Sample Land use Lithology Pollution Texture Structure Skeleton Org. 

matter T-06/4 (20-30) Meadow Carbonates (T) Not visible Sandy clay loam Subangular Non Mineral 
T-06/5 (20-30) Garden Carbonates (T) Industry Sandy clay Crumb Mixed Humic 
T-06/6 (20-30) Meadow Carbonates (T) Industry Sity clay loam Subangular Non Mineral 
T-06/7 (20-30) Meadow Carbonates (T) Not visible Sity clay loam Crumb Non Mineral 
T-06/8 (20-30) Meadow Carbonates (T) Not visible Silty loam Crumb Roughly Mineral 
T-07/1 (20-30) Meadow Carbonates (T) Not visible Loam Crumb Non Mineral 
T-07/2 (20-30) Meadow Carbonates (T) Not visible Sity clay loam Subangular Roughly Mineral 
T-07/3 (20-30) Meadow Carbonates (T) Industry Silty loam Subangular Non Mineral 
T-07/4 (20-30) Abandoned land Series (JK) Industry Sandy clay loam Granular Mixed Humic 
T-08/1 (20-30) Meadow Carbonates (T) Not visible Silty clay Subangular Roughly Mineral 
T-08/2 (20-30) Meadow Carbonates (T) Industry Silty clay Subangular Roughly Mineral 
T-08/3 (20-30) Abandoned land Series (JK) Industry Clay loam Granular Mixed Humic 
T-08/4 (20-30) Meadow Series (JK) Not visible Sity clay loam Crumb Non Mineral 
T-08/5 (20-30) Meadow Series (JK) Not visible Silty clay Subangular Non Mineral 
T-09/1 (20-30) Meadow Series (JK) Industry Clay loam Subangular Roughly Mineral 
T-09/2 (20-30) Garden Series (JK) Industry Clay loam Granular Mixed Humic 
T-10 (20-30) Garden Series (JK) Industry Loam Crumb Mixed Humic 
T-11/1 (20-30) Meadow Clastites (JK) Not visible Loam Crumb Non Mineral 
T-11/2 (20-30) Meadow Series (JK) Not visible Clay loam Subangular Non Mineral 
T-11/3 (20-30) Meadow Series (JK) Not visible Clay loam Subangular Non Mineral 
T-11/4 (20-30) Abandoned land Series (JK) Industry Sandy clay Granular Mixed Humic 
T-11/5 (20-30) Meadow Series (JK) Industry Clay loam Subangular Roughly Mineral 
T-11/6 (20-30) Meadow Series (JK) Not visible Clay loam Crumb Non Mineral 
T-11/7 (20-30) Meadow Clastites (JK) Industry Silty loam Subangular Roughly Mineral 
T-12/1 (20-30) Meadow Series (JK) Not visible Clay loam Subangular Roughly Mineral 
T-12/2 (20-30) Meadow Flysch (K) Not visible Clay loam Subangular Roughly Mineral 
T-12/3 (20-30) Meadow Series (JK) Not visible Clay loam Crumb Non Mineral 
T-12/4 (20-30) Meadow Series (JK) Not visible Clay loam Subangular Non Mineral 
T-13/1 (20-30) Meadow Flysch (K) Not visible Clay loam Subangular Non Mineral 
T-13/2 (20-30) Meadow Flysch (K) Not visible Sity clay loam Subangular Roughly Mineral 
T-14/1 (20-30) Meadow Flysch (K) Not visible Loam Subangular Non Mineral 
T-14/2 (20-30) Meadow Flysch (K) Not visible Silty loam Subangular Non Mineral 
T-14/3 (20-30) Meadow Flysch (K) Not visible Clay loam Subangular Roughly Mineral 
T-15/1 (20-30) Meadow Flysch (K) Not visible Silty loam Subangular Non Mineral 
T-15/2 (20-30) Meadow Flysch (K) Not visible Silty loam Subangular Non Mineral 
T-16/1 (20-30) Meadow Flysch (K) Not visible Silty clay Subangular Rounded Mineral 
T-16/2 (20-30) Meadow Flysch (K) Not visible Silty loam Subangular Roughly Mineral 
T-16/3 (20-30) Meadow Flysch (K) Not visible Silty loam Subangular Non Mineral 
T-16/4 (20-30) Meadow Clastite (Ol) Not visible Clay loam Subangular Non Mineral 
T-17/1 (20-30) Meadow Flysch (K) Not visible Sity clay loam Subangular Non Mineral 
T-17/2 (20-30) Forest Flysch (K) Traffic Silty clay Crumb Roughly Mineral 
T-17/3 (20-30) Meadow Flysch (K) Not visible Silty loam Subangular Roughly Mineral 
T-18/1 (20-30) Meadow Flysch (K) Not visible Clay loam Subangular Non Mineral 
T-18/2 (20-30) Meadow Flysch (K) Not visible Clay loam Subangular Non Mineral 
T-18/4 (20-30) Meadow Flysch (K) Not visible Sity clay loam Subangular Roughly Mineral 
T-18/5 (20-30) Meadow Flysch (K) Not visible Clay loam Crumb Roughly Mineral 
T-19/1 (20-30) Meadow Flysch (K) Not visible Sity clay loam Crumb Non Mineral 
T-19/2 (20-30) Meadow Flysch (K) Not visible Sity clay loam Crumb Non Mineral 
T-19/3 (20-30) Meadow Flysch (K) Not visible Sity clay loam Subangular Roughly Mineral 
T-19/5 (20-30) Meadow Flysch (K) Not visible Clay loam Subangular Non Mineral 
T-19/6 (20-30) Meadow Flysch (K) Not visible Sity clay loam Subangular Non Mineral 
T-20/1 (20-30) Meadow Clastite (Ol) Not visible Sity clay loam Crumb Non Mineral 
T-20/2 (20-30) Forest Flysch (K) Not visible Silty clay Subangular Roughly Mineral 
T-20/3 (20-30) Meadow Flysch (K) Not visible Clay loam Subangular Non Mineral 
T-20/4 (20-30) Meadow Clastite (Ol) Not visible Clay loam Subangular Non Mineral 
T-21/1 (20-30) Meadow Karbonates (M) Not visible Sity clay loam Subangular Non Mineral 
T-21/2 (20-30) Meadow Karbonates (M) Not visible Clay loam Subangular Non Mineral 
T-21/3 (20-30) Meadow Clastite (Ol) Industry Clay loam Subangular Non Mineral 
T-21/5 (20-30) Meadow Flysch (K) Not visible Clay loam Crumb Roughly Mineral 
T-21/6 (20-30) Meadow Clastite (Ol) Industry Clay loam Subangular Non Mineral 
T-21/7 (20-30) Meadow Flysch (K) Not visible Clay loam Crumb Non Mineral 
T-21/8 (20-30) Meadow Flysch (K) Not visible Clay loam Subangular Non Mineral 
T-22/1 (20-30) Meadow Clastites (M) Industry Sity clay loam Crumb Non Mineral 
T-22/2 (20-30) Meadow Clastites (M) Industry Sity clay loam Crumb Non Mineral 
T-22/3 (20-30) Meadow Karbonates (M) Traffic Sity clay loam Crumb Non Mineral 
T-22/4 (20-30) Garden Terraces (Q) Traffic Sity clay loam Crumb Mixed Humic 
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Sample Land use Lithology Pollution Texture Structure Skeleton Org. 

matter T-22/6 (20-30) Meadow Terraces (Q) Traffic Silty clay Subangular Non Mineral 
T-22/7 (20-30) Meadow Clastites (M) Not visible Loam Crumb Non Mineral 
T-22/8 (20-30) Meadow Karbonates (M) Not visible Silty clay Subangular Non Mineral 
T-24/1 (20-30) Meadow Clastites (M) Industry Clay loam Crumb Non Mineral 
T-24/2 (20-30) Meadow Terraces (Q) Agriculture Clay loam Subangular Non Mineral 
T-24/4 (20-30) Meadow Terraces (Q) Agriculture Silty clay Crumb Non Mineral 
T-24/5 (20-30) Meadow Clastites (M) Industry Clay loam Subangular Non Mineral 
T-24/6 (20-30) Meadow Karbonates (M) Agriculture Silty loam Subangular Non Mineral 
T-25/1 (20-30) Meadow Terraces (Q) Industry Silty clay Subangular Non Mineral 
T-26/1 (20-30) Meadow Clastites (M) Not visible Loam Subangular Roughly Mineral 
T-26/2 (20-30) Meadow Terraces (Q) Agriculture Clay loam Crumb Non Mineral 
T-26/4 (20-30) Meadow Terraces (Q) Agriculture Clay loam Crumb Non Mineral 
T-26/5 (20-30) Meadow Clastites (M) Not visible Sity clay loam Subangular Non Mineral 
T-27/1 (20-30) Meadow Clastites (M) Not visible Sandy clay loam Crumb Non Mineral 
T-27/2 (20-30) Meadow Terraces (Q) Not visible Clay loam Subangular Roughly Mineral 
T-27/4 (20-30) Meadow Terraces (Q) Not visible Silty loam Subangular Non Mineral 
T-27/5 (20-30) Meadow Clastites (M) Not visible Clay loam Subangular Non Mineral 
A-15/3 (20-30) Meadow Alluvium (Q) Not visible Sandy loam Structureless Non Mineral 
A-18/3 (20-30) Meadow Alluvium (Q) Not visible Sandy loam Structureless Non Mineral 
A-19/4 (20-30) Meadow Alluvium (Q) Not visible Sandy loam Structureless Non Mineral 
A-21/4 (20-30) Meadow Alluvium (Q) Not visible Sandy loam Structureless Non Mineral 
A-22/5 (20-30) Meadow Alluvium (Q) Agriculture Sandy loam Structureless Non Mineral 
A-23 (20-30) Meadow Alluvium (Q) Households Sandy loam Structureless Non Mineral 
A-24/3 (20-30) Meadow Alluvium (Q) Agriculture Sandy loam Crumb Non Mineral 
A-25/2 (20-30) Meadow Alluvium (Q) Agriculture Sandy loam Crumb Non Mineral 
A-26/3 (20-30) Meadow Alluvium (Q) Agriculture Sandy loam Crumb Non Mineral 
A-27/3 (20-30) Meadow Alluvium (Q) Industry Sandy loam Structureless Non Mineral 
S-01 Meadow Alluvium (Q) Not visible - - - - 
S-02 Meadow Alluvium (Q) Not visible - - - - 
S-03 Meadow Alluvium (Q) Not visible - - - - 
S-04 Meadow Alluvium (Q) Households - - - - 
S-06 Garden Alluvium (Q) Industry - - - - 
S-07 Abandoned land Alluvium (Q) Industry - - - - 
S-09 Garden Alluvium (Q) Industry - - - - 
S-11 Abandoned land Alluvium (Q) Industry - - - - 
S-13 Meadow Alluvium (Q) Not visible - - - - 
S-15 Meadow Alluvium (Q) Not visible - - - - 
S-17 Forest Alluvium (Q) Not visible - - - - 
S-18 Meadow Alluvium (Q) Not visible - - - - 
S-20 Forest Alluvium (Q) Not visible - - - - 
S-22 Meadow Alluvium (Q) Households - - - - 
S-23 Meadow Alluvium (Q) Households - - - - 
S-26 Meadow Alluvium (Q) Households - - - - 
S-27 Meadow Alluvium (Q) Industry - - - - 
P-01/2 - Clastites (JK) Not visible - - - - 
P-02/1 - Clastites (JK) Not visible - - - - 
P-02/3 - Clastites (JK) Not visible - - - - 
P-05/1 - Carbonates (T) Households - - - - 
P-06/5 - Carbonates (T) Industry - - - - 
P-08/4 - Series (JK) Not visible - - - - 
P-09/2 - Series (JK) Industry - - - - 
P-10 - Series (JK) Industry - - - - 
P-11/4 - Series (JK) Industry - - - - 
P-15/2 - Flysch (K) Not visible - - - - 
P-16/1 - Flysch (K) Not visible - - - - 
P-19/2 - Flysch (K) Not visible - - - - 
P-19/3 - Flysch (K) Not visible - - - - 
P-20/3 - Flysch (K) Not visible - - - - 
P-22/4 - Alluvium (Q) Traffic - - - - 
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Appendix C: Chemical analyses of collected sampling materials (I); Values of Al, Fe, Mg and Ti 

are in %, remaining elements in mg/kg 

 

Sample Material Ag Al As Ba Bi Cd Co Cr Cu Fe Ga Hg La 

T-01/1 (0-5) Topsoil 0.1 2.31 4.4 158 0.3 0.6 15.1 69 33.2 2.70 6.0 0.08 7 
T-01/2 (0-5) Topsoil 0.1 2.15 5.4 236 0.6 0.9 14.6 68 31.7 2.65 6.0 0.09 6 
T-01/3 (0-5) Topsoil 0.1 1.86 11.1 156 0.3 0.5 16.5 36 25.0 2.86 5.0 0.09 6 
T-02/1 (0-5) Topsoil <0.1 1.93 7.8 148 0.3 0.5 13.2 39 27.6 2.61 6.0 0.08 7 
T-02/2 (0-5) Topsoil 0.1 2.65 11.4 144 0.3 0.5 22.1 86 43.9 4.19 6.0 0.07 9 
T-02/3 (0-5) Topsoil <0.1 1.64 11.7 157 0.4 0.4 12.2 28 21.5 2.54 5.0 0.08 2 
T-03/1 (0-5) Topsoil 0.2 1.08 7.3 139 0.3 0.5 9.9 26 13.2 1.55 4.0 0.08 5 
T-03/2 (0-5) Topsoil 0.3 1.40 13.8 138 0.3 0.5 20.6 32 14.3 1.99 4.0 0.08 11 
T-03/3 (0-5) Topsoil <0.1 0.72 3.7 77 0.2 0.3 12.0 21 5.9 0.99 2.0 0.04 4 
T-04/1 (0-5) Topsoil 0.3 2.43 7.4 266 0.4 0.4 20.5 60 20.0 3.35 7.0 0.26 5 
T-04/2 (0-5) Topsoil 0.2 2.85 20.6 173 0.3 0.9 23.0 75 24.1 3.52 8.0 0.11 7 
T-04/3 (0-5) Topsoil 0.2 3.77 9.1 147 0.2 0.5 30.8 86 33.7 4.74 10.0 0.08 8 
T-04/4 (0-5) Topsoil 0.1 2.30 5.0 207 0.3 0.6 21.8 52 19.5 3.67 6.0 0.09 9 
T-05/1 (0-5) Topsoil 0.7 1.44 20.2 1315 0.5 0.8 12.7 38 54.8 3.44 4.0 0.19 10 
T-05/2 (0-5) Topsoil 0.4 1.02 19.0 526 0.4 0.4 8.4 13 21.4 2.45 3.0 0.10 9 
T-06/1 (0-5) Topsoil <0.1 1.44 5.6 158 0.3 0.6 8.0 23 11.3 1.67 5.0 0.06 7 
T-06/2 (0-5) Topsoil 0.1 1.72 7.3 370 0.4 0.5 12.1 26 17.8 2.38 6.0 0.07 6 
T-06/3 (0-5) Topsoil 0.2 1.44 21.4 231 0.5 1.8 11.2 23 20.4 3.09 5.0 0.12 11 
T-06/4 (0-5) Topsoil 0.3 1.64 64.2 248 0.6 4.0 12.5 30 42.2 3.07 5.0 0.25 13 
T-06/5 (0-5) Topsoil 1.5 1.32 33.0 1088 0.5 0.9 15.7 66 87.7 4.95 5.0 0.34 12 
T-06/6 (0-5) Topsoil 0.4 2.09 12.1 300 0.7 0.3 12.2 27 25.8 2.85 6.0 0.17 24 
T-06/7 (0-5) Topsoil <0.1 1.66 6.9 203 0.5 0.5 12.7 18 21.4 2.57 5.0 0.07 5 
T-06/8 (0-5) Topsoil 0.1 2.09 5.3 398 0.4 0.3 12.8 27 22.8 2.94 6.0 0.28 4 
T-07/1 (0-5) Topsoil 0.2 1.77 10.0 186 0.5 0.3 14.0 24 22.4 2.19 6.0 0.05 5 
T-07/2 (0-5) Topsoil 0.1 1.99 9.0 219 0.5 0.4 16.1 29 24.3 1.87 6.0 0.08 5 
T-07/3 (0-5) Topsoil 1.1 1.53 46.6 1197 0.6 2.1 15.0 26 34.1 3.45 5.0 0.17 10 
T-07/4 (0-5) Topsoil 7.1 1.57 64.1 1151 1.5 2.8 18.9 81 141.7 6.96 4.0 0.65 10 
T-08/1 (0-5) Topsoil 1.1 1.58 47.2 579 1.2 3.0 12.5 22 68.8 2.84 4.0 0.32 40 
T-08/2 (0-5) Topsoil 0.8 1.84 26.1 667 1.0 1.3 19.4 51 66.9 3.30 5.0 0.25 15 
T-08/3 (0-5) Topsoil 2.4 2.29 31.8 1280 2.6 2.7 20.1 156 153.5 6.39 6.0 0.76 11 
T-08/4 (0-5) Topsoil 0.1 2.60 8.7 196 0.3 0.4 43.6 267 51.2 3.77 7.0 0.09 13 
T-08/5 (0-5) Topsoil <0.1 2.26 5.2 409 0.2 0.3 41.1 344 43.0 3.39 6.0 0.20 10 
T-09/1 (0-5) Topsoil 2.3 1.87 25.7 1084 2.7 2.2 38.4 191 118.1 5.49 5.0 0.41 11 
T-09/2 (0-5) Topsoil 2.5 1.57 33.1 1379 3.4 4.5 33.0 189 247.7 7.90 4.0 1.55 9 
T-10 (0-5) Topsoil 2.7 1.99 38.5 1475 3.0 3.5 28.7 159 210.5 6.14 6.0 1.59 12 
T-11/1 (0-5) Topsoil 0.1 1.64 8.1 96 0.2 0.4 47.3 229 34.5 3.45 4.0 0.08 8 
T-11/2 (0-5) Topsoil 0.1 2.23 8.1 104 0.3 0.8 34.6 169 53.3 3.14 6.0 0.08 12 
T-11/3 (0-5) Topsoil 0.2 2.64 52.0 149 0.5 2.5 35.0 165 60.1 4.22 7.0 0.10 15 
T-11/4 (0-5) Topsoil 2.4 1.65 46.0 1244 2.8 4.0 24.8 121 347.2 9.68 5.0 2.57 12 
T-11/5 (0-5) Topsoil 1.4 2.27 16.3 790 1.7 1.5 35.3 210 80.2 4.60 6.0 0.29 9 
T-11/6 (0-5) Topsoil 0.2 1.69 25.2 202 0.3 0.8 26.8 179 29.0 2.89 5.0 0.07 12 
T-11/7 (0-5) Topsoil 0.2 2.18 7.7 927 0.3 0.4 27.9 145 47.3 3.48 6.0 0.34 7 
T-12/1 (0-5) Topsoil 0.4 1.79 9.7 222 0.7 0.8 55.8 307 55.2 3.01 5.0 0.19 8 
T-12/2 (0-5) Topsoil 1.7 1.83 18.4 903 1.8 1.7 26.4 57 86.9 4.04 5.0 0.25 14 
T-12/3 (0-5) Topsoil 0.3 1.57 16.0 240 0.6 0.6 55.9 264 49.0 2.89 4.0 0.19 10 
T-12/4 (0-5) Topsoil 0.1 2.04 9.8 116 0.3 0.3 35.8 404 31.1 3.73 6.0 0.12 9 
T-13/1 (0-5) Topsoil 0.2 1.10 8.4 115 0.4 0.9 11.5 23 24.4 1.87 3.0 0.12 8 
T-13/2 (0-5) Topsoil 1.3 1.80 20.4 792 1.6 2.2 20.9 46 86.6 3.71 5.0 0.32 18 
T-14/1 (0-5) Topsoil <0.1 1.19 3.8 67 0.3 0.3 11.8 38 35.4 2.29 3.0 0.08 10 
T-14/2 (0-5) Topsoil 0.4 1.39 11.2 271 0.8 0.6 20.3 33 67.2 3.51 4.0 0.18 13 
T-14/3 (0-5) Topsoil <0.1 1.69 19.3 124 0.4 0.8 21.4 35 42.4 2.81 4.0 0.08 18 
T-15/1 (0-5) Topsoil 0.2 1.59 12.0 130 0.5 0.3 18.2 31 33.8 3.35 5.0 0.11 5 
T-15/2 (0-5) Topsoil 0.2 1.59 77.3 158 0.4 0.6 24.1 41 33.9 3.17 5.0 0.14 14 
T-16/1 (0-5) Topsoil 0.1 1.71 30.1 139 0.5 0.9 20.8 59 67.6 3.10 6.0 0.11 20 
T-16/2 (0-5) Topsoil 0.2 2.48 80.3 219 0.5 1.0 17.3 51 35.9 3.04 6.0 0.09 24 
T-16/3 (0-5) Topsoil <0.1 1.46 61.1 108 0.3 0.5 29.4 78 39.8 3.05 4.0 0.05 15 
T-16/4 (0-5) Topsoil 0.2 1.62 36.8 89 0.3 0.9 25.3 69 33.3 2.10 5.0 0.13 6 
T-17/1 (0-5) Topsoil 0.1 1.62 37.9 100 0.4 0.4 25.3 69 42.7 3.19 5.0 0.06 21 
T-17/2 (0-5) Topsoil 0.3 1.52 46.2 153 0.5 0.6 18.9 43 44.2 2.58 5.0 0.27 17 
T-17/3 (0-5) Topsoil <0.1 1.60 46.4 104 0.3 0.8 18.7 50 45.4 2.69 5.0 0.09 19 
T-18/1 (0-5) Topsoil 0.1 1.22 49.1 106 0.4 0.3 18.9 71 41.6 2.85 5.0 0.05 17 
T-18/2 (0-5) Topsoil <0.1 1.27 480.7 102 0.4 0.7 24.1 66 52.7 3.99 5.0 0.05 14 
T-18/4 (0-5) Topsoil 0.1 0.70 83.8 123 0.4 0.4 16.1 37 45.4 2.83 3.0 0.10 8 
T-18/5 (0-5) Topsoil <0.1 1.43 46.7 103 0.2 0.6 23.2 50 28.5 3.44 4.0 0.06 10 
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Sample Material Ag Al As Ba Bi Cd Co Cr Cu Fe Ga Hg La 

T-19/1 (0-5) Topsoil 0.1 1.43 505.4 146 0.4 0.6 31.8 83 68.4 3.28 5.0 0.08 15 
T-19/2 (0-5) Topsoil <0.1 0.97 16.5 72 0.3 0.2 11.4 33 34.1 2.99 3.0 0.05 9 
T-19/3 (0-5) Topsoil 0.1 0.81 20.8 154 0.5 0.3 29.3 104 65.6 4.16 3.0 0.23 8 
T-19/5 (0-5) Topsoil 0.1 1.77 140.3 128 0.4 0.5 18.3 43 38.9 3.27 5.0 0.06 21 
T-19/6 (0-5) Topsoil <0.1 0.88 32.5 65 0.3 0.2 18.5 38 32.9 3.15 3.0 0.09 8 
T-20/1 (0-5) Topsoil <0.1 0.96 153.3 65 0.3 0.5 31.6 142 33.1 3.21 3.0 0.10 11 
T-20/2 (0-5) Topsoil 0.1 1.01 26.2 160 0.5 0.5 24.0 78 63.2 3.74 3.0 0.26 10 
T-20/3 (0-5) Topsoil 0.1 0.65 13.2 115 0.3 0.2 15.9 33 39.2 2.55 3.0 0.13 8 
T-20/4 (0-5) Topsoil 0.1 2.22 105.6 108 0.4 0.4 15.1 63 48.2 3.36 8.0 0.11 27 
T-21/1 (0-5) Topsoil <0.1 1.17 44.2 72 0.2 0.4 18.4 79 26.4 2.15 4.0 0.08 7 
T-21/2 (0-5) Topsoil <0.1 0.72 37.7 52 0.2 0.6 24.5 103 20.0 2.48 2.0 0.07 8 
T-21/3 (0-5) Topsoil <0.1 0.98 22.4 92 0.3 0.5 20.6 127 28.6 2.62 4.0 0.09 10 
T-21/5 (0-5) Topsoil 0.1 1.21 31.6 165 0.4 0.6 18.7 52 55.5 3.32 4.0 0.13 12 
T-21/6 (0-5) Topsoil <0.1 0.89 39.4 71 0.3 0.7 19.4 72 25.1 2.64 4.0 0.08 10 
T-21/7 (0-5) Topsoil <0.1 0.77 52.4 70 0.2 0.3 20.9 51 45.8 2.47 3.0 0.08 9 
T-21/8 (0-5) Topsoil <0.1 0.95 48.3 87 0.3 0.2 16.4 34 28.1 2.56 3.0 0.06 9 
T-22/1 (0-5) Topsoil <0.1 1.14 34.3 112 0.4 0.3 22.3 39 28.8 3.13 4.0 0.21 15 
T-22/2 (0-5) Topsoil <0.1 1.07 30.3 117 0.3 0.5 13.8 43 26.9 1.93 3.0 0.13 7 
T-22/3 (0-5) Topsoil <0.1 1.04 40.2 126 0.4 0.4 18.5 69 33.3 2.64 4.0 0.11 13 
T-22/4 (0-5) Topsoil 0.2 1.17 18.9 579 0.4 0.6 20.2 92 48.6 2.83 4.0 0.26 12 
T-22/6 (0-5) Topsoil <0.1 0.95 137.7 111 0.3 0.7 19.6 63 33.8 2.76 4.0 0.08 13 
T-22/7 (0-5) Topsoil <0.1 1.03 13.8 67 0.3 0.5 24.2 106 33.1 2.54 4.0 0.32 11 
T-22/8 (0-5) Topsoil <0.1 1.24 232.0 118 0.4 0.7 27.2 106 52.9 4.99 6.0 0.14 22 
T-24/1 (0-5) Topsoil 0.1 1.51 40.8 130 0.5 0.4 20.8 42 34.7 3.21 4.0 0.14 10 
T-24/2 (0-5) Topsoil 0.1 1.42 32.3 154 0.3 0.5 22.1 70 40.8 3.03 4.0 0.07 15 
T-24/4 (0-5) Topsoil 0.1 1.68 45.4 188 0.4 0.7 25.8 77 48.4 3.35 5.0 0.07 15 
T-24/5 (0-5) Topsoil 0.1 1.68 58.9 170 0.4 0.6 24.8 67 46.1 3.64 6.0 0.07 16 
T-24/6 (0-5) Topsoil 0.1 1.29 57.4 119 0.4 0.6 26.5 58 36.4 3.11 4.0 0.11 17 
T-25/1 (0-5) Topsoil 0.1 2.18 39.8 262 0.5 0.6 23.8 64 45.2 3.34 7.0 0.11 14 
T-26/1 (0-5) Topsoil 0.2 1.16 42.9 147 0.4 0.4 16.4 34 34.5 2.72 3.0 0.15 7 
T-26/2 (0-5) Topsoil <0.1 1.66 45.1 279 0.4 0.5 21.6 53 39.1 3.35 5.0 0.10 18 
T-26/4 (0-5) Topsoil 0.1 1.62 43.9 212 0.4 0.7 20.1 60 39.7 2.92 5.0 0.09 16 
T-26/5 (0-5) Topsoil 0.1 1.30 28.4 166 0.3 0.4 16.4 46 33.7 2.30 4.0 0.08 7 
T-27/1 (0-5) Topsoil 0.1 1.38 35.4 135 0.4 0.4 16.4 37 34.2 2.86 4.0 0.15 9 
T-27/2 (0-5) Topsoil 0.3 1.30 38.6 306 0.4 0.6 20.2 78 40.3 3.17 4.0 0.15 11 
T-27/4 (0-5) Topsoil 0.1 1.57 33.0 211 0.4 0.5 18.0 44 33.5 3.00 4.0 0.13 17 
T-27/5 (0-5) Topsoil <0.1 1.88 32.2 154 0.4 0.5 22.4 42 35.0 3.18 6.0 0.11 18 
A-15/3 (0-5) Topsoil 4.4 2.10 27.6 158 5.0 6.6 10.7 45 83.2 2.94 3.0 1.67 13 
A-18/3 (0-5) Topsoil 7.9 1.57 55.4 887 1.8 4.1 14.2 79 240.5 4.71 3.0 2.66 11 
A-19/4 (0-5) Topsoil 3.1 1.45 37.9 735 1.6 3.0 14.9 90 98.2 3.34 3.0 2.22 9 
A-21/4 (0-5) Topsoil 4.2 1.52 36.2 1068 1.3 3.1 15.3 83 102.8 3.86 3.0 1.10 11 
A-22/5 (0-5) Topsoil 2.3 1.29 38.3 835 0.8 1.2 16.5 80 89.0 3.67 3.0 0.99 9 
A-23 (0-5) Topsoil 3.4 1.28 41.9 1672 1.1 1.8 17.2 78 115.4 4.09 3.0 1.80 10 
A-24/3 (0-5) Topsoil 1.6 1.54 33.2 320 0.8 1.5 14.1 66 58.9 2.99 2.0 0.78 11 
A-25/2 (0-5) Topsoil 2.0 1.20 33.0 657 0.6 1.1 14.8 67 82.2 3.38 2.0 0.75 9 
A-26/3 (0-5) Topsoil 2.2 1.24 30.2 872 1.2 1.8 15.3 68 62.7 3.07 3.0 0.95 9 
A-27/3 (0-5) Topsoil 2.9 1.52 33.4 168 0.8 1.3 14.1 70 85.9 3.51 3.0 1.15 12 
T-01/1 (20-30) Subsoil <0.1 3.15 5.4 96 0.2 0.2 22.8 90 37.2 4.02 8.0 0.09 10 
T-01/2 (20-30) Subsoil <0.1 2.53 4.8 116 0.2 0.3 18.7 78 33.8 3.17 7.0 0.09 8 
T-01/3 (20-30) Subsoil 0.1 2.11 12.5 101 0.3 0.2 21.0 44 28.9 3.56 6.0 0.09 7 
T-02/1 (20-30) Subsoil <0.1 2.29 7.5 115 0.3 0.2 15.0 46 31.9 2.82 6.0 0.08 7 
T-02/2 (20-30) Subsoil <0.1 2.44 10.5 78 0.2 0.2 26.6 99 38.6 4.11 5.0 0.05 10 
T-02/3 (20-30) Subsoil <0.1 2.14 13.3 111 0.4 0.2 14.4 38 25.4 3.19 6.0 0.06 3 
T-03/1 (20-30) Subsoil <0.1 1.13 6.7 85 0.2 0.4 11.5 25 13.3 1.65 4.0 0.06 7 
T-03/2 (20-30) Subsoil 0.3 1.49 14.8 131 0.3 0.5 20.5 33 14.0 2.08 4.0 0.10 11 
T-03/3 (20-30) Subsoil <0.1 0.69 4.0 71 0.1 0.3 11.9 21 5.3 0.98 2.0 0.06 4 
T-04/1 (20-30) Subsoil <0.1 3.48 5.1 64 0.2 0.3 32.0 76 21.6 4.65 9.0 0.06 7 
T-04/2 (20-30) Subsoil 0.2 3.09 23.5 129 0.3 0.6 29.5 85 23.8 4.48 10.0 0.14 9 
T-04/3 (20-30) Subsoil 0.2 3.64 12.3 186 0.3 0.6 30.7 95 33.9 4.74 10.0 0.10 9 
T-04/4 (20-30) Subsoil <0.1 3.14 5.7 148 0.2 0.4 26.6 65 20.4 4.40 8.0 0.07 13 
T-05/1 (20-30) Subsoil 0.6 1.54 19.0 1189 0.5 0.7 12.1 37 50.7 3.24 4.0 0.17 11 
T-05/2 (20-30) Subsoil 0.3 0.91 17.0 493 0.4 0.3 7.2 10 16.8 2.34 3.0 0.11 9 
T-06/1 (20-30) Subsoil <0.1 1.78 6.8 99 0.3 0.2 10.8 28 9.4 2.15 6.0 0.05 12 
T-06/2 (20-30) Subsoil 0.1 1.93 7.7 144 0.4 0.3 13.8 29 16.5 2.72 7.0 0.06 9 
T-06/3 (20-30) Subsoil 0.1 2.11 29.2 101 0.4 0.5 15.0 31 24.5 3.29 6.0 0.16 17 
T-06/4 (20-30) Subsoil 0.1 2.21 88.5 168 0.5 1.8 16.8 36 56.3 3.20 5.0 0.34 26 
T-06/5 (20-30) Subsoil 1.5 1.39 33.5 852 0.6 0.9 15.4 65 86.5 5.01 5.0 0.31 13 
T-06/6 (20-30) Subsoil 0.4 2.35 12.5 239 0.6 0.3 13.9 29 25.2 3.05 7.0 0.13 26 
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Sample Material Ag Al As Ba Bi Cd Co Cr Cu Fe Ga Hg La 

T-06/7 (20-30) Subsoil <0.1 1.83 8.1 136 0.5 0.4 15.1 22 24.9 3.00 6.0 0.06 6 
T-06/8 (20-30) Subsoil <0.1 2.67 5.9 99 0.5 0.1 16.4 34 24.4 3.66 8.0 0.07 4 
T-07/1 (20-30) Subsoil 0.2 1.86 10.5 183 0.5 0.2 14.0 25 22.4 3.04 6.0 0.06 5 
T-07/2 (20-30) Subsoil 0.1 2.07 8.5 370 0.5 0.3 16.8 29 23.5 2.59 7.0 0.06 6 
T-07/3 (20-30) Subsoil 0.4 1.42 47.2 744 0.5 1.7 19.3 20 24.6 3.77 4.0 0.08 11 
T-07/4 (20-30) Subsoil 6.9 1.62 62.2 926 1.5 2.7 18.0 78 136.3 6.78 4.0 0.58 10 
T-08/1 (20-30) Subsoil 1.0 1.54 43.0 572 1.4 2.5 11.2 20 65.1 2.66 4.0 0.31 36 
T-08/2 (20-30) Subsoil 0.9 1.77 24.3 685 0.9 1.2 21.1 53 72.7 3.28 5.0 0.25 14 
T-08/3 (20-30) Subsoil 2.8 2.51 33.8 924 3.4 3.1 19.6 145 162.9 6.84 6.0 0.68 12 
T-08/4 (20-30) Subsoil 0.1 2.90 8.5 178 0.3 0.4 48.5 309 57.0 4.31 8.0 0.07 14 
T-08/5 (20-30) Subsoil <0.1 2.55 5.2 140 0.2 0.2 43.8 344 43.9 3.64 8.0 0.23 10 
T-09/1 (20-30) Subsoil 2.5 1.88 29.2 1323 3.0 2.5 38.1 194 119.1 5.71 5.0 0.46 12 
T-09/2 (20-30) Subsoil 2.9 1.71 34.6 1005 4.3 5.2 32.3 182 266.8 8.35 4.0 1.43 10 
T-10 (20-30) Subsoil 3.7 2.12 41.3 1306 4.1 3.9 27.8 159 248.6 7.01 5.0 1.77 11 
T-11/1 (20-30) Subsoil 0.1 2.50 8.7 94 0.2 0.3 61.0 375 38.4 4.39 6.0 0.07 10 
T-11/2 (20-30) Subsoil <0.1 2.82 7.6 63 0.2 0.2 42.6 198 63.1 3.78 8.0 0.07 16 
T-11/3 (20-30) Subsoil 0.2 2.88 49.1 154 0.5 2.6 37.3 172 62.4 4.47 8.0 0.12 16 
T-11/4 (20-30) Subsoil 2.6 1.79 49.7 797 3.4 4.5 24.5 113 356.7 9.97 5.0 2.36 13 
T-11/5 (20-30) Subsoil 1.1 2.37 14.4 598 1.3 1.0 35.3 220 67.6 4.40 7.0 0.23 10 
T-11/6 (20-30) Subsoil 0.1 2.14 29.8 149 0.3 0.5 33.8 214 33.0 3.54 6.0 0.08 14 
T-11/7 (20-30) Subsoil 0.1 2.68 7.3 179 0.3 0.2 35.2 179 57.5 4.07 7.0 0.11 8 
T-12/1 (20-30) Subsoil 0.2 1.92 9.0 156 0.5 0.5 49.9 285 62.1 3.49 6.0 0.14 9 
T-12/2 (20-30) Subsoil 1.4 1.95 16.3 786 1.8 1.5 26.1 53 78.5 3.69 5.0 0.23 15 
T-12/3 (20-30) Subsoil 0.3 1.84 18.9 186 0.5 0.4 64.2 274 56.0 3.14 5.0 0.10 12 
T-12/4 (20-30) Subsoil <0.1 2.47 10.0 67 0.2 0.1 42.3 456 31.9 4.13 7.0 0.05 11 
T-13/1 (20-30) Subsoil <0.1 1.51 11.0 77 0.3 0.1 20.9 35 29.8 3.12 5.0 0.10 14 
T-13/2 (20-30) Subsoil 1.4 1.92 19.8 743 1.4 2.0 21.2 46 78.5 3.51 5.0 0.25 19 
T-14/1 (20-30) Subsoil <0.1 1.57 5.0 70 0.4 0.2 23.6 54 47.7 3.33 4.0 0.09 12 
T-14/2 (20-30) Subsoil 0.4 1.42 12.0 303 0.6 0.6 23.6 39 79.3 3.94 4.0 0.11 14 
T-14/3 (20-30) Subsoil <0.1 2.00 21.2 118 0.4 0.6 27.1 43 46.0 3.14 6.0 0.06 19 
T-15/1 (20-30) Subsoil 0.1 1.66 12.2 102 0.4 0.2 20.5 31 33.1 3.51 5.0 0.09 6 
T-15/2 (20-30) Subsoil 0.2 1.57 90.4 156 0.5 0.6 23.7 41 32.0 3.19 5.0 0.11 15 
T-16/1 (20-30) Subsoil 0.1 2.10 36.9 151 0.5 1.0 25.7 73 82.9 3.84 6.0 0.10 24 
T-16/2 (20-30) Subsoil 0.1 2.24 79.2 207 0.5 0.8 16.9 49 35.5 2.84 6.0 0.11 23 
T-16/3 (20-30) Subsoil <0.1 1.64 70.8 114 0.3 0.5 37.1 90 46.0 3.67 5.0 0.06 18 
T-16/4 (20-30) Subsoil 0.1 2.47 39.9 60 0.3 0.3 34.4 100 44.4 2.98 6.0 0.10 9 
T-17/1 (20-30) Subsoil <0.1 1.77 40.3 94 0.4 0.3 27.3 83 43.2 3.80 5.0 0.13 23 
T-17/2 (20-30) Subsoil 0.2 2.20 48.4 139 0.5 0.5 21.1 60 48.7 3.18 6.0 0.13 22 
T-17/3 (20-30) Subsoil <0.1 1.96 52.5 92 0.4 0.4 20.6 59 51.9 3.05 7.0 0.09 21 
T-18/1 (20-30) Subsoil <0.1 1.38 56.9 103 0.4 0.2 24.6 80 44.2 3.43 6.0 0.09 19 
T-18/2 (20-30) Subsoil <0.1 1.40 516.2 77 0.4 0.5 27.7 80 54.9 5.69 5.0 0.05 16 
T-18/4 (20-30) Subsoil 0.1 0.89 103.2 131 0.4 0.4 18.3 44 52.7 3.20 3.0 0.10 9 
T-18/5 (20-30) Subsoil <0.1 1.52 49.0 97 0.2 0.5 26.8 57 29.5 3.59 4.0 0.06 12 
T-19/1 (20-30) Subsoil <0.1 1.73 585.1 106 0.4 0.6 32.7 102 67.6 3.76 6.0 0.06 16 
T-19/2 (20-30) Subsoil <0.1 1.12 19.3 76 0.4 0.2 20.8 36 34.8 3.71 4.0 0.07 10 
T-19/3 (20-30) Subsoil <0.1 0.75 20.2 119 0.4 0.4 29.3 105 63.7 4.27 3.0 0.43 8 
T-19/5 (20-30) Subsoil <0.1 2.28 183.1 133 0.4 0.6 22.2 53 42.4 4.21 6.0 0.04 25 
T-19/6 (20-30) Subsoil <0.1 0.94 51.3 58 0.3 0.2 23.6 40 36.3 3.81 3.0 0.10 9 
T-20/1 (20-30) Subsoil <0.1 0.91 169.4 66 0.3 0.4 32.4 130 34.3 3.24 3.0 0.08 11 
T-20/2 (20-30) Subsoil 0.1 1.07 26.5 136 0.4 0.4 24.0 82 60.6 3.79 4.0 0.18 10 
T-20/3 (20-30) Subsoil <0.1 0.83 15.2 102 0.4 0.1 21.5 43 45.6 3.18 3.0 0.12 11 
T-20/4 (20-30) Subsoil 0.1 2.70 142.1 119 0.5 0.7 17.2 104 50.8 4.30 9.0 0.13 32 
T-21/1 (20-30) Subsoil <0.1 1.40 42.1 75 0.2 0.4 25.7 107 25.0 2.56 4.0 0.09 10 
T-21/2 (20-30) Subsoil <0.1 0.90 41.1 41 0.2 0.4 27.1 128 21.6 2.97 3.0 0.08 9 
T-21/3 (20-30) Subsoil <0.1 0.92 24.1 96 0.2 0.6 24.3 123 32.4 2.79 4.0 0.08 10 
T-21/5 (20-30) Subsoil 0.1 1.38 32.7 153 0.4 0.5 19.3 58 62.6 3.30 5.0 0.09 12 
T-21/6 (20-30) Subsoil <0.1 0.92 39.4 58 0.3 0.4 23.3 74 26.3 2.94 4.0 0.11 12 
T-21/7 (20-30) Subsoil <0.1 1.02 87.6 62 0.3 0.2 32.8 86 71.0 3.36 4.0 0.12 10 
T-21/8 (20-30) Subsoil <0.1 1.01 49.0 85 0.3 0.1 23.3 37 30.3 3.20 4.0 0.06 10 
T-22/1 (20-30) Subsoil <0.1 1.32 40.9 121 0.4 0.3 27.7 48 29.9 3.76 4.0 0.24 21 
T-22/2 (20-30) Subsoil <0.1 1.07 32.9 117 0.3 0.4 16.3 40 30.1 2.36 3.0 0.12 7 
T-22/3 (20-30) Subsoil <0.1 0.98 48.0 136 0.3 0.5 23.6 75 38.3 3.38 3.0 0.12 14 
T-22/4 (20-30) Subsoil 0.2 1.16 19.3 652 0.3 0.7 23.2 94 44.6 3.05 4.0 0.21 11 
T-22/6 (20-30) Subsoil 0.1 1.03 161.1 126 0.3 0.9 25.2 76 41.4 3.29 4.0 0.08 15 
T-22/7 (20-30) Subsoil <0.1 0.79 13.2 73 0.3 0.8 27.9 119 29.5 2.78 3.0 0.78 11 
T-22/8 (20-30) Subsoil 0.1 1.57 270.8 113 0.4 0.8 32.9 143 61.3 5.84 8.0 0.19 24 
T-24/1 (20-30) Subsoil <0.1 1.46 40.5 121 0.4 0.3 21.2 42 31.5 3.25 4.0 0.15 10 
T-24/2 (20-30) Subsoil 0.1 1.47 32.8 155 0.3 0.5 22.3 71 43.3 3.14 5.0 0.07 16 
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Sample Material Ag Al As Ba Bi Cd Co Cr Cu Fe Ga Hg La 

T-24/4 (20-30) Subsoil 0.1 1.93 52.7 227 0.4 0.9 30.2 89 55.2 3.95 6.0 0.06 19 
T-24/5 (20-30) Subsoil 0.1 1.98 70.9 186 0.5 0.8 28.5 83 50.1 4.31 6.0 0.07 18 
T-24/6 (20-30) Subsoil 0.1 1.36 62.2 125 0.4 0.6 30.1 58 41.6 3.41 5.0 0.08 19 
T-25/1 (20-30) Subsoil 0.2 2.38 44.8 313 0.5 0.7 27.0 72 47.3 3.93 6.0 0.13 16 
T-26/1 (20-30) Subsoil 0.1 1.31 44.0 133 0.3 0.4 15.4 38 29.8 2.72 4.0 0.16 8 
T-26/2 (20-30) Subsoil <0.1 1.92 51.4 185 0.4 0.6 22.4 59 40.4 3.76 5.0 0.12 20 
T-26/4 (20-30) Subsoil 0.1 1.70 45.1 216 0.4 0.7 23.1 67 46.3 3.38 5.0 0.13 19 
T-26/5 (20-30) Subsoil <0.1 1.24 29.0 140 0.3 0.5 17.4 45 30.1 2.51 3.0 0.07 7 
T-27/1 (20-30) Subsoil <0.1 1.16 34.5 111 0.4 0.4 15.3 28 29.8 2.72 3.0 0.15 8 
T-27/2 (20-30) Subsoil 0.3 1.41 40.1 307 0.3 0.5 18.9 85 36.2 3.13 4.0 0.17 11 
T-27/4 (20-30) Subsoil 0.1 2.06 39.2 207 0.5 0.6 23.0 56 40.4 3.58 6.0 0.11 21 
T-27/5 (20-30) Subsoil 0.1 1.70 35.8 168 0.4 0.4 25.1 39 32.9 3.33 5.0 0.09 19 
A-15/3 (20-30) Subsoil 5.9 2.12 29.8 214 6.1 7.2 11.9 51 101.8 3.01 3.0 2.19 13 
A-18/3 (20-30) Subsoil 11.0 1.76 59.1 369 2.7 4.5 11.7 68 273.7 5.93 2.0 2.42 10 
A-19/4 (20-30) Subsoil 3.3 1.84 35.4 440 2.5 4.1 14.2 75 100.9 3.44 3.0 1.20 11 
A-21/4 (20-30) Subsoil 4.3 1.65 41.0 507 1.6 3.4 15.5 75 95.8 3.94 3.0 0.89 12 
A-22/5 (20-30) Subsoil 1.7 1.30 37.7 766 0.8 1.3 16.0 74 65.1 3.54 3.0 0.54 9 
A-23 (20-30) Subsoil 5.3 1.39 49.3 1302 1.3 2.5 16.8 81 161.8 4.74 3.0 1.94 13 
A-24/3 (20-30) Subsoil 1.5 1.37 30.2 150 0.7 1.2 11.7 52 46.2 2.79 2.0 0.69 10 
A-25/2 (20-30) Subsoil 2.4 1.37 36.3 212 0.7 1.3 14.9 71 86.7 3.65 3.0 1.05 10 
A-26/3 (20-30) Subsoil 1.7 1.40 30.8 974 1.3 1.9 16.8 79 59.1 3.04 3.0 0.76 10 
A-27/3 (20-30) Subsoil 4.7 1.50 41.3 263 1.5 1.8 14.8 68 129.1 4.30 3.0 1.53 13 
S-01 S. Sediment 0.2 1.63 9.6 207 0.3 0.5 15.8 69 68.0 3.22 5.0 0.14 12 
S-02 S. Sediment 0.1 1.76 5.9 187 0.2 0.4 18.0 73 38.4 3.12 5.0 0.06 10 
S-03 S. Sediment <0.1 1.35 9.5 134 0.2 0.4 13.5 44 27.3 2.41 3.0 0.10 7 
S-04 S. Sediment 0.2 1.21 8.8 165 0.2 0.6 12.1 41 28.5 2.28 3.0 0.07 7 
S-06 S. Sediment 0.3 0.98 7.8 192 0.2 0.5 10.5 38 32.6 2.13 3.0 0.14 6 
S-07 S. Sediment 0.7 1.02 12.8 438 0.2 0.7 12.1 48 37.1 2.38 3.0 0.22 6 
S-09 S. Sediment 1.4 1.18 16.1 647 0.4 0.7 12.7 40 64.0 2.80 3.0 0.23 6 
S-11 S. Sediment 3.6 1.20 23.3 823 0.5 1.0 13.2 48 120.1 3.70 3.0 0.42 6 
S-13 S. Sediment 2.6 1.21 18.1 746 0.5 0.8 16.5 116 101.3 3.63 3.0 0.52 6 
S-15 S. Sediment 0.8 1.12 16.3 583 0.4 0.7 13.1 76 53.4 2.98 3.0 0.34 7 
S-17 S. Sediment 1.4 1.07 20.8 626 0.4 0.7 15.5 99 84.2 3.41 3.0 0.71 6 
S-18 S. Sediment 1.4 1.05 17.8 827 0.4 0.7 13.8 85 81.6 3.40 3.0 0.75 6 
S-20 S. Sediment 3.0 0.93 27.9 1063 0.7 1.0 13.9 83 111.3 4.46 3.0 1.28 6 
S-22 S. Sediment 2.8 1.06 29.1 1271 0.8 1.6 14.0 75 101.7 3.84 3.0 1.54 6 
S-23 S. Sediment 1.3 0.99 22.3 986 0.4 0.7 13.1 69 61.1 3.18 3.0 0.74 6 
S-26 S. Sediment 1.1 0.83 24.6 322 0.3 0.6 12.7 63 52.2 3.42 3.0 0.44 6 
S-27 S. Sediment 2.8 0.88 33.1 457 0.6 1.0 12.4 53 89.3 4.16 3.0 1.08 6 
P-01/2 Attic Dust 1.0 0.98 17.9 18 1.0 1.8 6.5 43 60.5 2.20 3.0 1.69 6 
P-02/1 Attic Dust 0.7 1.20 20.4 48 0.4 2.6 10.0 56 90.3 3.97 4.0 0.38 7 
P-02/3 Attic Dust 0.7 1.05 15.9 54 0.6 2.7 8.2 38 174.8 2.26 3.0 0.70 5 
P-05/1 Attic Dust 2.0 1.01 31.8 30 1.6 2.2 7.1 35 79.2 3.05 3.0 0.80 3 
P-06/5 Attic Dust 2.5 1.11 56.7 19 2.0 3.4 10.2 56 145.8 3.54 3.0 2.71 5 
P-08/4 Attic Dust 1.4 1.15 22.5 23 1.2 2.1 10.2 67 135.4 3.38 3.0 1.78 8 
P-09/2 Attic Dust 5.2 1.10 81.8 39 8.8 6.5 26.8 102 350.6 14.14 4.0 3.46 9 
P-10 Attic Dust 6.9 1.03 76.0 49 12.6 14.4 32.6 108 451.7 19.26 4.0 3.74 10 
P-11/4 Attic Dust 7.4 1.29 92.9 69 10.1 7.6 27.8 126 261.2 15.63 5.0 1.50 9 
P-15/2 Attic Dust 3.5 0.89 50.8 14 5.0 2.7 11.3 57 163.1 4.70 4.0 3.26 6 
P-16/1 Attic Dust 1.6 1.01 32.8 19 1.5 1.4 9.2 55 104.1 3.79 3.0 2.12 7 
P-19/2 Attic Dust 1.0 1.12 45.6 86 0.7 1.4 10.7 48 57.7 2.39 3.0 0.31 8 
P-19/3 Attic Dust 1.1 0.91 52.5 26 1.1 2.8 9.0 70 88.8 3.24 3.0 1.90 5 
P-20/3 Attic Dust 0.5 0.62 96.5 87 0.7 3.8 6.2 31 46.0 2.00 2.0 0.24 5 
P-22/4 Attic Dust 0.6 0.95 80.8 24 0.8 3.6 10.9 57 84.1 2.92 3.0 0.63 5 
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Appendix D: Chemical analyses of collected sampling materials (II); Values of Al, Fe, Mg and Ti 

are in %, remaining elements in mg/kg 

 

Sample Material Mg Mn Mo Ni Pb Sb Sc Th Ti Tl V W Zn 

T-01/1 (0-5) Topsoil 0.59 1284 0.3 41.8 44.7 0.5 2.5 0.4 0.033 0.2 59 <0.1 126 
T-01/2 (0-5) Topsoil 0.47 1626 0.5 52.0 86.4 1.2 2.4 0.6 0.012 0.2 51 0.1 230 
T-01/3 (0-5) Topsoil 0.35 1805 0.6 32.8 43.3 0.9 1.9 1.5 0.006 0.2 47 <0.1 107 
T-02/1 (0-5) Topsoil 0.48 1428 0.4 32.5 48.1 0.7 2.0 1.5 0.003 0.2 41 <0.1 123 
T-02/2 (0-5) Topsoil 0.60 1208 0.4 58.8 57.2 1.0 4.5 1.5 0.027 0.1 50 <0.1 116 
T-02/3 (0-5) Topsoil 0.41 1505 0.5 29.2 48.0 0.8 1.7 1.6 <0.001 0.1 25 <0.1 151 
T-03/1 (0-5) Topsoil 0.23 2731 0.4 33.5 87.9 2.4 0.7 0.5 0.003 0.2 20 <0.1 146 
T-03/2 (0-5) Topsoil 0.39 1029 0.4 30.1 160.9 2.5 1.8 2.4 0.005 0.3 25 0.1 174 
T-03/3 (0-5) Topsoil 0.29 204 0.4 20.7 65.6 1.0 0.7 1.0 0.003 0.1 14 <0.1 51 
T-04/1 (0-5) Topsoil 1.37 1129 0.3 68.9 80.0 1.4 5.5 0.9 0.141 0.2 70 0.1 193 
T-04/2 (0-5) Topsoil 1.33 1020 0.6 80.0 152.9 1.3 5.3 1.3 0.102 0.6 97 0.1 250 
T-04/3 (0-5) Topsoil 2.27 1250 0.4 132.0 230.3 1.4 9.4 1.8 0.227 0.1 126 0.1 344 
T-04/4 (0-5) Topsoil 1.29 1455 0.3 71.7 69.2 0.6 4.1 0.5 0.086 0.2 63 <0.1 131 
T-05/1 (0-5) Topsoil 0.92 3267 0.8 46.9 282.0 6.5 3.3 1.5 0.019 0.2 36 0.3 568 
T-05/2 (0-5) Topsoil 0.18 1651 0.4 12.3 108.7 1.1 1.8 2.1 0.004 0.2 25 0.1 193 
T-06/1 (0-5) Topsoil 0.49 1095 0.2 17.7 38.6 0.2 1.0 0.5 0.007 0.2 22 0.1 109 
T-06/2 (0-5) Topsoil 0.57 1151 0.3 25.5 44.3 0.7 2.4 2.0 0.005 0.2 24 0.1 120 
T-06/3 (0-5) Topsoil 0.35 1972 0.6 20.3 131.4 1.2 0.9 3.4 0.005 0.5 26 0.1 206 
T-06/4 (0-5) Topsoil 0.33 2765 0.6 53.9 234.2 2.8 1.7 3.5 0.004 0.6 31 0.1 339 
T-06/5 (0-5) Topsoil 0.77 2443 1.1 81.6 328.1 8.6 3.7 2.9 0.009 0.3 34 0.4 596 
T-06/6 (0-5) Topsoil 0.59 1119 0.6 25.9 148.9 2.6 2.0 3.7 0.001 0.3 26 0.1 243 
T-06/7 (0-5) Topsoil 0.54 1371 0.3 26.7 101.2 1.0 2.1 2.4 0.002 0.3 18 0.1 184 
T-06/8 (0-5) Topsoil 0.66 843 0.3 31.1 62.3 0.6 2.4 1.2 <0.001 0.2 23 0.1 155 
T-07/1 (0-5) Topsoil 0.61 1094 0.4 29.2 97.1 1.9 3.3 0.5 0.002 0.2 23 0.1 197 
T-07/2 (0-5) Topsoil 0.65 1207 0.3 33.2 50.0 1.1 3.7 0.5 0.003 0.2 26 0.1 131 
T-07/3 (0-5) Topsoil 0.38 3253 1.1 28.6 313.0 3.1 3.6 2.4 0.004 1.0 32 0.1 662 
T-07/4 (0-5) Topsoil 1.53 2741 4.3 114.1 596.8 16.4 4.6 3.0 0.010 0.7 47 0.7 887 
T-08/1 (0-5) Topsoil 0.50 3971 1.1 39.6 458.0 9.9 4.7 3.0 0.008 0.7 28 0.4 680 
T-08/2 (0-5) Topsoil 0.53 2322 0.8 73.6 315.8 8.1 4.0 2.7 0.003 0.5 37 0.3 516 
T-08/3 (0-5) Topsoil 1.33 4152 2.5 226.3 760.4 18.1 5.7 2.4 0.010 0.7 60 1.3 1490 
T-08/4 (0-5) Topsoil 2.08 2239 0.4 345.7 48.9 1.1 5.2 1.4 0.040 0.2 68 0.1 120 
T-08/5 (0-5) Topsoil 2.95 1787 0.3 394.4 31.6 1.3 2.2 1.4 0.050 0.1 54 0.1 99 
T-09/1 (0-5) Topsoil 1.04 2537 2.7 281.9 703.0 16.8 4.0 2.3 0.007 0.7 51 1.6 1208 
T-09/2 (0-5) Topsoil 1.21 4374 5.4 256.4 955.9 19.0 4.0 1.9 0.026 0.9 42 3.8 3075 
T-10 (0-5) Topsoil 1.10 3372 2.7 208.8 901.9 20.5 4.5 2.5 0.007 0.8 57 2.8 1663 
T-11/1 (0-5) Topsoil 0.35 1838 0.3 346.8 31.5 0.3 5.9 1.3 0.004 0.3 48 0.1 93 
T-11/2 (0-5) Topsoil 1.36 1840 0.5 241.5 44.0 0.9 4.6 1.5 0.003 0.2 59 <0.1 120 
T-11/3 (0-5) Topsoil 1.83 3116 0.7 245.4 250.3 4.9 8.3 3.0 0.003 1.3 66 0.1 491 
T-11/4 (0-5) Topsoil 0.63 3401 7.9 158.1 788.2 35.7 4.2 2.6 0.025 0.8 45 5.2 1845 
T-11/5 (0-5) Topsoil 1.47 1805 1.4 264.1 439.6 10.9 5.2 2.3 0.002 0.5 51 0.6 664 
T-11/6 (0-5) Topsoil 1.07 1213 0.4 182.7 63.1 1.4 3.6 2.2 0.002 0.4 41 0.1 141 
T-11/7 (0-5) Topsoil 1.25 1334 0.5 201.4 67.8 1.0 5.2 1.9 0.003 0.1 48 <0.1 128 
T-12/1 (0-5) Topsoil 3.84 2355 0.5 495.2 149.0 2.7 3.9 2.7 0.002 0.3 38 0.1 203 
T-12/2 (0-5) Topsoil 0.57 2602 0.8 109.4 505.4 11.3 4.6 3.4 0.003 0.5 37 0.6 669 
T-12/3 (0-5) Topsoil 0.41 1895 0.7 312.6 124.7 3.1 3.6 2.8 0.004 0.3 36 0.2 198 
T-12/4 (0-5) Topsoil 2.80 843 0.4 388.6 58.5 1.3 6.1 1.9 0.003 0.1 63 <0.1 115 
T-13/1 (0-5) Topsoil 0.17 1740 0.5 33.6 46.9 0.5 1.9 0.9 0.003 0.2 28 <0.1 114 
T-13/2 (0-5) Topsoil 0.44 2704 1.2 80.0 448.0 9.2 4.5 3.0 0.004 0.4 45 0.5 634 
T-14/1 (0-5) Topsoil 0.19 1001 0.3 60.1 25.2 0.2 2.6 1.4 0.002 0.1 22 <0.1 81 
T-14/2 (0-5) Topsoil 0.32 2052 0.5 66.5 159.8 3.6 3.5 3.2 0.002 0.2 33 0.1 258 
T-14/3 (0-5) Topsoil 0.31 2087 0.6 58.0 44.4 0.4 3.0 1.8 0.005 0.2 38 0.1 109 
T-15/1 (0-5) Topsoil 0.44 1026 0.4 46.3 78.2 1.3 3.3 3.2 <0.001 0.1 27 <0.1 130 
T-15/2 (0-5) Topsoil 0.28 1228 0.6 83.4 89.2 3.3 3.8 3.3 0.002 0.4 40 0.1 137 
T-16/1 (0-5) Topsoil 0.17 2246 0.5 89.9 59.3 1.3 5.4 3.6 0.002 0.3 56 0.1 108 
T-16/2 (0-5) Topsoil 0.46 1128 0.7 75.4 76.9 3.3 3.9 3.9 0.010 0.5 44 0.2 160 
T-16/3 (0-5) Topsoil 0.21 2342 0.4 107.4 36.6 0.8 5.0 3.0 0.002 0.2 41 <0.1 88 
T-16/4 (0-5) Topsoil 0.50 2012 0.4 99.8 81.5 0.6 1.9 0.6 0.003 0.3 38 0.1 125 
T-17/1 (0-5) Topsoil 0.17 1474 0.7 95.0 43.6 0.4 4.9 3.2 0.002 0.2 52 0.1 88 
T-17/2 (0-5) Topsoil 0.20 971 0.3 65.2 94.9 0.9 4.6 3.1 0.003 0.3 37 <0.1 123 
T-17/3 (0-5) Topsoil 0.16 1547 0.3 64.7 40.7 0.3 4.8 2.5 0.004 0.2 46 <0.1 81 
T-18/1 (0-5) Topsoil 0.14 982 0.3 94.7 36.1 0.3 4.9 3.0 0.004 0.2 47 <0.1 98 
T-18/2 (0-5) Topsoil 0.10 1490 0.7 177.1 44.8 3.0 6.3 3.4 0.003 0.6 53 0.1 165 
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T-18/4 (0-5) Topsoil 0.12 1145 0.4 67.8 54.4 2.8 2.8 2.0 0.002 0.6 26 0.1 182 
T-18/5 (0-5) Topsoil 0.20 2567 0.6 89.9 45.6 0.9 5.0 2.2 0.004 0.4 62 <0.1 85 
T-19/1 (0-5) Topsoil 0.13 1783 0.7 164.2 38.1 1.0 9.9 2.5 0.002 1.7 63 <0.1 97 
T-19/2 (0-5) Topsoil 0.10 625 0.4 36.0 33.0 0.8 3.2 3.3 <0.001 0.1 30 <0.1 82 
T-19/3 (0-5) Topsoil 0.11 1760 0.4 161.9 44.0 1.1 5.4 2.3 0.001 0.2 41 0.1 141 
T-19/5 (0-5) Topsoil 0.24 1556 0.5 56.5 37.7 0.8 4.7 3.2 0.008 0.7 50 0.1 121 
T-19/6 (0-5) Topsoil 0.09 1007 0.3 51.4 27.8 0.2 3.4 2.6 <0.001 0.2 31 <0.1 85 
T-20/1 (0-5) Topsoil 0.17 1170 0.3 226.5 35.0 0.1 6.0 2.0 0.003 0.2 49 <0.1 85 
T-20/2 (0-5) Topsoil 0.14 1677 0.5 116.4 47.9 1.6 5.3 2.4 0.003 0.3 51 0.1 127 
T-20/3 (0-5) Topsoil 0.07 1235 0.4 46.3 35.2 0.7 2.8 2.2 <0.001 0.2 30 <0.1 85 
T-20/4 (0-5) Topsoil 0.17 1871 0.7 82.5 49.1 0.6 6.2 4.8 0.004 0.8 62 <0.1 104 
T-21/1 (0-5) Topsoil 0.42 644 0.2 135.5 33.6 0.3 3.5 1.7 0.002 0.1 17 <0.1 77 
T-21/2 (0-5) Topsoil 0.08 777 0.3 117.1 47.9 0.4 3.3 2.0 0.003 0.2 39 <0.1 87 
T-21/3 (0-5) Topsoil 0.15 560 0.3 138.2 36.7 0.3 5.3 2.2 0.007 0.1 45 <0.1 89 
T-21/5 (0-5) Topsoil 0.17 1594 0.4 70.9 51.8 2.0 5.3 2.5 0.004 0.3 61 0.1 113 
T-21/6 (0-5) Topsoil 0.09 748 0.3 79.5 40.9 0.3 4.4 1.8 0.005 0.2 45 <0.1 86 
T-21/7 (0-5) Topsoil 0.08 1104 0.3 51.8 27.3 0.3 3.2 2.0 0.002 0.1 31 <0.1 77 
T-21/8 (0-5) Topsoil 0.09 1275 0.3 36.3 27.9 0.1 2.8 2.1 0.001 0.1 32 <0.1 73 
T-22/1 (0-5) Topsoil 0.18 1466 0.7 61.6 52.0 1.6 3.2 3.3 0.005 0.2 30 <0.1 100 
T-22/2 (0-5) Topsoil 0.50 714 0.4 93.9 35.6 0.5 3.2 2.2 0.001 0.2 17 <0.1 80 
T-22/3 (0-5) Topsoil 0.19 964 0.4 131.8 43.1 0.6 4.2 2.2 0.003 0.2 35 <0.1 101 
T-22/4 (0-5) Topsoil 0.33 1037 0.4 162.0 94.8 2.3 4.8 2.4 0.003 0.1 44 0.1 248 
T-22/6 (0-5) Topsoil 0.14 964 0.4 97.1 59.5 1.2 5.2 2.8 0.002 0.2 36 <0.1 100 
T-22/7 (0-5) Topsoil 0.12 639 0.4 195.5 48.0 0.4 4.9 2.2 0.002 0.2 32 <0.1 124 
T-22/8 (0-5) Topsoil 0.12 2045 1.1 174.7 67.4 1.4 6.0 4.4 0.008 0.4 66 0.1 136 
T-24/1 (0-5) Topsoil 0.39 1247 0.7 88.5 52.9 1.4 4.1 3.4 0.003 0.2 27 <0.1 111 
T-24/2 (0-5) Topsoil 0.32 1591 0.7 103.3 69.6 2.5 4.4 2.9 0.004 0.3 35 0.1 126 
T-24/4 (0-5) Topsoil 0.31 1462 0.5 146.5 58.5 2.0 5.2 4.0 0.003 0.3 42 0.1 140 
T-24/5 (0-5) Topsoil 0.24 1251 0.4 130.3 57.8 0.6 5.1 3.1 0.002 0.3 40 0.1 139 
T-24/6 (0-5) Topsoil 0.16 1650 0.5 86.6 59.4 0.3 3.7 2.4 0.004 0.3 40 <0.1 107 
T-25/1 (0-5) Topsoil 0.47 1639 0.5 126.3 60.0 1.0 4.4 3.7 0.002 0.3 28 <0.1 143 
T-26/1 (0-5) Topsoil 0.40 1074 0.7 76.8 44.9 1.5 3.1 2.3 0.002 0.2 9 <0.1 102 
T-26/2 (0-5) Topsoil 0.29 2102 0.9 83.7 69.0 3.3 4.4 3.9 0.004 0.3 34 0.1 124 
T-26/4 (0-5) Topsoil 0.29 1756 0.6 91.2 65.0 2.1 4.7 3.5 0.004 0.3 38 0.1 123 
T-26/5 (0-5) Topsoil 0.46 971 0.4 106.5 42.3 0.8 3.1 1.8 0.001 0.2 14 <0.1 104 
T-27/1 (0-5) Topsoil 0.42 942 0.5 66.5 43.1 0.8 3.9 3.1 0.003 0.2 25 <0.1 97 
T-27/2 (0-5) Topsoil 0.58 1655 0.4 127.8 91.1 1.7 4.2 2.3 0.004 0.2 33 0.1 166 
T-27/4 (0-5) Topsoil 0.30 1381 0.7 59.5 54.9 0.9 4.0 3.3 0.006 0.2 32 <0.1 104 
T-27/5 (0-5) Topsoil 0.32 1329 0.8 60.6 50.8 1.0 4.3 4.6 0.004 0.2 36 <0.1 96 
A-15/3 (0-5) Topsoil 0.91 9900 1.0 58.6 1623.8 18.2 4.8 2.2 0.034 1.7 48 0.4 1693 
A-18/3 (0-5) Topsoil 1.05 6862 3.4 88.5 1025.3 81.1 3.6 2.4 0.031 0.8 46 2.0 1195 
A-19/4 (0-5) Topsoil 1.07 5203 1.1 113.5 732.5 25.9 4.0 1.9 0.020 0.8 33 0.4 934 
A-21/4 (0-5) Topsoil 0.94 7415 1.4 102.9 781.7 27.2 4.1 1.9 0.024 0.5 50 0.4 726 
A-22/5 (0-5) Topsoil 0.83 4984 1.1 97.7 440.3 23.0 3.6 1.8 0.014 0.3 41 0.5 491 
A-23 (0-5) Topsoil 0.91 4903 1.6 112.4 565.3 36.9 3.9 1.9 0.016 0.5 36 0.6 701 
A-24/3 (0-5) Topsoil 0.73 8605 1.0 97.2 468.1 13.1 4.4 2.0 0.026 0.5 46 0.3 496 
A-25/2 (0-5) Topsoil 0.81 5574 1.1 93.0 333.0 20.6 3.7 2.1 0.023 0.4 41 0.4 372 
A-26/3 (0-5) Topsoil 0.75 4426 0.8 101.8 446.5 16.8 3.7 1.9 0.013 0.5 32 0.3 558 
A-27/3 (0-5) Topsoil 0.87 7189 1.2 95.1 347.0 8.8 4.2 2.3 0.023 0.5 40 0.3 514 
T-01/1 (20-30) Subsoil 0.76 1496 0.2 56.7 28.9 0.1 4.4 0.8 0.066 0.2 79 <0.1 103 
T-01/2 (20-30) Subsoil 0.53 1808 0.4 60.8 64.0 0.7 3.5 1.4 0.017 0.2 60 0.1 173 
T-01/3 (20-30) Subsoil 0.36 2177 0.6 39.4 39.5 1.0 2.6 2.3 0.007 0.2 55 <0.1 80 
T-02/1 (20-30) Subsoil 0.53 1351 0.4 36.1 37.2 0.6 2.6 2.1 0.003 0.2 42 <0.1 96 
T-02/2 (20-30) Subsoil 0.64 1105 0.3 90.5 39.5 0.7 4.5 2.0 0.033 0.1 42 <0.1 77 
T-02/3 (20-30) Subsoil 0.51 1409 0.5 38.0 42.7 0.6 2.2 2.3 <0.001 0.1 34 <0.1 97 
T-03/1 (20-30) Subsoil 0.21 2587 0.4 35.0 90.7 2.6 1.0 1.1 0.003 0.2 23 <0.1 127 
T-03/2 (20-30) Subsoil 0.37 1151 0.4 39.1 168.6 2.8 1.7 2.4 0.006 0.3 27 0.1 187 
T-03/3 (20-30) Subsoil 0.28 207 0.2 24.0 60.8 0.9 0.8 1.2 0.004 0.1 17 <0.1 43 
T-04/1 (20-30) Subsoil 2.05 880 0.1 109.8 59.0 0.3 8.3 1.6 0.217 0.2 99 0.1 177 
T-04/2 (20-30) Subsoil 1.49 1333 0.5 95.9 163.1 0.8 7.0 2.1 0.127 0.8 122 0.1 261 
T-04/3 (20-30) Subsoil 2.16 1395 0.5 135.0 288.2 2.1 8.5 1.9 0.215 0.2 131 0.1 402 
T-04/4 (20-30) Subsoil 1.64 1642 0.3 82.9 66.3 0.3 5.9 1.0 0.114 0.2 77 <0.1 124 
T-05/1 (20-30) Subsoil 0.92 3107 0.8 43.3 277.4 6.2 3.3 1.8 0.016 0.2 35 0.2 508 
T-05/2 (20-30) Subsoil 0.15 1538 0.3 10.3 89.8 1.1 1.3 1.9 <0.001 0.2 21 0.1 174 
T-06/1 (20-30) Subsoil 0.58 1121 0.2 19.9 36.3 0.1 1.8 2.2 0.011 0.3 26 <0.1 87 
T-06/2 (20-30) Subsoil 0.62 1160 0.3 26.5 41.6 0.6 2.8 3.1 0.007 0.3 26 <0.1 106 
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T-06/3 (20-30) Subsoil 0.53 1724 0.4 27.7 122.7 0.4 2.0 3.9 0.010 0.6 32 0.1 185 
T-06/4 (20-30) Subsoil 0.41 2996 0.5 72.2 268.7 1.9 3.4 3.8 0.006 0.7 36 0.1 357 
T-06/5 (20-30) Subsoil 0.78 2607 1.0 79.3 349.9 8.9 3.8 3.3 0.009 0.3 35 0.3 598 
T-06/6 (20-30) Subsoil 0.66 1234 0.5 27.3 137.1 2.5 2.3 4.6 0.001 0.3 30 0.1 235 
T-06/7 (20-30) Subsoil 0.55 1548 0.3 28.7 110.2 1.0 2.7 3.5 0.002 0.3 22 0.1 177 
T-06/8 (20-30) Subsoil 0.80 891 0.2 36.5 46.3 <0.1 4.0 2.3 0.001 0.2 26 <0.1 118 
T-07/1 (20-30) Subsoil 0.63 1107 0.3 30.5 101.5 2.1 3.5 1.4 0.002 0.2 24 0.1 185 
T-07/2 (20-30) Subsoil 0.66 1198 0.3 33.1 46.9 1.0 3.8 1.1 0.002 0.2 26 0.1 125 
T-07/3 (20-30) Subsoil 0.29 3337 0.5 28.1 267.2 2.5 4.2 4.0 0.005 1.1 29 0.1 599 
T-07/4 (20-30) Subsoil 1.52 2751 4.2 106.9 621.3 16.4 4.5 3.4 0.009 0.7 45 0.6 835 
T-08/1 (20-30) Subsoil 0.50 3561 1.0 34.9 454.5 10.0 4.0 2.7 0.004 0.7 21 0.3 695 
T-08/2 (20-30) Subsoil 0.54 2347 0.8 86.9 318.9 8.5 4.4 3.2 0.004 0.5 39 0.3 462 
T-08/3 (20-30) Subsoil 1.33 4791 2.2 204.6 879.3 19.1 5.9 2.8 0.011 0.7 66 1.2 1691 
T-08/4 (20-30) Subsoil 2.56 2427 0.4 407.3 47.2 1.0 5.9 2.1 0.036 0.2 77 0.1 123 
T-08/5 (20-30) Subsoil 3.38 1655 0.3 433.5 30.6 0.8 2.5 1.9 0.046 0.1 56 0.1 84 
T-09/1 (20-30) Subsoil 1.01 2786 2.6 272.3 749.9 18.7 4.0 2.4 0.009 0.7 54 1.8 1332 
T-09/2 (20-30) Subsoil 1.21 4946 5.3 241.3 978.4 20.6 4.1 2.2 0.029 0.9 45 3.6 2987 
T-10 (20-30) Subsoil 1.13 3301 2.2 196.9 1035.3 20.0 4.3 2.8 0.007 0.8 66 3.0 1897 
T-11/1 (20-30) Subsoil 0.51 2285 0.3 465.6 31.6 0.1 8.3 1.8 0.006 0.4 65 0.1 92 
T-11/2 (20-30) Subsoil 1.63 1925 0.4 298.7 26.6 0.5 6.3 2.1 0.003 0.2 67 <0.1 88 
T-11/3 (20-30) Subsoil 1.87 3417 0.6 260.4 251.6 4.8 9.0 3.6 0.003 1.6 72 0.1 497 
T-11/4 (20-30) Subsoil 0.62 3735 7.9 149.8 843.0 38.8 4.2 3.0 0.028 0.8 48 5.2 2034 
T-11/5 (20-30) Subsoil 1.69 1562 0.8 290.3 344.8 9.0 5.1 2.8 0.002 0.3 55 0.5 491 
T-11/6 (20-30) Subsoil 1.37 1354 0.4 240.1 50.8 1.3 4.8 2.9 0.004 0.4 59 <0.1 128 
T-11/7 (20-30) Subsoil 1.52 1477 0.4 257.9 43.0 0.3 7.0 2.6 0.002 0.2 57 <0.1 117 
T-12/1 (20-30) Subsoil 4.06 2511 0.4 487.5 86.3 1.8 4.4 3.4 0.002 0.2 42 0.1 148 
T-12/2 (20-30) Subsoil 0.55 2469 0.8 105.8 435.2 10.0 4.6 3.3 0.002 0.5 32 0.4 579 
T-12/3 (20-30) Subsoil 0.46 1957 0.5 347.0 77.3 1.8 4.7 3.7 0.004 0.3 40 0.1 144 
T-12/4 (20-30) Subsoil 3.47 855 0.3 439.4 29.9 0.8 6.6 2.7 0.004 0.1 78 <0.1 83 
T-13/1 (20-30) Subsoil 0.21 1697 0.4 44.9 30.1 0.2 3.3 2.5 0.002 0.2 41 <0.1 78 
T-13/2 (20-30) Subsoil 0.44 2578 0.8 80.8 436.9 10.0 4.9 3.6 0.003 0.4 48 0.3 469 
T-14/1 (20-30) Subsoil 0.21 1730 0.3 102.1 26.7 <0.1 4.4 2.5 0.002 0.2 35 <0.1 85 
T-14/2 (20-30) Subsoil 0.30 2315 0.6 79.6 153.6 3.3 4.6 3.8 0.003 0.2 37 0.1 220 
T-14/3 (20-30) Subsoil 0.32 2702 0.6 64.3 45.2 0.3 3.8 2.7 0.003 0.3 45 <0.1 108 
T-15/1 (20-30) Subsoil 0.43 1032 0.4 49.4 62.9 1.1 3.3 3.6 0.001 0.1 25 <0.1 106 
T-15/2 (20-30) Subsoil 0.26 1218 0.5 90.9 90.6 4.1 3.6 3.9 0.002 0.5 40 0.1 117 
T-16/1 (20-30) Subsoil 0.17 2520 0.4 111.1 52.2 1.4 7.1 4.8 0.003 0.3 72 0.1 102 
T-16/2 (20-30) Subsoil 0.42 1017 0.6 74.2 74.5 3.0 3.8 4.0 0.008 0.5 40 0.1 153 
T-16/3 (20-30) Subsoil 0.21 2906 0.4 143.3 38.0 0.9 6.5 3.8 0.001 0.2 42 <0.1 82 
T-16/4 (20-30) Subsoil 0.73 2224 0.2 150.4 75.5 <0.1 2.8 0.5 0.003 0.4 49 0.1 107 
T-17/1 (20-30) Subsoil 0.17 1530 0.7 108.1 40.0 0.2 6.1 4.2 0.004 0.2 59 <0.1 89 
T-17/2 (20-30) Subsoil 0.25 922 0.2 78.8 78.3 0.2 6.1 4.4 0.004 0.3 54 <0.1 101 
T-17/3 (20-30) Subsoil 0.18 1484 0.4 75.5 29.7 0.1 6.4 4.1 0.002 0.3 55 <0.1 65 
T-18/1 (20-30) Subsoil 0.13 1134 0.2 106.8 32.9 0.2 6.0 4.7 0.002 0.3 49 <0.1 91 
T-18/2 (20-30) Subsoil 0.09 1352 1.1 234.4 37.0 4.6 7.4 4.0 0.001 0.8 58 0.1 182 
T-18/4 (20-30) Subsoil 0.13 1290 0.4 73.3 71.2 3.2 3.2 2.4 0.003 0.7 31 0.1 185 
T-18/5 (20-30) Subsoil 0.21 2898 0.7 105.3 44.4 0.8 5.8 2.7 0.004 0.4 63 <0.1 76 
T-19/1 (20-30) Subsoil 0.13 1870 0.7 187.2 32.9 0.7 11.1 2.9 0.005 2.3 80 <0.1 92 
T-19/2 (20-30) Subsoil 0.09 1241 0.4 44.9 32.8 0.7 3.8 4.5 <0.001 0.2 36 <0.1 73 
T-19/3 (20-30) Subsoil 0.10 1715 0.5 168.5 40.3 0.9 5.7 2.4 0.001 0.1 41 <0.1 126 
T-19/5 (20-30) Subsoil 0.27 1735 0.5 66.7 37.9 0.6 6.3 4.9 0.008 0.9 61 <0.1 125 
T-19/6 (20-30) Subsoil 0.07 1264 0.3 60.5 25.5 0.3 4.3 4.1 0.002 0.2 33 <0.1 75 
T-20/1 (20-30) Subsoil 0.14 1175 0.3 221.4 35.0 0.3 6.5 3.1 0.003 0.3 45 <0.1 75 
T-20/2 (20-30) Subsoil 0.13 1651 0.4 119.9 43.3 1.3 5.6 2.7 0.003 0.2 53 0.1 112 
T-20/3 (20-30) Subsoil 0.07 1546 0.5 55.1 31.4 0.6 3.8 3.2 <0.001 0.2 38 <0.1 75 
T-20/4 (20-30) Subsoil 0.17 2091 0.7 103.4 53.6 0.2 7.2 5.3 0.006 1.0 79 <0.1 115 
T-21/1 (20-30) Subsoil 0.36 893 0.2 170.9 36.5 0.1 4.9 2.4 0.003 0.1 32 <0.1 75 
T-21/2 (20-30) Subsoil 0.07 743 0.4 140.3 43.6 0.2 4.3 3.6 0.003 0.2 41 <0.1 85 
T-21/3 (20-30) Subsoil 0.14 691 0.2 149.1 34.5 0.2 6.0 2.9 0.004 0.1 43 <0.1 80 
T-21/5 (20-30) Subsoil 0.16 1587 0.4 71.3 46.2 1.6 5.5 3.0 0.005 0.3 64 0.1 99 
T-21/6 (20-30) Subsoil 0.07 794 0.3 82.7 39.9 0.3 5.9 4.4 0.003 0.2 41 <0.1 70 
T-21/7 (20-30) Subsoil 0.08 1319 0.3 77.5 25.6 <0.1 4.4 2.9 0.003 0.2 45 <0.1 73 
T-21/8 (20-30) Subsoil 0.07 1735 0.3 40.5 28.5 <0.1 3.4 3.0 <0.001 0.2 34 <0.1 71 
T-22/1 (20-30) Subsoil 0.17 1642 0.7 70.3 57.7 1.2 4.1 6.3 0.005 0.2 33 <0.1 96 
T-22/2 (20-30) Subsoil 0.48 793 0.4 106.3 34.6 0.6 3.5 2.8 <0.001 0.2 <2 <0.1 79 
T-22/3 (20-30) Subsoil 0.18 1193 0.4 158.0 46.9 0.5 5.5 3.4 0.003 0.2 39 <0.1 105 
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Sample Material Mg Mn Mo Ni Pb Sb Sc Th Ti Tl V W Zn 

T-22/4 (20-30) Subsoil 0.28 1225 0.5 179.5 81.0 1.9 5.4 2.5 0.003 0.1 41 0.1 173 
T-22/6 (20-30) Subsoil 0.13 1189 0.4 123.7 59.6 1.1 6.3 3.6 0.004 0.2 47 <0.1 113 
T-22/7 (20-30) Subsoil 0.10 771 0.3 217.6 53.1 0.3 4.8 2.3 0.003 0.2 34 <0.1 121 
T-22/8 (20-30) Subsoil 0.12 2288 1.2 232.5 67.2 0.8 9.2 6.6 0.007 0.4 89 <0.1 147 
T-24/1 (20-30) Subsoil 0.39 1248 0.6 84.1 46.6 1.0 4.1 3.8 0.003 0.2 26 <0.1 91 
T-24/2 (20-30) Subsoil 0.32 1562 0.7 104.5 71.6 2.5 4.6 3.5 0.005 0.3 38 <0.1 126 
T-24/4 (20-30) Subsoil 0.31 1762 0.6 177.0 65.1 2.2 6.4 5.0 0.003 0.3 51 0.1 138 
T-24/5 (20-30) Subsoil 0.26 1472 0.5 160.2 62.4 0.4 6.0 3.7 0.004 0.4 49 0.1 143 
T-24/6 (20-30) Subsoil 0.14 1775 0.7 94.6 60.1 0.7 4.6 4.5 0.005 0.2 40 <0.1 108 
T-25/1 (20-30) Subsoil 0.48 1950 0.5 138.7 64.8 0.9 5.3 4.3 0.004 0.3 38 <0.1 146 
T-26/1 (20-30) Subsoil 0.46 1004 0.6 74.9 36.3 1.0 3.6 2.8 0.002 0.2 21 <0.1 79 
T-26/2 (20-30) Subsoil 0.31 2236 1.0 86.8 75.3 3.6 5.0 4.3 0.005 0.3 38 0.1 124 
T-26/4 (20-30) Subsoil 0.27 1968 0.7 99.2 75.9 2.3 5.2 4.6 0.004 0.3 39 0.1 116 
T-26/5 (20-30) Subsoil 0.51 981 0.3 115.7 33.7 0.6 3.5 2.0 0.002 0.2 21 <0.1 83 
T-27/1 (20-30) Subsoil 0.38 901 0.4 59.9 34.4 0.9 3.3 3.3 0.003 0.2 20 <0.1 82 
T-27/2 (20-30) Subsoil 0.60 1506 0.3 125.4 86.6 1.0 4.3 2.2 0.005 0.3 37 0.1 152 
T-27/4 (20-30) Subsoil 0.36 1832 0.6 75.8 61.5 0.3 4.9 4.1 0.006 0.3 39 <0.1 116 
T-27/5 (20-30) Subsoil 0.31 1589 0.8 61.6 58.5 0.7 4.1 4.6 0.005 0.2 34 <0.1 101 
A-15/3 (20-30) Subsoil 1.01 10000 1.0 69.0 1736.6 15.7 5.1 2.8 0.038 1.9 50 0.6 1782 
A-18/3 (20-30) Subsoil 1.00 6573 2.2 62.7 1371.6 88.2 3.1 2.2 0.023 0.7 58 1.3 1469 
A-19/4 (20-30) Subsoil 1.05 8227 1.1 89.7 936.5 28.1 4.9 2.8 0.033 0.9 37 0.4 1168 
A-21/4 (20-30) Subsoil 0.93 9121 1.3 99.6 828.2 31.1 4.4 2.2 0.026 0.5 51 0.2 765 
A-22/5 (20-30) Subsoil 0.84 5673 0.9 103.8 396.2 22.6 3.7 2.0 0.013 0.4 46 0.3 404 
A-23 (20-30) Subsoil 0.95 6093 2.5 95.7 822.8 60.4 3.9 2.4 0.025 0.6 43 1.2 923 
A-24/3 (20-30) Subsoil 0.69 8075 0.9 84.9 446.7 11.8 3.8 2.3 0.024 0.6 36 0.2 448 
A-25/2 (20-30) Subsoil 0.89 6669 1.1 95.5 411.0 23.4 4.0 2.2 0.021 0.5 39 0.3 464 
A-26/3 (20-30) Subsoil 0.78 4874 0.8 109.3 500.3 12.4 4.2 2.4 0.016 0.5 42 0.2 495 
A-27/3 (20-30) Subsoil 0.82 6478 1.7 87.3 518.0 21.6 4.6 3.1 0.023 0.7 29 0.4 797 
S-01 S. Sediment 0.70 1361 0.9 66.5 71.7 2.5 2.5 1.9 0.037 0.1 39 0.1 194 
S-02 S. Sediment 0.87 1113 0.3 69.0 46.2 1.0 3.7 2.1 0.087 0.1 49 0.1 151 
S-03 S. Sediment 0.76 1094 0.3 61.7 61.3 1.3 2.9 2.2 0.020 0.1 26 0.1 118 
S-04 S. Sediment 0.76 1059 0.2 53.0 91.7 1.9 2.7 2.0 0.035 0.1 29 0.1 134 
S-06 S. Sediment 0.69 1010 0.4 49.4 121.2 2.6 2.4 1.8 0.037 0.1 26 0.1 125 
S-07 S. Sediment 1.06 1348 0.5 53.0 157.7 5.7 3.4 1.8 0.066 0.1 37 0.1 172 
S-09 S. Sediment 1.06 1784 0.7 48.8 342.6 21.4 3.6 1.9 0.068 0.3 37 0.1 228 
S-11 S. Sediment 1.17 2472 1.4 60.2 571.7 38.9 3.9 1.9 0.063 0.3 42 0.3 383 
S-13 S. Sediment 1.48 2105 1.1 125.5 395.1 20.5 4.0 1.8 0.058 0.3 44 0.3 293 
S-15 S. Sediment 1.19 1399 0.8 88.2 219.7 11.3 3.0 2.1 0.030 0.2 35 0.3 240 
S-17 S. Sediment 1.23 2117 1.1 116.5 245.4 18.5 3.2 1.9 0.032 0.2 40 0.5 274 
S-18 S. Sediment 1.10 2153 1.3 92.2 252.3 17.7 3.1 1.9 0.033 0.2 35 0.7 285 
S-20 S. Sediment 1.10 3342 1.6 94.6 421.2 28.6 3.1 1.9 0.029 0.3 49 0.7 389 
S-22 S. Sediment 1.16 3474 1.2 87.2 455.7 30.4 3.5 1.7 0.017 0.3 40 0.4 467 
S-23 S. Sediment 1.00 2348 1.0 84.9 191.6 13.8 3.1 2.0 0.026 0.2 30 0.4 282 
S-26 S. Sediment 0.81 1499 0.6 87.2 157.2 9.2 2.7 1.1 0.014 0.2 38 0.3 264 
S-27 S. Sediment 0.82 2398 1.0 78.4 291.3 15.5 2.8 1.5 0.012 0.2 30 0.3 393 
P-01/2 Attic Dust 0.48 1478 1.6 43.1 260.4 12.7 1.6 0.2 0.022 0.3 36 0.7 606 
P-02/1 Attic Dust 0.58 1212 3.8 83.1 142.6 11.6 1.9 0.7 0.020 0.1 27 0.6 274 
P-02/3 Attic Dust 0.56 1087 1.3 38.2 230.3 9.7 0.9 0.2 0.006 0.2 23 1.1 543 
P-05/1 Attic Dust 0.81 1646 2.6 42.9 516.3 28.1 2.2 1.0 0.020 0.5 29 1.5 795 
P-06/5 Attic Dust 0.99 2106 2.8 70.4 776.9 32.2 2.7 0.9 0.023 0.6 41 1.7 989 
P-08/4 Attic Dust 0.80 1527 2.8 65.5 482.9 19.5 1.3 0.2 0.009 0.3 36 1.3 1055 
P-09/2 Attic Dust 0.52 4793 11.3 134.1 2130.1 53.7 2.9 1.8 0.036 1.1 52 9.7 5286 
P-10 Attic Dust 0.54 6242 16.9 117.2 2767.7 67.9 2.6 1.7 0.032 2.5 47 15.5 7124 
P-11/4 Attic Dust 0.68 6033 13.5 148.2 2596.0 78.9 3.1 1.4 0.031 1.7 64 10.3 5434 
P-15/2 Attic Dust 0.45 1862 3.4 65.9 1144.5 35.8 2.2 1.2 0.014 0.9 44 2.9 1160 
P-16/1 Attic Dust 0.61 913 3.9 61.8 381.8 18.8 2.0 1.0 0.013 0.3 41 2.4 496 
P-19/2 Attic Dust 0.62 1091 1.4 60.0 184.7 9.2 2.8 1.1 0.015 0.3 42 0.9 413 
P-19/3 Attic Dust 0.75 822 4.0 83.7 303.3 16.5 1.6 0.4 0.014 0.4 47 1.9 699 
P-20/3 Attic Dust 0.42 587 1.3 36.1 161.8 4.3 1.2 0.4 0.006 0.8 20 0.6 656 
P-22/4 Attic Dust 0.68 907 2.1 135.5 228.0 8.8 2.7 1.1 0.017 0.4 42 1.4 1445 
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Appendix E: Estimates values of standard materials (E) and their analyzing values (accuracy 

estimation);Values of Al, Fe, Mg and Ti are in %, remaining elements in mg/kg 

 

Sample Ag Al As Ba Bi Cd Co Cr Cu Fe Ga Hg La 

DS7 (E) 0.9 0.96 48.2 370 4.5 6.4 9.7 179 109.0 2.39 5.0 0.20 12 
DS7 0.9 1.00 50.3 410 4.5 6.0 9.5 221 108.5 2.41 5.0 0.18 13 
DS7 0.7 0.99 50.8 382 4.6 5.4 9.0 195 103.0 2.27 5.0 0.17 13 
DS7 0.8 0.95 48.5 390 4.7 5.9 8.6 185 102.3 2.26 5.0 0.19 13 
DS7 0.8 0.99 52.3 403 4.5 6.2 9.2 199 97.8 2.32 4.0 0.18 12 
DS7 0.8 1.00 52.6 400 5.0 6.4 9.8 193 105.5 2.37 5.0 0.18 13 
DS7 0.9 1.09 54.2 427 4.4 6.5 10.4 240 121.9 2.52 5.0 0.18 13 
DS7 0.7 1.03 52.0 407 4.7 6.4 9.9 173 116.3 2.42 5.0 0.19 13 
OREAS45PA (E) 0.3 3.34 4.2 187 0.2 0.1 104.0 873 600.0 16.56 16.8 0.03 16 
OREAS45PA 0.3 3.43 4.3 182 0.2 <0.1 106.3 786 615.9 16.04 16.0 0.03 15 
OREAS45PA 0.2 3.27 4.6 184 0.2 <0.1 108.0 799 598.9 16.13 16.0 0.02 16 
OREAS45PA 0.2 2.99 4.3 178 0.2 0.1 99.3 764 546.7 15.42 15.0 0.03 15 
OREAS45PA 0.2 2.84 4.0 279 0.2 0.1 101.8 781 557.5 16.39 17.0 0.03 16 
OREAS45PA 0.2 2.94 4.0 176 0.2 0.1 107.5 767 572.1 16.57 16.0 0.02 15 
OREAS45PA 0.3 3.27 4.8 179 0.2 0.1 110.2 771 559.2 16.53 16.0 0.02 15 
OREAS45PA 0.2 3.16 4.5 183 0.2 <0.1 106.5 741 534.4 15.99 16.0 0.02 15 
DS8 (E) 1.7 0.93 26.0 279 6.7 2.4 7.5 115 110.0 2.46 4.7 0.19 15 
DS8 1.8 1.00 25.5 305 6.7 2.3 7.7 118 112.2 2.55 5.0 0.21 18 
DS8 1.6 0.90 25.1 293 6.4 2.6 7.5 120 110.4 2.44 4.0 0.18 13 
DS8 1.9 0.95 25.4 292 6.1 2.3 7.5 118 109.0 2.59 5.0 0.20 14 
DS8 1.7 0.97 25.6 303 6.7 2.4 7.7 126 110.7 2.57 5.0 0.19 16 
DS8 2.0 0.92 24.6 285 6.6 2.4 7.8 117 115.6 2.38 5.0 0.18 16 
OREAS45CA (E) 0.3 3.59 3.8 164 0.2 0.1 92.0 709 494.0 15.69 18.4 0.03 16 
OREAS45CA 0.2 3.93 3.5 165 0.2 <0.1 88.6 640 510.7 16.49 19.0 0.04 17 
OREAS45CA 0.3 3.45 3.8 159 0.2 <0.1 87.2 687 484.5 15.83 18.0 0.02 16 
OREAS45CA 0.3 3.52 4.0 155 0.2 <0.1 84.7 695 481.7 16.25 17.0 0.03 16 
OREAS45CA 0.3 3.89 4.1 163 0.2 <0.1 86.3 724 490.6 16.48 18.0 0.04 16 
OREAS45CA 0.2 3.74 3.5 153 0.2 0.1 85.5 710 493.4 15.80 19.0 0.04 16 

              Sample Mg Mn Mo Ni Pb Sb Sc Th Ti Tl V W Zn 

DS7 (E) 1.05 627 20.5 56.0 70.6 4.6 2.5 4.4 0.124 4.2 84 3.4 411 
DS7 1.00 638 20.0 56.8 64.3 5.8 2.5 4.1 0.134 4.0 80 3.6 377 
DS7 1.01 581 20.2 55.5 70.6 6.2 2.2 4.4 0.120 4.0 75 3.5 397 
DS7 0.97 579 20.3 52.5 75.4 6.3 2.1 4.9 0.116 4.1 78 3.5 389 
DS7 0.98 619 20.6 52.2 62.2 6.1 2.3 4.5 0.121 4.1 79 3.5 375 
DS7 1.02 572 20.6 58.0 76.8 6.6 2.2 5.1 0.121 4.6 78 3.3 402 
DS7 1.07 646 21.9 63.5 67.7 6.0 2.5 4.5 0.140 4.3 91 3.8 422 
DS7 0.98 632 22.3 58.4 65.8 5.7 2.4 4.5 0.139 4.2 87 3.7 383 
OREAS45PA (E) 0.10 1130 0.9 281.0 19.0 0.1 43.0 6.0 0.124 0.1 221 -  119 
OREAS45PA 0.11 1077 1.2 288.7 18.0 <0.1 43.3 6.0 0.146 <0.1 204 <0.1 121 
OREAS45PA 0.10 1074 1.2 280.7 19.3 0.1 39.9 6.5 0.143 <0.1 207 <0.1 123 
OREAS45PA 0.09 1060 1.3 270.6 16.7 <0.1 38.3 5.7 0.124 <0.1 193 <0.1 111 
OREAS45PA 0.09 1070 1.4 267.9 19.1 <0.1 40.9 6.5 0.131 <0.1 202 <0.1 116 
OREAS45PA 0.10 1038 1.4 288.9 18.9 <0.1 41.8 6.4 0.124 <0.1 194 <0.1 114 
OREAS45PA 0.11 1078 1.4 296.9 17.2 0.1 40.7 6.0 0.144 <0.1 218 <0.1 115 
OREAS45PA 0.10 1057 1.4 287.8 17.6 0.1 38.9 6.1 0.153 <0.1 210 <0.1 110 
DS8 (E) 0.60 615 13.4 38.1 123.0 4.8 2.3 6.9 0.113 5.4 41 3.0 312 
DS8 0.68 622 13.8 36.0 126.3 5.2 2.3 7.2 0.126 5.6 43 3.0 321 
DS8 0.62 617 13.6 38.3 120.5 4.8 1.9 6.3 0.108 5.3 43 2.6 308 
DS8 0.63 638 14.1 36.9 129.2 5.5 2.1 6.1 0.118 5.6 42 2.8 323 
DS8 0.64 627 13.4 39.8 124.2 4.7 2.2 6.6 0.115 5.5 45 2.4 322 
DS8 0.62 596 14.0 37.7 119.1 4.9 2.3 6.7 0.111 5.3 44 2.3 313 
OREAS45CA (E) 0.14 943 1.0 240.0 20.0 0.1 39.7 7.0 0.128 0.1 215 -  60 
OREAS45CA 0.16 896 0.8 247.6 19.8 <0.1 36.2 7.0 0.145 <0.1 198 <0.1 66 
OREAS45CA 0.13 875 0.9 228.7 20.3 0.1 34.0 6.8 0.113 <0.1 198 <0.1 60 
OREAS45CA 0.13 935 0.9 227.3 20.8 <0.1 35.6 6.9 0.133 <0.1 196 <0.1 60 
OREAS45CA 0.14 904 0.7 246.7 20.9 <0.1 35.5 7.0 0.118 <0.1 198 <0.1 61 
OREAS45CA 0.13 899 0.9 232.1 19.9 <0.1 37.7 6.7 0.104 <0.1 191 <0.1 60 
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Appendix F: Results of the analysis of duplicate samples (precision estimation);Values of Al, 

Fe, Mg and Ti are in %, remaining elements in mg/kg 

 

Sample Ag Al As Ba Bi Cd Co Cr Cu Fe Ga Hg La 

T-01/3 (20-30) 0.1 2.11 12.5 101 0.3 0.2 21.0 44 28.9 3.56 6.0 0.09 7 
T-01/3 (20-30) - R 0.1 2.07 13.0 104 0.3 0.2 20.7 44 28.6 3.51 6.0 0.09 7 
T-02/3 (0-5) <0.1 1.64 11.7 157 0.4 0.4 12.2 28 21.5 2.54 5.0 0.08 2 
T-02/3 (0-5) - R <0.1 1.77 12.7 168 0.4 0.4 13.0 30 23.6 2.81 5.0 0.09 3 
T-04/4 (0-5) 0.1 2.30 5.0 207 0.3 0.6 21.8 52 19.5 3.67 6.0 0.09 9 
T-04/4 (0-5) - R 0.1 2.43 5.0 206 0.2 0.6 21.0 53 18.8 3.59 6.0 0.09 9 
T-06/6 (20-30) 0.4 2.35 12.5 239 0.6 0.3 13.9 29 25.2 3.05 7.0 0.13 26 
T-06/6 (20-30) - R 0.4 2.28 12.0 246 0.6 0.3 13.6 28 22.8 3.07 6.0 0.13 26 
T-07/3 (0-5) 1.1 1.53 46.6 1197 0.6 2.1 15.0 26 34.1 3.45 5.0 0.17 10 
T-07/3 (0-5) - R 1.1 1.43 45.5 1109 0.6 2.1 14.7 25 33.6 3.43 5.0 0.17 9 
T-11/6 (20-30) 0.1 2.14 29.8 149 0.3 0.5 33.8 214 33.0 3.54 6.0 0.08 14 
T-11/6 (20-30) - R 0.1 2.14 30.6 154 0.3 0.6 33.5 216 33.1 3.48 6.0 0.07 15 
T-16/1 (0-5) 0.1 1.71 30.1 139 0.5 0.9 20.8 59 67.6 3.10 6.0 0.11 20 
T-16/1 (0-5) - R 0.1 1.64 29.0 131 0.4 0.9 20.7 53 66.4 2.99 6.0 0.08 19 
T-16/2 (20-30) 0.1 2.24 79.2 207 0.5 0.8 16.9 49 35.5 2.84 6.0 0.11 23 
T-16/2 (20-30) - R 0.2 2.32 77.6 210 0.5 1.0 17.3 54 35.7 3.14 6.0 0.09 23 
T-17/1 (0-5) 0.1 1.62 37.9 100 0.4 0.4 25.3 69 42.7 3.19 5.0 0.06 21 
T-17/1 (0-5) - R <0.1 1.58 38.0 98 0.4 0.4 24.0 71 40.6 3.20 5.0 0.07 21 
T-25/1 (0-5) 0.1 2.18 39.8 262 0.5 0.6 23.8 64 45.2 3.34 7.0 0.11 14 
T-25/1 (0-5) - R 0.2 2.20 40.4 276 0.5 0.6 22.9 61 40.6 3.39 6.0 0.12 15 
A-22/5 (0-5) 2.3 1.29 38.3 835 0.8 1.2 16.5 80 89.0 3.67 3.0 0.99 9 
A-22/5 (0-5) - R 2.3 1.17 37.7 858 0.9 1.2 16.1 77 88.3 3.81 2.0 1.08 9 
A-23 (20-30) 5.3 1.39 49.3 1302 1.3 2.5 16.8 81 161.8 4.74 3.0 1.94 13 
A-23 (20-30) - R 4.8 1.39 46.8 1240 1.4 2.6 14.8 77 157.6 4.59 2.0 1.92 12 
A-27/3 (20-30) 4.7 1.50 41.3 263 1.5 1.8 14.8 68 129.1 4.30 3.0 1.53 13 
A-27/3 (20-30) - R 4.8 1.53 41.4 483 1.3 1.8 14.6 64 120.1 4.41 2.0 1.36 15 
S-18 1.4 1.05 17.8 827 0.4 0.7 13.8 85 81.6 3.40 3.0 0.75 6 
S-18 - R 1.3 1.07 18.3 819 0.4 0.8 13.8 83 80.3 3.45 3.0 0.71 6 
P-11/4 7.4 1.29 92.9 69 10.1 7.6 27.8 126 261.2 15.63 5.0 1.50 9 
P-11/4 - R 7.4 1.22 78.1 50 10.2 7.1 25.9 123 262.0 15.00 5.0 1.54 10 

              
Sample Mg Mn Mo Ni Pb Sb Sc Th Ti Tl V W Zn 

T-01/3 (20-30) 0.36 2177 0.6 39.4 39.5 1.0 2.6 2.3 0.007 0.2 55 <0.1 80 
T-01/3 (20-30) - R 0.36 2163 0.6 37.8 38.4 0.8 2.6 2.4 0.007 0.2 57 <0.1 84 
T-02/3 (0-5) 0.41 1505 0.5 29.2 48.0 0.8 1.7 1.6 <0.001 0.1 25 <0.1 151 
T-02/3 (0-5) - R 0.43 1660 0.6 32.7 52.6 0.7 1.7 1.6 <0.001 0.1 31 <0.1 170 
T-04/4 (0-5) 1.29 1455 0.3 71.7 69.2 0.6 4.1 0.5 0.086 0.2 63 <0.1 131 
T-04/4 (0-5) - R 1.27 1422 0.2 71.4 67.5 0.5 4.4 0.5 0.092 0.1 61 <0.1 132 
T-06/6 (20-30) 0.66 1234 0.5 27.3 137.1 2.5 2.3 4.6 0.001 0.3 30 0.1 235 
T-06/6 (20-30) - R 0.66 1201 0.5 25.8 141.0 2.1 2.2 4.8 0.001 0.2 30 0.1 216 
T-07/3 (0-5) 0.38 3253 1.1 28.6 313.0 3.1 3.6 2.4 0.004 1.0 32 0.1 662 
T-07/3 (0-5) - R 0.37 3275 0.9 28.3 308.0 3.0 3.3 2.0 0.003 1.0 29 0.1 663 
T-11/6 (20-30) 1.37 1354 0.4 240.1 50.8 1.3 4.8 2.9 0.004 0.4 59 <0.1 128 
T-11/6 (20-30) - R 1.38 1369 0.3 241.2 51.9 1.2 4.8 3.0 0.004 0.4 59 <0.1 130 
T-16/1 (0-5) 0.17 2246 0.5 89.9 59.3 1.3 5.4 3.6 0.002 0.3 56 0.1 108 
T-16/1 (0-5) - R 0.17 2070 0.4 92.6 57.3 1.2 5.4 3.3 0.002 0.3 52 0.1 105 
T-16/2 (20-30) 0.42 1017 0.6 74.2 74.5 3.0 3.8 4.0 0.008 0.5 40 0.1 153 
T-16/2 (20-30) - R 0.43 1133 0.6 73.3 75.2 3.0 4.0 4.2 0.009 0.5 45 0.1 155 
T-17/1 (0-5) 0.17 1474 0.7 95.0 43.6 0.4 4.9 3.2 0.002 0.2 52 0.1 88 
T-17/1 (0-5) - R 0.18 1556 0.6 96.5 42.7 0.4 5.2 3.3 0.003 0.2 55 <0.1 90 
T-25/1 (0-5) 0.47 1639 0.5 126.3 60.0 1.0 4.4 3.7 0.002 0.3 28 <0.1 143 
T-25/1 (0-5) - R 0.45 1624 0.6 121.6 62.4 1.0 4.4 3.6 0.004 0.3 33 <0.1 139 
A-22/5 (0-5) 0.83 4984 1.1 97.7 440.3 23.0 3.6 1.8 0.014 0.3 41 0.5 491 
A-22/5 (0-5) - R 0.85 5049 1.2 101.5 420.5 23.2 3.6 1.8 0.015 0.3 44 0.4 486 
A-23 (20-30) 0.95 6093 2.5 95.7 822.8 60.4 3.9 2.4 0.025 0.6 43 1.2 923 
A-23 (20-30) - R 0.89 5855 2.6 92.7 793.2 53.8 3.9 2.5 0.024 0.5 38 1.2 936 
A-27/3 (20-30) 0.82 6478 1.7 87.3 518.0 21.6 4.6 3.1 0.023 0.7 29 0.4 797 
A-27/3 (20-30) - R 0.84 6630 2.0 85.1 541.7 23.0 4.6 3.0 0.029 0.5 35 0.8 763 
S-18 1.10 2153 1.3 92.2 252.3 17.7 3.1 1.9 0.033 0.2 35 0.7 285 
S-18 - R 1.12 2104 1.1 96.1 266.4 18.4 3.1 1.8 0.032 0.2 33 0.6 292 
P-11/4 0.68 6033 13.5 148.2 2596.0 78.9 3.1 1.4 0.031 1.7 64 10.3 5434 
P-11/4 - R 0.62 5655 12.8 135.7 2656.5 81.0 3.1 1.5 0.029 1.8 57 10.5 4841 



Alijagić, J.: Application of multivariate statistical methods and artificial neural network for separation natural 
background and influence of mining and metallurgy activities on distribution of chemical elements in the Stavnja 
valley (Bosnia and Herzegovina). PhD thesis. University of Nova Gorica, 2012. 
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