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Local Radial Basis Function Collocation Method for Phase-
Change Problems 

Abstract 

This thesis represents a new meshless method for the solution of the temperature 
field in the nonlinear convective-diffusive phase-change problems. The velocity 
field is assumed to be known. The method is based on multiquadric radial basis 
function collocation, made locally over a set of overlapping influence domains. 
Each influence domain is presented by usually five nodes, situated around of the 
central node. The strong formulation is used without any integration and time 
stepping is performed in an explicit way. The solution procedure for general 
transport equation is fully described. Five numerical examples are given with 
description, results and assessments. First, the diffusion boundary value problem 
is solved. Example is taken from the NAFEMS benchmark tests. The results are 
compared with the benchmark test, analytical solution and the results obtained 
by the finite difference method. Also the initial value problem of the diffusion is 
performed, analyzed and compared with the analytical solution and finite 
difference method. Next, the one-dimensional convective-diffusive problem with 
and without phase change is elaborated. Calculations are performed with 
different Péclet number, Stefan number, and material properties for solid and 
liquid phase. Results are compared with the analytical solution. The method is 
also used in solving the direct-chill semi-continuous casting model with 
temperature dependent material properties in Cartesian coordinates. The results 
are compared with the results obtained with the finite volume method. Last 
example represents an axisymmetric transient solution of the previous example 
with material moving boundaries (growing domain). The results are also 
compared with the finite volume method at different times. In all listed examples 
the calculations are made at different values of the multiquadric free parameter 
and number of nodes. In the first and fourth example the random displacement of 
nodes is used to show the ability of the developed meshless method of 
calculating partial differential equations on scattered node arrangements. This 
thesis confirms the suitability of using the developed method for numerical 
simulation of continuous casting processes. 

Key words: 

radial basis function, local collocation, phase change, aluminium alloys, semi-
continuous casting 
 



 

Lokalna kolokacijska metoda za večfazne probleme 

Povzetek 

Delo predstavlja novo brezmrežno metodo za izračun temperaturnega polja pri 
nelinearnih konvektivno-difuzivnih primerih s faznim prehodom, kjer je 
hitrostno polje vnaprej podano. Metoda je razvita na podlagi kolokacije z 
radialnimi baznimi funkcijami. Kolokacija je izvedena lokalno preko 
prekrivajočih se pod-domen, ki so predstavljene običajno s petimi točkami okoli 
središčne točke. Uporabljena je močna formulacija brez integracije in eksplicitno 
časovno diskretizacijo. Popolnoma je predstavljen rešitveni postopek generalne 
transportne enačbe. Podanih je pet numeričnih primerov s opisom posameznega 
primera, rezultati in raznimi primerjavami. Najprej je rešen problem robnih 
vrednosti difuzijske enačbe. Primer je vzet iz NAFEMS testnih primerov. 
Rezultati so primerjani z NAFEMS rešitvami, analitično rešitvijo in z rešitvami 
metode končnih razlik. Prav tako je rešen problem začetnih vrednosti difuzije, 
kjer so rezultati primerjani z analitično rešitvijo in z rešitvami metode končnih 
razlik. Nato je podan eno-dimenzijski konvektivno-difuzivni problem s faznim 
in prav tako brez faznega prehoda. Izračuni so bili izvedeni pri različnih Pécle-
jevih in Štefan-ovih številih ter termofizikalnih lasnosti tekoče in trdne faze 
materiala. Rezultati so primerjani samo z analitično rešitvijo. Metoda je nato 
uporabljena na industrijskem primeru, in sicer pol-kontinuiranem ulivanju 
aluminijevih zlitin za brame s temperaturno odvisnimi termofizikalnimi 
lastnostmi. Rezultati so primerjani z metodo kontrolnih prostornin. Zadnji 
primer predstavlja časovno odvisni izračun prejšnjega primera v osno-
simetričnem koordinatnem sistemu s premikajočo se robno mejo. Primerjava je 
prav tako izvedena z metodo končnih prostornin. Pri vsakem od naštetih 
primerov so vzete različne vrednosti prostega parametra radialnih baznih funkcij 
in različnim številom točk. V prvem in četrtem primeru so izvedeni izračuni z 
naključno postavljenimi točkami, s katerimi smo skušali prikazati sposobnost 
omenjene metode za izračun parcialne diferencialne enačbe na raztroseni 
razporeditvi točk. To znanstveno delo potrjuje primernost in uporabnost razvite 
numerične metode za simulacije kontinuirnih procesov ulivanja. 

Ključne besede: 

radialne bazne funkcije, lokalna kolokacija, fazni prehod, aluminijeve zlitine, 
pol-kontinuirano ulivanje 
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1 Introduction 

A large number of technically important problems in materials processing 
involve phase-change phenomena. Phase change or phase transition is the 
transformation of a thermodynamic system from one phase to another, typically 
from liquid to solid, solid to solid, or gas to solid, etc. Most important phase 
transformation in materials processing is from liquid to solid where products are 
produced through solidification processes, such as for example, direct-chill 
casting of aluminium alloys. The prediction of the behaviour of this systems is 
highly challenging due to the involved strongly coupled phase-change kinetics, 
transport and solid mechanics effects, occurring on different length scales. They 
are often defined by the nonlinear partial differential equations (PDEs), 
nonlinear boundary conditions and temperature dependent thermo-physical 
properties. As a result, the analytical solution of the solidification problems are 
not possible to obtain, particularly in the complex-shaped cases. In order to find 
their solution, the numerical methods have to be employed. 
The numerical solutions of the problems in science and engineering have been 
dominated by either finite difference method (FDM) [Özisik, 1994], finite 
element method (FEM) [Zienkiewicz, 2000], finite volume method (FVM) 
[Hong, 2004], and boundary element method (BEM) [Šarler and Kuhn, 1998a 
and 1998b]. Despite the powerful features of these methods, there are often 
substantial difficulties in their application to realistic, geometrically complex 
three dimensional transient situations with moving and/or deforming boundaries. 
A common problem in the mentioned methods is the need to create a 
polygonization (mesh) to support the localized approximants, either in the 
domain and/or on its boundary. Another property is that low order 
approximations are usually used which lead to un-accurate solution of the spatial 
derivatives. To overcome this difficulty, the refinement (re-meshing) of the 
discretization must be, used which is often the most time consuming part of the 
solution process and is far from being fully automated.  
In recent years the “meshless methods” have become a useful alternative for 
solving the PDEs. This methods do not require polygonization but use only a set 
of nodes to approximate the solution. The rapid development of these types of 
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meshless (meshfree, polygon-free, mesh-reduction) methods and their 
classification is elaborated in the very recent monographs [Atluri and Shen, 
2002; Liu, 2003; Atluri, 2004; Šarler, 2004; Liu and Gu, 2005]. A broad class of 
meshless methods in development today are based on Radial Basis Functions 
(RBFs) [Buhmann, 2003]. The RBF collocation method (RBFCM) or Kansa 
method [Kansa, 1990a and 1990b] is the simplest of them.  
In this work, the Local Radial Basis Function Collocation Method (LRBFCM) is 
developed for solving the diffusion and convection-diffusion equation with 
phase change, nonlinear material properties and boundary conditions. Phase-
change phenomena with mathematical formulations is presented in the Chapter 
2. The Chapter 3 introduces the collocation with RBF. The RBF interpolation 
procedure, which is the crucial part of the developed LRBFCM, is presented and 
compared with the polynomial interpolation procedure. One example is given, 
where the multiquadric radial basis function (MQ-RBF) is used with the variable 
free parameter. The Chapter 4 presents the developed LRBFCM in its detail. 
Two approaches are explained to overcome the problem of setting the optimal 
free parameter. In Chapter 5, the solution procedures for all governing equations 
are presented. And finally, in Chapter 6, the numerical examples are given with a 
problem description, governed equations, results and comparisons. To analyze 
the convergence and accuracy of the developed method we used reference 
analytical solutions, FDM and FVM solutions, all coded in Laboratory for 
Multiphase Processes. 
 
 
Our previous work 
 
In the Laboratory for Multiphase Processes, numerous numerical methods were 
used to find the solution of various solidification processes, such as continuous 
casting of steel and direct-chill casting of aluminium alloys. First, the FVM (the 
representative of the mesh methods) was used to calculate the temperature field 
in the continuous casting of steel [Šarler, 1996] and direct-chill (DC) semi-
continuous casting of alluminum alloys [Šarler and Mencinger, 1999]. The DC 
casting process was further calculated by the dual reciprocity boundary element 
method (DRBEM) [Šarler and Kuhn, 1998a and 1998b; Šarler and Mencinger, 
1999], which belongs to the semi-mesh methods. The scaled augmented thin 
plate splines were used for transforming the domain integrals into a finite series 
of boundary integrals. First truly meshless method developed for calculating the 
temperature field in DC casting process was the Diffuse Approximate Method 
(DAM) [Vertnik et al., 2004]. The axisymmetric steady-state convective-
diffusive thermal field problem was solved on the basis of moving least square 
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approximation with the polynomial basis functions. At least six polynomial basis 
functions and nine neighbor nodes must be used to successfully calculate the 
derivates of the second-order PDE. Despite the good accuracy and ability to 
solve the PDE on complex geometry, the need for even simpler meshless version 
was identified. Since, the polynomial basis functions can not be used for 
collocation (interpolation) of scattered data, the RBF was chosen. The LRBFCM 
was developed and successfully used for calculating two-dimensional diffusion 
problem [Šarler and Vertnik, 2006] and phase-change problems [Vertnik and 
Šarler, 2006]. The method was further upgraded to calculate the solution of 
transient DC casting problem with simultaneous material and phase-change 
interface moving boundaries [Vertnik et al., 2006]. 
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2 Physical background 

A large number of applications in materials processing are described as a heat 
transfer problem involving melting or solidification. Representative applications 
include such technologies as crystal growth, continuous casting, shape casting, 
welding, etc. They generally refer as phase-change or moving boundary 
problems. In these type of problems, the boundary of the domain is not known in 
advance but has to be determined as part of the solution. It is time-dependent 
problem where the position of the boundary is a function of time and space. 
First, the basic concept of the phase-change phenomena is explained for pure 
materials and alloys. Simple binary phase-change diagram and some models are 
presented for evaluating the relation between the solid fraction and temperature. 
Next, two different numerical formulations of the phase-change solution are 
presented: multiple-domain formulation and one-domain formulation. The 
general characteristics of both methods are given. 
 

2.1 Phase-change phenomena 

Heat transfer problems involving melting or solidification are generally referred 
to as phase-change or moving boundary problems, and also as Stefan problems. 
Melting is the phenomena, where solid phase is changed into liquid, by 
absorbing heat energy. Solidification is the inverse phenomena of melting, where 
liquid phase is change to solid, by releasing heat energy. Absorbed or released 
heat energy is often termed as latent heat of melting or latent heat of 
solidification, which determines the melting or solidification velocity.  
For pure substances or eutectic alloys, the phase-change phenomena occurs at a 
fixed single temperature, called the melting point temperature mT . When the 
temperature of substance is equal to melting temperature, phase change 
commences. At this stage, the latent heat is absorbed to material or released from 
material to change its phase. During the melting or solidification, liquid and 
solid are in thermodynamic equilibrium, and the temperature of the substance 
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does not change. The solid and the liquid phases are separated by only one 
moving interface which determines the boundary between phases.  
In the case of alloys, melting or solidification takes place over an extended range 
of temperature, where the solid and liquid phases are separated by a two-phase 
moving interface, the 'mushy zone'. The upper limit of this temperature range at 
which the mixture becomes completely liquid is termed as liquidus temperature 

LT  and the lower limit at which solidification is complete and the mixture is 
entirely solid is termed as the solidus temperature ST . The mass fraction of the 
solid phase (solid fraction) in the mixture, Sf , is zero at LT  and unity at ST , and 
in the mushy zone has values between zero and unity. The relation between the 
solid fraction and temperature may be evaluated from the phase-change 
diagrams, shown in Figure 2.1, where temperature is presented as a function of 
solute concentration Ac . For any given solute concentration, there exists an 
equilibrium liquidus and solidus temperature. Likewise, for any given 
temperature, there is an equilibrium solidus solute concentration ,A Sc  and 
liquidus solute concentration ,A Lc . The liquidus or solidus temperature can be 
approximated by the following equation 

 ,m AT T m c℘ ℘ ℘= + ; ,L Sξ = , (2.1) 

where m℘  is the slope of the liquidus or solidus line at ,Ac ξ .  
 
 

 
Figure 2.1: Binary phase-change diagram. 
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More detailed description of physical phenomena can be found in the following 
literature [Crank, 1984; Dantzig, 2001 and Šarler, 1995]. 
 
The relation between solid fraction and the temperature in practical solidification 
analyzes can be evaluated by the several models [Hong, 2004]: 
a) Level rule (equilibrium solidification model) 
Complete mixing of solute in liquid and solid is assumed. The solid fraction as a 
function of temperature (see Figure 2.1) is given by 

 
( ) ( )1

L
S

LS m

T T
f

k T T

−=
− −

 (2.2) 

where 0k  is defined as 

 ,

,

A S
LS

A L

c
k

c
= . (2.3) 

b) Scheil model 
Complete mixing of solute in liquid and no mixing in solid are assumed. In this 
case the solid fraction as a function of temperature is given by 

 
( )

1
1

1
LSk

m
S

m L

T T
f

T T

−⎛ ⎞−= − ⎜ ⎟−⎝ ⎠
. (2.4) 

c) Brody-Flemings model 
Complete mixing in liquid and some mixing in solid are assumed. Here, the solid 
fraction as a function of temperature is given by 

 ( )
( )

1
1

1 1
LSk

m L
S t LS

m

T T
f k

T T
α

−
⎡ ⎤

⎛ ⎞−⎢ ⎥= + − ⎜ ⎟⎢ ⎥−⎝ ⎠⎢ ⎥⎣ ⎦

 (2.5) 

where tα  is the Brody-Flemings constant and it is defined as 

 
2

4 S f
t

a

D t
α

λ
= . (2.6) 

In the equation (2.6) SD , ft  and aλ  is diffusion coefficient of solute atoms in 
solid, the local solidification time and the dendrite arm spacing, respectively. 
 
 
d) Linear distribution of latent heat 
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When Sf  cannot easily be evaluated as a function of temperature since phase 
diagrams are not known for certain multi-component alloys, it is sometimes 
assumed that the latent heat is linearly distributed over the solidification range 
between LT  and ST . 

 L
S

L S

T T
f

T T

−=
−

. (2.7) 

In this thesis, only the latter model is used since in continuous casting of 
aluminium alloys the multi-component alloys are used where the phase diagrams 
are knot known in advance. 
 

2.2 The multiple-domain formulation 

The multiple-domain formulation uses independent conservation equations for 
each phase and couples them with appropriate boundary conditions at the phase-
change interface. In the most simple cases, where the Fourier heat conduction 
equation is used for each phase and the density is constant and equal for all 
phases, the governing equations are defined as 
 
heat transfer in solid 

 
( )ρ ∂ = ∇⋅ ∇

∂
S

pS S S

T
c k T

t
, (2.8) 

heat transfer in liquid 

 
( )L

pL L L

T
c k T

t
ρ ∂ = ∇⋅ ∇

∂
 and (2.9) 

boundary condition at the solid-liquid interface 

 S S SL L L SL m SLk T k T hρ∇ ⋅ − ∇ ⋅ = ⋅n n v n . (2.10) 

where SLn  is the unit normal on the phase interface, v  is velocity of the interface 
and mh  is the latent heat per unit mass of solid. The unit normal is pointing from 
the solid into the liquid (see Figure 2.2a). 
For a number of simple geometries and conditions analytical and approximate 
solutions can be constructed [Crank, 1984; Šarler, 1995]. From the numerical 
point of view, the solution requires an explicit tracking of the solid-liquid 
interface, where the grid or mesh must be adopted or transformed in a such way, 
that the solid-liquid interface is always on a grid line or is fixed in the 
transformed domain [Crank, 1984; Minkowycz and Sparrow, 1997].  
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2.3 The one-domain formulation 

The one-domain formulation of solid-liquid phase-change problems is based on 
the mixture enthalpy variable 

 
( )V V

S S S L L Lf h f h
h

ρ ρ
ρ
+

= , (2.11) 

where the constitutive temperature-enthalpy relationships Sh  and Lh  are 

 ref

T

S ST
h c dT= ∫  and (2.12) 

 
( ) ( )S L

ref S S

T T T

L S L m S L S mT T T
h c dT c dT h h T c c dT h= + + = + − +∫ ∫ ∫ ,

 
(2.13) 

respectively [Šarler and Kuhn, 1998a]. In terms of enthalpy, the multiple region 
formulation (equations (2.8)-(2.10)) is reduced into a single equation 

 
( ) ( )h k T

t
ρ∂ = ∇ ⋅ ∇

∂
.
 

(2.14) 

Conservation holds in all phases (Figure 2.2b) and implicitly includes the 
boundary condition at the phase-change interface. 
In continuation of this thesis, a continuum conserved equation for binary solid-
liquid phase-change systems [Bennon and Incropera, 1987; Založnik, 2006] is 
used 

 
( ) ( ) ( ) ( )V V

S S S S L L L Lh h k T h f h f h
t
ρ ρ ρ ρ ρ∂ +∇⋅ = ∇ ⋅ ∇ +∇ ⋅ − −

∂
v v v v , (2.15) 

where the second term on the right-hand side is a correction term, needed to 
accommodate the mixture formulation of the convective term. In next we neglect 
this term. In equation (2.15) mixture density and thermal conductivity are 
defined as  

 
V V

S S L Lf fρ ρ ρ= +  and (2.16) 

 
V V

S S L Lk f k f k= + , (2.17) 

where Vf℘  represents the volume fraction of the phase ℘. The liquid volume 
fraction V

Lf  is assumed to vary from 0 to 1 between solidus ST  and liquidus 
temperature LT . Mixture velocity is defined as  
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( )V V

S S S L L Lf fρ ρ
ρ
+

=
v v

v .
 

(2.18) 

 
From the numerical point of view, the main advantage of this formulation is that 
a solution does not require an explicit tracking of the solid-liquid interface. On 
the other hand, this formulation requires very dense discretization in the vicinity 
of the phase-change interface.  
 

a) 

 
 

b) 

 
 
Figure 2.2: Graphic representation of two different formulations. a) two-domain formulation and 
b) one-domain formulation. 
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3 Introduction to collocation with 
RBF 

RBF approximations have been shown to be most useful in many scientific and 
technological applications. Purposes and applications of such approximations 
and particular of interpolation are manifold. This chapter represents the RBFCM 
for interpolating scattered data and for solving the PDE problems. First, some of 
the most important types of radial basis functions are presented. Next, the 
RBFCM for interpolating scattered data is fully described and compared with the 
picewise polynomial interpolation technique. The comparison is presented on a 
one-dimensional case with the variable free parameter of the MQ-RBF. 
The RBFCM, also named as Kansa method, has become very attractive for 
solving the PDE problems [Kansa, 1990a and 1990b]. Its local version is derived 
in Chapter 4 and used in numerical examples in this thesis. For better insight of 
local version, the Kansa method is shortly explained. 
More detailed description of the RBF methods can be found in recent 
monographs [Buhmann, 2003; Liu, 2003; Liu ang Gu, 2005]. 
 

3.1 Radial basis functions 

Radial basis functions can be expressed in the following form 

 ( ) ( )i irψ ψ= −p p ; : d
iψ →� � , (3.1) 

and depends only on the distance between vector point d∈p �  and the fixed 
vector point d

i ∈p �  ( ip  is usually called the center) and are radially symmetric. 
This means that any rotation makes no difference to the function value. This 
explains the term radial. In equation (3.1), �  represents real number, d  spatial 
dimension and r  radial distance.  
For two-dimensional Cartesian system vector point p  is represented by 
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 x x y yp p= +p i j , (3.2) 

where xp , yp  are the Cartesian coordinates and xi , yj  base vectors of the vector 
point p . The radial distance between two vectors is defined by the Euclidean 
norm 

 2 2
, ,( ) ( )i x x i y y ir p p p p= − = − + −p p . (3.3) 

To explain basis function part, lets suppose we have fixed certain vector points 
(called centers) 1,...,

d
N ∈p p �  and the following function ( )F p  which is 

represented as a linear combination of the function ψ  centered at the points ip  

 ( ) ( )
1

N

i i
i

F αψ
=

=∑p p ; ( ) ( )i iψ ψ= −p p p . (3.4) 

So we have composed a function ( )F p  which is in the function space spanned 
by the basis functions ( )iψ p . 
Some commonly used forms of radial basis function are: 

• Gaussian (GA) (Figure 3.1a) 

 ( ) ( )2crr eψ −= , (3.5) 

• multiquadric (MQ) (Figure 3.1b) 

 ( ) 2 2r r cψ = + , (3.6) 

• inverse multiquadric (IMQ) (Figure 3.1c) 

 ( )
2 2

1
r

r c
ψ =

+
 and (3.7) 

• thin plate spline (TPS) (Figure 3.1d) 

 ( ) 2 log( )cr r rψ = . (3.8) 
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                a)                                                             b) 

 
 
                c)                                                             d) 

 
Figure 3.1: Some of the most commonly RBFs. a) GA-RBF, b) TPS-RBF, c) MQ-RBF, and d) 

IMQ-RBF. All functions are calculated with the free parameter 0.5c = . 
 
In all examples in this thesis, only the MQ-RBF is used. The choice was made 
on the basis of multivariate interpolation tests [Franke, 1982], were the best 
accuracy was found with MQ-RBFs. This functions include the free parameter 
c , which has to be set by the user. Since there is no mathematical background 
for its determination, the parameter is chosen based on the numerical 
experiments. The MQ-RBF is plotted in Figure 3.2 as a function of the free 
parameter. 
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Figure 3.2: MQ-RBF with different values of the free parameter. 

 

3.2 Radial basis function collocation method for 
interpolating scattered data 

A problem frequently occurring in science and engineering is the approximation 
of a function F , the value of which is known only on a relatively small set of 
points. One way to obtain such an approximation is by interpolation. For one-
dimensional problems, many methods exist for solving this problem. Most of 
them (e.g. polynomial and piecewise polynomial splines) involve the same 
general idea: for a given set of N  data points 

1
,...,

Nx xp p ∈� and corresponding 
data values 1,..., Nf f ∈� , a set of basis functions ( ) ( )1 ,...,x N xp pψ ψ ∈�  is 
chosen such that a linear combination of these functions satisfies the 
interpolation conditions. To be more specific, a function ( )xF p  is sought of the 
form 

 ( ) ( )
1

N

x i i x
i

F p pαψ
=

=∑ , (3.9) 

such that ( )
ix iF p f=  for 1,...,i N= . The interpolation conditions lead to a linear 

system of equations which determines the expansion coefficients iα  
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 ( )
1

N

i i x i
i

p fαψ
=

=∑ , 1,...,i N= . (3.10) 

Procedure is also represented as a block diagram in Figure 3.3. For many choices 
of basis functions ( )i xpψ , this linear system is guaranteed to be non-singular 
whenever the data points 

1
,...,

Nx xp p ∈�  are distinct. 
For data sets in more than one-dimension, the prescribed approach with 
polynomial basis (independent of the data points) no longer works. It can be 
shown that there exists distinct data sets, for which linear system of equation for 
determining the expansion coefficients becomes singular. (i.e. there does not 
exist an interpolator in the form of equation (3.9)). However, with piecewise 
polynomial splines, it is possible to interpolate data in two and three dimensions. 
This technique works very well for gridded or otherwise highly regularly 
distributed data sets. For scattered data sets, we usually need a triangulation, 
which is not a trivial task for complex two and especially for three dimensional 
problems. The reason for this is that it has to be decided where the pieces of the 
piecewise polynomials lie and where they are joined together. Moreover, it then 
has to be decided an smoothness they are joined together at common vertices, 
edges etc. and how that is done. 
Instead of taking linear combinations of a set of basis functions that are 
independent of the data points, one takes a linear combination of translates of a 
single basis function that is radially symmetric about its center. This approach, 
pioneered by Hardy [Hardy, 1971], is referred to as the MQ method. Hardy used 
MQ-RBF as the basis function to solve a problem from cartography. Namely, 
given set of sparse, scattered measurements from some source points on a 
topographic surface, construct a "satisfactory" continuous function that 
represents the surface. 
The RBFCM is a generalized version of the Hardy's MQ method, and is defined 
as follows: Given a set of N  distinct data points 1,...,

d
N ∈p p �  and 

corresponding data values 1,..., Nf f ∈� , the RBF interpolator is given by 

 ( ) ( )
1

N

i i
i

F rαψ
=

=∑p ; i ir = −p p , (3.11) 

where ( )irψ  is some radial function and ⋅  is the Euclidean norm (3.3). The 
expansion coefficients iα  are determined from the interpolation conditions 

 ( )i iF f=p , 1,...,i N= , (3.12) 

which leads to the following linear system of equations 

 =Ψα u , (3.13) 
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where the components of Ψ  are given by ( ),i j i jψΨ = −p p . The whole 
procedure is also represented in 1D as a block diagram in Figure 3.4. The 
method has the ability to handle arbitrarily scattered data, to be easily 
generalized to several space dimensions, and to provide spectral accuracy. 
Respectively, the method become very popular in several different types of 
applications. Some of these applications include cartography, neural networks, 
medical imaging (Figure 3.8), surface fitting (Figure 3.5 and Figure 3.6), surface 
reconstruction (Figure 3.7), and the numerical solution of PDEs (examples in 
this thesis).  
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Figure 3.3: Block diagram of the polynomial interpolation in 1D. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

and function values 

1,..., Nf f ∈�  
for a given set of N  data nodes 

1
,...,

Nx xp p ∈�  

a set of polynomial basis 
functions is chosen 
( ) ( )1 ,...,x N xp pψ ψ ∈�  

and the interpolation conditions are set 

( )
ix iF p f= , 1,...,i N=  

linear combination of basis functions 

( ) ( )
1

N

x i i x
i

F p pαψ
=

=∑  

a linear system of equations is solved 

( )
1

N

i i x i
i

p fαψ
=

=∑ , 1,...,i N=  
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Figure 3.4: Block diagram of the RBF interpolation in 1D. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             

and function values 

1,..., Nf f ∈�  
for a given set of N  data nodes 

1
,...,

Nx xp p ∈�  

a single basis function is chosen 

( )ix xp pψ − ∈�  

and the interpolation conditions are set 

( )
ix iF p f= , 1,...,i N=  

linear combination of basis functions 

( ) ( )
1

i

N

x i i x x
i

F p p pαψ
=

= −∑  

a linear system of equations is solved 

( )
1

i

N

i x x i
i

p p fαψ
=

− =∑ , 1,...,i N=  
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Figure 3.5: Surface fitting problem. Left picture - raw point-cloud from a LIDAR scan of the 

Statue of Liberty, right picture - surface, reconstructed by the RBF interpolation. The few 

viewpoints, oblique scanning angles and large gaps make this a difficult problem for other 

techniques [Carr et al., 2003]. 

 

 

             

                         
Figure 3.6: Fitting a RBF to a 438.000 point-cloud [Carr et al., 2001]. 
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Figure 3.7: Automatic mesh repair [Carr et al., 2001].  

 

 

 

Figure 3.8: Medical imaging example [Carr et al., 1997]. 
 

3.2.1 Example of interpolation with RBFCM 

An example of interpolation for one-dimensional data set (Table 3.1) is 
presented to compare and show the effect of the free parameter of RBFs. We 
choose the MQ-RBF and vary the free parameter from 0.0 to 22.0.  
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Table 3.1: Function values of the example data set. 

i xip  ( )i xf p  

1 0.0  0.0000 
2 1.0  0.8415 
3 2.0  0.9093 
4 3.0  0.1411 
5 4.0 -0.7568 
6 5.0 -0.9589 
7 6.0 -0.2794 

 
Figures 3.9 and 3.10 represent the interpolation results obtained with the 
polynomial interpolation and interpolation with RBFs. The comparison between 
both methods is made where the polynomial one is treated as analytical or 
reference solution. The numerical results are presented in Table 3.2, where the 
average and maximum errors are given as a function of c . Errors were 
calculated at 600 nodes, regularly distributed between 0.0 and 6.0. The average 
error is also plotted in Figure 3.11. On the basis of results, the following 
conclusions can be made: 
• With the increasing of the c  the accuracy of the results becomes better and 

converges to results obtained by polynomial interpolation. The errors 
monotonically diminish as shown in Table 3.2 and Figure 3.11. This 
conclusion is valid when the condition 4.0c ≥  is satisfied. 

• Previous conclusion is expected to be valid for all values of c . However in 
this example, the values of c  from 1.0 to 3.0 gives smaller errors than at 

4.0c = . The reason is in the shape of the polynomial interpolated function, 
which can be fitted well with the RBFs at mentioned values of c . This 
phenomena is somehow exception in this example, but can be observed in 
other cases too (see Chapter 6). 

 
 
 
 
 
 
 
 
 
 
 
 



Introduction to collocation with RBF 22 

                  a)                                                          

 
                  b) 

 
Figure 3.9: Effect of the MQ free parameter. a) 0.0c = , b) 10.0c = . Blue solid line – 

polynomial interpolation. Red solid line – RBF interpolation. Red stars represent the function 

values. 
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                  a)                                                       

 
                  b) 

 
Figure 3.10: Effect of the MQ free parameter. a) 15.0c = , b) 20.0c = . Blue solid line – 

polynomial interpolation. Red solid line – RBF interpolation.  
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Table 3.2: Average and maximum error as a function of free parameter. 

c  avgfΔ  maxfΔ  

0.0 0.0171 0.0438 
1.0 0,0028 0,0142 
2.0 0,0038 0,0181 
3.0 0,0069 0,0240 
4.0 0,0075 0,0252 
5.0 0,0070 0,0244 
6.0 0,0062 0,0221 
7.0 0,0054 0,0195 
8.0 0,0046 0,0170 
9.0 0,0040 0,0148 

10.0 0,0034 0,0128 
11.0 0,0030 0,0112 
12.0 0,0026 0,0098 
13.0 0,0023 0,0087 
14.0 0,0020 0,0077 
15.0 0,0018 0,0069 
16.0 0,0016 0,0061 
17.0 0,0014 0,0055 
18.0 0,0013 0,0050 
19.0 0,0012 0,0045 
20.0 0,0011 0,0041 
21.0 0,0010 0,0039 
22.0 0,0009 0,0034 
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Figure 3.11: Average error as a function of free parameter. 

 

3.3 Radial basis function collocation method (Kansa) for 
solving PDEs 

In recent years radial basis function collocation method become a useful 
alternative to FDM and FEM for solving partial differential equations. We are 
going to focus on pure collocation method which was first introduced by Kansa 
[Kansa, 1990a and 1990b]. In this method, the PDE and the boundary conditions 
are satisfied by collocation.   
 
Consider a general boundary value problem 

 ( )( )Lu f=p p  in dΩ∈�  and (3.14) 

 ( )( )Bu g=p p  in dΓ∈� , (3.15) 

where L  and B  are arbitrary differential operators in the domain Ω  and on 
boundary Γ , respectively. The operator B  can specify Dirichlet, Neumann, 
Robin, or mixed boundary conditions 
To solve the problem as given in equations (3.14) and (3.15), we use N  
collocation points in Ω , where 1,..., NΩ

p p  are interior nodes, and Γ , where 

1,...,N N NΩ Ω Γ+ +p p  are boundary nodes. Typical node arrangement is shown in 
Figure 3.12.  
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Figure 3.12: Typical node arrangement for the meshless methods. Red points represents 

boundary nodes and green points domain nodes. 
 
In Kansa's method, the approximate solution for the problem (3.14)-(3.15) can 
be expressed as 

 ( ) ( )
1

N

i i
i

u αψ
=

= −∑p p p ; N N NΩ Γ= + , (3.16) 

where iα  are expansion coefficients to be determined by collocation (i.e. 
interpolation), ( )iψ −p p  is a radial basis function, NΩ  is the number of domain 
nodes and NΓ  the number of boundary nodes, respectively. 
By substituting equation (3.16) into equations (3.14) and (3.15), we have 

 ( )( ) ( )
1

N

i j j i
j

L fψ α
=

− =∑ p p p , 1,2,...,i NΩ=  and (3.17) 

 ( )( ) ( )
1

N

i j j i
j

B gψ α
=

− =∑ p p p , 1, 2,...,i N N NΩ Ω= + + . (3.18) 

Hence we have to solve the following N N×  linear system of equations 

 
( )

( )
11 12

21 22

f

g

⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

f

g

Ψ Ψ α
Ψ Ψ α

 (3.19) 

for the unknowns 1,...,
Tf

Nα α
Ω

⎡ ⎤= ⎣ ⎦α , 1,...,
Tg

N Nα α
Ω+

⎡ ⎤= ⎣ ⎦α . Then the 
approximate solution can be obtained by equation (3.16) at any node in the 
domain Ω . The sub-matrices in equation (3.19) are 
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 11Ψ  with element ( )( )i jLψ −p p , 1, 2,..., , 1, 2,...,i N j NΩ Ω= = , (3.20) 

 12Ψ  with element ( )( )i jLψ −p p , 1,2,...,i NΩ= , 

 1, 2,...,j N N NΩ Ω= + + , (3.21) 

 21Ψ  with element ( )( )i jBψ −p p , 1, 2,...,i N N NΩ Ω= + + , 

 1, 2,...,j NΩ= , (3.22) 

 22Ψ  with element ( )( )i jBψ −p p , 

 1, 2,...,i N N NΩ Ω= + + , 1, 2,...,j N N NΩ Ω= + + , (3.23) 

and vectors 

 ( ) ( ) ( )1 2, ,...,
T

Nf f f
Ω

⎡ ⎤= ⎣ ⎦f p p p , (3.24) 

 ( ) ( ) ( )1 2, ,...,
T

N N Ng g g
Ω Ω+ +

⎡ ⎤= ⎣ ⎦g p p p . (3.25) 

We can easily see that the implementation of Kansa's method is quite simple and 
straightforward. These are the main reasons that this technique is getting popular 
and has been applied to many areas such as the solution of Navier-Stokes 
equations [Mai-Duy and Tran-Cong, 2001; Šarler, 2005] or porous media flow 
[Šarler et al., 2004] and the solution of solid-liquid phase-change problems 
[Kovačević et al., 2003]. In contrast to advantages of this method, collocation 
systems are often very badly conditioned, especially for larger problems (more 
than approximately thousand centers). The free parameter c  has to be very 
carefully chosen in order to achieve convergence. The method has been further 
upgraded to symmetric collocation [Fasshauer, 1997; Power and Barraco, 2002], 
to modified collocation [Chen, 2002] and to indirect collocation [Mai-Duy and 
Tran-Cong, 2003]. In contrast to advantages over mesh generation, all the listed 
methods unfortunately fail to perform for large problems, because they produce 
fully populated matrices, sensitive to the choice of the free parameters in RBFs. 
One of the possibilities for mitigating this problem is to employ the domain 
decomposition [Mai-Duy and Tran-Cong, 2002]. However, the domain 
decomposition re-introduces some sort of meshing which is not attractive. The 
concept of local collocation in the context of RBF-based solution of Poisson 
equation has been introduced in [Lee et al., 2003; Tolstykh and Shirobokov, 
2003]. For interpolation of the function value in a certain node the authors use 
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only data in the (neighbor) nodes that fall into the influence domain of this node. 
The procedure results in a matrix that is of the same size as the matrix in the 
original Kansa method, however it is sparse. The circular influence domains 
have been used in [Lee et al., 2003] where one-dimensional and two-
dimensional Poisson equation has been solved by using MQ-RBFs and IMQ-
RBFs with a detailed analysis of the influence of the free parameter on the 
results. In [Tolstykh and Shirobokov, 2003] the stencil-shaped domains have 
been used where a class of linear and non-linear elasticity problems have been 
solved with a fixed free parameter. The differential quadrature method, that 
calculates the derivatives of a function by a weighted linear sum of functional 
values at its neighbor nodes has been structured with the RBFs in [Shu et al., 
2003]. Despite the local properties, the matrix still has a similar form as in [Lee 
et al., 2003; Tolstykh and Shirobokov, 2003]. 
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4 Local radial basis function 
collocation method 

Here, in this section, we are presenting one of the techniques to circumvent the 
ill-conditioning problem with MQ-RBFs when solving large PDE problems with 
Kansa method. The idea comes from diffuse approximate method (DAM) 
[Nayroles et al., 1988; Sadat and Couturier, 2000; Vertnik et al., 2004]. To 
approximate the solution of the PDE, this method needs only some neighbor 
nodes which are usually situated around the vicinity of the observed node. 
 

4.1 Local collocation 

We start with the representation of the function over a set of l N  scattered nodes 
; 1,2,...,l n ln N=p  in the following way 

 ( ) ( )
1

l K

l k l k
k

u ψ α
=

≈∑p p , (4.1) 

where l kψ  stands for the shape functions, l kα  for the expansion coefficients of 
the shape functions, and l K  represents the number of the shape functions. The 
left lower index on entries of equation (4.1) represents the influence domain lω  
on which the coefficients l kα  are determined. The sub domains lω  can in 
general be contiguous (overlapping) or non-contiguous (non-overlapping). Each 
of the influence domains lω  includes l N  nodes of which l NΩ  can in general be 
in the domain and l NΓ  on the boundary, i.e. l l lN N NΩ Γ= + . The influence 
domain of the node l p  is defined with the nodes having the nearest 1l N −  
distances to the node l p . The five node 5l N =  and nine node 9l N =  influence 
domains are used in this thesis. Typically chosen influence domains are shown 
in Figure 4.1. For the domain node, the influence domain contains the domain 
and boundary nodes. While for the boundary node, the influence domain usually 
contains this boundary node and rest the domain nodes.  
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Figure 4.1: Node arrangement with typical influence domains. Green circle represents the 
internal influence domain and red circle the boundary influence domain. 

 
The expansion coefficients can be calculated from the influence domain nodes in 
two distinct ways. The first way is collocation (interpolation) and the second 
way is approximation by the least squares method. Only the simpler collocation 
version for calculation of the coefficients is considered in this thesis. Let us 
assume the known function values l nu  in the nodes l np  of the influence domain 

lω . The collocation implies 

 ( ) ( )
1

l N

l n l k l n l k
k

u ψ α
=

=∑p p . (4.2) 

For the coefficients to be computable, the number of the shape functions has to 
match the number of the collocation nodes l lK N= , and the collocation matrix 
has to be non-singular. The system of equations (4.2) can be written in a matrix-
vector notation 

 l l l=ψ α u ; ( )l kn l k l nψ ψ= p , ( )l n l nu u= p . (4.3) 

The coefficients lα  can be computed by inverting the system (4.3) 

 1
l l l

−=α ψ u . (4.4) 

By taking into account the expressions for the calculation of the coefficients lα , 
the collocation representation of function ( )u p  on influence domain lω  can be 
expressed as 
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 ( ) ( )
1 1

l lN N
-1

l k l kn l n
k n

u ψ uψ
= =

≈∑ ∑p p . (4.5) 

Let us introduce a two dimensional Cartesian coordinate system with base 
vectors ; ,x yς ς =i  and coordinates ; ,p x yς ς = , i.e. x x y yp p= +p i i . The first 
partial spatial derivatives of ( )u p  on influence domain lω  can be expressed as 

 ( ) ( )
1 1

l lN N
-1

l k l kn l n
k n

u ψ u
p pς ς

ψ
= =

∂ ∂≈
∂ ∂∑ ∑p p ; ,x yς = . (4.6) 

The second partial spatial derivatives of ( )u p  on influence domain lω  can be 
expressed as 

 ( ) ( )
2 2

1 1

l lN N
-1

l k l kn l n
k n

u ψ u
p p p pς ζ ς ζ

ψ
= =

∂ ∂≈
∂ ∂∑ ∑p p ; , ,x yς ζ = . (4.7) 

The MQ-RBF is used for the shape functions 

 ( ) ( ) 1/ 22 2
l k l kr cψ ⎡ ⎤= +⎣ ⎦p p ; ( ) ( )2

l k l k l kr = − ⋅ −p p p p , (4.8) 

where c  represents the free parameter. The explicit values of the involved first 
and second derivatives of ( )kψ p  are 

 ( )
( )1/ 22 2

l k
l k

l k

p p

p r c

ς ς

ς

ψ
−∂ =

∂ +
p ; ,x yς = , (4.9) 

 ( ) ( )
( )

2 22

3/ 22 2 2

y l k

l k

l k

p p c

p r c

ς

ς

ψ
− +∂ =

∂ +
p ; ,x yς =  and (4.10) 

 ( ) ( ) ( )( )
( )

2 2

3/ 22 2

l k l k

l k l k

l k

p p p p

p p p p r c

ς ς ζ ζ

ς ζ ξ ζ

ψ ψ
− −∂ ∂= = −

∂ ∂ +
p p ;  

 , ,x yς ζ = . (4.11) 

 

4.2 Optimal free parameter 

Selecting the optimal free parameter is one of the important task in using the 
RBF. The choice of the optimum value of this parameter is still an unresolved 
problem, and the optimum value is usually at the present state-of-the-art found 
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using numerical experiments. Some authors [Mai-Dui and Tranh-Cong, 2001] 
claim that the free parameter is related to the typical grid distance. Other 
researchers [Zhang et al., 2000] did not find any relation, and claim simply that 
the optimum free parameter is problem dependent. Very recently [Wang and 
Liu, 2002] analyzed the extended MQ, i.e. 

 ( ) ( )2 2
l k l kr c

β
ψ ⎡ ⎤= +⎣ ⎦p p , (4.12) 

were the exponent β  is free parameter as well. The authors concluded that by 
proper fixing of both parameters the solution becomes independent on the node 
density, node distribution and problem. [Lee et al., 2003] found that the results 
are less sensitive to the choice of the free parameter in the local collocation 
method as in the global ones. The optimal value depends on the number of 
nodes, position of nodes and the function value of the nodes in the influence 
domain. The number of nodes is usually fixed for all influence domains for an 
application, so the influence of the number of nodes is not considered. Since the 
nodes in the influence domain are usually scattered, the scale of the influence 
domain region for each reference node could be different, and the optimal free 
parameter for accurate numerical results may also be different. To assign 
different values of the free parameter for each node is very difficult. This 
difficulty can be handled at least in the following two ways: 
 
q) By using the dimensionless free parameter c   
The MQ radial basis function (equation (4.8)) is changed into the following form 

 ( ) ( ) ( )
1/ 222

0l k l k lr c rψ ⎡ ⎤= +
⎣ ⎦

p p , (4.13) 

where 2
0l r  represents the scaling parameter. The scaling parameter 0l r  is set to 

the maximum nodal distance in the influence domain 

 ( )0 maxl l m l nr r= p ; , 1, 2,..., lm n N= . (4.14) 

The derivatives are calculated by the equations (4.9)-(4.11), where the free 
parameter c  is replaced by the dimensionless free parameter 0lc r . 
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l 0
r

 
Figure 4.2: Local influence domain with the maximum nodal distance 0l r . Green node – 

reference node, red node – neighbor nodes. 

 
b) By using the normalized influence domain region 
The normalization of the influence domain is performed by scaling the distance 
in x  and y  direction. In equation (4.8) the scaled radial distance l kr  between 
two nodes is calculated as 

 

2 2

2

max max

y l kyx l kx
l k

l x l y

p pp p
r

p p

⎛ ⎞ ⎛ ⎞−−= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (4.15) 

where the scaling parameters 
maxl xp  and 

maxl yp  are set to the maximum nodal 
distance in both directions of the influence domain 

 ( )max
maxl l m l np p pς ς ς= − ; , 1, 2,..., lm n N= ; ,x yς = . (4.16) 

The derivatives are calculated by the following equations 

 ( )
( )1/ 22 2

1

max

l k
l k

l l k

p p

p p r c

ς ς

ς ς

ψ
−∂ =

∂ +
p ; ,x yς = , (4.17) 

 ( ) ( )
( )

2 2 22
0

3/ 22 2 2 2

1

max

l k l

l k
l l k

p p c r

p p r c

ς ς

ς ς

ψ
− +∂ =

∂ +
p ; ,x yς =  and (4.18) 

 

( ) ( )

( )( )
( )

2 2

3/ 22 2

1

max max

l k l k

l k l k

l l l k

p p p p

p p p p

p p r c

ς ζ ζ ς

ς ς ζ ζ

ς ζ

ψ ψ∂ ∂= =
∂ ∂

− −
= −

⋅ +

p p

; , ,x yς ζ =  (4.19) 
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Figure 4.3: Local influence domain scaled with the maximum nodal distance in ς  and ξ  

direction. Left picture represents influence domain before scaling and right picture after scaling. 
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5 Solution procedures 

In this chapter the solution procedures for the numerical solution of various heat 
transfer problems are presented. First, the solution procedure of the general 
transport equation is given. The derived procedure stands as a base for solution 
of all other equations. It is further specified for the diffusive equation, the 
convective-diffusive equation with phase change, and the convective-diffusive 
equation with phase change and a material moving boundary. For better 
understanding, the exact solution procedure of each equation is provided. The 
time discretization is also described.  
 

5.1 Time discretization 

The transient problems have numerous important applications in science and 
engineering. Almost all industrial process experience transients during various 
stages of the operation. For example, the start-up phase of the direct chill casting 
process of aluminum alloys, where the billet moves from mould to secondary 
cooling zone and is therefore exposed to a different boundary conditions which 
result in transient variations of boundary solid-liquid interface position and 
temperature field. 
In time-dependent problems, transport variable ( )φ p  besides the space, also 
depends on time, i.e. ( ), tφ p , which is additional variable to be discretized. The 
time discretization defines the direction for information transfer, namely from 
the past into the future. The common types of the time discretization procedures 
are explicit, implicit and Crank-Nicolson.  
Explicit scheme involves only one unknown variable for the future time, which 
can be directly calculated from known variables from current time step. 

 
( ) ( ) ( ) ( )( ) ( )0 0

0

, , ,
F ,

t t t t
t t

t t

φ φ φ
φ

∂ +Δ −
≈ = +Ο Δ

∂ Δ
p p p

p . (5.1) 
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An explicit time discretization form is only conditionally stable. The stability 
criteria for diffusion equation is defined by the Fourier number  

 
( )2Fo

p x

k t

c pρ
⋅Δ=

⋅ ⋅ Δ
. (5.2)  

The stability analysis leads to the following requirement 

 
1

Fo
2

≤  (5.3) 

and restricted time step 

 
( )2

2
p xc p

t
k

ρ⋅ ⋅ Δ
Δ ≤

⋅
. (5.4) 

The stability criteria for convection equation is defined by the Courant number  

 rC
x

v t

p

Δ
=
Δ

 (5.5) 

and here the stability analysis leads to the following requirement 

 rC 1≤  (5.6)  

and restricted time step 

 xp
t

v

ΔΔ ≤ . (5.7) 

The convection-diffusion equation contains both physical phenomena, diffusion 
and convection. In order to get stable results, the stability criteria of both 
phenomena must be satisfied.  
When implicit procedure is used, equivalent of equation (5.1) is 

 
( ) ( ) ( ) ( )( ) ( )0 0

0

, , ,
F ,

t t t t
t t t

t t

φ φ φ
φ

∂ + Δ −
≈ = + Δ +Ο Δ

∂ Δ
p p p

p . (5.8) 

To get the second order accuracy and unconditionally stable solution, the Crank-
Nicolson procedure can be used. Here, the solution at next time depends on 
known values from previous time step and unknown values for next time step, 
i.e. 
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( ) ( ) ( ) ( )( )
( )( ) ( )

0 0
0

2
0

, , ,
0.5F ,

0.5F ,

t t t t
t t

t t

t t

φ φ φ
φ

φ

∂ + Δ −
≈ = +Δ +

∂ Δ
+Ο Δ

p p p
p

p
 (5.9) 

In all numerical examples, only the simple explicit time discretization is used to 
derive the solution procedure of various conservative equations. The reasons for 
using explicit time discretizaton are: 

• For domain nodes the matrix of the system of equations (4.3) is 
constant. For this purpose the LU (lower/upper) factorization of the 
matrix is performed for domain nodes before the start-up of calculation. 
The system of linear equations (4.3) is then solved with pre-calculated 
coefficient matrix of the LU factorization. This procedure strongly 
increases the calculation speed of the system (4.3). 

• The matrix are small, only from 5 5×  to 9 9×  dimension (in this work), 
depending on the number of influence domain nodes. 

• To deal with nonlinear thermo-physical properties and nonlinear 
boundary conditions of the convective-diffusive phase-change 
problems, the time step is often restricted to small value, similar that 
would be used in implicit scheme. The stability issue is then of less 
importance. 

 

5.2 Treatment of the general transport equation 

Consider the general transport equation, defined on a connected fixed domain Ω  
with boundary Γ , standing for a reasonably broad spectra of mass, energy, 
momentum, and species transfer problem 

 ( )( ) ( )( ) ( )C C S
t
ρ φ ρ φ φ∂ +∇⋅ =∇⋅ ∇ +

∂
v D  (5.10) 

with ρ , φ , t , v , D , and S  standing for density, transport variable, time, 
velocity, diffusion tensor 

 
11 12 13

21 22 23

31 32 33

D D D

D D D

D D D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

D  (5.11) 

and source, respectively. The scalar function C  stands for possible more 
involved constitutive relations between the conserved ( )C φ  and diffused φ  
quantities. We seek the solution of the governing equation for the transport 
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variable at the final time 0t t+Δ , where 0t  represents initial time and tΔ  the 
positive time increment. The solution is constructed by the initial and boundary 
conditions that follow. The initial value of the transport variable ( ), tφ p  at a 
node with position vector p  and time 0t  is defined through the known function 

0φ  

 ( ) ( )0, tφ φ=p p ; ∈Ω+Γp . (5.12) 

The boundary Γ  is divided into not necessarily connected parts 
D N RΓ = Γ ∪Γ ∪Γ  with Dirichlet, Neumann and Robin type boundary 

conditions, respectively. At the boundary node p  with normal Γn  and time 

0 0t t t t≤ ≤ + Δ , these boundary conditions are defined through known functions 
DφΓ , NφΓ , RφΓ , R

refφΓ  

 ;D Dφ φΓ= ∈Γp , (5.13) 

 ;N N

n
φ φΓ

Γ

∂ = ∈Γ
∂

p  and (5.14) 

 ( ) ;R R R
refn

φ φ φ φΓ Γ
Γ

∂ = − ∈Γ
∂

p . (5.15) 

The numerical discretization of equation (5.10), using explicit (Euler) time 
discretization has the form 

 
( )( ) ( ) ( ) ( )( ) ( )0 0 0

0 0 0 0

C C C
C

t t

ρ φ ρ φ ρ φ
ρ φ φ

∂ −
≈ = −∇⋅ +∇⋅ ∇

∂ Δ
v D . (5.16) 

From equation (5.16) the unknown function value ( )C
l

φ  in domain node lp  can 
be calculated as 

 ( ) ( ) ( )( )( )2
0 0 0 0 0 00 0

0

C C C l l l ll l l

tφ φ ρ φ φ φ
ρ
Δ= + −∇⋅ +∇ ⋅∇ + ⋅∇v D D . (5.17) 

In continuation, the assumption of the diffusion tensor D  is made 

 

1 0 0

0 1 0

0 0 1

D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

D . (5.18)  

The explicit calculation of expression (5.17) in 2D Cartesian coordinates 
( xp , yp ) is 
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( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( )
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0 00 0
1 10

0 0 0
1 1

0 0
1 1 1 1

0
1 1
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.
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l l l l

N N
-1

l k l l kn l n
k ny

N N N N
-1 -1

l k l l kn l n l k l l kn l n
n n n nx y

ψ
p

ψ ψ
p p

ψ φ
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p

p p

  (5.19) 

and in axisymmetry ( rp , zp ) is 

( ) ( ) ( ) ( )( )

( ) ( )( )

( ) ( )
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ψ φ
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ψ φ

= =
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= =

⎞ ⎛ ⎞∂ +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
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p
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  (5.20) 

where in both equations the formulas (4.6) and (4.7) have been employed. 
 
 
The complete solution procedure follows the below defined steps 1-5. 
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Step 1 
First, the initial conditions are set in the domain and boundary nodes and the 
required derivatives are calculated from the known nodal values. 
 
Step 2 
The equation (5.19) or (5.20) is used to calculate the new values of the variable 

( )Cl n
φ  at time 0t t+ Δ  in the domain nodes. 

 
Step 3 
The transport variable l nφ  is calculated from the constitutive relation ( )C φ  in 
the domain nodes. 

 ( )l n Cφ φ= . (5.21) 

Step 4 
The unknown transport variable l nφ  at time 0t t+ Δ  in the Dirichlet, Neumann, 
and Robin boundary nodes is calculated. The coefficients lα  have to be 
determined from the new values in the domain, calculated in step 3, and from the 
information on the boundary conditions. Let us introduce domain, Dirichlet, 
Neumann, and Robin boundary indicators for this purpose. These indicators are 
defined as 
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1;

0;

R
R n

n R
n

Γ

⎧ ∈Γ
ϒ = ⎨ ∉Γ⎩

p

p
. (5.22) 

The coefficients lα  are calculated from the system of linear equations 
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( ) ( )
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1 1

1 1
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φ φ φ φ ψ α φ
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Γ Γ
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Ω Γ Γ Γ Γ Γ
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∑ ∑

∑

p p

p p

p
. 

  (5.23) 

The system (5.23) can be written in a compact form 
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 l l l=Ψ α b  (5.24) 

with the following system matrix entries 

 

( ) ( )

( ) ( ) ( )
1

l

D
l nk l n l k l n l n l k l n

N
N R R

l n l k l n l n l k l n l n l k l n
kn n

ψ ψ

ψ ψ φ ψ

Ω Γ

Γ Γ Γ
=Γ Γ

Ψ = ϒ + ϒ

⎡ ⎤∂ ∂+ ϒ + ϒ −⎢ ⎥∂ ∂⎣ ⎦
∑

p p

p p p
 (5.25) 

and with the following explicit form of the augmented right hand side vector 

 D D N N R R R
l n l n n l n n l n n l n l n l ref nφ φ φ φ φΩ Γ Γ Γ Γ Γ Γ Γ= ϒ + ϒ + ϒ − ϒb . (5.26) 

 
Step 5 
The unknown boundary values are set from equation (4.5). 
 
When searching the steady-state solution the following criterion 

 0 stemax n nφ φ φ− ≤  (5.27) 

must be met. The parameter steφ  is defined as the steady-state convergence 
margin. In case the steady-state criterion is fulfilled or the time of calculation 
exceeds the foreseen time of interest, the calculation is stopped. 
 

5.3 Treatment of the heat conduction equation 

The heat conduction equation can be derived from the general transport equation 
(5.10), where the transport variable, scalar function, velocity and diffusion 
matrix are 

 Tφ = , (5.28) 

 ( )C pc Tφ = ⋅ , (5.29) 

 0=v  and (5.30) 

 

1 0 0

0 1 0

0 0 1

k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

D , (5.31) 

respectively. With the above assumptions we get the following heat conduction 
equation  
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 ( )c T k T
t

ρ ∂ = ∇⋅ ∇
∂

 (5.32) 

with ρ , pc , k , T  and t  standing for density, specific heat, thermal 
conductivity, temperature, and time. The material properties ρ , pc  and k  may 
depend on the position and temperature, i.e. the problem might be 
inhomogeneous and nonlinear. The solution of the governing equation for the 
temperature at the final time 0t t+Δ  is sought, where 0t represents the initial time 
and tΔ  the positive time increment. The solution is constructed by the initial and 
boundary conditions that are defined in Section 5.2, equations (5.12)-(5.15). 
The diffusion equation (5.32) can be transformed into the following expression 
by taking into account the explicit time discretization 

 ( )0 0 0 0 0
0 0

p p
p

c T c TT
c k T

t t

ρ ρ
ρ

−∂ ≈ =∇⋅ ∇
∂ Δ

. (5.33) 

The unknown function value lT  in domain node lp  can be calculated as 

 ( ) 2
0 0 0 0 0 0 0 0

0 0 0 0
l l l l l l l l l

l p l l p l

t t
T T k T T k T k T

c cρ ρ
Δ Δ

⎡ ⎤= + ∇⋅ ∇ = + ∇ ⋅∇ + ⋅∇⎣ ⎦ . (5.34) 

The explicit calculation of upper expression in 2D Cartesian coordinates 
( xp , yp ) is 
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  (5.35) 

and in axisymmetry ( rp , zp ) is 
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where the formulas (4.6) and (4.7) have been employed. 
 
 
The complete solution procedure follows the below defined steps 1-4.  
 
Step 1 
First, the initial conditions are set in the domain and boundary nodes and the 
required derivatives are calculated from the known nodal values. 
 
Step 2 
The equation (5.35) or (5.36) is used to calculate the new values of the variable 

l nT  at time 0t t+ Δ  in the domain nodes. 
 
Step 3 
The unknown function variable l nT  at time 0t t+ Δ  in the Dirichlet, Neumann, 
and Robin boundary nodes is calculated. The calculation is performed in the 
same way as in Section 5.2, equations (5.22)-(5.26). 
 
Step 4 
The unknown boundary values are set from equation (4.5). 
 
The steady-state is achieved when the criterion  

 0 stemax n nT T T− ≤  (5.37) 

is satisfied in all computational nodes ; 1,2,...,n n N=p . The parameter steT  is 
defined as the steady-state convergence margin. In case the steady-state criterion 
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is achieved or the time of calculation exceeds the foreseen time of interest, the 
calculation is stopped. 
 

5.4 Treatment of the convective-diffusive equation with 
phase change 

The convective-diffusive equation can be also derived from the general transport 
equation (5.10), where the transport variable, scalar function and diffusion 
matrix are 

 Tφ = , (5.38) 

 ( )C hφ =  and (5.39) 

 

1 0 0

0 1 0

0 0 1

k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

D , (5.40) 

respectively. With the above assumptions we get the following mixture 
continuum formulation (equation (2.15)) of the enthalpy conservation  

 ( ) ( ) ( )h h k T
t
ρ ρ∂ +∇⋅ =∇⋅ ∇

∂
v  (5.41) 

with the temperature dependent mixture density ρ , enthalpy h , velocity v  and 
thermal conductivity k . 
We seek for mixture temperature at time 0t t+Δ  by assuming known initial 
temperature, velocity field, and boundary conditions at time 0t . The solution is 
constructed by the initial and boundary conditions that are defined in Section 
5.2, equations (5.12)-(5.15). 
The numerical discretization of equation (5.41), using explicit (Euler) time 
discretization and constant density has the form 

 
( ) ( ) ( )0 0 0

0 0 0 0 0

h h h
h k T

t t

ρ ρ ρ ρ
∂ −≈ = −∇⋅ +∇⋅ ∇
∂ Δ

v . (5.42) 

From equation (5.42) the unknown function value lh  in domain node lp  can be 
calculated as 

 ( )( )2
0 0 0 0 0 0 0 0

0 0
l l l l l l l

t
h h h k T k T

c
ρ

ρ
Δ= + −∇⋅ +∇ ⋅∇ + ⋅∇v . (5.43) 
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The explicit calculation of expression (5.43) in 2D Cartesian coordinates 
( xp , yp ) is 
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and in axisymmetry ( rp , zp ) is 
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where the formulas (4.6) and (4.7) have been employed. 
 
 
The complete solution procedure follows the below defined steps 1-5. 
 



Solution procedures 46 

Step 1 
First, the initial conditions are set in the domain and boundary nodes and the 
required derivatives are calculated from the known nodal values. 
 
Step 2 
The equation (5.44) is used to calculate the new values of the variable l nh  at 
time 0t t+ Δ  in the domain nodes. 
 
Step 3 
The temperature field is calculated from the enthalpy field using the inverse of 
the constitutive temperature-enthalpy relationships (equations (2.12) and (2.13)), 
i.e. 

 ( )lT T h=  (5.46) 

Step 4 
The unknown function variable l nT  at time 0t t+ Δ  in the Dirichlet, Neumann, 
and Robin boundary nodes is calculated. The calculation is performed in the 
same way as in Section 5.2, equations (5.22)-(5.26). 
 
Step 5 
The unknown boundary values are set from equation (4.5). 
 

The steady-state is achieved when the criterion (5.27) is met. 

 

5.5 Treatment of the convective-diffusive equation with 
phase change and a material moving boundaries 

The solution of the problem is given, which is characterized by a moving mushy 
domain between the solid and the liquid phase and a material moving boundary. 
While the boundary interface is moving, the domain is growing or shrinking. 
There are several industrial applications with such kind of physical behaviour, 
like semi-continuous casting of aluminium alloys where the bottom block is 
moving downwards. The solution is obtained with the same equations (5.38)-
(5.45) and the same solution procedure as in Section 5.4, except two additional 
steps are added.  
 
 
The complete solution procedure is defined by steps 1-7. 
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Steps 1-5 
The Steps 1-5 in Section 5.4 are used. 
 
Step 6 
The boundary nodes on a material moving boundary are moved according to the 
velocity and time step length 

 0l ls tΔ = ⋅Δv . (5.47) 

Step 7 
The unknown values of ( )0t tΓ + Δ  on a material moving boundary are 
extrapolated by equation (4.5). When the distance between the moving boundary 
nodes and the fixed domain exceeds two times the typical node distance of the 
discretization, new inner nodes are inserted between the moving boundary nodes 
and the inner nodes. Their values are obtained by the LRBFCM, equation (4.5). 
The growth of the domain and the respective node manipulations are represented 
in Figure 5.1. 

 
Figure 5.1: Schematic representation of nodes manipulations. a,b) Boundary node is moved by 

sΔ ; c) New node is inserted between the boundary and the domain node; d) Boundary node is 

moved by sΔ . Black points represent the boundary nodes and the gray points the domain nodes. 

 

The calculation is stopped when the time of calculation exceeds the foreseen 
time of interest. The steady-state can also be achieved when the criterion (5.27) 
is met. 
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6 Numerical examples 

In this section numerical examples are presented to demonstrate the ability, 
accuracy and stability of the LRBFCM. Five examples, further named as tests, 
are given with complete description, solution procedure and numerical results. 
The results are compared with solutions obtained with classical mesh methods or 
analytical solutions. 
 
Tests 1 and 2 
Both tests show the ability of solving 2D diffusion problem with different 
boundary conditions. The first test is the boundary value problem (NAFEMS 
test) associated with the steady temperature field with simultaneous involvement 
of the Dirichlet, Neumann and Robin boundary conditions on a rectangle. The 
second test is the initial value problem, associated with the Dirichlet jump 
problem on a square. Results of both tests are compared with the analytical and 
FDM solutions. 
 
Test 3 
The one-dimensional steady-state convective-diffusive problem is solved with 
and without phase change. The results are compared with the analytical solution 
and solutions solved with the FEM and the DR-BEM.  
 
Test 4 
The steady-state DC casting problem with non-linear material properties is 
solved. The results are compared with the FVM solution. 
 
Test 5 
DC casting with start-up phase simulation. This test shows the ability of solving 
problems with a material moving boundaries. The results are compared with the 
FVM solution. 
 
By default in all tests the uniform node arrangements are used. In order to show 
the power of meshless method we also perform some calculations for the First 
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and Fourth tests on non-uniform node arrangements with random node 
distribution. All tests with numerical characteristics are presented in Table 6.1. 
 
Table 6.1: Tests with numerical characteristics. 

 Test 1 Test 2 Test 3 Test 4 Test 5 

Diffusion YES YES YES YES YES 

Convection NO NO YES YES YES 

Phase change NO NO YES YES YES 

Time dependent NO YES NO NO YES 

Non-linear 
material properties 

NO NO NO YES YES 

Dimensions 2D 1D 1D 2D axisymmetry 

Boundary 
conditions 

     

Dirichlet YES YES YES YES YES 

Neumann YES YES YES YES YES 

Robin YES NO NO 
YES 

nonlinear 
YES 

nonlinear 

Published in 

[Šarler 
and 

Vertnik, 
2006] 

[Šarler 
and 

Vertnik, 
2006] 

[Vertnik 
and 

Šarler, 
2006] 

[Vertnik 
and 

Šarler, 
2006] 

[Vertnik et 
al., 2006] 

 

6.1 Error measures 

For all tests the following error measures of the numerical solution was choosen: 
a) the maximum absolute error 

 ( ) ( )max anamax , ,n nt tφ φ φ= −p p ; 1, 2,...,n N= , (6.1) 

b) the average absolute error 

 ( ) ( )avg ana
1

1
, ,

N

n n
n

t t
N

φ φ φ
=

= −∑ p p ; 1, 2,...,n N=  and (6.2) 

c) the root mean square error 
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 ( ) ( )( )2

ana
1

1
, ,

N

RMS n n
n

t t
N

φ φ φ
=

= −∑ p p ; 1, 2,...,n N= , (6.3) 

where φ  and anaφ  stand for numerical and analytical solution of the transport 
variable, N  represents the total number of all nodes np  of which first NΓ  nodes 
correspond to the boundary and the remaining NΩ  to the domain. The node with 
the maximum temperature error is denoted as maxp . 
 

6.2 Diffusion problem 

6.2.1 Test 1: Boundary value problem 

6.2.1.1 Problem description 

 

 
Figure 6.1: Test 1: NAFEMS benchmark test with boundary conditions and dimensions. 

 
The problem is posed on a two dimensional rectangular domain : x x xp p p− +Ω < < , 

y y yp p p− +< < , and boundary :x x xp p− −Γ = , y y yp p p− +≤ ≤ , :x x xp p+ +Γ = , 

y y yp p p− +≤ ≤ , :y y yp p− −Γ = , x x xp p p− +≤ ≤ , :y y yp p+ +Γ = , x x xp p p− +≤ ≤  with 
0xp− = m, 0.6xp+ = m, 0yp− = m, 1.0yp+ = m (Figure 6.1). The material 
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properties are 0 7850ρ = kg/m3, 0 460pc = J/(kgK), and 0 52k = W/(mK). The 
boundary conditions are on the south boundary y

−Γ  of the Dirichlet type with 
100DTΓ = ˚C, on the east and north boundaries x

+Γ  and y
+Γ  of the Robin type with 

/R
TCT h kΓ = − , 750TCh = W/(m2K), 0R

refTΓ = ˚C and on the west boundary x
−Γ  of 

the Neumann type with 0NTΓ = W/m2. 
This solution represents the NAFEMS benchmark test 10 and is in document 
[Cameron et al., 1986] given in terms of analytical value for temperature 

NAFEMS 18.25T = ˚C at NAFEMS 0.6xp = m, NAFEMS 0.2yp = m. The rounded eight digit 
accurate analytical solution NAFEMS 18.253756T = ˚C is used in this thesis 
calculated by the analytical solution defined in Appendix A.1. The analytical 
solution has been calculated also in all computational nodes in order to be able to 
calculate the error measures that follow. 
 

6.2.1.2 Numerical results 

The calculations are performed on three uniform node arrangements 13 21×  
( 269, 60, 209)N N NΓ Ω= = = , 31 51×  ( 1577, 156, 1421)N N NΓ Ω= = = , 61 101×  
( 6157, 316, 5841)N N NΓ Ω= = = , and on the non-uniform node arrangement 
61 101×  ( 6157, 316, 5841)N N NΓ Ω= = = . A schematics of the uniform node 
arrangement 31 51×  is shown in Figure 6.2(left). A randomly displaced non-
uniform node arrangement is generated from the uniform node arrangement 
through transformation 

 (nonuniform) (uniform) random min (uniform)n n np p c r pς ς ςδ= + ; ,x yς = , (6.4) 

where randomc  represents a random number random1 1c− ≤ ≤ + , δ  represents a 
displacement factor (in this work fixed to 0.25), and minr  the minimum distance 
between the two nodes in uniform node arrangement. The boundary nodes are 
displaced only in the direction perpendicular to the boundary normal. A 
schematics of the randomly displaced non-uniform node arrangement 31 51×  is 
shown in Figure 6.2(right). The steady state is approached by a transient 
calculation using a fixed time-step 1tΔ = s in uniform node arrangements and 

0.5tΔ = s in non-uniform node arrangement. The steady state criterion used in all 
computations is 610steT −= ˚C. Figure 6.3 shows the calculated temperature field 
with isotherms. 
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Figure 6.2: Test 1: Node arrangements. Left - 31 51× uniform node arrangement. Right - 31 51×  

non-uniform randomly displaced node arrangement. 

 

       
Figure 6.3: Test 1: Calculated temperature field. Left - 31 51×  uniform node arrangement with 

5 5×  influence domain and 32c = . Right - 31 51×  non-uniform randomly displaced node 

arrangement with 9 9×  influence domain and 5c = . White lines represent isotherms with the 

spacing 10.0 °C. The first plotted isotherm on the bottom is 90.0 °C. 
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Tables 6.2-6.4 show accuracy of the solution as a function of MQs free 
parameter c  for different node arrangements and five-noded influence domain. 
One can observe the improvement of the accuracy with higher values of c  
(Figures 6.4 and 6.6) and denser nodes (Figure 6.5). One can also observe that in 
case the value of c  is fixed far from the optimal value (i.e. 1 or 2) the method 
does not converge with denser nodes. The solution above 8c =  shows only slight 
improvement in maximum error, however the average error can still be 
significantly improved when changing the parameter c  from 8 to 16. The 
solution with node arrangement 13 21×  and 32c =  did not converge. Table 6.5 
shows the same type of information as Table 6.4, however with the nine-noded 
influence domain. In this case the solution with 16c =  and 32c =  did not 
converge. This result is consistent with the fact that more nodes are used in MQs 
collocation methods more the free parameter is restricted to smaller values. 
Comparison of Tables 6.4 and 6.5 shows that better results can be achieved with 
smaller influence domain. At the fixed parameter 8c =  the average error is 
smaller with the smaller influence domain and the maximum error is smaller 
with the larger influence domain. Next, the calculations are performed on the 
non-uniform randomly displaced node arrangement. Here, the results did not 
converge with the five-noded influence domain. Comparison of Tables 6.5 and 
6.6 shows the expected degradation of the accuracy with the node arrangement 
randomization. Tables 6.7 and 6.8 show accuracy of the LRBFCM in the 
NAFEMS reference point as compared with the classical FDM. The accuracy of 
the meshless method with the uniform 61 101×  node arrangement and five-noded 
influence domain is almost two orders of magnitude higher than with the FDM 
structured in the same grid nodes. The error is increased in case of non-uniform 
node arrangement. However, also in non-uniform case, the error in the reference 
point is only 0.2143˚C (i.e. in the percent range) compared to the characteristic 
problem temperature difference of 100 ˚C. 
 
Table 6.2: Test 1: Accuracy of the solution as a function of MQs free parameter c  in terms of 
average and maximum errors and the position of maximum error for 13 21×  node arrangement 
and five-noded influence domain. 

c  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

1 12.8558 29.9918 0.0000 0.3000 
2 2.6133 5.5789 0.0000 0.3500 
4 0.3114 3.4979 0.6000 0.0500 
8 0.0891 3.1707 0.6000 0.0500 
16 0.0719 3.0920 0.6000 0.0500 
32 div    
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Table 6.3: Test 1: Accuracy of the solution as a function of MQs free parameter c  in terms of 
average and maximum errors and the position of maximum error for 31 51×  node arrangement 
and five-noded influence domain. 

c  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

1 23.0263 57.0299 0.0000 0.2000 
2 9.8407 21.5167 0.0000 0.3200 
4 1.1828 2.9379 0.6000 0.0200 
8 0.1087 2.5910 0.6000 0.0200 
16 0.0261 2.5172 0.6000 0.0200 
32 0.0196 2.4996 0.6000 0.0200 

 
Table 6.4: Test 1: Accuracy of the solution as a function of MQs free parameter c  in terms of 
average and maximum errors and the position of maximum error for 61 101×  node arrangement 
and five-noded influence domain. 

c  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

1 27.8036 72.9256 0.0000 0.1300 
2 18.5475 42.4449 0.0000 0.2500 
4 3.9476 8.3054 0.0000 0.3500 
8 0.3210 1.7675 0.6000 0.0100 
16 0.0314 1.7042 0.6000 0.0100 
32 0.0107 1.6903 0.6000 0.0100 

 
Table 6.5: Test 1: Accuracy of the solution as a function of MQs free parameter c  in terms of 
average and maximum error and the position of maximum error for 61 101×  node arrangement 
and nine-noded influence domain. 

c  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

1 21.3924 50.4141 0.0000 0.2200 
2 7.0673 15.0366 0.0000 0.3300 
4 0.6918 1.4331 0.0000 0.3700 
8 0.0704 0.8284 0.6000 0.0100 
16 div    
32 div    
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Table 6.6: Test 1: Accuracy of the solution as a function of MQs free parameter c  in terms of 
average and maximum error and the position of maximum error for 61 101×  non-uniform node 
arrangement and nine-noded influence domain. 

c  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

1 22.5573 53.1913 0.0000 0.2113 
2 9.3926 20.0383 0.0000 0.3191 
4 1.2326 2.5587 0.0000 0.3897 
5 0.5637 1.1684 0.0000 0.3897 
16 div    
32 div    

 
Table 6.7: Test 1: Accuracy of the solution in NAFEMS reference point NAFEMSp  as a function of 
nodes density for different node arrangements and number of nodes in the influence domain. 

node arrangement nodes c  T (˚C) 
NAFEMST T− (˚C) 

13 21×  5 16 18.3613 0.1075 
31 51×  5 32 18.2855 0.0317 
61 101×  5 32 18.2594 0.0056 
61 101× (uniform) 9 8 18.2512 -0.0026 
61 101× (nonuniform) 9 5 18.0395 0.2143 

 
Table 6.8: Test 1: Accuracy of the classical FDM solution in NAFEMS reference point as a 
function of regular grid density. 

Grid T (˚C) 
NAFEMST T− (˚C) 

61 101×  17.9827 -0.2711 
121 201×  18.1074 -0.1464 
241 401×  18.1754 -0.0783 
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            a)                                                          b) 

          
            c)                                                          d) 

          
Figure 6.4: Test 1: Calculated isotherms by the LRBFCM with different values of free 

parameter for 31 51×  uniform node arrangement. Blue isotherms with dashed line style 

represents analytical solution. Red isotherms with solid line style represents solution calculated 

with LRBFCM with the following values of free parameter: a) 1c = , b) 2c = , c) 4c =  and d) 

8c = . The spacing between the isotherms is 10.0 °C. The first plotted isotherm on the bottom is 

at 90.0 °C. 
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Figure 6.5: Test 1: Convergence plots as a function of the minimum node distance for the five-

noded influence domain and two node arrangements. Green curves – the maximum error, blue 

curves – the RMS error and red curves – the average error. Solid line – 31 51×  node 

arrangement, dashed line – 61 101×  node arrangement. ■ – maximum error, • – RMS error and 

▲ – average error. 
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Figure 6.6: Test 1: Convergence plots as a function of the MQs parameters for the five-noded 

influence domain and two node arrangements. Green curves - the maximum error, blue curves – 

the RMS error and red curves – the average error. Solid line – 31 51×  node arrangement, dashed 

line – 61 101×  node arrangement. ■ – maximum error, • – RMS error and ▲ – average error. 
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6.2.2 Test 2: Initial value problem 

6.2.2.1 Problem description 

 

 
Figure 6.7: Test 2: Initial value problem with boundary conditions and dimensions. 

 
The geometry of the problem is formally posed on a similar region as the first 
test case, however the region is square with 0xp− = m 1.0xp+ = m 0yp− = m 

1.0yp+ = m (Figure 6.7). The material properties are set to unit values 

0 1ρ = kg/m3, 0 1pc = J/(kgK), 0 1k = W/(mK). Boundary conditions on the east 

x
+Γ  and north boundaries y

+Γ  are of the Dirichlet type with 0DTΓ = ˚C, and on the 
west x

−Γ  and south boundaries y
−Γ  are of the Neumann type with 0NTΓ = W/m2. 

The initial conditions are 0 1T = ˚C. The analytical solution of the test can be 
found in Appendix A.2, where here only the solution of the upper-right quadrant 
is considered. 
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Figure 6.8: Test 2: Representation of the 21 21×  uniform node arrangement. 

 

6.2.2.2 Numerical results 

The calculations are performed on four different uniform node arrangements 
11 11×  ( 117N = , 36NΓ = , 81NΩ = ), 21 21×  ( 437N = , 76NΓ = , 361NΩ = ), 
41 41×  ( 1677N = , 156NΓ = , 1521NΩ = ), 101 101×  ( 10197N = , 396NΓ = , 

9801NΩ = ), and five-noded influence domain, respectively. 21 21×  node 
arrangement is represented in Figure 6.8. The time-steps 410t −Δ = s and 

510t −Δ = s are used in the calculations with 41 41×  node arrangement. The 
accuracy of the method is assessed in terms of the maximum and average errors 
at times 0.001t = s, 0.01t = s, 0.1t = s, and 1.0t = s. Tables 6.9-6.11 show 
accuracy of the solution as a function of MQs free parameter c  for different grid 
arrangements and five-noded influence domain. Calculated temperature fields 
for 41 41×  node arrangement are plotted in Figure 6.9. As in previous test, one 
can observe the improvement of the accuracy with higher values of c  and denser 
node arrangement. Comparison of Tables 6.11 and 6.12 shows expected 
convergence properties of the method, that better results can be achieved with 
reduction of the time-step from 410t −Δ = s to 510t −Δ = s. Information in Tables 
6.13 and 6.14 show similar accuracy of the developed method as compared with 
the classical FDM at shorter times 0.001t = s and 0.01t = s immediately after the 
abrupt boundary conditions jump, and an order of magnitude better accuracy at 
longer transient times 0.1t = s and 1.0t = s. The comparison is also shown in 
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Figure 6.10, where the different errors are plotted as a function of time. The 
method is unstable with the time-step 310t −Δ = s because of the explicit 
approach. 
 
Table 6.9: Test 2: Accuracy of the solution as a function of MQs free parameter c  at times 

0.001t = s, 0.01t = s, 0.1t = s, and 1.0t = s in terms of average error, maximum error and the 
position of the maximum error for 11 11×  node arrangement with five-noded influence domain 
and 410t −Δ = s. 

t (s) c  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

0.001 8 1.184E-2 1.259E-1 0.900 0.900 
0.001 16 1.182E-2 1.255E-1 0.900 0.900 
0.001 32 1.181E-2 1.254E-1 0.900 0.900 
0.01 8 4.862E-3 2.286E-2 0.700 0.700 
0.01 16 4.767E-3 2.245E-2 0.700 0.700 
0.01 32 4.746E-3 2.235E-2 0.700 0.700 
0.1 8 1.242E-3 3.471E-3 0.200 0.200 
0.1 16 7.139E-4 2.592E-3 0.200 0.200 
0.1 32 6.239E-4 2.403E-3 0.200 0.200 
1.0 8 6.997E-5 1.792E-4 0.100 0.100 
1.0 16 9.068E-6 2.818E-5 0.100 0.100 
1.0 32 4.681E-6 1.120E-5 0.300 0.000 

 
Table 6.10: Test 2: Accuracy of the solution as a function of MQs free parameter c  at times 

0.001t = s, 0.01t = s, 0.1t = s, and 1.0t = s in terms of average error, maximum error and the 
position of the maximum error for 21 21×  node arrangement with five-noded influence domain 
and 410t −Δ = s. 

t (s) c  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

0.001 8 4.593E-3 4.413E-2 0.900 0.900 
0.001 16 4.527E-3 4.377E-2 0.900 0.900 
0.001 32 4.512E-3 4.368E-2 0.900 0.900 
0.01 8 1.574E-3 7.121E-3 0.750 0.750 
0.01 16 1.329E-3 6.421E-3 0.750 0.750 
0.01 32 1.282E-3 6.255E-3 0.750 0.750 
0.1 8 1.241E-3 2.387E-3 0.200 0.200 
0.1 16 4.344E-4 1.032E-3 0.150 0.150 
0.1 32 2.868E-4 8.154E-4 0.150 0.150 
1.0 8 1.071E-4 2.695E-4 0.050 0.050 
1.0 16 2.046E-5 5.262E-5 0.050 0.050 
1.0 32 4.730E-6 1.337E-5 0.050 0.050 
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Table 6.11: Test 2: Accuracy of the solution as a function of MQs free parameter c  at times 

0.001t = s, 0.01t = s, 0.1t = s, and 1.0t = s in terms of average error, maximum error and the 
position of the maximum error for 41 41×  node arrangement with five-noded influence domain 
and 410t −Δ = s. 

t (s) c  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

0.001 8 1.798E-3 2.405E-2 0.950 0.950 
0.001 16 1.699E-3 2.319E-2 0.950 0.950 
0.001 32 1.679E-3 2.298E-2 0.950 0.950 
0.01 8 1.033E-3 3.678E-3 0.825 0.825 
0.01 16 6.092E-4 2.647E-3 0.825 0.825 
0.01 32 5.415E-4 2.418E-3 0.825 0.825 
0.1 8 2.036E-3 3.761E-3 0.025 0.025 
0.1 16 3.815E-4 6.548E-4 0.400 0.400 
0.1 32 1.815E-4 3.200E-4 0.450 0.450 
1.0 8 2.113E-4 5.277E-4 0.025 0.025 
1.0 16 3.115E-5 7.810E-5 0.025 0.025 
1.0 32 9.160E-6 2.332E-5 0.025 0.025 

 
Table 6.12: Test 2: Accuracy of the solution as a function of MQs free parameter c  at times 

0.001t = s, 0.01t = s, 0.1t = s, and 1.0t = s in terms of average error, maximum error and the 
position of the maximum error for 41 41×  node arrangement with five-noded influence domain 
and 510t −Δ = s. 

t (s) c  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

0.001 8 1.239E-3 1.571E-2 0.925 0.925 
0.001 16 1.179E-3 1.502E-2 0.925 0.925 
0.001 32 1.168E-3 1.485E-2 0.925 0.925 
0.01 8 8.092E-4 2.641E-3 0.250 0.250 
0.01 16 3.828E-4 1.772E-3 0.275 0.275 
0.01 32 3.332E-4 1.623E-3 0.275 0.275 
0.1 8 1.969E-3 3.864E-3 0.975 0.975 
0.1 16 3.155E-4 6.328E-4 0.900 0.900 
0.1 32 1.098E-4 3.037E-4 0.925 0.925 
1.0 8 2.065E-4 5.152E-4 0.025 0.025 
1.0 16 2.619E-5 6.539E-5 0.025 0.025 
1.0 32 4.191E-6 1.058E-5 0.025 0.025 
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Table 6.13: Test 2: Accuracy of the solution at times 0.001t = s, 0.01t = s, 0.1t = s, and 
1.0t = s in terms of average and maximum errors and the position of maximum error for 

101 101×  node arrangement, five-noded influence domain, fixed MQs free parameter 32c =  and 
510t −Δ = s.  

t (s) c  
avgTΔ (˚C) maxTΔ (˚C) RMSTΔ (˚C) max xp (m) max yp (m) 

0.001 32 2.352E-4 2.809E-3 5.190E-4 0.940 0.940 
0.01 32 9.371E-5 3.523E-4 1.265E-4 0.800 0.800 
0.1 32 9.243E-5 1.582E-4 1.069E-4 0.270 0.270 
1.0 32 8.324E-6 2.066E-5 1.032E-5 0.010 0.010 

 
Table 6.14: Test 2: Accuracy of the FDM solution at times 0.001t = s, 0.01t = s, 0.1t = s, and 

1.0t = s in terms of average and maximum errors and the position of maximum error for 

101 101×  regular grid and 510t −Δ = s. 

t (s) tΔ  
avgTΔ (˚C) maxTΔ (˚C) max xp (m) max yp (m) 

0.001 1.0E-5 1.368E-4 1.273E-3 0.925 0.950 
0.01 1.0E-5 3.722E-4 1.298E-3 0.020 0.890 
0.1 1.0E-5 3.363E-4 2.786E-3 0.000 0.010 
1.0 1.0E-5 2.029E-4 5.649E-4 0.000 0.010 
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             a)                                                              b) 

  
             c)                                                             d) 

  
 
Figure 6.9: Test 2: Calculated temperature fields with LRBFCM for 41 41×  node arrangement 

at different times. a) 0.001t = s, b) 0.01t = s, c) 0.1t = s and d) 1.0t = s. White lines represents 

isotherms with the spacing 0.1 K. The first plotted isotherm on the top is at 0.1 K. 
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Figure 6.10: Test 2: Average (red curves), RMS (blue curves) and maximum (green curves) 

errors as a function of time calculated with the FDM and the developed method. Solid line – 

developed method, dashed line – FDM. ■ – maximum error, • – RMS error and ▲ – average 

error. 
 

6.3 Test 3: One-dimensional convective-diffusive phase-
change problem 

6.3.1 Problem description 

The computations are done with uniform domain discretizations of the type 
' 3N × , with 3 ' 4N N= × − , 2 ( 2) 2N NΓ = × − +  and 2N NΩ = − , defined on a 

strip-shaped domains with longitudinal coordinates 0xp− = m, 1xp+ = m, and 
transversal coordinates 1.0yp± = ± m /( ' 1)N − . The schematics of 21 3×  
discretization is shown in Figure 6.11. The steady-state solution is reached 
through a transient from the initial uniform temperature 0T T −

Γ=  and a jump of 
the boundary conditions at xp−  from 0T −

Γ = K to 1T +
Γ = K for 0t t>  and stopped 

through the steady state criterion (equation (5.27)). The steady-state criterion 
used in all calculations in this test is 7

ste 10T −= K, reached with time-step 
510t −Δ = . 
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Figure 6.11: Test 3: Discretization schematics 21 3×  with boundary conditions for solving the 

quasi-one-dimensional convective diffusive problem. 
 

6.3.2 Numerical results 

Space discretization sensitivity for material without phase change 
The method is first tested with constant unit thermal properties and material 
without phase change, i.e. 0mh = J/(kgK). The Péclet number in the following 
test is defined as 

 
( )0 0

0

Pe
p x x xc v p p

k

ρ + −−
= . (6.5) 

The maximum absolute temperature error maxT  and the average absolute 
temperature error avgT  are defined as in Section 6.1. The maximum relative nodal 
temperature and phase-change interface position errors are calculated from 
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t t t

t t t n N

γ γ γ γ

γ γ γ

⎡ ⎤= − ⋅⎣ ⎦

⋅ − × =

p p p

p p p
, (6.6) 

where γ  and anaγ  stand for numerical and analytical solution of the phase-
change interface position. The chosen error measures have been made 
compatible with the studies of [Dalhuijsen and Segal, 1986], [Pardo and 
Weckman, 1986], and [Šarler and Kuhn, 1998b]. 
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Our investigation in Table 6.14 shows that the results are improving with the 
growth of the free parameter from 1 to 32 for both fine grids used 101 3× , 
201 3× , and are optimal at 16 for grid 51 3× . 
It is also evident from Table 6.15 that the method converges with finer space 
discretization. From Table 6.16 and from Figure 6.12(a, b, c) we can conclude 
that the error is not growing with higher Péclet number as in conventional mesh 
methods. This is because of the interpolation with MQ-RBFs, where the curved 
functions are better approximated as linear or almost linear functions. 
 
Table 6.15: Test 3: Material without phase change. Influence of the MQs free parameter on 
solution. Pe 20.0=  at three discretizations. 

c  discretization 
0c r⋅ (m) avgT (K) maxT (K) 

1.0 51 3×  0.04 0.765300 0.98220000 
1.0 101 3×  0.02 0.880900 0.99970000 
1.0 201 3×  0.01 0.920500 0.99990000 
2.0 51 3×  0.08 0.247900 0.41920000 
2.0 101 3×  0.04 0.586300 0.82590000 
2.0 201 3×  0.02 0.823500 0.99450000 
4.0 51 3×  0.16 0.021349 0.03808800 
4.0 101 3×  0.08 0.084033 0.14730000 
4.0 201 3×  0.04 0.277900 0.45900000 
8.0 51 3×  0.32 0.001278 0.00321820 
8.0 101 3×  0.16 0.005665 0.01004100 
8.0 201 3×  0.08 0.023036 0.04078300 
16.0 51 3×  0.64 0.000633 0.00475410 
16.0 101 3×  0.32 0.000326 0.00076631 
16.0 201 3×  0.16 0.001448 0.00256500 
32.0 51 3×  1.28 0.000640 0.00485680 
32.0 101 3×  0.64 0.000155 0.00117190 
32.0 201 3×  0.32 0.000084 0.00017138 
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Table 6.16: Test 3: Material without phase change. Sensitivity of the results with respect to 
Péclet number at discretization 101 3×  and the scaled MQs free parameter 0 0.64c r⋅ = m. 

Pe  avgT (K) maxT (K) 

0 0.000143 0.000224 
10 0.000054 0.000202 
20 0.000155 0.001172 
30 0.000245 0.002734 
40 0.000329 0.004864 
50 0.000412 0.007854 

 
             a)                                                             b) 

    
             c) 

    
Figure 6.12: Test 3: Material without phase change. Comparison of the calculated temperatures 

○ in the central nodes at 0yp = m with the analytical solution -. Discretization 101 3× . (a) 

Pe 2= , (b) Pe 20= , (c) Pe 50= . The scaled MQs free parameter is set to 0 0.64c r⋅ = m. 
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Space discretization sensitivity for phase-change material 
The method is tested next with the constant unit phase-change material. The 
isothermal melting temperature 0.950mT = K is, in the calculations, 
approximated by a narrow temperature range 0.945ST = K, 0.955LT = K and 
linear variation of the liquid fraction over this temperature interval. The Stefan 
number, which defines the rate of solidification, is defined as 

 
( )0

Ste
p

m

c T T

h

− +
Γ Γ−

= . (6.7) 

Figure 6.13 shows the sensitivity of the method with respect to Péclet number, 
and Figure 6.14 shows the sensitivity of the method with respect to Stefan 
number. Related numerical data are given in Tables 6.17 and 6.18. The fact that 
the temperature accuracy degrades with lower Stefan numbers and higher Péclet 
numbers is a common expected feature of all one-domain methods. Sensitivity of 
the results with respect to the Péclet number (Table 6.17) obtained with the 
presented method did not gave the same facts, as at Pe 1.0=  the error is larger 
then at Pe 2.0= . Reason, similar as in previous test, can be in using radial basis 
functions for interpolation. All phase-change interface position errors have been 
evaluated at 0yp = m in this test. The position of the phase-change interface 
boundary is consistently under-predicted in cases with constant material 
properties of phases – a fact that compares well with the studies by [Pardo and 
Weckman, 1986], and [Šarler and Kuhn, 1998b]. Table 6.19 shows a comparison 
of the maximum relative temperature errors of LRBFCM with the reference 
FEM calculations [Pardo and Weckman, 1986] and Dual Reciprocity Boundary 
Element Method (DRBEM) calculations [Šarler and Kuhn, 1998b]. Comparison 
of the phase-change interface position error is shown in Table 6.20. The 
disrcetisation in FEM, that corresponds to LRBFCM discretization ' 3N ×  is 
equal to ' 1N −  isoparametric hexahedral linear finite elements. The related 
discretization in DRBEM is equal to 2 ( ' 1) 4N× − +  constant boundary elements 
and ' 1N −  domain nodes. The present method gives comparable results in terms 
of overall temperature accuracy and phase-change interface boundary position 
error at the compared node densities. The convergence of LRBFCM in this 
comparison exercise is illustrated in Figure 6.15. 
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Table 6.17: Test 3: Sensitivity of the results with respect to Péclet number at discretization 
101 3× , Ste 2.0= . 

Pe  
avgT (K) maxT (K) Mxp (m) err xp (m) 

0.5 0.000206 0.000635 0.089150 -0.000329 
1.0 0.000977 0.002406 0.200251 -0.000161 
2.0 0.000908 0.002528 0.513854 -0.003082 
4.0 0.001064 0.004949 0.749926 -0.000662 

 
Table 6.18: Test 3: Sensitivity of the results with respect to Stefan number at discretization 
101 3× , Pe 2.0= . 

Ste  
avgT (K) maxT (K) Mxp (m) err xp (m) 

0.5 0.003857 0.012703 0.810560 -0.000543 
1.0 0.001407 0.004705 0.671921 -0.001538 
2.0 0.000908 0.002528 0.513854 -0.003082 
4.0 0.000742 0.001291 0.335296 -0.002565 

 
Table 6.19: Test 3: Comparison of the maximum nodal temperature error of the LRBFCM with 
results of the FEM by [Pardo and Weckman, 1996] and the DRBEM by [Šarler and Kuhn, 
1998b]. Pe 2.0= , 1/ Ste 0.7= . 

Grid  21 3×  

0 1.6c r⋅ = m 
41 3×  

0 0.8c r⋅ = m 
81 3×  

0 0.4c r⋅ = m 

LRBFCM ( )max %T  2.57 1.24 0.41 

DRBEM ( )max %T  1.21 0.81 0.41 

FEM ( )max %T  2.15 1.06 0.46 

 
Table 6.20: Test 3: Comparison of the phase-change interface position error of the LRBFCM 
with results of the FEM by [Pardo and Weckman, 1996] and the DRBEM by [Šarler and Kuhn, 
1998b]. Pe 2.0= , 1/ Ste 0.7= , 0.598739Mxp = m. 

Grid  21 3×  

0 1.6c r⋅ = m 
41 3×  

0 0.8c r⋅ = m 
81 3×  

0 0.4c r⋅ = m 

LRBFCM ( )max %xp  -1.68 -1.33 -0.94 

DRBEM ( )max %xp  -1.51 -0.77 -0.46 

FEM ( )max %xp  -1.62 -0.82 -0.48 
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            a)                                                               b) 

      
 
            c)                                                               d) 

      
 
Figure 6.13: Test 3: Comparison of the calculated temperatures ○ in the central nodes 0yp = m 

with analytical solution – for different Péclet numbers. Line - - denotes analytical solution with 

Ste = ∞ . Discretization 101 3× . Ste 2.0= . (a) Pe 0.5= , (b) Pe 1.0= , (c) Pe 2.0=  and (d) 

Pe 4.0= . 
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            a)                                                               b) 

      
 
            c)                                                               d) 

      
 
Figure 6.14: Test 3: Comparison of the calculated temperatures ○ in the central nodes 0yp = m 

with analytical solution – for different Stefan numbers. Line - - denotes analytical solution with 

Ste = ∞ . Discretization 101 3× . Pe 2.0= . (a) Ste 0.5= , (b) Ste 1.0= , (c) Ste 2.0=  and (d) 

Ste 4.0= . 
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               a)                                                            b) 

       
 
               c) 

      
Figure 6.15: Test 3: Comparison of the calculated temperatures ○ in the central nodes 0yp = m 

with analytical solution – for test case from [Pardo and Weckman, 1996]. Line - - denotes 

analytical solution with Ste = ∞ . Pe 2.0= , 1/ Ste 0.7= . Discretization (a) 21 3× , (b) 41 3× , 

and (c) 81 3× . 
 
Space discretization sensitivity for different material properties of the 
phases 
The thermal conductivities of the solid and liquid phases at the melting point or 
in the phase-change interval usually do not differ by more than 100 % in pure 
metals or alloys. Similarly, the related alloy specific heats do not differ by more 
than 25 % [Brandes and Brook, 1992]. In the present study of the influence of 
the different material properties on the results of the present numerical method 
the cases with three times greater or lower thermal conductivity and cases with 
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two times lower or greater specific heat have been recalculated, which most 
probably covers all realistic situations. The results of these calculations are 
presented in Figure 6.16 and Table 6.21. The accuracy of the results does not 
principally differ from the accuracy of the cases with constant material 
properties. 
 
Table 6.21: Test 3: Sensitivity of the results with respect to different material properties of the 
phases. Discretization 101 3× , Pe 1.0= , Ste 2.0= . 

0pSc  0pLc  0Sk  0Lk  
avgT (K) maxT (K) Mxp (m) err xp (m) 

1.0 1.0 1.0 1.0 0.000978 0.002406 0.200251 -0.000161 
2.0 1.0 1.0 1.0 0.001478 0.003105 0.331708 -0.001201 
1.0 2.0 1.0 1.0 0.000292 0.001009 0.210841 -0.000516 
1.0 1.0 3.0 1.0 0.001430 0.006821 0.025634  0.001914 
1.0 1.0 1.0 3.0 0.005002 0.012371 0.325451 -0.003810 
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            a)                                                               b) 

      
 
            c)                                                               d) 

      
 
Figure 6.16: Test 3: Comparison of the calculated temperatures ○ in the central nodes 0yp = m 

with analytical solution –. Line - - denotes analytical solution with unit material properties. 

Discretization 101 3× . Pe 1.0= . Ste 2.0= . (a) 0 2.0pSc = J/(kgK), (b) 0 2.0pLc = J/(kgK), (c) 

0 3.0Sk = W/(mK), and (d) 0 3.0Lk =  W/(mK). 
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6.4 Test 4: Direct-chill casting problem 

6.4.1 Problem description 

 
 

 
 

Figure 6.17: Test 4: Scheme of the DC casting process. 

 
Direct chill (DC) casting (Figure 6.17) is currently the most common [Altenpohl, 
1998] semi-continuous casting practice in production of aluminium alloys. The 
process involves molten metal being fed through a bottomless water-cooled 
mould where it is sufficiently solidified around the outer surface to take the 
shape of the mould and acquire sufficient mechanical strength to contain the 
molten core at the centre. As the strand emerges from the mould, water impinges 
directly from the mould onto the surface (direct-chill), flows over the cast 
surface and completes the solidification. Related transport, solid mechanics, and 
phase-change kinetics phenomena are extensively studied [Beckermann, 2000]. 
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6.4.2 Numerical results 

The solution of a simplified model of the DC casting process in two dimensions 
is presented. The numerical results are obtained by the solution procedure 
defined in Section 5.4. The steady state solution is shown, approached by a false 
transient calculation using a fixed time-step of 0.5 s. The enthalpy reference 
temperature refT  has been set to 0 K. The following simplified DC casting case 
is considered. The computational domain is a rectangle (coordinates xp , yp ) 

1.25m 0myp− ≤ ≤ , 0m 0.25mxp≤ ≤ . The boundary conditions on the top at 
0yp = m are of the Dirichlet type with 980DTΓ = K, and the boundary conditions 

at the bottom at 1.25yp = − m are of the Neumann type with 0NFΓ = W/m2. The 
boundary conditions at the outer surface are of the Robin type with 

298R
refTΓ = K. The heat transfer coefficients between 0m 0.01myp≤ ≤− , 
0.0m 0.06myp− ≤ ≤− , 0.06 m 0.1myp− ≤ ≤− , and 0.1m 1.25myp− ≤ ≤− , are 

0RTΓ = W/(m2K), 3000RTΓ = W/(m2K), 150RTΓ = W/(m2K), and 4000RTΓ =  
W/(m2K), respectively. Material properties correspond to a simplified Al4.5%Cu 
alloy as already used in [Šarler and Mencinger, 1999] and [Šarler et al., 2005]: 

0 2982ρ = kg/m3, 120.7Sk = W/(mK), 57.3Lk = W/(mK), 1032pSc = J/(kgK), 
1179pLc = J/(kgK), 348.2mh = kJ/kg, 775ST = K, 911LT = K. The liquid fraction 

increases linearly between ST  and LT . The initial conditions are described by a 
linear variation of the temperature with the xp  coordinate from 298 K at the 
bottom to 980 K at the top of the cylinder. The uniform casting velocity is 

0.000633Sy Lyv v= = − m/s, 0Sx Lxv v= = m/s. The solution has been obtained on 
an uniform 27 127 4× −  (denoted as I) and 52 252 4× −  (denoted as 2) node 
arrangements as well as randomly displaced node arrangement I, where 4−  
means without corner nodes. A schematic of the uniform node arrangement I is 
shown in Figure 6.18(left). A non-uniform node arrangement is generated from 
the uniform node arrangement through transformation 

 (nonuniform) (uniform) random min (uniform)n n np p c r pς ς ςδ= + ; ,x yς =  (6.8) 

where randomc  represents a random number random1 1c− ≤ ≤ + , δ  represents a 
displacement factor (in this work fixed to 0.25 ), and minr  the minimum distance 
between the two nodes in the uniform node arrangement. Only domain nodes 
have been subject to this transformation (Figure 6.18 (right)). 
The accuracy analysis of the LRBFCM solutions is made by comparison with 
the FVM, which uses central-difference spatial discretization and explicit time 
discretization. Tables 6.22 and 6.23 show the average error, the absolute 
maximum error and the position of absolute maximum error as a function of 
MQs free parameter for node arrangement I and II, respectively. The best 
accuracy is reached with the higher values of free parameter, as already 
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concluded from accuracy analysis in previous tests. Figure 6.19 shows 
comparison of the temperature distribution for uniform node arrangement I 
between LRBFCM and FVM results. There is practically no visual difference. 
The LRBFCM solution was obtained with free parameter 16.0c =  and five-
noded influence domain. The absolute difference of the same comparison is 
shown in Figure 6.20. The maximum value is less then 10K, appeared on the 
outer surface were the largest temperature gradients appear.  
Figure 6.21 represents the absolute difference between the LRBFCM solutions 
calculated on uniform and non-uniform node arrangements. Despite the 
randomness of non-uniform node arrangement, the absolute difference is less 
then 5 K. Results for non-uniform node arrangement was calculated with free 
parameter 16.0c =  and seven-noded influence domain. 
The calculated temperature field along the slab at three different casting 
velocities is shown in Figure 6.22. The results show the expected response of the 
presented method on the casting velocity variations.  
A similar comparison has been performed also with the DAM and FVM in 
[Šarler et al., 2005] with the maximum difference between DAM and FVM 
about 4 times bigger as in the present method. For the solution of the presented 
problem with DAM [Šarler et al., 2005], we need 6 polynomial basis and at least 
9 nodes in the influence domain which makes this meshless approach also less 
efficient as the present one.  
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Figure 6.18: Test 4: Node arrangements. Left - uniform node arrangement I. Right - non-

uniform randomly displaced node arrangement I. The upper right rectangle schematically 

represents the mold. 
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Figure 6.19: Test 4: Calculated temperature distribution in the slab. Node arrangement I. Solid 

red curve: FVM, dashed blue curve: LRBFCM. Upper curve – centerline temperature, center 

curve – mid-radius temperature, and lower curve – surface temperature. 
 
Table 6.22: Test 4: Accuracy of the solution as a function of MQs free parameter for node 
arrangement I. Results compared with the FVM solutions. 

c  
avgT (K) maxT (K) max xp (m) max yp (m) 

4 25.71230 81.2948 0.005 -0.735 
8 1.71750 8.1644 0.250 -0.015 
16 0.08673 8.2416 0.250 -0.015 
32 0.20570 8.2561 0.250 -0.015 
64 0.22360 8.2595 0.250 -0.015 

 
Table 6.23: Test 4: Accuracy of the solution as a function of MQs free parameter for node 
arrangement II. Results compared with the FVM solutions. 

c  
avgT (K) maxT (K) max xp (m) max yp (m) 

4 95.73460 249.27590 0.0025 -0.7225 
8 6.80490 24.21560 0.0025 -0.7425 
16 0.41530 4.82790 0.2500 -0.0125 
32 0.05211 4.84360 0.2500 -0.0125 
64 0.08941 4.84660 0.2500 -0.0125 
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Figure 6.20: Test 4: Absolute difference between the FVM and the LRBFCM solutions. Node 

arrangement I. Red curve – surface temperature, green curve – mid-radius temperature, and blue 

curve – centerline temperature. 
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Figure 6.21: Test 4: Absolute difference between the LRBFCM solutions calculated in uniform 

and non-uniform node arrangements I. Red curve – surface temperature, green curve – mid-

radius temperature, and blue curve – centerline temperature. 
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Figure 6.22: Test 4: Temperature field and isotherms in the slab obtained by the LRBFCM. 

Solidus and liquidus isotherms are dashed. Central figure – nominal casting velocity, left figure – 

reduced casting velocity for 10 %, right figure – enhanced casting velocity for 10 %. The spacing 

between the isotherms is 35.0 °C. The first plotted isotherm on the top is at 965.0 K. 
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6.5 Test 5: Start-up phase simulation of the Direct-chill 
casting problem 

6.5.1 Problem description 

 
Figure 6.23: Test 5: Scheme of the start-up phase of the DC casting process at different time 

steps. 

 
A technically crucial phase of the DC casting process is the start-up (or initial) 
phase, a period from the start of operation until a steady state. The DC casting 
start-up phase is short (several minutes) compared to the whole casting (several 
hours). In this phase, the starting block, which is initially in the mould (and 
carries the whole weight of the ingot throughout the process) starts to move 
downwards. The steady-state operation is approximately achieved when the 
starting block moves away from the mould for few typical transversal 
dimensions of the cast. Although short, this phase is of critical importance for 
the quality of the final product. In addition to the moving phase-change interface 
boundary the consideration of the start-up phase involves a moving boundary 
associated with the movement of the starting block. The numerical modeling and 
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simulation of the start-up phase serves as a tool for mitigation of several DC 
casting defects [Williams et al., 2003]. 
 

6.5.2 Numerical results 

The solution of the same simplified model of the start-up phase of DC casting 
process in axisymmetry is presented. The numerical results are obtained by the 
solution procedure defined in Section 5.5. The transient solution is calculated 
using a fixed time-step of 0.1s. The MQs free parameter was set to c=32  in 
accordance with the study in [Vertnik and Šarler, 2006]. The following 
simplified DC casting case is considered. The initial computational domain is a 
cylinder (coordinates zp , rp ) 0.01m 0mzp− ≤ ≤ , 0m 0.25mrp≤ ≤ . The boundary 
conditions on the top at 0zp = m are of the Dirichlet type with 980DTΓ = K, and 
the boundary conditions at the moving bottom are of the Neumann type with 

0NFΓ = W/m2. The boundary conditions at the outer surface are of the Robin type 
with 298R

refT = K. The heat transfer coefficients between 0m 0.01mzp≤ ≤ − , 
0.01m 0.06mzp− < ≤ − , 0.06m 0.1mzp− < ≤ − , and 0.1m 1.25mzp− < ≤ − , are 

0RTΓ = W/(m2K), 3000RTΓ =  W/(m2K), 150RTΓ =  W/(m2K), and 4000RTΓ =  
W/(m2K), respectively. Material properties from previous test (Section 6.4) are 
used. The initial temperature is 980K and uniform in the initial computational 
domain. The uniform casting velocity is 0.000633Sz Lzv v= = − m/s, 

0Sr Lrv v= = m/s. 
The solution has been obtained on two node arrangements that are uniform in rp  
direction. The coarser one (denoted as I) includes 25 domain nodes in rp  
direction, and the finer one (denoted as II) 50 domain nodes, respectively. The 
domain nodes that are kept after moving the bottom have the same distance as 
the nodes in rp  direction. Each of the influence domains contains 5 nodes, as 
represented in Figure 6.25. The calculated results for times 500t = s, 1000t = s, 
and 1500t = s are shown in Figure 6.26. Figure 6.27 shows centerline, mid-radius 
and surface temperatures, together with the reference FVM solution [Mencinger, 
2002], calculated in the same nodes. The FVM model employs the central-
difference discretization scheme for convection-diffusion and is thus second-
order accurate, which was clearly verified by calculating the observed order of 
convergence over three grids ( 25 125× , 50 250×  and 100 500×  nodes). One 
could observe a slight difference between LRBFCM and FVM results in Figure 
6.27(left) where the node arrangement I is used and practically no difference in 
Figure 6.27(right) where the node arrangement II is used. 
In the comparison of the numerical results obtained by the LRBFCM with the 
100 500×  FVM solution (reference) one can observe very good agreement. The 
absolute temperature difference between the LRBFCM solution with node 
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arrangements I and II and the reference solution is shown in Figure 6.28. The 
comparison was made by RBF interpolation of the meshless solution in FVM 
nodes. The seemingly large differences that occur in a few nodes are attributed 
to very small longitudinal shifts of the temperature profile in regions of large 
gradients. Founding the source of this discrepancy and noting that everywhere 
else the LRBFCM solution is well inside the error band of the reference, we can 
conclude a very good accuracy performance of the meshless method and the 
proposed computation strategy. 
 

 
Figure 6.24: Test 5: Distribution of nodes at times 500t = s, 1000t = s, and 1500t = s for the 

node arrangement I.  
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Figure 6.25: Test 5: Four types of different influence domains used in the computations. a) 

equidistant influence domain, b) boundary influence domain, c) corner influence domain, d) 

moving boundary influence domain and e) moving corner influence domain. 
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Figure 6.26: Test 5: Temperature field and isotherms of the DC casting start-up phase at times 

500t = s, 1000t = s, and 1500t = s calculated with the node arrangement II. The upper dashed 

line represents the liquidus, and the lower dashed curve the solidus temperature. The spacing 

between the isotherms is 35  K. The first plotted isotherm on the top is at 965  K. 
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Figure 6.27: Test 5: Comparison of centerline (top), mid-radius (middle), and surface (bottom) 

temperatures calculated by the LRBFCM (solid red line) and the FVM with 100x500 grid 

(dashed blue line) at times 500t = s, 1000t = s, and 1500t = s. The thin lines represent the 

steady-state solution, calculated by the LRBFCM. The left column represents calculations with 

node arrangement I, and the right one with node arrangement II.  
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Figure 6.28: Test 5: The absolute temperature difference between the FVM with 100x500 grid 

and LRBFCM solutions at times 500t = s, 1000t = s, and 1500t = s. Lines represent: red - 

surface temperature, dashed green – mid-radius temperature and dashed-dot-dashed blue – 

centerline temperature. Left column represent difference with LRBFCM at node arrangement I 

and right column LRBFCM at node arrangement II. 
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7 Conclusions 

This work represents a new (very) simple meshless formulation for solving a 
wide range of diffusion and convection-diffusion problems with phase change. 
Five numerical tests were presented to demonstrate the accuracy, stability, 
solvability and applicability of the method. The conclusions can be summarized 
in the following points: 
• The one-domain mixture continuum formulation for solid-liquid phase- 

change system is used, which has several advantages regarding the multiple-
domain formulation. The multiple-domain formulation requires an explicit 
tracking of the solid-liquid interface, where the node arrangement must be 
adopted or transformed in a such way, that the solid-liquid interface position 
is always discretized. This is an inconvenient task, especially for complicated 
geometries and multi-component alloys. The one-domain formulation reduces 
the multiple region formulation into a one single conservation equation, 
which implicitly includes the boundary condition of the phase-change 
interface. The formulation enables us to use a fixed node arrangement, where 
complicated geometry with multi-component material can be applied. 

• The governing equation is solved in its strong formulation, and hence no 
numerical integration is required. In a strong formulation, the approximate 
unknown function should have sufficient degree of consistency, so that it is 
differentiable up to the order of PDEs. In this work, the unknown functions 
are approximated by the MQ-RBFs, which are infinitely differentiable. 

• The time discretization is performed in a simple explicit way. The method can 
cope with very large problems since the computational effort grows 
approximately linear with the number of the nodes. The explicit time 
discretization form is only conditionally stable, which means that the time 
step value is restricted. The time step value for the LRBFCM with uniform 
node arrangements and 5 nodes in influence domains can be determined by 
the same stability criterions as for FDM. An implicit scheme can also be used 
where one large and sparse matrix must be filled and solved. Besides this, the 
matrix is usually not constant over calculation and must be inverted every 
time step, which is time consuming. 
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• It was found that the accuracy of the method monotonically increases with 
larger value of the free parameter. Because of the lack of the suitable theory 
for determining the proper value of the free parameter one can confidently 
use the highest values of it, which gives convergence (see all Tests). 

• The free parameter in all tests was scaled with the maximal distance between 
nodes in each influence domain. The scaling is needed in order to use the 
fixed value of the free parameter for the non-uniform node arrangements. It 
was interesting to found that the optimal value of the scaled free parameter 
was almost the same for all presented examples, irrespective of specific 
properties of each problem.  

• The size of each influence domain is presented by the number of nodes. 
Because the free parameter of the MQ-RBF also depends on the number of 
nodes in influence domain, we used a fixed number of nodes for all influence 
domains of the treated numerical examples. It was found out that the best 
accuracy is obtained with the smallest possible number of nodes in influence 
domain. For two-dimensional problems this means 5 nodes in each influence 
domain. Additional studies are required in order to determine the influence of 
positioning of the nodes at the boundary and domain, particularly for 
influence domains with more then 5 nodes. We can use more nodes, 9 for 
example, but then we are loosing accuracy. In examples with non-uniform 
node arrangements, also presented in this thesis, it is necessary to use more 
than 5 nodes (see Test 1 and 4). Nevertheless, we observed the same 
magnitude of the errors as in examples with uniform node arrangements and 5 
nodes in influence domains. 

• It was shown in the first and second tests, that the LRBFCM is more accurate 
as the FDM with first-order discretization of boundary conditions. The latter 
needs approximately four times bigger node arrangement as the LRBFCM to 
achieve the same order of accuracy. The developed method was also 
compared with the FVM, where the central-difference discretization scheme 
was used. The comparisons show that both methods gave approximately the 
same results at the same node arrangement. 

• The developed method is almost independent of the problem dimension. The 
complicated geometry can easily be coped with. In this work, only the 
numerical examples with simple rectangular geometries are given. The 
solutions are obtained on uniform and also non-uniform node arrangements. 
The non-uniform node arrangements are used for diffusion (Test 1) and DC 
casting problem (Test 4). It was shown that the accuracy of the solution on 
the non-uniform node arrangement is almost the same as on uniform node 
arrangement.      
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When compared with other mesh-reduction or meshless methods used in the 
context of the represented examples, one can conclude: 

• The method can cope with physically more involved situations than 
the front tracking BEM (Fic et al., 2000), where the calculations are 
limited to a uniform velocity field, constant material properties of the 
phases, and isothermal phase change. 

• When compared to DRBEM (Šarler and Kuhn, 1998b), the method 
does not need any integrations and boundary polygonization. 

• The method appears much more efficient as the RBFCM (Kovačević 
et al., 2003), because it does not require a solution of a large system of 
equations. Instead, small ( 5 5× , 7 7×  and 9 9×  used in present work) 
systems of linear equations have to be solved in each time-step for 
each node. This feature of the method represents its principal 
difference from the other related local approaches, where the resultant 
matrix is large and sparse (Lee et al., 2003; Shu et al., 2003; Tolstykh 
and Shirobokov, 2005). 

 
The LRBFCM is applicable for simulation of all kinds of diffusion, convection-
diffusion, and moving boundary problems. The developments in this work can 
be straightforwardly extended to tackle other types of partial differential 
equations. Our work will continue on coupling of energy equation with Navier-
Stokes equations. 
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Appendix A  

A.1 Analytical solution of the heat conduction in a 
rectangle 

The problem is posed on a two dimensional rectangular domain : x x xp p p− +Ω < < , 

y y yp p p− +< < , and boundary :x x xp p− −Γ = , y y yp p p− +≤ ≤ , :x x xp p+ +Γ = , 

y y yp p p− +≤ ≤ , :y y yp p− −Γ = , x x xp p p− +≤ ≤ , :y y yp p+ +Γ =  and x x xp p p− +≤ ≤ , shown 
in Figure A1. The boundary conditions are on the south boundary y

−Γ  of the 
Dirichlet type with fixed temperature yT − , on the east and north boundaries x

+Γ  
and y

+Γ  of the Robin type with prescribed heat transfer coefficients TCh  and zero 
temperature of the medium, and on the west boundary x

−Γ  of the Neumann type 
with zero heat flux. 

 
Figure A.1: Problem schematic 
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The analytical solution [Carslaw and Jaeger, 1995] of the test is 
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with nβ  representing the positive roots of the equation 

 ( )tan x TCp hβ β + = . (A.2) 

 

A.2 Analytical solution of the transient heat transfer in 
the rectangular corner 

The geometry of the problem is formally posed on a similar region as the first 
test case, however the region is square with 0mxp− = , 1.0mxp+ = , 0myp− = , 

1.0myp+ = , shown in Figure A2. Boundary conditions on the east x
+Γ  and north 

boundaries y
+Γ  are of the Dirichlet type with 00 CDTΓ = , and on the west x

−Γ  and 
south boundaries y

−Γ  are of the Neumann type with ( ) ( )20 W/m / W/mKNTΓ = . 
The initial conditions are 0

0 1 CT = . The analytical solution [Carlsaw and Jaeger, 
1995] of the test is 

 ( ) ( ) ( )ana ana ana, , , ,x y x yT p p t T p t T p t=  (A.3) 
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Figure A.2: Initial value problem with boundary conditions and dimensions 
 

A.3 Analytical solution of the convective-diffusive 
phase-change problem 

The exact closed form solution for checking convective-diffusive solid-liquid 
phase-change problems appears to exist only for a relatively simple one-
dimensional steady-state class of problems with uniform velocity field. The 
solution used by Pardo and Weckman [Pardo and Weckman, 1986] for checking 
their one-domain FEM-based numerical method belongs to this class of 
problems. Pardo and Weckman’s solution for equal and constant thermal 
properties of the phases has been generalized by [Šarler and Kuhn , 1998a] to 
cope with the generally different and constant thermal properties of the solid 

0Sk , 0Sc  and liquid 0Lk , 0Lc  phase. The extended analytical solution is 
particularly useful because it allows one to check the proper response of the 
numerical method regarding the temperature dependence of the material 
properties. The respective test case is defined as follows: The domain Ω  is 
described by the Cartesian coordinate x x xp p p− +< < . The boundary conditions at 

xp−  and at xp+  are of the Dirichlet type with uniform temperatures T T −
Γ Γ=  and 

T T +
Γ Γ= . The material moves with the constant uniform velocity S L= =v v v  

with components 0x =v v . The boundary temperatures and the isothermal 
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melting temperature are related by MT T T− +Γ Γ
< < . The liquid phase thus 

occupies the domain between xp−  and the phase-change interface boundary at 

Mxp , and the solid phase the domain between Mxp  and xp+ . The corresponding 
exact temperature distribution in phase ℘ has been found [Šarler and Kuhn, 
1998b] to be 

 ( ), exp x
x y x P
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T p p p A B
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with α℘  denoting the thermal diffusivity of the phase ℘; the four constants are 
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The position of the phase-change interface boundary is determined from the 
transcendental equation 

 ( ) ( )0 , ,L S
M x L Mx y S Mx y

x x

h v k T p p k T p p
p p

ρ ∂ ∂− = − +
∂ ∂

 (A.10) 

It is in this thesis solved by the simple bisection. 
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