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Abstract

The properties of self-assembled InAs/GaAs quantum dots and rings are inves-

tigated by conductive atomic force microscopy (C-AFM). Two-dimensional C-AFM

current maps and local current-voltage curves measured on quantum rings show a

lower conductivity of the central ring hole as compared to rim and surrounding pla-

nar region in the whole tip bias range investigated. This result is quite surprising

since various experimental results published agree on the fact that the central hole

is the region with the highest relative In concentration. Numerical simulations

of as-grown samples show that the difference in conductivities between the cen-

tral hole and the rim depends on the tip bias, which is clearly incompatible with

experimental results. However, it needs to be considered that the samples were

exposed to air which causes the topmost layers to oxidize. Including the presence

of a surface oxide into numerical simulations yields consistent results, which show

the same qualitative behavior as the measured conductivities.

Keywords: Quantum dots, Quantum rings, Conductive atomic foce microscopy,

Conductivity modelling, Transfer matrix method





Povzetek

Lastnosti samosestavljenih InAs/InGaAs kvantnih pik in obročev smo preučili

z mikroskopom na atomsko silo v prevodnem načinu (C-AFM). Dvodimenzionalne

slike prevodnosti kvantnih obročev ter lokalne napetostno tokovne karakteristike

razkrivajo nižjo prevodnost centralne jame v primerjavi z obodom in okolico v

celotnem uporabljenem območju napetosti konice. Rezultat je presenetljiv, saj

rezultati drugih študij kažejo, da je centralna jama območje z najvǐsjo relativno

koncentracijo indija. Numerične simulacije “as-grown” vzorcev pokažejo, da je ra-

zlika v prevodnosti med centralno jamo ter obodom odvisna od napetosti na konici

mikroskopa, kar je neskladno z eksperimentalnimi rezultati. Upoštevati je potrebno

izpostavljenost vzorcev zraku, ki povzroči oksidacijo vrhnjih plasti. Z vključitvijo

oksidirane plasti v numerične simulacije dobimo konsistentne rezultate, ki se kva-

litativno ujemajo z eksperimentalnimi.

Ključne besede: kvantne pike, kvantni obroči, mikroskop na atomsko silo v pre-

vodnem načinu, modeliranje prevodnosti, metoda prenosnih matrik





“Reality is whatever refuses to go away when I stop believing in it.”

Philip K. Dick
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Introduction

The intense progress of semiconductor electronics over the last few decades has

revolutionized our everyday lives. Recently, integrated circuits, sensors, lasers, and

other devices based on semiconductor nanostructures are permeating such diverse

fields as photovoltaics, quantum computing, and biology. The small size of these

strucutres gives them unique electronic and optical properties.

Recent advances in the epitaxial growth of semiconductor nanostructures with

techniques such as molecular beam epitaxy (MBE) make it possible to form self-

assembled nanostructures of various geometries. For years, quantum dots (QDs)

have epitomized such structures, but recently, much attention has also been dedi-

cated to torus-volcano shaped quantum rings (QRs) which are formed when QDs

are capped in appropriate conditions with a few nanometers of the substrate ma-

terial, followed by an annealing step at the growth temperature. Just like self-

assembled QDs, QRs possess atomlike properties, making them candidates for fu-

ture device applications in optoelectronics and quantum computing. On the other

hand, their ring topology allows the observation of quantum-interference phenom-

ena like the Aharonov-Bohm effect. While common characterization techniques

such as photoluminescence and capacitance spectroscopy are useful in probing en-

sembles of QDs and QRs, scanning probe microscopy techniques become more

advantageous when individual QDs and QRs are to be investigated.

This thesis focuses on InAs/GaAs QDs and QRs studied by conductive atomic

force microscopy (C-AFM). The C-AFM technique allows for the surface topogra-

phy and conductivity to be acquired simultaneously. A C-AFM tip enables current

flow between tip and sample under applied bias. The local conductivity is gov-

erned by the height of the Schottky barrier between tip and sample, which in turn

depends on the sample’s top layer composition. Previous work that focused on

C-AFM studies of InAs QDs has established that QDs are much more conducting

than the wetting layer (WL) due to the lower Schottky barrier of InAs-rich regions.

Measuring the local conductivity, one can thus obtain information about the sur-
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face composition of such structures, the focus here being the In content variation

between the capping layer, the rim, and the central hole of the QR.

Outline

Chapter 1 gives a brief introduction to quantum dots and rings. It describes their

properties and potential applications and also various methods for fabricating QDs

and QRs. The focus is on fabrication of structures via evaporation in ultra-high

vacuum. The mechanisms of QD and QR formation are explained.

In Chapter 2, the instrumentation and techniques employed in this thesis are

presented, namely, the molecular beam epitaxy (MBE) growth technique and the

basic principles of atomic force microscopy (AFM) and conductive atomic force

microscopy (C-AFM).

Chapter 3 describes the techniques used for numerical simulations of local

current-voltage (I-V) spectra. The theory behind self-consistent Poisson-Schrödinger

simulations is briefly outlined, followed by a description of the transfer matrix

method (TMM) that is used to calculate the transmission coefficient of an arbi-

trarily shaped potential.

In Chapter 4, measurements of local I-V curves, C-AFM topography and cur-

rent maps of QDs and QRs are presented. The discussion motivates the hypothesis

that a surface oxide needs to be considered in the interpretation of the results in

the case of QRs 1.

Chapter 5 deals with the numerical simulations of local I-V spectra. It de-

scribes the process and the results of numerical simulations for both the unoxidized

and oxidized QR I-V spectra and includes the discussion of the results.

1The results on QRs described in Chapters 4 and 5 have been published as T. Mlakar, G.
Biasiol, S. Heun, L. Sorba, T. Vijaykumar, G. U. Kulkarni, V. Spreafico, and S. Prato, Appl.
Phys. Lett. 92 (2008) 192105.
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Chapter 1

Quantum dots and rings:

State-of-the-art

1.1 Quantum dots

A quantum dot (QD) is a semiconductor structure of a size that is comparable to

the Fermi wavelength in all three spatial directions and which is able to confine

electrons. Due to the small size, the energy spectrum of the dot becomes discrete.

QDs are thus also called ”artificial atoms” [1] since they exhibit similar properties:

both have a discrete energy spectrum and can bind a small number of electrons.

The similarity between atoms and QDs means that QDs exhibit a variety of quan-

tum phenomena, such as charging effects including Coulomb blockade [2]. The

confinement of electrons also greatly affects the optoelectronic properties of such

materials compared with their bulk counterparts. As a result, semiconductor QDs

show great promise for optoelectronic devices, where performance greatly depends

on the shape, size, and material microstructure.

Figure 1.1: ’Pillar’ quantum dots, fabricated using a top-down approach [2].

Nevertheless, there are some differences between atoms and QDs. In contrast

to atoms, the confinement potential in quantum dots does not necessarily show
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Quantum dots

spherical symmetry. In addition, the confined electrons do not move in free space,

but in the semiconductor host crystal. The quantum dot host material, in partic-

ular its band structure, does therefore play an important role for all quantum dot

properties. Typical energy scales, for example, are of the order of 10eV in atoms,

but only few meV in QDs. Unlike in atoms, the energy spectrum of a quantum

dot can be engineered by controlling the geometrical size, shape, and the strength

of the confinement potential.

Quantum dots with a nearly spherical symmetry, or flat quantum dots with

nearly cylindrical symmetry, can show shell filling according to the equivalent of

Hund’s rules for atoms. In atomic physics, Hund’s rule states that an atomic shell

is first filled with electrons of parallel spin until the shell is half full. After that,

filling continues with anti-parallel spins. In the case of two-dimensional artificial

atoms (as is the case for the ’pillar’ QDs shown in Fig. 1.1), the second shell is

half filled when N = 4. Half filling of the third and fourth shells occurs for N = 9

and 16, respectively. These phenomena can be summarized in a periodic table for

two-dimensional elements (Fig. 1.2). The rows are shorter than those for three-

dimensional atoms due to the lower degree of symmetry.

Figure 1.2: A periodic table of two-dimensional elements - quantum dots [2]. The
elements are named after the members of the team that fabricated and characterized the
QDs.

Apart from QD pillars shown in Fig. 1.1, which are fabricated using a top-down

approach, confinement of electrons can be achieved in other ways. One possibility

is to define metallic electrodes on top of a semiconductor heterostructure by means

of electron beam lithography (Fig. 1.3). The heterostructure is fabricated in such

a way that the electrons within are already confined in two dimensions, so when

a negative bias is applied to the electrodes, an electrostatic potential is created

which confines the electrons in all three directions.

Finally, probably the most common way of fabricating QDs is by means of
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Figure 1.3: Scanning electron micrograph of an electrostatically defined quantum dot
[3].

evaporation in ultra high vacuum (UHV) which forms the so called self-assembled

QDs (Fig. 1.4), which are the topic of this text.

Figure 1.4: Atomic force micrograph of self-assembled quantum dots [4].

1.1.1 Fabrication of self-assembled Quantum Dots

Self-assembly of quantum dots via epitaxy techniques is realized by depositing a

small amount (a few monolayers) of a material on a substrate. When a material is

deposited onto a surface consisting of a different material, the deposited material

arranges itself in such a way that it minimizes the surface energy. Surface energy

can be described as the interaction between the forces of cohesion and the forces

of adhesion. This balance of forces is given by the Young equation

γSV = γSL + γLV cosΘ (1.1)
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Quantum dots

where γSV , γSL, and γLV are the interfacial tensions between the solid and the

vapor, the solid and the liquid, and the liquid and the vapor, respectively (see Fig.

1.5). Θ is the contact angle that the drop makes with the surface in equilibrium

(also known as wetting angle). An example of a large contact angle can be observed

in the macroscopic world in the case of water droplets deposited on hydrophobic

surfaces.

Figure 1.5: The balance of surface forces between all three phases [5].

Depending on the magnitude of the respective interface tensions, three differ-

ent cases can be distinguished. On a higly reactive surface, the following inequality

would hold

γSV ≥ γSL + γLV (1.2)

The wetting angle Θ is equal to 0 or undefined and thus the material is said to wet

the surface. In the oposite case, when we have

γSV ≤ γSL + γLV , (1.3)

the deposited material does not wet the (poorly reactive) surface, instead it forms

droplets with a finite contact angle Θ. The third possibility is to have a metastable

equilibrium, where

γSV ≈ γSL + γLV . (1.4)

Depending on which of the above mentioned conditions holds, three epitax-

ial growth modes are possible: Frank-van der Merve mode, Volmer-Weber mode

and Stranski-Krastanov mode (Fig. 1.6). Self-assembled QDs are formed via the

metastable equilibrium Stranski-Krastanov (SK) mode.

The formation of 3D islands via SK mode can also be interpreted in terms of

relaxation of strain. In order to form self-assembled QDs, materials whose crystal

lattice constant differs from the one of the substrate need to be deposited (i.e.
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InAs on GaAs or Ge on Si). When the first layer of a lattice-mismatched material is

deposited, the incoming atoms arrange according to the substrate lattice. However,

since the substrate lattice parameter differs from the one of the incoming material,

the monolayer is strained. The strain energy increases linearly with the deposited

thickness, and at some critical thickness it will become too large. The strain will

be relaxed, and energetically more favorable 3D islands will be formed. After

island formation the surrounding surface still contains residual InAs that forms the

so-called wetting layer - WL.

Figure 1.6: Cross-sectional views of the three primary modes of thin film growth: (a)
Volmer-Weber, (b) Frank-van der Merwe, and (c) Stranski-Krastanov. Each mode is
shown for several different amounts of surface coverage.

1.2 Quantum rings

Quantum rings are, as the name implies, ring-like nanostructures similar to quan-

tum dots in that due to their small size they also provide charge carrier confinement

and exhibit unique electronic and optical properties associated with their size and

shape [6]. Quantum rings connected to leads also allow the observation of the

Aharonov-Bohm effect [7], magnetic flux trapping and persistent currents, not af-

fected by random scatterers [8, 9]. An example of a quantum ring fabricated by

means of local anodic oxidation with a biased AFM tip is shown in Figure 1.7.

1.2.1 Quantum Ring fabrication

As mentioned above, ring-like quantum structures can be obtained by modifying

a semiconductor surface to get the desired shape. This thesis focuses on self-
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Quantum rings

Figure 1.7: An AFM image of a quantum ring electronic device fabricated via local
anodic oxidation [10].

assembled quantum rings, specifically InAs/GaAs QRs fabricated by molecular

beam epitaxy. Self-assembled ring-like nanostructures can also be formed by other

methods like droplet epitaxy [11].

InAs/GaAs QR formation is preceeded by first fabricating self-assembled InAs

quantum dots on a GaAs surface as described in section 1.1.1. The InAs QDs are

then capped with a thin layer of GaAs followed by annealing under As2 flux [12].

Annealing of the partially capped dots causes strong material intermixing and

redistribution towards the surrounding wetting layer (WL). In order to obtain a

QR with an outer rim protruding out of the WL and a central hole below the WL

level, the annealing time needs to be carefully controlled due to the fact that such a

structure is not in thermodynamic equilibrium [13]. The evolution of capped InAs

QDs with respect to annealing time is shown in Figure 1.8. As the annealing time

is increased, an overall increase in the lateral size of the structures is observed. The

QR structure forms after about 30s annealing time and later disappears and only a

depression surrounded by a flat surface is observed after a certain annealing time.

The same technique can also be used in transforming InAs/InP [14] and SiGe/Si

QDs [15] to QRs.

Although a complete model of QR formation has not yet been developed, a

few possible scenarios have been proposed. An example of a suggested mechanism

is shown in Figure 1.9. Here it is assumed that the GaAs capping layer only

covers the sides of the InAs QDs thus leaving the top of the dots exposed (Fig.

1.9a). This assumption is supported by the fact that no QR formation is observed
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Figure 1.8: AFM images of InAs/GaAs QDs capped with 2nm GaAs followed by a) 0,
b) 30, c) 120 and d) 360 s of annealing [13].

when the thickness of the GaAs capping layer is comparable or larger than the

QD height [16]. At the annealing temperature (around 500◦C) the mobility of In

is higher than that of Ga, and so In diffuses outward and thus creates a hole at

the site of the InAs dot. In the diffusion process the outgoing In is alloyed with

the surrounding substrate atoms which reduces the material’s mobility and finally

leads to the formation of a ring-shaped nanoisland (Fig. 1.9c).

In addition to the diffusion process, there is strong evidence that additional

mechanisms are needed to explain QR formation. The coexistence of QDs and

completely formed QRs at certain growth conditions (as shown in Figure 1.10)

suggests that QR formation is an abrupt process that diffusion alone cannot account

for. Furthermore, the almost sharp QR edges also seem to be incompatible with

an exclusively diffusion driven procees. As we have seen in the description of QD

formation via Stranski-Krastanov growth, surface and interface forces are the main

drivers of island formation. In uncapped QDs the balance is described by the

Young equation (1.1). For partially capped dots the corresponding equation would

be (Fig. 1.11b)

γac = γbc cosΘ− γab cosΘ, (1.5)

which is incompatible with Eq. 1.1. We are left with an uncompensated Young

force (Fig. 1.11c) given by [4]
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Quantum rings

Figure 1.9: Diffusion-driven transformation from QDs to QRs. When the sample is
annealed, the In-rich material (dark gray) diffuses away from the original location of the
dot, whereas the less mobile Ga-rich material (light gray) remains mostly unchanged [17].

Figure 1.10: At certain growth conditions, not all islands exhibit a well-formed central
hole, which suggests that the hole formation process is abrupt [17].
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∆F = γab (1 + cosΘ) , (1.6)

which causes the system to seek a new equilibrium by disintegrating the partially

capped island and creating the central hole. We can therefore conclude that the QR

formation is driven by at least two distinct processes. The In-rich material diffuses

out of the uncapped dots, and the dewetting process establishes an equilibrium of

interface forces.

Figure 1.11: Model of QR formation via wetting droplet instability. a) balance of forces
in an uncapped QD, b) balance of forces in partially capped QDs, c) an unbalanced net
outward force, d) disintegration of the partially capped dots and formation of the central
hole [17].
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Chapter 2

Experimental

2.1 Molecular Beam Epitaxy

The self-assembled QDs and QRs used in this work are fabricated with a technique

known as molecular beam epitaxy (MBE). MBE is performed in an ultra-high vac-

uum (UHV) chamber in order to minimize the amount of impurities incorporated

into the evaporated material. In a solid-source MBE chamber ultra-high purity

materials are heated up to the temperature where they begin to slowly sublimate

or evaporate. The evaporated molecules or atoms are transported ballistically (if

a high enough vacuum is achieved) to the heated substrate wafer where they are

free to diffuse and are eventually incorporated into the growing material film. The

technique allows the fabrication of high quality and high purity crystals, or in the

case of simultaneous evaporation from more than one effusion cell, the formation

of binary compounds or ternary alloys (i.e. GaAs or InGaAs), where the individual

material contents are precisely controlled. Another advantage of MBE is the high

control over deposited material thickness, since it allows monoatomic layer-by-layer

growth with an accuracy even better than one monolayer (≈ 0.3nm). A schematic

drawing of an MBE system is shown in Figure 2.1. The main components of an

MBE system are:

• A stainless-steel growth chamber which holds the ultra-high vacuum. It is

connected to the preparation chamber used for degassing the substrates before

growth.

• The pumping system which lowers the pressure to values from 10−11 to 10−12

mbar in order to minimize the concentration of impurities.

15



Molecular Beam Epitaxy

Figure 2.1: A schematic drawing of a MBE system.

• Liquid nitrogen cryopanels provide thermal isolation between different mate-

rial cells and prevent material re-evaporation from chamber walls.

• Effusion cells contain the high-purity materials for evaporation. The cells are

focused on the substrate and must provide high flux stability and uniformity.

On-off switching of the flux is realized with pneumatic or mechanical shutters

in front of the cells.

During epitaxial growth the atoms are physisorbed or chemisorbed on the

surface where they can undergo different processes as shown in Figure 2.2. For

III-V semiconductors the so-called three temperatures method [18] is used, where

the substrate temperature is kept in between the evaporation temperatures of the

III and V group source materials. Group III atoms have a lower vapor pressure

compared to group V elements, therefore the typical effusion cell temperatures are

lower for group V (around 300◦C for As) than for group III (around 800◦C and

900◦C for In and Ga, respectively). The vapor pressure of group III elements is

almost zero at the substrate temperature, which means that every impinging atom

is chemisorbed to the surface. Group V atoms, on the other hand, are much more

volatile due to the higher vapor pressure and are thus likely to re-evaporate. To

compensate for this difference, the V/III beam flux ratio is usually kept much

16



Experimental

Figure 2.2: Surface elementary processes: a) surface diffusion, b) reevaporation, c)
formation of clusters, d) incorporation at a step, e) edge migration, and f) incorporation
at a kink.

higher than one. A high flux ratio, however, does not affect the one-to-one III-V

element ratio in the crystal. It has been shown in the case of homoepitaxial growth

of GaAs that As atoms do not stick to the surface if there are no Ga atoms available

for bonding. The growth rate is thus controlled by the Ga flux [19]. For a growth

rate of about 1µm/h the typical fluxes are ∼ 1016 atoms cm−2s−1 for group V and

∼ 1015 atoms cm−2s−1 for group III elements.

In order to monitor the growth rates, Reflection High Energy Electron Diffrac-

tion (RHEED) is used. The technique uses a high energy electron beam (up to

20keV) which impinges on the sample at an angle of a few degrees. A floures-

cent screen captures the diffraction pattern. Because of the low angle of incidence

the electrons are only scattered by the topmost atomic layers which results in a

surface-sensitive diffraction pattern. By monitoring the oscillations of the zero or-

der diffraction spot intensity we can infer the monolayer coverage during growth in

real time (Fig. 2.3). Growth rates of InAs on GaAs, however, are difficult to obtain

with this technique since the lattice mismatch between the materials results in 3D

island formation. InAs growth rate is evaluated by measuring the growth rate of

GaAs in an InGaAs sample combined with ex-situ determination of In content by

X-ray diffraction.

The samples for the purpose of this thesis were grown in the MBE chamber at

Laboratorio TASC INFM-CNR in Trieste (Fig. 2.4), which is primarily dedicated

to the growth of high-mobility AlGaAs/GaAs heterostructures.
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Molecular Beam Epitaxy

Figure 2.3: Left: an example of a RHEED oscillation measurement. Right: a schematic
view of the relationship between the intensity of the RHEED signal and the monolayer
coverage.

Figure 2.4: A photograph of the high-mobility MBE system in Laboratorio TASC
INFM-CNR in Trieste.
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2.2 Atomic Force Microscopy

The atomic force microscope (AFM) was introduced in 1986. The AFM was a new

type of microscope that was able to obtain high resolution images of both conduc-

tive and insulating samples. The AFM is part of the scanning probe microscopes

(SPMs) family. The operating principle of all SPMs is to form an image of surfaces

using a sharp physical probe (tip) that scans the sample. An image of the surface

is obtained by mechanically moving the probe in a raster scan of the specimen.

The various SPMs differ in the parameter used to detect the tip-sample distance.

In the case of AFM the distance is determined from the forces acting between the

tip and the sample.

The forces that arise between the tip and the sample are [20]: (i) electrostatic

or Coulomb interactions, (ii) polarization forces, (iii) quantum-mechanical forces,

which give rise to covalent bonding and repulsive exchange interactions, and (iv)

capillary forces that arise when the AFM is operated in a humid environment. The

repulsive forces increase sharply as the tip-sample distance becomes comparable to

the interatomic distances, while, when separating tip from sample, they drop to

zero at tip-sample separation of about 0.3nm after which the interactions become

attractive (see Fig. 2.5).

Figure 2.5: The relation betweent the force and tip-sample distance. Depending on the
force, an AFM can be operated in one of three regimes: contact, intermittent contact,
and non-contact mode.
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Atomic Force Microscopy

The tip-sample interactions are usually described by a Lennard-Jones poten-

tial:

U (d) = 4ǫ

[

(σ

d

)12

−
(σ

d

)6
]

, (2.1)

where d is the tip-sample distance, σ is the distance at which U(σ) = 0, and ǫ

is the depth of the potential well. The derivative of Eq. 2.1 represents, to a first

approximation, the force between tip and sample (see Fig. 2.5).

Since the introduction of the AFM, quite a few derivative techniques that are

mainly focused on semiconductor characterization have been developed. Among

these we find Scanning Capacitance Microscopy [21] and Scanning Spreading Re-

sistance Microscopy [22] which are primarily used to image the distribution of

dopant concentrations within semiconductors. The development of Kelvin Probe

Force Microscopy [23] allows the detection of tip-surface contact potential differ-

ences. Further techniques include Electrostatic Force Microscopy which enables

the detection of charges within dielectric films [24] and Conductive Atomic Force

Microscopy (C-AFM). C-AFM differs from conventional AFM in that it allows

highly sensitive current measurements of the sample through applying a bias to a

conductive tip. Apart from conductivity and topography measurements performed

in parallel, C-AFM can be utilized to locally modify surfaces and fabricate nanos-

tructures by local anodic oxidation (LAO) [25]. LAO occurs in a humid enviroment

when a water meniscus is formed between the tip and the sample. When a high

enough bias is applied, the water molecules in the meniscus dissociate, and the

OH− ions migrate towards the sample surface where oxidation occurs (Fig. 2.6).

The C-AFM technique will be presented in further detail later in this section.

Figure 2.6: Modification of the sample surface via local anodic oxidation using a biased
AFM tip [25].

20



Experimental

2.2.1 Atomic Force Microscopy operation

The tip of an AFM is fixed to a cantilever and mounted on a carrier chip. As the tip

interacts with the sample, the cantilever bends. This deflection is measured with a

laser beam which is directed at the reflective backside of the cantilever. The laser

beam is deflected by the cantilever onto a position sensitive photodetector (PSPD),

see Fig. 2.7. A change in tip-sample force results in a change in the bending of

the cantilever which causes the laser spot on the PSPD to move. The intensity of

the signal measured by the PSPD is thus related to the force which the cantilever

experiences. The piezo tube under the sample is used for fine movements in all

three directions (x, y, z).

Figure 2.7: Schematic of an AFM system.

Two basic AFM operational modes are used: constant height and constant

force mode. In constant height mode, the AFM tip is scanned on the sample at

a fixed distance, and the sample topography is related directly to the cantilever

bending. Constant height mode is more suitable for high scanning rates but the

drawback is that the sample surface must not be corrugated too much. In constant

force mode, the feedback loop acts on the piezo tube in order to keep the tip-sample

force constant at a pre-set value. In this mode, the sample topography is given by

the movements of the piezo.

From the point of view of interaction force, there are three possible regimes

of AFM operation: contact, non-contact and intermittent contact. Each mode
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corresponds to a specific region in the force-distance curve as shown in Fig 2.5.

In contact mode (CM), the tip is touching the sample surface. The tip-sample

interactions are repulsive with a magnitude of about 10−6 - 10−9 N. The short

range repulsive forces allow imaging with a relatively high resolution, but on the

other hand the sample surface can be damaged in the process. In non-contact

mode (NCM), the tip-sample distance is 10 to 100 nm. Due to van der Waals

interactions, the tip-sample force is attractive with a typical magnitude of about

10−9 - 10−12 N. In NC mode, the cantilever is caused to vibrate just above its

resonance frequency. When the tip approaches the sample, the interactions cause

a decrease in the resonance frequency which in turn results in a decrease of the

amplitude of oscillation (Fig. 2.8a). The amplitude is monitored via a feedback

loop in order to control (and read) the tip-sample distance. The interactions in

NC mode are about 103 - 106 times lower than in contact mode and can thus be

used to image very delicate samples such as organic films. On the other hand, the

spatial resolution that can be achieved in NC mode is not as high as in contact

mode, since NC mode is based on long-range van der Waals interactions.

Figure 2.8: Frequency and amplitude shift of an AFM cantilever in a) non-contact
mode and b) intermittent contact mode.

The intermittent contact mode (ICM) is similar to NCM, but in ICM the

cantilever is vibrating at a frequency just below the resonance freqency. As the

tip is brought closer to the sample, the interaction again causes a decrease in the

resonance frequency which, in contrast to the NCMmode, now results in an increase

in the vibration amplitude up to the point where the tip touches the sample surface.

This in turn reduces the vibration amplitude back to the set value. As in NCM,

the vibration amplitude is used to control the tip-sample distance. The spatial

resolution of ICM is comparable to that of CM while the interaction strength lies

between CM and NCM.
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2.2.2 Conductive Atomic Force Microscopy

As mentioned before, a C-AFM system allows to obtain simultaneous topography

and conductivity measurements [26, 27]. Unlike in an STM, the topography infor-

mation is completely separated from the electrical part in a C-AFM. To obtain the

additional electrical signal, a voltage is applied between the conductive AFM tip

and the sample. The bias is usually applied to the sample. The resulting current

is measured using a highly sensitive amplifier as a current-to-voltage converter as

close to the tip as possible to minimize noise. Depending on the current range to

be measured, an operational amplifier (OA) based electrometer or a diode based

logarithmic amplifer can be used. A typical C-AFM scheme based on an OA is

shown in Figure 2.9. Additionally, the amplifier gain needs to be chosen according

to the range of measured currents of a particular material. The current ranges can

be from a few fA up to hundreds of nA. The measured samples are usually mounted

on the sample holder with conductive silver paste or with a durable conductive two

component epoxy glue. In case the samples need to be baked (which would destroy

the conductivity of silver paste and epoxy glue), mechanical clamps can be used.

Figure 2.9: The setup of a C-AFM system [28]. The current is converted to voltage
according to V (i) = i ·Rf .

The quality of a C-AFM measurement also depends on the conductive tip

properties. Among the various conductive probes for C-AFM, the ones coated

with wear-resistive conductive materials are usually preferred due to their electrical

properties and stability of tip geometry. Standard coatings include Au, TiN, PtIr

and heavily doped diamond. A SEM image of a diamond coated probe is shown in

Figure 2.10. In choosing the probe (diamond vs. metal-coated) there is a trade-off
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between resistivity (lower for metal-coated probes) and resistance to wear (higher

for diamond-coated tips). Additionally, the radius of curvature is smaller for metal-

coated tips (typically 35 nm compared to 100 nm for diamond-coated probes [28])

which also needs to be taken into account depending on the roughness of samples

under investigation. In the case of barrier formation at tip-sample contact, the

work functions of coating materials also need to be considered.

Figure 2.10: SEM image of a diamond-coated probe [28].

The C-AFM technique can be used to investigate materials in a variety of

ways. As mentioned, 2D current maps can be obtained together with topography.

For this, a constant voltage is applied to the sample and the tip is scanned across

the surface in contact mode. In this way we obtain two images of the same area,

one with topographical and one with electrical information which enables us to

study the correlation between the two. Apart from 2D maps, one can investigate

local properties of a material by measuring individual current-voltage (I-V) curves.

In this case, the tip is brought into contact with the sample, with the scanner off,

and the voltage to the tip or sample is ramped to a predefined value in a certain

time. In order to obtain information on the statistical distribution, several I-Vs

are usually acquired in several spots on the sample surface. A similar experiment

can be performed to determine the electric stress influence if instead of the voltage

ramp we apply a constant voltage for a period of time. With this approach, the

current versus time and as a function of applied voltage can be measured, and

information about the influence of current on the sample is obtained.

Using all the mentioned approaches, the C-AFM technique has thus far been

used for investigations of a wide range of materials. Apart from the study of

quantum dots and rings which will be discussed in the next section, materials

such as dielectrics [29], ferroelectrics [30], organic materials [31], and even carbon

nanotubes have been investigated with C-AFM [32].

The C-AFM system used in this thesis is shown in Figure 2.11. It is an APE
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Research AFM-R80 system that enables us to perform C-AFM measurements using

an amplifier with a gain of 1012V/A. The noise level of the current measurements

can be as low as 10fA. When performing C-AFM measurements, the AFM system

was kept in a glovebox under a nitrogen atmosphere. This enabled us to minimize

the humidity and thus prevent local anodic oxidation of the sample surface.
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Figure 2.11: Top: an APE Research AFM-R80 system equipped with an amplifier
with a gain of 1012V/A and a current noise of about 10fA. Bottom: for the C-AFM
measurements, the AFM system is placed under a glovebox in a nitrogen atmosphere in
order to minimize humidity and thus avoid local anodic oxidation.
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Chapter 5

Numerical techniques

In addition to acquiring C-AFM topography and current maps we also performed

local current-voltage (I-V) spectroscopy measurements. The measured I-V spectra

are compared to theoretical models for different sample structures. Numerical

calculations of I-V spectra are based on the Tsu-Esaki formalism, which describes

the net current density flowing from a metal to a semiconductor through a potential

barrier [33]. In the 1D approximation where current flows only in the x direction,

the net current density assumes the form [34]

J =
qm∗kBT

2π2~3

∫

∞

Emin

T (Ex) · ln





1 + exp
(

EF,M−Ex

kBT

)

1 + exp
(

EF,S−Ex

kBT

)



 dEx, (5.1)

where T (Ex) is the transmission coefficient for the electrons impinging on the po-

tential barrier as a function of the incoming electron energy and EF,M and EF,S are

the electron quasi-Fermi levels in the metal and the semiconductor, respectively.

Emin is the minimum energy at which tunneling can occur. In order for the net

current to be calculated, we need to know the transmission coefficient which in turn

depends on the shape of the potential barrier. The numerical procedure is thus

as follows: given a certain sample structure and surface (metal) bias we calculate

the shape of the potential barrier (see Section 3.1); once the potential is known,

we calculate the transmission coefficient as a function of incoming particle energy

(see Section 3.2); using Eq. 5.1, finally we calculate the net metal-semiconductor

current density for a certain voltage bias of the metal; we repeat the procedure

for other values of surface bias and combine the results into an I-V spectrum. It

should be stressed that the quantity being simulated is current density, whereas

the quantity measured is total local current. Nevertheless, the simulations provide
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crucial qualitative estimates of the relative conductivities of different sample re-

gions. The numerical techniques employed in this procedure are presented in the

following subsections.

5.1 Poisson-Schrödinger simulations

Poisson-Schrödinger simulations are a frequently used tool to estimate energy

bands, carrier densities, distribution of charge in the structures, and number of

populated subbands in various semiconductor structures. The conventional nu-

merical approach is to obtain a self-consistent, one-dimensional solution of the

Schrödinger and Poisson equations using the finite-difference method where real

space is divided into discrete mesh points. The 1D Poisson solver developed by

Gregory Snider, used in this thesis, employs the above-mentioned approach using a

non-uniform mesh size [35, 36]. The basic equations used are the one-dimensional,

one electron Schrödinger equation

−~
2

2

d

dx

(

1

m∗(x)

d

dx

)

ψ(x) + V (x)ψ(x) = Eψ(x), (5.2)

where ψ is the wave function, E is the energy, V is the potential energy, ~ is the

Planck constant divided by 2π andm∗ is the effective mass, and the one-dimentional

Poisson equation

d

dx

(

ǫs(x)
d

dx

)

φ(x) =
−q [ND(x)− n(x)]

ǫ0
, (5.3)

where ǫs is the dielectric constant, φ is the electrostatic potential, ND is the ionized

donor concentration, and n is the electron density distribution. We set the potential

energy V to be equal to the conduction band energy in order to find the electron

distribution in the conduction band. The relation between the potential energy

V and the electrostatic potential φ in a quantum well with an arbitrary potential

energy profile is

V (x) = −qφ(x) + ∆Ec(x), (5.4)

where ∆Ec(x) is the pseudopotential energy due to the band offset at the heteroin-

terface. The relation between the wavefunction ψ(x) and the electron density n(x)

is given by

n(x) =
m
∑

k=1

ψ∗

k(x)ψk(x)nk, (5.5)
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where m is the number of bound states, and nk is the electron occupation for each

state. The latter can be obtained from

nk =
m∗

π~2

∫

∞

Ek

1

1 + exp (E − EF )/kT
dE, (5.6)

where Ek is the eigenenergy.

A self-consistent solution for Eqs. 5.2 and 5.3 is obtained using an iterative

process. Given an initial approximation for the potential V (x), the wave functions,

and the eigenenergies Ek we can calculate n(x) using equations 5.5 and 5.6. The

resulting n(x) together with the known donor concentration ND are used in Eq. 5.3

to get φ(x) from which we get the new potential V (x) using Eq. 5.4. The process

is continued iteratively until a self-consistent solution with the desired accuracy is

obtained.

5.2 Transfer matrix method

Once the shape of the potential barrier is known, we approximate the transmis-

sion coefficient for the electrons incident on the potential barrier using the transfer

matrix method (TMM). TMM is a numerical technique which can be used to cal-

culate the transmission and reflection coefficients of an arbitrarily shaped surface

potential. The basic idea is to divide the surface potential into layers and approx-

imate each layer with a constant potential (Fig. 5.1) for which the solution of the

one-dimensional, time-independent Schrödinger equation is known. By applying

continuity conditions for wavefunctions and their derivatives on layer interfaces,

the relation between the wavefunctions of the incoming electrons and the electrons

on the other side of the potential barrier can be obtained [37].

Figure 5.1: An arbitrary surface potential is approximated with adjacent layers of
constant potential for which the transmission coefficient can be obtained analytically.
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If we consider a single constant potential jump of height V at x = 0, the

solution of the stationary Schrödinger equation in region 1 (x < 0) can be written

as

Ψ1 (x, k1) = A1e
ik1x +B1e

−ik1x (5.7)

and in region 2 (x > 0) as

Ψ2 (x, k2) = A2e
ik2x + B2e

−ik2x, (5.8)

where k1 =
√
2mE/~ and k2 =

√

2m(E − V )/~. By applying the continuity

conditions at x = 0

Ψ1 (0) = Ψ2 (0) (5.9)

and

dΨ1

dx
(0) =

dΨ2

dx
(0) , (5.10)

we obtain the relations

A1e
ik1x + B1e

−ik1x = A2e
ik2x + B2e

−ik2x (5.11)

ik1A1e
ik1x − ik1B1e

−ik1x = ik2A2e
ik2x − ik2B2e

−ik2x (5.12)

Written in matrix form, the relations become

[

eik1x e−ik1x

ik1e
ik1x −ik1e−ik1x

][

A1

B1

]

=

[

eik2x e−ik2x

ik2e
ik2x −ik2e−ik2x

][

A2

B2

]

(5.13)

The above can be rewritten as

T (x, k1)

[

A1

B1

]

= T (x, k2)

[

A2

B2

]

(5.14)
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⇔
[

A2

B2

]

= T−1 (x, k2)T (x, k1)

[

A1

B1

]

(5.15)

where we denoted the 2 × 2 matrices with T (x, k1) and T (x, k2), respectively. By

multiplying the matrices we get the transfer matrix TM , which relates the coeffi-

cients of the wavefunctions in region 1 with those in region 2:

TM (x, k1, k2) = T−1 (x, k2)T (x, k1) (5.16)

By repeating the procedure for all interfaces of adjacent constant potential regions,

we get

[

AN

BN

]

= TM (x, kN−1, kN )TM (x, kN−2, kN−1) . . . TM (x, k1, k2)

[

A1

B1

]

(5.17)

By again multiplying the matrices in Eq. 5.17 and setting BN = 0 (we take the

particles to be incoming from the left-hand side only), we get

[

AN

0

]

= TT

[

A1

B1

]

=

[

t11 t12

t21 t22

][

A1

B1

]

, (5.18)

where TT is the global transfer matrix which relates the wavefunction of the incom-

ing particles with the wavefunction of the reflected and the transmitted particles.

From the above relation we get

t21A1 + t22B1 = 0 (5.19)

and

AN = t11A1 + t12B1 = A1

(

t11 −
t12t21
t22

)

(5.20)

The reflection and transmission coefficients are then

R =

∣

∣

∣

∣

B1

A1

∣

∣

∣

∣

2

=

∣

∣

∣

∣

t21
t22

∣

∣

∣

∣

2

(5.21)

T =

∣

∣

∣

∣

AN

A1

∣

∣

∣

∣

2

=

∣

∣

∣

∣

t11 −
t12t21
t22

∣

∣

∣

∣

2

. (5.22)
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The transmission coefficient is input into Eq. 5.1 to obtain a value of the net

current density, which represents a point of the I-V spectrum. The procedure is re-

peated for different surface bias values until a full I-V curve is obtained. Numerical

calculations of transmission coefficients and net current densities were performed

using Mathematica [38]. The routines are presented in Appendix A.
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Chapter 6

C-AFM of quantum dots and

quantum rings

6.1 C-AFM of quantum dots

Initially, quantum dot samples were mapped with C-AFM. To avoid local anodic

oxidation of the sample surface, the C-AFM system was placed under a glovebox

in a controlled nitrogen atmosphere, keeping the relative humidity at around 14%

for all C-AFM measurements. The samples were attached to a conductive sample

holder with conductive silver paste. Additionally, indium contacts were made be-

tween the sample surface and the sample holder to provide better conductivity for

C-AFM measurements.

Figure 6.1: Topography (left) and current (right) maps of QDs (sample no. HM 1926d),
measured simultaneously with a tip bias of -2V. Image size is 1.5µm × 1.5µm, tip scan
speed is 1µm/s. Maps were acquired using a Ti-Pt coated n-doped silicon tip (NSG14
by MicroMasch), with a tip-sample force of 30nN.
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Previous work that focused on C-AFM studies of QDs has established that

InAs QDs are much more conducting compared to the surrounding wetting layer

due to the lower Schottky barrier of InAs-rich regions [39–41]. The higher conduc-

tivity of InAs is a consequence of a lower band-gap (0.354eV at 300K) compared

to that of GaAs (1.424eV at 300K). The topography and current measurements of

QDs are shown on Fig. 6.1. The QDs are 5-8nm high with a diameter in the range

of 100-150nm. Consistent with reports in literature, the conductivity of QDs is

higher than that of the WL. When comparing the topography and current images,

we notice that the shape of the QDs seen in the topography image is circular - the

elongation of the QD shape in the current image is an artefact due to saturation

of the amplifier.

6.1.1 I-V measurements

In addition to current mapping, local I-V spectroscopy on QDs was also performed.

In this case, the tip is brought into contact with the sample at a specific point on

the surface, and the voltage is ramped while the current is being collected. The

results are shown in Fig. 6.2. Both curves exhibit rectifying behaviour due to the

Schottky barrier. Comparing the QD and WL I-V curves confirms the existance of

a higher Schottky barrier in the WL due to the lower In content. The discrepancy

in the absolute current values between Fig. 6.1 and Fig. 6.2 is due to the different

AFM tip-sample force.

Figure 6.2: I-V spectra of InAs QDs and of the surrounding WL. The red line is an
average of 10 measured I-V curves and the blue line an average of 8 I-V curves. The
curves were acquired with a resolution of 0.05V and a sweep rate of 1V/s.
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6.2 C-AFM of quantum rings

As next step, topography and current maps of QRs were measured. As with the QD

samples, the measurements were performed in a controlled nitrogen atmosphere.

The results measured on sample no. HM 2227 are presented in Fig. 6.3. Topography

measurements and cross-sectional profiles such as the one shown in Fig. 6.5 reveal

that QRs have a typical outer diameter of about 150nm with a rim height of

about 0.5nm above the wetting layer and the central hole about 2nm deep below

the rim (Fig. 6.4). The most significant feature exhibited in the current map in

Fig. 6.3 is the lower conductivity of the central QR hole compared to the rim and

capping layer. The QRs in sample HM 2227 were fabricated by depositing 2nm

of GaAs on QDs that were formed with the deposition of 2 monolayers (ML) of

InAs on a doped GaAs substrate at 550◦C. Different regions of the sample (1/4

of a 2 inch wafer) were measured and yielded similar qualitative results. C-AFM

measurements were also performed on sample HM 2152, where QRs are formed on

QDs obtained with the deposition of 1.5 ML of InAs. Apart from n-doped silicon

tips used for obtaining Fig. 6.3, Ir-Pt coated tips were also used and yielded similar

results. In all experiments the samples were conducting for tip bias values larger

than -2V and all exhibited higher conductivity of the QR rim compared to that of

the QR central hole. Typical tip-sample forces in our measurements were 20-60nN

and scan speeds in the 200-1000nm/s range were used.

Figure 6.3: Topography (left) and current (right) maps of QRs, measured simultane-
ously with a tip bias of -2.5V (sample no. HM 2227). Image size is 1µm× 1µm, tip scan
speed is 1µm/s. Maps were acquired using a n-doped silicon tip (CSG10 by NT-MDT),
with a tip-sample force of 30nN.

A closer look at the conductivity of different QR regions is given in Fig. 6.5.

The figure shows cross-sections of topography and current obtained through the
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Figure 6.4: Schematic of the QR topography cross-section with typical dimensions
marked. The rings were obtained by depositing 2nm of GaAs on QDs at the surface of
a GaAs substrate.

QR center. Consistent with the observations made in Fig. 6.3, the superimposed

topography and current cross-sections show that the lowest conductivity is mea-

sured in the central hole. The extent of low conductivity, however, is not limited to

just the central (lowest) point of the QR hole. As we move radially outward from

the center (and up the inner slope of the ring), the conductivity remains constant

until a certain point where it starts to rise.

6.2.1 I-V measurements

To further investigate the conductivities of the central QR hole and the rim, I-

V curves on both regions were measured (Fig. 6.6). In the measured I-V curves

we observe that for all measured bias values the conductivity of the central hole

is lower than that of the rim, consistent with Fig. 6.3. The QR on which the

I-V curves were measured is shown in Figure 6.7. It was observed that the AFM

scanner can experience drift between consecutive images (repeating a scan in the

same position yields a slightly shifted image). Due to measurement noise it is

not trivial distinguishing between individual QR rim and QR central hole I-Vs.

To make sure that an I-V curve was taken at the desired position, the QR under

investigation was repeatedly imaged after every few I-V curve measurements. We

are therefore sure of the assignment of the curves to rim and hole.
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Figure 6.5: Topography and current cross-sections of a QR superimposed. The current
cross-section is an average of 5 curves. The region of lowest conductivity is not limited
to just the central point of the QR hole.
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Figure 6.6: Measured I-V curves on QR rim (red) and central hole (blue), respectively.
The red curve is an average of 109 individual I-V curves and the blue an average of 106
curves. The curves were acquired with a resolution of 0.05V and a sweep rate of 0.6V/s,
with a tip-sample force of around 45nN.
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Figure 6.7: An AFM image of the quantum ring on which the I-V spectra were mea-
sured.

6.3 Discussion

C-AFM measurements on QDs yield results consistent with literature. Due to

higher In content in the QDs, they exhibit a higher conductivity compared to the

surrounding wetting layer. In QRs, the conductivites of the rim andWL are similar,

and the central hole is the region of lowest conductivity. In order to understand

this result, the composition of QRs needs to be examined.

6.3.1 QR composition

The available data on QR composition stems from investigations using x-ray pho-

toemission electron microscopy (XPEEM) [42], cross-sectional scanning tunneling

microscopy (XSTM) [43] and transmission electron microscopy (TEM) [44]. Here,

we will describe the XPEEM measurements in more detail. For the topmost layer

of the QR sample consisting of InxGa1−xAs with varying In content x, XPEEM

measurements show that the In content is lowest in the capping layer (x = 0.52)

and gradually rises towards the central QR hole, where it reaches its maximum

(x = 0.57) (Fig. 6.8). However, for the interpretation of these numbers the photoe-

mission process needs to be considered in more detail. It needs to be noted that

with XPEEM the measured value of x is a weighted average of the compositions

xi of individual layers i at depth di (d is the monolayer thickness) according to the

equation [45]
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x =

∞
∑

i=0

xie
−di/λ

∞
∑

i=0

e−di/λ

. (6.1)

Given that the mean free path λ of the photoelectrons in this particular mea-

surement is about 0.5nm [45] it is clear that the GaAs substrate layer (with zero

In content) also contributes to the above value of x. Taking this into account we

can extract the actual values of x for layers above the GaAs substrate using Eq.

6.1. For the central hole we get x = 0.67 and for the QR rim x = 0.55. These

calculated values assume a uniform vertical composition profile for the layers above

GaAs. This is an approximation since TEM and XSTM measurements have shown

that In composition maxima occur at the interface to the GaAs substrate and at

the surface (caused by accumulation of segregated In from the WL at the surface

of the capping layer and by surface migration of In atoms that have been expelled

from the QD during QR formation) [43, 44]. For the sake of simplicity, however,

we will consider the relevant QR layers to be uniform, with the average indium

compositions of x = 0.67 and x = 0.55 for the QR hole and rim, respectively.

Figure 6.8: Solid line: XPEEM In composition profile of a QR, averaged over 10 scans.
Dashed line: AFM height profile of a QR. Inset: AFM image of an InAs/GaAs QR [42].

6.3.2 C-AFM results

Since it has been previously established that InGaAs conductivity increases with

increasing In content [40, 41], and since the central hole is the region of the QR
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with the highest In content [42], one would expect in such a sample the central

hole to be the region with highest conductivity. This is in clear contradiction

with experimental results. However, it has to be considered that the sample was

exposed to air before the conductivity measurements were performed, and so there

is a surface oxide present (in contrast to the XPEEM measurements performed in

UHV, where no such oxide is formed). Unlike in QDs, the influence of the oxide

layer on the conductivity is expected to be more pronounced since the bottom of the

QR central hole is at a height of only about 0.5nm above the GaAs substrate (see

Fig. 6.4). By comparing the QR topography and current cross-sections (Fig. 6.5)

the oxide thickness can be estimated. In Figure 6.5 we can observe that the region

of lowest QR conductivity is not limited to just the lowest topographical point

of the central hole. Under the assumptions that (i) the central regions of lowest

conductivity correspond to a completely oxidized InGaAs layer, whereas regions of

higher conductivity contain also an unoxidized InGaAs layer above the substate

and that (ii) the thickness of the WL above the substrate is 2nm (assumed to

equal the 2nm GaAs capping which leads to formation of QRs), one can estimate

the oxide to be roughly 1nm thick (see Fig. 6.9 for further explanation). This value

is in reasonable agreement with values reported for oxide layers on InAs [46, 47]

and GaAs surfaces [48]. To confirm that a thin oxide layer on the QR samples can

account for the unexpectedly lower conductivity of the central hole (given its high

In content), numerical simulations of conductivities of different sample structures

need to be performed. These are presented in the next chapter.
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Figure 6.9: (Top) Composition schematic of a QR covered by a uniform oxide layer
and (bottom) measured topography and current cross sections of a QR extracted from
measurements as the one shown in Fig. 6.3. The region of lowest conductivity in the QR
center extends from the central point radially outward and up the inner slope of the QR.
The point on the slope where the conductivity starts increasing is about 1nm below the
capping layer. From the capping layer thickness (∼2nm) we get an oxide thickness of
about 1nm. The hatched area indicates the In-rich remainder of the original QD which
has been measured by STM [43] and TEM [44].
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Chapter 7

Current density modelling

C-AFMmeasurements of QRs, described in Chapter 4, yield surprising results given

the material composition of different QR regions. The central hole is the region

with the highest In content compared to the rim and the wetting layer (WL), and

was thus expected to be the region with the highest conductivity. The opposite is

observed: the conductvity of the central hole is lower than that of the rim and WL.

However, due to the C-AFM samples being exposed to air, it is expected that a thin

layer of surface oxide would have formed. In order to verify that the surface oxide

can account for the observed conductivities of QR regions, measured I-V curves

were compared to theoretically obtained curves for different sample strucutres.

The numerical procedure of obtaining I-V curves has been presented in chapter

3. For each sample structure the shape of the potential barrier was calculated with

the 1D Poisson-Schrödinger simulator. From the barrier shape the transmission

coefficient as a function of electron energy was obtained. Finally, the net current

density through the barrier was calculated using the Tsu-Esaki formalism. The

Tsu-Esaki formula assumes that the current flows from a metal to a semiconductor.

To a first approximation, we treat the highly doped Si tip as a metallic electrode

[49].

7.1 As-grown Quantum Rings

In order to obtain the conductivities of different QR regions in an oxide-free sam-

ple, numerical simulations of I-V curves on as-grown QRs were performed. The

structures of the two QR sample regions (rim and center) input into the Poisson-

Schrödinger simulator are shown in Table 7.1 and Fig. 7.1. These values are based

on the results obtained in Chapter 4 (see Fig. 6.4).
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As-grown Quantum Rings

QR hole d [Å]
InGaAs 5 x = 0.67
GaAs 1000 Nd = 1018/cm3

QR rim d [Å]
InGaAs 25 x = 0.55
GaAs 1000 Nd = 1018/cm3

Table 7.1: Sample structures used for nu-
merical modelling of the energy bands. Top:
unoxidized QR central hole. Bottom: unox-
idized QR rim.

Figure 7.1: Schematic of the modelled
sample structures.

The calculated shape of the potential barrier of a metal-semiconductor contact

region is highly dependent on the height of the Schottky barrier. The Schottky bar-

rier height depends on various factors such as work function of the AFM-tip metal

coating, semiconductor band gap, type and concentration of dopants, interface

quality and others. Additionally, the existance of surface states in semiconductors

can result in Fermi level pinning which weakens the effect of the metal workfunc-

tion. In numerical simulations of the surface Schottky contact the 1D Poisson

software automatically assigns a Schottky barrier height of the surface material.

The value used for the unoxidized rim region (x = 0.55) is 0.2eV which is reported

in literature for InxGa1−xAs with x = 0.53 [50]. Taking into account that the

Schottky barrier of InGaAs is suppressed completely for x > 0.75 [51], a barrier

height of 0.1eV obtained by linear interpolation was used for the simulations of

the ring center (x = 0.67). The results of the potential barrier calculations for

zero and -5V bias are shown in Fig. 7.2. From the zero-bias result we can deduce

that at low-bias values the GaAs/InGaAs conduction band discontinuity barrier

is the limiting factor in tunneling. As the bias is increased (and the metal Fermi

level shifted), the surface Schottky barrier becomes the dominant factor in elec-

tron transport (see inset of Fig. 7.2 - right). This is due to the fact that at room

temperature, most of the electrons contributing to transport have an energy within

few 10meV above the metal Fermi level and are thus affected mainly by the surface

Schottky barrier.

Based on the calculated potential barriers I-V spectra, shown in Fig. 7.3, were

calculated. Contrary to initial expectations, the central hole is not the region of
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Current density modelling

Figure 7.2: (left) QR rim and hole energy bands at zero surface bias. For low bias-
values the GaAs/InGaAs conduction band discontinuity barrier is the limiting factor in
transport. (right) QR rim and hole energy bands at -5V surface bias. (inset) At high
negative bias the surface Schottky barrier height determines the tunneling current.
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Figure 7.3: Numerical simulations of I-V curves for the rim and the central hole on
unoxidized QRs. For low surface bias values the conductivity of the hole is lower compared
to the rim. At higher surface bias the hole becomes more conductive.
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Quantum Rings with an oxidized surface

highest conductivity for all applied surface bias values. The reason for this becomes

clear if we examine the potential barriers at zero surface bias (Fig. 7.2 - left):

the GaAs/InGaAs interface barrier height is lower below the rim than below the

central hole which is a result of the GaAs/InGaAs interface being deeper under the

surface in the case of the QR rim. As a result, the rim is more conductive compared

to the central hole. As the negative bias is increased the surface InGaAs barrier

gradually becomes dominant and since the In content is higher in the central region,

the conductivity of this region will surpass the one of the rim (inset of Fig. 7.2 -

right). Comparing the simulated I-V curves to the measured ones (Fig. 6.6) and

taking into account that the region of lowest QR conductivity is not limited to just

the central hole, it is clear that this model is not consistent with the experimental

results. As a next step, a more complete model including a surface oxide layer is

considered.

7.2 Quantum Rings with an oxidized surface

Numerical simulations of I-V spectra were repeated for samples where a surface

oxide layer is considered. The material structures used in calculating the potential

barriers, which are based on the results sketched in Fig.6.9, are shown in Table 7.2

and Fig. 7.4. The thickness of the oxide was taken to be 1nm (determined in Section

4.3.2). The oxide was simulated as a generic semiconductor with the bandgap as

a parameter. Previous work on InGaAs oxides shows that oxide layers can be a

mixture of different oxides (In, Ga, As oxides [52]) which range in bandgap values

from 2.2eV for arsenic oxides [53], around 3.6eV for indium oxides [27, 54], and

around 5eV for gallium oxides [55]. Here, we have chosen an oxide bandgap value of

2.8eV. The Schottky barrier for the oxide was taken to be one-half of the bandgap.

It needs to be noted, however, that the results presented here do not crucially

depend on the chosen values for these parameters, as varying the bandgap or the

Schottky barrier height by±10% yields the same qualitative results. The calculated

barrier potentials (at zero surface bias) based on these input values are shown in

Fig. 7.5.

Applying the transfer matrix method to the potential barrier yields, for the

QR rim region at zero bias, the transmission coefficient dependency on incoming

particle energy as shown in Fig. 7.6. Calculating the I-V spectra based on obtained

energy band profiles yields the theoretical curves in Fig. 7.7 (dashed). We observe

that the conductivity of the central hole now results to be lower than the one
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Current density modelling

QR hole d [Å]
oxide 10 Eg = 2.8eV
GaAs 1000 Nd = 1018/cm3

QR rim d [Å]
oxide 10 Eg = 2.8eV

InGaAs 15 x = 0.55
GaAs 1000 Nd = 1018/cm3

Table 7.2: Sample structures used for nu-
merical modelling of the energy bands. Top:
oxidized QR central hole. Bottom: oxidized
QR rim.

Figure 7.4: Schematic of the modelled
sample structures.
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Figure 7.5: Band profiles of QR sample with the top layer oxidized - comparison between
the rim and the central hole.
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Quantum Rings with an oxidized surface

of the rim for the whole surface bias range investigated. Plotting the numerical

results together with the measured I-V curves (Fig. 7.7) we find good qualitative

agreement between theory and measurements. Surface oxide can thus explain the

observed conductivities of different QR regions.
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Figure 7.6: Transmission coefficient of the potential barrier of the QR rim with 1nm
oxide at zero surface bias as a function of electron energy.
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Figure 7.7: Comparison between the theoretical (dashed) and measured (solid) I-V
curves. The good qualitative agreement of both sets of curves indicates that a surface
oxide explains the observed conductivity.
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Summary and conclusions

In this thesis, self-assembled InAs/GaAs quantum dot (QD) and quantum ring

(QR) samples were studied using C-AFM. The measurements of QD samples yielded

results consistent with literature: the QDs have a higher conductivity compared to

the surrounding wetting layer due to the higher In content in the dots which lowers

the Schottky barrier. On the other hand, two-dimensional current maps and local

I-V spectra measured on QR samples show a lower conductivity of the central QR

hole compared to the rim and capping layer for the whole bias range investigated.

This result is surprising since XPEEM, XSTM and TEM measurements of the QR

composition profile show that the central hole is the region with highest In con-

tent. Numerical simulations of I-V spectra show that apart from In content, the

thickness of the individual QR regions is also a key factor in determining local con-

ductivity. For the bias range investigated, simulations on as-grown samples show

that for low bias values, a lower conductivity of the central hole is expected. For

high bias, however, simulations show the central hole to be the region of highest

conductivity. These results are incompatible with the experimental results, and

therefore the model for the numerical simulations needed to be refined. Since the

samples were exposed to air prior to C-AFMmeasurements, oxidation of the sample

surface needs to be considered. Comparing the QR topography and conductivity

cross-sections, we deduce an oxide height of about 1nm. Including the surface oxide

layer into numerical simulations yields results which qualitatively agree with the

measured conductivities and are consistent with the reported XPEEM results.

In order to verify the effect of surface oxidation on local conductivity, future

investigations should focus on performing C-AFM measurements of QRs samples

with an unoxidized surface. This would entail capping the grown samples with a

protecting layer and transferring them to a C-AFM system in vacuum, where the

capping would be removed prior to measuring.
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Appendix A

Numerical routines for

Mathematica

(*Transfer matrix calculus for quantum mechanical barrier problems*)(*Transfer matrix calculus for quantum mechanical barrier problems*)(*Transfer matrix calculus for quantum mechanical barrier problems*)

(*Constants*)(*Constants*)(*Constants*)

ev = 1.6 ∗ 10∧(−19);ev = 1.6 ∗ 10∧(−19);ev = 1.6 ∗ 10∧(−19);

hbar = 1.054 ∗ 10∧(−34);hbar = 1.054 ∗ 10∧(−34);hbar = 1.054 ∗ 10∧(−34);

mass = 9.11 ∗ 10∧(−31);mass = 9.11 ∗ 10∧(−31);mass = 9.11 ∗ 10∧(−31);

(*wave number in Å*)(*wave number in Å*)(*wave number in Å*)

k[En ,V ]:=Sqrt[2mass(En− V )ev]/hbar ∗ 10∧(−10);k[En ,V ]:=Sqrt[2mass(En− V )ev]/hbar ∗ 10∧(−10);k[En ,V ]:=Sqrt[2mass(En− V )ev]/hbar ∗ 10∧(−10);

(*Matrix defining continuity equations at an interface*)(*Matrix defining continuity equations at an interface*)(*Matrix defining continuity equations at an interface*)

T [x ,V ,En ]:={{Exp[Ixu],Exp[−Ixu]}, {IuExp[Ixu],−IuExp[−Ixu]}}/.u → k[En, V ];T [x ,V ,En ]:={{Exp[Ixu],Exp[−Ixu]}, {IuExp[Ixu],−IuExp[−Ixu]}}/.u → k[En, V ];T [x ,V ,En ]:={{Exp[Ixu],Exp[−Ixu]}, {IuExp[Ixu],−IuExp[−Ixu]}}/.u → k[En, V ];

(*Transfer matrix for single interface*)(*Transfer matrix for single interface*)(*Transfer matrix for single interface*)

TM[x ,V0 ,V1 ,En ]:=Inverse[T [x,V1,En]].T [x,V0,En];TM[x ,V0 ,V1 ,En ]:=Inverse[T [x,V1,En]].T [x,V0,En];TM[x ,V0 ,V1 ,En ]:=Inverse[T [x,V1,En]].T [x,V0,En];

(*Define reflection and transmission of a total transfer matrix*)(*Define reflection and transmission of a total transfer matrix*)(*Define reflection and transmission of a total transfer matrix*)

BLcoeff[t ]:=− t[[2, 1]]/t[[2, 2]];BLcoeff[t ]:=− t[[2, 1]]/t[[2, 2]];BLcoeff[t ]:=− t[[2, 1]]/t[[2, 2]];

ARcoeff[t ]:=t[[1, 1]]− t[[1, 2]]t[[2, 1]]/t[[2, 2]];ARcoeff[t ]:=t[[1, 1]]− t[[1, 2]]t[[2, 1]]/t[[2, 2]];ARcoeff[t ]:=t[[1, 1]]− t[[1, 2]]t[[2, 1]]/t[[2, 2]];

R[t ]:=Abs[BLcoeff[t]]∧2;R[t ]:=Abs[BLcoeff[t]]∧2;R[t ]:=Abs[BLcoeff[t]]∧2;

T [t ]:=Abs[ARcoeff[t]]∧2;T [t ]:=Abs[ARcoeff[t]]∧2;T [t ]:=Abs[ARcoeff[t]]∧2;
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(*Define a procedure for partitioning a function into equally spaced step functions(*Define a procedure for partitioning a function into equally spaced step functions(*Define a procedure for partitioning a function into equally spaced step functions

between points a and b on the real line, with two semi-infinite steps outside the interval*)between points a and b on the real line, with two semi-infinite steps outside the interval*)between points a and b on the real line, with two semi-infinite steps outside the interval*)

(*Partition function*)(*Partition function*)(*Partition function*)

PartitionFunction[func , a , b , n ,Vinit :0,Vterm :0]:=Module[{h, V },PartitionFunction[func , a , b , n ,Vinit :0,Vterm :0]:=Module[{h, V },PartitionFunction[func , a , b , n ,Vinit :0,Vterm :0]:=Module[{h, V },
h=(b-a)/n;h=(b-a)/n;h=(b-a)/n;

V = Table[func, {x, a, b− h, h}]; (*Collect n points f(a) to f(b-h)*)V = Table[func, {x, a, b− h, h}]; (*Collect n points f(a) to f(b-h)*)V = Table[func, {x, a, b− h, h}]; (*Collect n points f(a) to f(b-h)*)

V = AppendTo[V,Vterm]; (*Terminate potential*)V = AppendTo[V,Vterm]; (*Terminate potential*)V = AppendTo[V,Vterm]; (*Terminate potential*)

V = Insert[V,Vinit, 1]; (*Initial potential*)V = Insert[V,Vinit, 1]; (*Initial potential*)V = Insert[V,Vinit, 1]; (*Initial potential*)

Return[V ]; ];Return[V ]; ];Return[V ]; ];

(*Define a procedure for calculating reflection and transmission for arbitrary functions(*Define a procedure for calculating reflection and transmission for arbitrary functions(*Define a procedure for calculating reflection and transmission for arbitrary functions

using n step function approximations*)using n step function approximations*)using n step function approximations*)

BarrierMatrix[En , func , a , b , n ,Vinit :0,Vterm :0]:=Module[{V, i,Temp, h},BarrierMatrix[En , func , a , b , n ,Vinit :0,Vterm :0]:=Module[{V, i,Temp, h},BarrierMatrix[En , func , a , b , n ,Vinit :0,Vterm :0]:=Module[{V, i,Temp, h},
h = (b− a)/n;h = (b− a)/n;h = (b− a)/n;

V = PartitionFunction[func, a, b, n,Vinit,Vterm];V = PartitionFunction[func, a, b, n,Vinit,Vterm];V = PartitionFunction[func, a, b, n,Vinit,Vterm];

Temp = IdentityMatrix[2];Temp = IdentityMatrix[2];Temp = IdentityMatrix[2];

For[i = 1, i < Length[V ], i++,For[i = 1, i < Length[V ], i++,For[i = 1, i < Length[V ], i++,

Temp = TM[a+ (i− 1)h, V [[i]], V [[i+ 1]],En].Temp; ];Temp = TM[a+ (i− 1)h, V [[i]], V [[i+ 1]],En].Temp; ];Temp = TM[a+ (i− 1)h, V [[i]], V [[i+ 1]],En].Temp; ];

Return[Temp]; ];Return[Temp]; ];Return[Temp]; ];

BarrierTransmission[En , func , a , b , n ,Vinit :0,Vterm :0]:=Module[{Temp},BarrierTransmission[En , func , a , b , n ,Vinit :0,Vterm :0]:=Module[{Temp},BarrierTransmission[En , func , a , b , n ,Vinit :0,Vterm :0]:=Module[{Temp},
Temp = BarrierMatrix[En, func, a, b, n,Vinit,Vterm];Temp = BarrierMatrix[En, func, a, b, n,Vinit,Vterm];Temp = BarrierMatrix[En, func, a, b, n,Vinit,Vterm];

Return[{R[Temp], T [Temp] ∗ k[En,Vterm]/k[En,Vinit]}]; ];Return[{R[Temp], T [Temp] ∗ k[En,Vterm]/k[En,Vinit]}]; ];Return[{R[Temp], T [Temp] ∗ k[En,Vterm]/k[En,Vinit]}]; ];

(*Define a function which returns a table of calculated transmissions for given energies*)(*Define a function which returns a table of calculated transmissions for given energies*)(*Define a function which returns a table of calculated transmissions for given energies*)

TMTable[func , a , b , n ,Vinit :0,Vterm :0]:=Module[{pot,En, t, r, i, j, q, transmission},TMTable[func , a , b , n ,Vinit :0,Vterm :0]:=Module[{pot,En, t, r, i, j, q, transmission},TMTable[func , a , b , n ,Vinit :0,Vterm :0]:=Module[{pot,En, t, r, i, j, q, transmission},
pot = Max[Abs[PartitionFunction[func, a, b, n,Vinit,Vterm]]];pot = Max[Abs[PartitionFunction[func, a, b, n,Vinit,Vterm]]];pot = Max[Abs[PartitionFunction[func, a, b, n,Vinit,Vterm]]];

En = Table[x, {x, 0.01, 5pot, pot/20}];En = Table[x, {x, 0.01, 5pot, pot/20}];En = Table[x, {x, 0.01, 5pot, pot/20}];
t = En− En;t = En− En;t = En− En;

r = En− En;r = En− En;r = En− En;

For[i = 1, i ≤ Length[En], i++, q = BarrierTransmission[En[[i]], func, a, b, n,Vinit,Vterm];For[i = 1, i ≤ Length[En], i++, q = BarrierTransmission[En[[i]], func, a, b, n,Vinit,Vterm];For[i = 1, i ≤ Length[En], i++, q = BarrierTransmission[En[[i]], func, a, b, n,Vinit,Vterm];

t[[i]] = q[[2]]; ];t[[i]] = q[[2]]; ];t[[i]] = q[[2]]; ];

transmission = Table[{En[[j]], t[[j]]}, {j, 1,Length[En]}];transmission = Table[{En[[j]], t[[j]]}, {j, 1,Length[En]}];transmission = Table[{En[[j]], t[[j]]}, {j, 1,Length[En]}];
trans = Return[transmission];trans = Return[transmission];trans = Return[transmission];

];];];
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Numerical routines for Mathematica

(*Define the equation for calculating the current density through the barrier*)(*Define the equation for calculating the current density through the barrier*)(*Define the equation for calculating the current density through the barrier*)

Current[Efm ,Efs , inter ]:=Module[{J,A, kbT},Current[Efm ,Efs , inter ]:=Module[{J,A, kbT},Current[Efm ,Efs , inter ]:=Module[{J,A, kbT},
kbT = 0.025;kbT = 0.025;kbT = 0.025;

J = NIntegrate[inter[x] ∗ Log[(1 + Exp[(Efm− x)/kbT])/(1 + Exp[(Efs− x)/kbT])], {x, 0,∞},J = NIntegrate[inter[x] ∗ Log[(1 + Exp[(Efm− x)/kbT])/(1 + Exp[(Efs− x)/kbT])], {x, 0,∞},J = NIntegrate[inter[x] ∗ Log[(1 + Exp[(Efm− x)/kbT])/(1 + Exp[(Efs− x)/kbT])], {x, 0,∞},
MaxRecursion → 200];MaxRecursion → 200];MaxRecursion → 200];

Return[J ]; ];Return[J ]; ];Return[J ]; ];

(*Loop for importing data files and calculating the transmission for each imported barrier*)(*Loop for importing data files and calculating the transmission for each imported barrier*)(*Loop for importing data files and calculating the transmission for each imported barrier*)

CurrentDotWL = {};CurrentDotWL = {};CurrentDotWL = {};
For[i = 0, i ≤ 1,For[i = 0, i ≤ 1,For[i = 0, i ≤ 1,

For[j = 0, j ≤ 9,For[j = 0, j ≤ 9,For[j = 0, j ≤ 9,

(*Import barrier data from files "dotWL.ex.V-X.XX.out",(*Import barrier data from files "dotWL.ex.V-X.XX.out",(*Import barrier data from files "dotWL.ex.V-X.XX.out",

where X.XX is the surface voltage value*)where X.XX is the surface voltage value*)where X.XX is the surface voltage value*)

BandProfile = Import["dotWL.ex.V-" <> ToString[i] <> "."BandProfile = Import["dotWL.ex.V-" <> ToString[i] <> "."BandProfile = Import["dotWL.ex.V-" <> ToString[i] <> "."

<> ToString[j] <> "0.out", "TSV"];<> ToString[j] <> "0.out", "TSV"];<> ToString[j] <> "0.out", "TSV"];

(*Transform the data into a usable format*)(*Transform the data into a usable format*)(*Transform the data into a usable format*)

BandProfile = Delete[BandProfile, 1];BandProfile = Delete[BandProfile, 1];BandProfile = Delete[BandProfile, 1];

BandProfile = Flatten[BandProfile];BandProfile = Flatten[BandProfile];BandProfile = Flatten[BandProfile];

(*Extract depth and barrier height*)(*Extract depth and barrier height*)(*Extract depth and barrier height*)

depth = Take[BandProfile, {1,Length[BandProfile], 8}];depth = Take[BandProfile, {1,Length[BandProfile], 8}];depth = Take[BandProfile, {1,Length[BandProfile], 8}];
barr = Take[BandProfile, {2,Length[BandProfile], 8}];barr = Take[BandProfile, {2,Length[BandProfile], 8}];barr = Take[BandProfile, {2,Length[BandProfile], 8}];

(*Construct barrier data points*)(*Construct barrier data points*)(*Construct barrier data points*)

points = Table[{depth[[j]], barr[[j]]}, {j, 1,Length[barr]}];points = Table[{depth[[j]], barr[[j]]}, {j, 1,Length[barr]}];points = Table[{depth[[j]], barr[[j]]}, {j, 1,Length[barr]}];

(*Interpolate data points and calculate transmission*)(*Interpolate data points and calculate transmission*)(*Interpolate data points and calculate transmission*)

BarrierFunc = Interpolation[points];BarrierFunc = Interpolation[points];BarrierFunc = Interpolation[points];

TMTable[BarrierFunc[x], 0, 500, 800, 0, 0];TMTable[BarrierFunc[x], 0, 500, 800, 0, 0];TMTable[BarrierFunc[x], 0, 500, 800, 0, 0];

transmisivnost = Take[Flatten[trans], {2, 2 ∗ Length[trans], 2}];transmisivnost = Take[Flatten[trans], {2, 2 ∗ Length[trans], 2}];transmisivnost = Take[Flatten[trans], {2, 2 ∗ Length[trans], 2}];
energies = Take[Flatten[trans], {1, 2 ∗ Length[trans], 2}];energies = Take[Flatten[trans], {1, 2 ∗ Length[trans], 2}];energies = Take[Flatten[trans], {1, 2 ∗ Length[trans], 2}];

Do[Clear[m];Do[Clear[m];Do[Clear[m];

For[m = 2,m ≤ Length[transmisivnost]/2,For[m = 2,m ≤ Length[transmisivnost]/2,For[m = 2,m ≤ Length[transmisivnost]/2,
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transmisivnost[[1]] = 10∧ − 6;transmisivnost[[1]] = 10∧ − 6;transmisivnost[[1]] = 10∧ − 6;

If[transmisivnost[[m]] > 1‖transmisivnost[[m]] < 0.01, transmisivnost[[m− 1]] = 10∧ − 6];If[transmisivnost[[m]] > 1‖transmisivnost[[m]] < 0.01, transmisivnost[[m− 1]] = 10∧ − 6];If[transmisivnost[[m]] > 1‖transmisivnost[[m]] < 0.01, transmisivnost[[m− 1]] = 10∧ − 6];

m++; ]; , {i, 5}];m++; ]; , {i, 5}];m++; ]; , {i, 5}];

(*Construct transmission data point*)(*Construct transmission data point*)(*Construct transmission data point*)

trans2 = Table[{energies[[j]], transmisivnost[[j]]}, {j, 1,Length[energies]}];trans2 = Table[{energies[[j]], transmisivnost[[j]]}, {j, 1,Length[energies]}];trans2 = Table[{energies[[j]], transmisivnost[[j]]}, {j, 1,Length[energies]}];

(*Interpolate data points*)(*Interpolate data points*)(*Interpolate data points*)

inter = Interpolation[trans2];inter = Interpolation[trans2];inter = Interpolation[trans2];

(*Calculate current density for given transmission*)(*Calculate current density for given transmission*)(*Calculate current density for given transmission*)

CurrentDotWL = Append[CurrentDotWL,Current[(10i+ j)/10,−0.00001, inter]];CurrentDotWL = Append[CurrentDotWL,Current[(10i+ j)/10,−0.00001, inter]];CurrentDotWL = Append[CurrentDotWL,Current[(10i+ j)/10,−0.00001, inter]];

(*Plot transmission coefficient*)(*Plot transmission coefficient*)(*Plot transmission coefficient*)

Print[ListPlot[trans2,PlotRange → All, Joined → True]];Print[ListPlot[trans2,PlotRange → All, Joined → True]];Print[ListPlot[trans2,PlotRange → All, Joined → True]];

Print[10i+ j];Print[10i+ j];Print[10i+ j];

j++];j++];j++];

i++];i++];i++];
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[6] R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M.
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