Propagation of
 Cosmic Rays. II

Igor V. Moskalenko
stanford/kipac

Outline

First lecture

- General information
- Transport equation
- Propagation near the CR sources
- Propagation in the ISM. I. Components of the ISM

Second lecture

- Propagation in the ISM. II. Cosmic Rays
- Isotopic composition
- Determination of the Propagation parameters
- K-capture isotopes
- Diffuse gamma rays
- Extragalactic diffuse emission
- CR propagation in the heliosphere
- Transport equation
- Heliospheric modulation
- IC scattering on solar photons
- gamma-ray albedo of small solar system bodies
- CRs in the other normal galaxies
- EGRET observations
- Magellanic clouds and Andromeda galaxy
- Estimates of gamma-ray fluxes
- Exotic Physics
- Dark matter
- Dark matter signatures in CRs and diffuse gamma rays
- 511 keV line from the Galactic center

CR Isotopic Abundances vs SS Abundances

How It Works: Fixing Propagation Parameters

CR anisotropy

Strong+'07

Discrimination of the propagation models

The data were taken at different times (1980now) in different energy ranges and by different instruments, so the probability of systematic errors is high.

- Different propagation models are tuned to fit the low energy part of sec./prim. ratio where the accurate data exis \dagger
- However, the differ at high energies which will allow to discriminate between them when more accurate data will be available
- The sharp peak at ~1 $\mathrm{GeV} / n u c l e o n ~ s e e m s ~ t o ~ b e ~$ confirmed by Pamela! (Vannuccini talk)

Secondary/primary: (Sc+Ti+V)/Fe

Similar shape, but the data are not that accurate

C \& O spectra from CREAM

Wakely et al, OG1.3 oral; Zei et al. OG1.1 oral; Ahn et al. OG1.1 oral (30th ICRC)

- CREAM results span ~ 4 decades in energy: $\sim 10 \mathrm{GeV}$ to $\sim 100 \mathrm{TeV}$
- Different techniques give consistent spectra

Credit P.Blasi/Rapporteur talk

- The same slope (~ 2.70, from the plots) for C and O,

Kinetic Energy (GeV/particle) consistent with HEAO-3 at lower energies

- The Boron spectrum if measured can tell us about the rigidity dependence of the diffusion coefficient

Preliminary Results from PAMELA

- PAMELA data are tremendously accurate, but currently only the "arb.units"
- Interestingly, the same slope for H and He and very close to C and O from CREAM
- Protons are flatter than BESS and AMS data

K-capture isotopes

CR source abundances

Determination of the CR source isotopic abundances is a nontrivial task, but if determined, it can give us a clue of the origin of CRs

Two key measurements (ACE/CRIS):

- ${ }^{59} \mathrm{Ni}$ and ${ }^{59} \mathrm{Co}$ abundances in CRs (Wiedenbeck+'99) indicate $>10^{5}$ years delay between nucleosynthesis and $C R$ acceleration
- ${ }^{22} \mathrm{Ne} /{ }^{20} \mathrm{Ne}$ and ${ }^{58} \mathrm{Fe} /{ }^{56} \mathrm{Fe}$ ratios show consistency with a strong Wolf-Rayet star ejecta component in the GCRs (Binns+'05)

CR source material:
80% ISM $+20 \%$ ejecta from Wolf-Rayet and massive OB stars

CR source isotopic abundances

Wherever you look, the $\mathrm{GeV} \gamma$-ray excess is there!

Diffuse emission model vs. EGRET data

Diffuse emission from the Galactic center

Porter+'08

Intrinsic connection between the diffuse Galactic y-ray emission in different energy ranges:

- 100 keV - few MeV: IC emission by CR electrons and positrons on optical \& IR radiation (primary + secondary electrons and positrons)
- $100 \mathrm{MeV}-10 \mathrm{GeV}$: produced by protons via π^{0}-decay; these protons also produce secondary positrons and electrons
- 10 GeV-10 TeV: Produced via IC scattering of primary electrons on the same optical \& IR photons

Anisotropic Inverse Compton Scattering

- Electrons in the halo see anisotropic radiation
$>$ Observer sees mostly head-on collisions

Effect of anisotropic ICS

Ratio anisoIC/isoIC

- The anisotropic IC scattering plays important role in modeling the Galactic diffuse emission
- Affects estimates of isotropic extragalactic background

Extragalactic Gamma-Ray Background

Contributions to the extragalactic background

Interplanetary B-field \& solar wind

Parker spiral

Transport equation

Modulation models are based on the numerical solution of the CR transport equation (Parker 1965):

$$
\begin{align*}
\frac{\partial f(\boldsymbol{r}, \rho, t)}{\partial t}= & -\left(\boldsymbol{V}+\left\langle\boldsymbol{v}_{D}\right\rangle\right) \cdot \boldsymbol{\nabla} f+\boldsymbol{\nabla} \cdot\left(\boldsymbol{K}_{S} \cdot \boldsymbol{\nabla} f\right) \\
& +\frac{1}{3}(\boldsymbol{\nabla} \cdot \boldsymbol{V}) \frac{\partial f}{\partial \ln \rho} \tag{5}
\end{align*}
$$

$f-C R$ distribution function
V - solar wind velocity
$\left\langle V_{D}\right\rangle=\nabla \times K_{A} \vec{B} / B$
$K_{A^{-}}$antisymmetric part of the diffusion tensor
K_{s} - symmetric part of the diffusion tensor
ρ - rigidity

- Not all factors are well known
- Local interstellar spectrum of CRs is unknown (exception pbars)

Heliospheric current sheet

Variations over the solar cycle (pbars, p)

Charge Sign Effect

Studies of solar modulation in the GLAST era

- Direct CR measurements on spacecraft are possible in a few locations at different heliospheric distances
- A sensitive gamma-ray telescope (e.g., GLAST) is able to constantly monitor the CR fluxes in a considerable part of the heliosphere

How?

Inverse Compton scattering

Anisotropic effect on solar photons

IVM,Porter,Digel'06, Orlando \& Strong'07

Heliosphere

Looking in different directions one can probe the e-spectrum at different distances from the sun!

Flux $_{\text {IC }} \sim 1 / r$

$r_{1}(A U)=\sin \square, \square<90^{\circ}$
$r_{1}(A U)=1, \quad \square>90^{\circ}$
$r_{2}=10 r_{1}$

The ecliptic

Spectrum

IC spectrum $<1 \mathrm{GeV}$ shows strong dependence on the modulation level

* variations of Yo-ray flux over the solar cycle

IC integral flux
$\mathrm{F}\left(>100 \mathrm{MeV}, \square<2.5^{\circ}\right) \sim 2 \times 10^{-7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
EGRET upper limit $=2 \times 10^{-7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

E	$\Phi_{0}=0$	500 MV	1000 MV
$>10 \mathrm{MeV}$	5.6	3.4	2.4
$>100 \mathrm{MeV}$	0.69	0.56	0.47
$>1 \mathrm{GeV}$	0.05	0.04	0.04

Note. - Flux units $10^{-6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$.

Found in EGRET data!

Thompson+ 1997:
Upper limit (>100 MeV): $2 \times 10^{-7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Reanalysis by Orlando+'07:
Discovery of both solar disk pion-decay emission and extended inverse Compton-scattered radiation in combined analysis of EGRET data from June 1991!!

FIGURE 1. Log Likelihood above 100 MeV as function of the solar disk flux and extended solar flux, relative to point at $(0,0)$. The level of our predicted IC model flux and the predicted disk flux [7] are shown.

FIGURE 2. Fitted model counts of the main components œentered on the Sun. From left to right: Sun disk, Sun IC, moon, 3 C 279 , and the total predicted counts including uniform background. The colors show the counts/pixel, for $0.5^{\circ} \times 0.5^{\circ}$ pixels.

Gammas \& neutrinos from the quiet sun

Solar "albedo" due to the interactions of CR particles with solar atmosphere: CRs produce cascades in the solar atmosphere

- Gamma rays can be observed (GLAST)
- Neutrinos propagate through the sun and also can be observed (IceCube)

Can be used to probe the solar atmosphere and the matter distribution in the solar core

IVM+'91, Seckel+'91

Dark Face of the Moon: Gamma-ray Albedo Spectrum

The moon is brighter in gamma rays than the sun!
Kinematics of the interaction:

- The cascade goes through to the depth where gamma-rays cannot come out
- Splash pions are lowenergy and decay at "rest"

Simulation of the GLAST observations

IVM,Porter'07
(earlier work: Morris'84)

A Zoo of Small Solar System Bodies

Table 1 The primary cometary reservoirs of the Solar System

	Kuiper belt	Oort cloud
Shape	Disk-like	Spheroidal
Distance range	30-1,000 AU	$1 \times 10^{3}-1 \times 10^{5} \mathrm{AU}$
Comet population	$\sim 5-10 \times 10^{9}$	$1 \times 10^{11}-5 \times 10^{12}$
Estimated mass (including smaller debris)	$\sim 0.1 \mathrm{M}_{\oplus}$	$1-50 \mathrm{M}_{\oplus}$
Ambient surface temperatures	$30-60 \mathrm{~K}$	5-6K
Origin	Largely in situ	Ejected material from the Kuiper belt and outer-planets zone
Return mechanism from the reservoir	Dynamical chaos due to planetary perturbations and collisions	Perturbations due to passing stars, galactic tides and molecular clouds
Stern03		
Propagation of cosmic rays/IVM 37		Summer Institute/Aug 2008

Hot Topics

- Formation and evolution of the planetary system and exosolar planetary systems
- 1992 (Jewitt \& Luu) - first object beyond Neptune since Pluto
- 2004, 2005 (Sheppard\& Trujillo) - discovery of Neptunian Trojans (L4): L5 is currently in the direction of the GC
- Ejection of material into distant eccentric orbits (Oort cloud)
- Orbital precession (expansion/contraction) of the giant planets and SSSB families (Neptune: 20 AU -> 30 AU; Kuiper belt)
- The number of small solar system bodies in different dynamic families and their size distributionTest particles
- Formation of planetesimals
- Pristine material
- "Freeze-in" capture (Trojans)
- Probe of interstellar spectrum of CR protons +He

SSSB Size Distributions

2. SMALL SOLAR SYSTEM BODIES

The asteroid mass and size distributions are thought to be governed by collisional evolution and accretion. Collisions between asteroids give rise to a cascade of fragments, shifting mass toward smaller sizes, while a small body impact with a much larger asteroid leads to the growth of the latter. The first comprehensive analytical description of such a collisional cascade is given by Dohnanyi (1969). Under the assumptions of scaling of the collisional response parameters and an upper cutoff in mass, the relaxed size and mass distributions approach power-laws:

$$
\begin{gather*}
d N=a m^{-k} d m \tag{1}\\
d N=b r^{-n} d r \tag{2}
\end{gather*}
$$

where m is the asteroid mass, r is the asteroid radius, and a, b, k, n are constants. These equilibrium distributions extend over all size and mass ranges of the population except near its high-mass end. The constants in eqs. (1),

- Collisional evolution \& accretion
- Relaxed size distribution $n=3.5$ (assuming scaling of collisional response parameters)
- Scaling breaks...

SSSB Albedo and the Ecliptic

- The ecliptic crosses the Galactic equator near the Galactic center and anti-center with inclination $\sim 86.5^{\circ}$
- Galactic center is crowded with sources and harbors the enigmatic source of the 511 keV positron annihilation line
- Passes through high Galactic latitudes - extragalactic emission
- The orbits of the Moon and the Sun

Gamma-Ray Albedo Flux Estimates (Moon flux units)

- MBAs (sum over ecliptic latitude and longitude)

$$
F_{\text {tot }} / F_{\text {moon }} \sim 0.06,0.67,10 \quad(n=2.5,3.0,3.5)
$$

Changes by $\times 5$ with solar elongation angle (from 1.7 AU to 3.7 AU)

- Jovian Trojans (assuming the same size distr. as MBAs)

$$
\begin{array}{ll}
F_{\text {toot }} / F_{\text {moon }} \sim 0.009,0.07,0.77 & (n=2.5,3.0,3.5) \text {-average } \\
F_{\text {tot }} / F_{\text {moon }} \sim 0.01,0.1,1.1 & (n=2.5,3.0,3.5)-\text { max } \\
F_{\text {tot }} / F_{\text {moon }} \sim 0.006,0.05,0.5 & (n=2.5,3.0,3.5)-\text { min }
\end{array}
$$

Concentrated in small bunches, positions are well known relative to Jupiter

- KBOs (probe of the local interstellar CR spectrum!)
$F_{\text {tot }} / F_{\text {moon }} \sim 0.2,34,1168 \quad(n=3.0,3.5,3.9)$
Does not vary with solar elongation angle

$$
\text { cf. EGRET upper limit } \sim 12 \mathrm{~F}_{\text {moon }}
$$

CRs in Other Normal Galaxies

Local Group Galaxies

Cosmic Rays - galactic or universal?

> Milky Way and M31 are the dominant galaxies in the group
\rightarrow Many others are irregular or dwarf spheroidal
>Additional members are still being discovered

Summary: EGRET Observations

> LMC detection: CR density is similar to MW
> SMC non-detection: CR density is smaller than in the MW (otherwise it would be $\sim 2.4 \times 10^{-7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
> First direct evidence:

Source
LMC SMC M31
$\mathrm{F}(>100 \mathrm{MeV}), \mathrm{cm}^{-2} \mathrm{~s}^{-1}$
$(1.9 \pm 0.4) \times 10^{-7}$
$<0.5 \times 10^{-7}$
$<0.8 \times 10^{-7}$
Sreekumar et al.(1992-94)

CRs are galactic and no \dagger universal!
> M31 non-detection: has to have smaller CR density than the MW (size M31>MW!)

```
\(L_{\text {MW }}(>100 \mathrm{MeV}) \sim 5.4 \times 10^{39} \mathrm{erg} / \mathrm{s}(S M R 00)\)
    \(\sim 3 \times 10^{43}\) phot/s
\(F_{\text {MW }}(@ M 31\) distance \() \sim 4.4 \times 10^{-7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\)
```


Magellanic Clouds

Type: Im IV-V
Magnitude: 2.3
Size: 280×160 arcmin <kpc
Distance: ~60 kpc

Type: $\operatorname{Ir} / \mathrm{SB}(\mathrm{s}) \mathrm{m}$ Magnitude: 0.9
Size: $\sim 10^{\circ} \times 10^{\circ} \sim$ few kpc
Distance: $\sim 50 \mathrm{Npc}$

Parkes HI survey: LMC \& SMC

Andromeda Galaxy: M31

Type: SA(s)b I-II

(Hubble: ordinary spiral sshaped with well defined arms)
Magnitude: 3.4
Size: $185.0 \times 75.0 \mathrm{arcmin}$ $>50 \mathrm{kpc}$
Distance: 725 kpc

Larger than the Milky Way!

Radiation Field in M31

Gordon et al. 2006 (MIPS) Star form. rate: $\sim 0.75 \mathrm{M} * / \mathrm{yr}$ (cf. $M W \sim 3 M_{*} / y r$)

Some Math (Pavlidou \& Fields 2001)

Transport equation for CR number density (steady-state leaky-box):

$$
\frac{\partial N_{i}(T, t)}{\partial t}=Q_{i}(T, t)+\frac{\partial}{\partial T}\left[b_{i}(T) N_{i}(T, t)\right]-\frac{1}{\tau_{\mathrm{esc}}} N_{i}(T, t)
$$

Trivial solution:

$$
0=Q_{p}(T)-\frac{1}{\tau_{\mathrm{esc}}} N_{p}(T)
$$

In terms of CR flux:

$$
\begin{aligned}
\phi_{p}(T) & =l_{\text {esc }} Q_{p}(T) \\
l_{\text {esc }} & =\tau_{\text {esc }} v \quad l_{e s c}(G) \sim l_{\text {esc }}(M W)
\end{aligned}
$$

Assuming CR injection rate proportional to SN rate: $\quad Q_{p}^{G} \propto \mathscr{R}_{G}$

CR flux in a galaxy G:

$$
\frac{\phi_{p}^{G}}{\phi_{p}^{\text {MW }}}=\frac{\mathscr{R}_{G}}{\mathscr{R}_{\mathrm{MW}}}=f_{G}
$$

Some Math (cont'd)

y-ray flux from a galaxy:

$$
F_{\gamma}^{G}=\frac{1}{4 \pi d^{2}} \frac{M_{\mathrm{gas}}}{m_{p}} q_{\gamma}^{G}
$$

$$
q_{\gamma}^{G}(>100 \mathrm{MeV})=2.36 \times 10^{-25} f_{G} \text { photons s }^{-1}(\mathrm{H} \text { atom })^{-1}
$$

Emissivity calcs $q(>100 \mathrm{MeV}): \mathrm{pp} \rightarrow \pi^{0} \times 1.55$ (bremss) $\times 1.5$ (A>1 nuclei)

Combined:

$$
\begin{aligned}
F_{\gamma}^{G}(>100 \mathrm{MeV}) & =2.34 \times 10^{-8} f_{G} \frac{M_{\text {gas }}}{10^{8} M_{\odot}} \\
& \times\left(\frac{d}{100 \mathrm{kpc}}\right)^{-2} \text { photons cm }{ }^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Properties of the LG galaxies \& y-ray flux

Predicted Gamma-Ray Flux and GLaSt Requirements for Selected Local Group Galaxies

Galaxy	Flux $>100 \mathrm{MeV}$		GLAST Significance		GLAST On-TARGET 5σ Exposure Time (yr)
	Prediction (photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$)	EGRET Value/Limit (photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$)	$2 \mathrm{yr}$ (σ)	10 yr (σ)	
LMC	11×10^{-8}	$(14.4 \pm 4.7) \times 10^{-8}$	42	93	4.6×10^{-3}
SMC	1.7×10^{-8}	$<4 \times 10^{-8}$	19	43	2.1×10^{-2}
M31	1.0×10^{-8}	$<1.6 \times 10^{-8}$	13	31	4.1×10^{-2}
M33	0.11×10^{-8}	...	1.9	4.1	2.31
NGC 6822......	2.6×10^{-11}	\ldots	0.04	0.09	>10
IC $10 \ldots \ldots \ldots \ldots$	2.1×10^{-11}	\ldots	0.02	0.05	>10

Matter, Dark Matter, Dark Energy...

$$
\begin{aligned}
& \Omega \equiv \rho / \rho_{\text {crit }} \\
& \Omega_{\text {tot }} \quad=1.02+/-0.02 \\
& \Omega_{\text {Matter }}=4.4 \% \quad+/-0.4 \% \\
& \Omega_{\text {DM }}=23 \% \quad+/-4 \% \\
& \Omega_{\text {Vacuum }}=73 \% \quad+/-4 \%
\end{aligned}
$$

SUSY DM candidate has also other reasons to exist -particle physics...
Supersymmetry is a mathematically beautiful theory, and would give rise to a very predictive scenario, if it is not broken in an unknown way which unfortunately introduces a large number of unknown parameters...

Lars Bergström (2000)

Where is the DM ?!

DM signal analysis chain

Annihilation into secondary particles

Analysis Chain

Direct annihilation into 2 y

Analysis

Chain

Examples of Dark Matter Signatures in CR

Diffuse gammas

Antiprotons

Look for a consistent signal in diffuse gamma rays, and CRs (antiprotons, antideuterons, positrons)

Positrons

Positron flux is consistent with predictions, but the error bars are large

Simulated DM skymap

INTEGRAL/SPI observations of 511 keV line

511 keV skymap

Longitude and latitude profiles

Clueless:

- Annihilation rate $\sim 10^{43}$ positrons/s
- The distribution of the 511 keV line is "Galactocentric" and does not much a distribution of any potential positron source (SNRs, pulsars,...)
- Dark Matter?
- Recent data indicate a disk/bulge ratio 1:3

Galactic positron factory: low mass X-ray binaries?

The "haze" at the Galactic Center (WMAP)

Synchrotron emission from leptons produced in WIMP annihilations?

Dark Matter in the WMAP Sky

-In 2004, Doug Finkbeiner suggested that the WMAP Haze could be synchtrotron from electrons/positrons produced in dark matter annihilations in the inner galaxy (astro-ph/0409027)
-In particular, he noted that:

1) Assuming an NFW profile, a WIMP mass of 100 GeV and an annihilation cross section of $3 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}$, the total power in dark matter annihilations in the inner 3 kpc of the Milky Way is
2) The total power of the WMAP Haze is between
0.7×10^{39} and $3 \times 10^{39} \mathrm{GeV} / \mathrm{sec}$

Dan Hooper Dark Matter Annihilations

Conclusion

Astrophysics of cosmic rays and related topics is a very dynamic field: expect many breakthroughs and discoveries soon!

