MATHEMATICAL AND PHYSICAL MODELING OF THE FLAT ROLLING PROCESS

by Umut Hanoglu

Supervised by Prof. Božidar Šarler

OUTLINE

- INTRODUCTION
- THEORY OF PLASTICITY
- ROLLING MILL
- ROLLING FORCES
- **TRIBOLOGY**
- MATHEMATICAL MODELING OF ROLLING
- **TEMPERATURE EFFECTS ON ROLLING**
- RECRYSTALLIZATION
- ROLL TORQUE
- ROLL POWER
- INFLUENCE OF PHYSICAL QUANTITIES
- OTHER TYPES OF ROLLING TEMPER, ACUMULATIVE, FLEXIBLE
- RESULTS AND FUTURE COMPARISON
- COMPUTATIONAL SIMULATION

CONCLUSIONS

INTRODUCTION

> THE FLAT ROLLING PROCESS

- Reduce thickness to a pre-determined final thickness
- Hot, Warm and Cold rolling
- Work and Back-up rolls
- Finishing and Roughening mills
- Roll separating forces and roll torques

INTRODUCTION

THE HOT ROLLING PROCESS

- Reheating Furnaces
 - Heated up to 1200 1250 C for steel, 500 550 C for aluminum
 - Removing cast dendrite structures
 - Dissolving most of alloying elements
 - Decreases hard precipitates

INTRODUCTION

PHYSICAL QUANTITIES OF ROLLING

- Roll separating force (P_r) in N/mm.
- Roll pressure p in Pa.
- Coefficient of friction μ
- Width of the metal to be rolled w in mm.
- Radius of the work roll R and deformed radius of the work roll R' in mm.
- Contact length L in mm.
- Entry thickness h_{entry} , exit thickness h_{exit} and the difference Δh in mm.
- Shear stress τ in Pa.
- The angle between the vertical lines is ϕ
- The torque per width M in N.
- r is the reduction in %.

MATERIAL CHARACTERISTICS OF STEEL

- A metallic alloy with variable carbon content
- Relatively high resistance to deformation
- High strength and ductility and good behavior at high temperatures
- Ductility as much as 40 %
- Strength as much as 1250 MPa
- Transformation-induces plasticity (TRIP)
- Martensitic and magnese-boron steels
- Advance high strength steels (AHSS)
- Annealing after cold rolling
- Entry temperature and strain rate have crucial effect
- More than 50% reduction can be achieved

HOMOGENEOUS AND NON-HOMOGENEOUS COMPRESSION

- Experimentally studies
- In homogeneous compression planes remain as planes
- Easier to model the homogeneous compression
- Schey determination when average thickness h_{a} (*L*) is bigger than a unity, non-homogeneous.

$$h_{ave} = \frac{\left(h_{entry} - h_{exit}\right)}{2}$$
 divided by the length

IDEAL PLASTIC DEFORMATION CRITERIA

- Planes strain plastic flow
- Width should also be considered as unchanged
- All the energy is absorbed by the material and turned into plastic deformation
- No energy lost in the elasticity
- Also no elastic recovery is considered
- Becomes handy in 2D analysis

LIMITATIONS OF FLAT ROLLING

• Minimum rollable thickness by Stone (1953)

$$h_{\min} = \frac{3.58 D \mu \sigma_{fm}}{E}$$

where D is the roll diameter in mm E is the elastic modulus in Pa, σ_{fm} is the average flow strength in Pa and μ is the coefficient of friction.

Claimed that in reality this does not exits.

• Edge cracking

Edge cracking of an aluminum alloy, hot rolled at 505 $^{\circ}\mathrm{C}$ to a strain of 0.6 (Duly et al., 1998).

• Alligatoring

Alligatoring and edge-cracking of an aluminum alloy, hot rolled at 497'C to a strain of 0.5 Figures are from John G. Lenard, (2007)

ROLLING MILL

HITCHCOOK'S RADIUS

• Elasticity of the roll is considered

• Hitchcock's equation (1935):
$$R' = R \left[1 + \frac{16(1 - v^2)}{\pi E \Delta h} P_r \right]$$

where R' is the flattened but still circular roll radius in mm, R is the original roll radius in mm, v is the Poisson's ratio, E is the Young's modulus of the roll in Pa, Δh is the thickness difference in mm and P_r is the roll separating force in N/mm.

• In experiments the squeezed roll is more flattened than circular

ROLLING MILL

ROLL BENDING

- Deflection of the roll across its central axis
- Maximum deflection occurs at the center
- Maximum deflection occurs at the center Rowe calculated the maximum deflection in mm (1977) as; $\Delta = \frac{PL^3}{FI} + 0.2 \frac{PL}{AG}$

P is the roll force in N, L is the length of the roll in mm, E is the elastic modulus in Pa, I is the moment of inertia, G is the shear modulus in Pa and A is the cross sectional area in mm^2

Rowe (1977) calculated the maximum deflection as;
$$\Delta = \frac{P\overline{L}^2(5L+24c)}{6\pi ED^4} + \frac{P\overline{L}}{2\pi GD^2}$$

 \overline{L} is the half of the bearing length in mm, D is the diameter of the roll in mm and c is the length of the roll in mm,

ROLLING FORCES

ROLL PRESSURE AND ROLL SEPERATING FORCE

- Roll pressure is the main physical source of the process
- Roll separating force is the main goal in calculations in N/mm
- They are related in all mathematical models
- Roll pressure varies over the surface
- Proportional
- Increased with reduction
- Roll separating force is used in calculating other quantities
- Friction, entry thickness and strain hardening coefficient increase both of them
- Cold rolling requires more than hot rolling
- Needs to be determined before installation

The roll pressure distribution.

ROLLING FORCES

> SHEAR STRESSES

- Created due to the roll pressure
- As a result of relative motion between roll and the strip
- Acting tangential to the surface
- Depends on coefficient of friction and roll pressure
- Calculated as: $\tau = \mu p$
- Direction is always opposite to the relative motion
- Its sign changes in calculations due to previous reason
- At neutral point it vanishes

ROLLING FORCES

NEUTRAL POINT

- Backward region, strip is slower
- neutral point, same speed as roll's surface
- forward region, strip is faster
- Conservation of mass
- No relative motion occurs at this point
- \circ $\tau = 0$
- Not in the middle
- Needs to be determined in some calculations
- Neutral or no-slip region

TRIBOLOGY

COEFFICIENT OF FRICTION

• Reason for the process to start and to move forward

 $\mu_{\min} = \tan \phi_{bite}$

- Increases the required forces to drive
- It varies over the surface
- Oxidation on hot rolling changes it
- Adhesion and apparent contact area

TRIBOLOGY

LUBRICANT

- Oil- water emulsions are the most common lubricant
- The viscosity: $\tau = \eta \dot{\gamma}$ $\mu = \frac{\eta}{\rho}$

 η is the dynamic viscosity in Pa.s, μ is the kinematic viscosity in m²/s, $\dot{\gamma}$ is the shear strain rate, ρ is the density.

Viscosity – Pressure: $\eta = \eta_0 \exp(\gamma p)$ $\eta = \eta_0 (1 + Cp)^n$

 η_0 is the viscosity under atmospheric pressure and γ is the pressure-viscosity coefficient and *p* is the pressure. *C* and *n* are constants.

TRIBOLOGY

FRICTION FACTOR

 $\tau = mk$ $0 \le m \le 1$

• 1-D equation could be written as;

$$\frac{dp}{dx} = \frac{2k}{h_{exit}R + x^2} (2x - mR)$$

• The friction factor could be determined in terms of load and speed;

$$m = \overline{a} \left(x^2 - x_{np}^2 \right) p + \overline{b} \tan^{-1} \left(\frac{\Delta v}{q} \right)$$

The relative velocity is given;

$$\Delta v = v_r \frac{x_{np}^2 - x^2}{h_{exit}R + x^2}$$

 $\overline{a}, \overline{b}$ are constants to be determined, q is a constant taken as 0.1

SCHEY'S MODEL

• Schey's model, roll separating force per unit with;

 $P_r = 1.15 Q_p \sigma_{fm} L$

• Average flow strength; σ_{fm} (in Pa) is obtained by;

$$\sigma_{fm} = \frac{1}{\varepsilon_{max}} \int_{0}^{\varepsilon_{max}} \sigma(\varepsilon) d\varepsilon$$

 Q_p is the pressure intensification factor which is roll pressure divided by average flow strength p/σ_{fm} , ε_{max} is the maximum strain and L is the contact length of rolling in m. Q_p can be obtained by the graph defined by Schey

SIM'S MODEL

• Roll separating force in N/mm: $P_r = 2kLQ_p$

Assumed that the angles in the roll gap are very small ($\sin \phi = \tan \phi = \phi$). Interfacial shear stress is negligible and there is a sticking friction between the roll and the strip $(\tau = k)$.

• Pressure intensification factor:

$$Q_{p} = \left[\frac{\pi}{2}\sqrt{\frac{1-r}{r}}\tan^{-1}\sqrt{\frac{r}{1-r}} - \frac{\pi}{4} - \sqrt{\frac{1-r}{r}}\frac{R'}{h_{exit}}\ln\frac{h_{np}}{h_{exit}} + \frac{1}{2}\sqrt{\frac{1-r}{r}}\frac{R'}{h_{exit}}\ln\frac{1}{1-r}\right]$$

 h_{np} is the thickness at the neutral point. *r* is the reduction. Units inside each fraction should be consistent. Used in many calculations because of its simplicity.

OROWAN'S MODEL

• 1 - Dimensional equilibrium based model;

$$\frac{d\left(\sigma_{x}h\right)}{dx} + p\frac{dh}{dx} \mp 2\mu p = 0$$

 σ_x is the stress in the direction of rolling and \mp is determined relative to the neutral point, *p* is the roll pressure.

• Shear stress is given as $\tau = \mu p$ and using Huber – Mises criterion which is: $\sigma_x + p = 2k$

• The formulation becomes:

$$\frac{dp}{dx} \pm 2\mu \frac{p}{h} = \frac{2k}{h} \frac{dh}{dx} + \frac{d(2k)}{dx}$$

k is the yield strength under pure shear.

REFINEMENTS TO OROWAN MODEL

• Published by Roychoudhury and Lenard (1984)

$$\frac{d}{dx} \left[h \left(p - 2k \pm \tau \frac{dy}{dx} \right) \right] = 2 \left(p \frac{dy}{dx} \pm \tau \right)$$
$$y = f(x) = ax + b$$

• Michell's 2D elastic treatment (1990)

Figure is from John G. Lenard, (2007)

$$P_{r} = p \left[\int_{x_{entry}}^{x_{n}} \left(1 + \mu \frac{dy}{dx} \right) dx + \int_{x_{n}}^{x_{exit}} \left(1 + \mu \frac{dy}{dx} \right) dx + \int_{x_{entry}}^{x_{n}} \left(\mu - \frac{dy}{dx} \right) dx + \int_{x_{n}}^{x_{exit}} \left(\mu + \frac{dy}{dx} \right) dx \right]$$
$$\frac{M}{2} = p \int_{x_{entry}}^{x_{n}} \left[x - y \frac{dy}{dx} + \mu \left(y + xy \frac{dy}{dx} \right) \right] dx - p \int_{x_{n}}^{x_{exit}} \left[x - y \frac{dy}{dx} - \mu \left(y + x \frac{dy}{dx} \right) \right] dx$$

 x_n , x_{entry} and x_{exit} are the positions on x axis at the entry, neutral and exit points.

TEMPERATURE EFFECTS ON ROLLING

TEMPERATURE GAIN DUE TO PLASTIC DEFORMATION

• The rise of temperature due to plastic deformation is:

$$\Delta T_{gain} = \frac{P_r L / R'}{\rho c_p h_{ave}}$$

 P_r is in N/m, L and R' are in m, ρ is the density of the strip in kg/m³ and C_p is the specific heat of strip in J/kgC.

Temperature rise by Roberts (1983) is:

$$\Delta T_{gain} = \frac{\sigma_{fm}}{\rho c_p} \ln \frac{1}{1 - r}$$

TEMPERATURE EFFECTS ON ROLLING

TEMPERATURE LOSS DUE TO HEAT DISSIPATION TO THE AMBIENT AND THE ROLL

• Temperature loss during hot rolling by Seredynski (1973) is:

$$\Delta T_{loss} = 60\alpha \sqrt{\frac{r}{h_{entry}R}} \left(T_{strip} - T_{roll}\right) \left[\left(1 - r\right)\pi\rho c_p N\right]^{-1}$$

 α is the heat transfer coefficient of roll strip interface in W/m²K, N is the revolutions per minute. T_{strip} and T_{roll} are the strip and roll temperatures in Kelvin. ρ and c_p are of the roll.

• Rise of roll's surface temperature estimated by Roberts (1983) is:

$$\frac{T_{roll} - T_0}{T_{strip} - T_0} = \alpha \sqrt{\frac{t}{kc_p \rho}}$$

 T_{roll} is the roll's surface temperature, T_0 is the roll's temperature below its surface. k is the thermal conductivity of the roll in W/mK. t is the contact time in seconds.

STATIC RECRYSTALLIZATION

- Recrystallization controlled rolling to achieve finer grains
- Critical strain necessary for static recrystallization to occur
- Larger the grain size, slower the rate of recrystallization
- The temperature (in °C) above recrystallization occurs is;

 $T_{NRX} = 887 + 464[C] + (6445[NB] - 644\sqrt{[Nb]}) + (732[V] - 230\sqrt{[V]}) + 890[Ti] + 363[Al] - 357[Si]$ Avrami-Kolmogorov equation:

$$X = 1 - \exp\left[A\left(\frac{t}{t_X}\right)^k\right]$$

t is the hold time, X is the recrystallization volume fraction, t_X is the time for a given volume to crystallize, $A = \ln(X)$ and *k* is Avrami exponent.

Figure is from keytometals.com

STATIC RECRYSTALLIZATION

• Time for 50 % recrystallization is:

$$t_{0.5X} = B\varepsilon^p D_{\gamma}^q Z^r \dot{\varepsilon}^s \exp\left(\frac{Q_{RX}}{RT}\right)$$

 ε is the strain, D_{γ} is the austenite grain size prior to deformation in μ m, Z is the

Zener - Hollomon parameter defined as ;

$$Z = \dot{\varepsilon} \exp\left(\frac{Q}{RT}\right)$$

 Q_{RX} is the activation energy for recrystallizaton in J/mole, *R* is the gas constant and *T* is the absolute temperature. *B*,*p*,*q* are given by Sellars (1990).

STATIC RECRYSTALLIZATION

• Recrystallized grain size:

$$D_r = C_1 + C_2 \varepsilon^m \dot{\varepsilon}^n D_{\gamma}^l \exp \frac{-Q_d}{RT}$$

C values, m, n, l are constants defined by Sellars. Q_d is the apparent activation energy.

• Time for X % recrystallization in seconds is:

$$t = \left[\frac{\ln(1-X)}{A}\right]^{1/k} t_x$$

 t_x is the time for a given volume to recrystallize.

DYNAMIC RECRYSTALLIZATION

- Recrystallization during plastic deformation
- Critical strain at which dynamic recrystallization starts, Zener-Hollomon parameter;

$$\varepsilon_c = A Z^p D_{\gamma}^q$$

A,p,q are material constants, D_{γ} is the austenite grain size.

 Metadynamic recrystallization, starts during deformation and continues after deformation ends.

METADYNAMIC RECRYSTALLIZATION

• Time for 50 % metadynamic recrystallization is:

$$t_{0.5} = A_1 Z^s \exp\left(\frac{Q}{RT}\right)$$

 A_1 and s are the material constants defined by Hodgson. Q is the activation energy in J/mole.

• The metadynamic grain size by Hodgson;

$$D_{MD} = AZ^{u}$$

• Grain size during metadynamic recrystallization (in μm)is:

$$D(t) = D_{DRX} + (D_{MD} - D_{DRX})X_{MD}$$

 X_{MD} is the volume fracture after metadynamic recrystallization. D_{DRX} is the grain size after dynamic recrystallization in μ m.

ROLL TORQUE

CALCULATION

• Torque to drive the roll can be calculated in terms of roll separating force (P_r):

$$M = \frac{P_r L}{2}$$

- The torque M is per unit width so the unit is N.
- It is assumed that P_r acts at the middle of the contact and the contact length is linear
- Linear length approximation may give bad results

ROLL POWER

CALCULATION

• The power to drive the mill in Watts:

$$P = P_r w L \frac{v_r}{R'}$$

 v_r is the roll's surface speed in m/s. w is the width of the strip being rolled. R' is the flattened but still circular radius in mm.

• Overall power requirement by Rowe for four-high mill;

$$P_{total} = \frac{1}{\eta_m \eta_t} \left(2P + 4P_n \right)$$

 η_m , η_t are the efficiencies of the driving motor and the transmission. P_n is the power loss on bearings due to friction in Watts.

THE SENSITIVITY OF ROLL SEPERATING FORCE TO COEFFICIENT OF FRICTION AND REDUCTION

• Predicted with using Schey's and refined 1D model

> THE SENSITIVITY OF ROLL SEPERATING FORCE AND ROLL TORQUE TO STRAIN HARDENING COEFFICIENT

DEPENDENCE OF ROLL SEPERATING FORCE AND ROLL TORQUE ON THE ENTRY THICKNESS

ROLL PRESSURE DISTRIBUTION

THE CRITICAL STRAIN

TEMPER ROLLING

THE TEMPER ROLLING PROCESS

- To suppress the yield point extension
- Create Lüder's lines.
- Low reduction of thickness 0.5 5 %.
- Production of required metallurgical properties, surface finish and flatness.
- Correction of surface flaws and shape defects.
- Nearly equal elastic and plastic deformation
- The metals will enter plastic deformation when elastic stress level is satisfied.
- Yield strength variation calculated by Roberts (1988)

INTRODUCTION

- It is a process of 50 % reduction of a slab during rolling and cutting it into half and then stacking those two pieces on top of each other and repeating the same process over again. It is a type of cold welding process.
- Surface expansion is needed for surfaces to be adhered
- High speed brushing before rolling has significant effects while normal brush has no
- Tzou et al. (2002) states that; reduction, friction factor, interface, tension and bond length are the important parameters to define a strong bond.
- Zhang and Bay identified the threshold surface expansion.

INTRODUCTION

- Warm temperatures gives the best results
- Ultra fine grains
- Tensile strength increases
- Elongation decreases
- Usually 5 8 passes
- Edge cracking may occur

MECHANICAL ATTRIBUTES

- Hardness increases with the number of passes.
- Up to 100 % increase can be achieved with two layer strip.
- YIELD AND TENSILE STRENGHT

THE PHENOMENA AFFECTING THE BONDS

- Material properties
- Interfacial pressure
- Duration of contact
- Temperature
- Oxygen or air decrease adhesion
- Same surface roughness can be achieved manually by brushing

EDGE CRACKING

- Up to 16 layers were rolled successfully
- Edge cracking is the major limitation due to complex stress distribution at the edges
- Ultra low carbon steels have nearly ideal plastic behavior at 500 C.

RESULTS AND DISCUSSION

• The roll force increase with the reduction

• The roll torque starts to decrease when the moment arm begins to drop.

> SHEAR STRENGHT OF THE BOND

- Shear strength decrease with rolling speed due to shorter contact time.
- Highest contact time is achieved with high reduction and low roll speeds

SHEAR STRENGHT – ROLL PRESSURE

- Corresponding reductions 40 68 %
- Adhesive forces do not increase beyond one point.

300 250 EFFECT OF ENTRY TEMPERATURE Shear strength (MPa) 200 No more increase in shear strength beyond 150 280 C. 100 Speed of rolling = 88 mm/s Nominal reduction = 66% 50 0 240 280 300 260 320 EFFECT OF TEMPERATURE ON COLD BONDING Entry temperature (°C) 60 Annealing temperature Annealing temperatures are shown. 0-f 350°C △ 400°C ◇ 450°C Two hours of annealing and then cooling it down Shear strength (MPa) 40 Up to 30 % strength of the warm bonding 20 Speed of rolling ≅88 mm/s 0 72 60 64 68 Reduction (%)

TAILORED BLANKS

- Two different materials welded together with unequal thickness
- Used widely in automotive industry
- Different strength and formability on each side.

ECAP PROCESS AND ROLLING

 No significant difference on grain size between one pass and three pass 50 % reduction of ECAP.

The microstructure after heat treatment at 420°C for one hour, cooling in the furnace and subjected to one pass of the ECAP process and a rolling pass of 50% reduction. The longitudinal section is shown.

FLEXIBLE ROLLING

INTRODUCTION

- Automotive industry is the main reason for development of lightweight metals for different applications
- One advanced method is tailor welded blanks for combining two sheets.
- Chan et al. (2003) concluded that higher thickness ratios resulted lower formability.
- Kampus and Balic experimented Tailor welded blank with laser and decided that it is not successful due to high power, fracture on the weld.
- Ahmetoglu et al. (1995) tested the tailor welded blanks and found out that failure occurs at the flat bottom parallel to the weld line and new design guidelines needed
- Kopp et al. (2002) described a new technique to produce Tailor welded blanks *Flexible Rolling*

FLEXIBLE ROLLING

MATERIAL AND THE PROCEDURE

- Grain sizes are decreased, strength is increased and ductility is decreased.
- Hirt et al. (2005) stated that 50 % thickness changes are now possible using *Strip Profile Rolling*
- Roll gap is changed during the pass depending on the desired final product.
- Data acquisition systems are being used for data collection
- Process is done without lubrication

• Fast response of the system and result determination.

FLEXIBLE ROLLING

ROLL SEPERATING FORCE AND ROLL GAP

• Metals reaction to cold working can be seen in this two - stage rolling

COMPARISON OF 3 MATHEMATICAL MODEL'S RESULTS

- The ratio of measured and calculated roll separation forces are shown versus different roll rotation speeds.
- In the test low carbon steel is used for cold rolling.
- Different reduction ratios are used between 14 % and 54 %.

HSMM

- Inputs of the programe
 - All physical data for rolling mill configuration
 - Material compound
 - Entry temperature
 - Single node or multiple node
- Outputs of the programe
 - Material structure after rolling such as grain size and yield strength.
 - Calculated for head, mid and tail sections seperately
 - Change in width (3D)
 - Exit temperatures or temperature loss due to radation and to the roll seperately

intog	Grade: HSLA-Nb [*] rea Thermal Grade: UBC [*] readon			Force	fodel: NIST	Flow Stress Units C U.S.	Results Project Single Settings				Track	
process group, inc.	Run Single Node	Run Curr	Results ent Schedule	Ready Only		•	Run Multiple Node 6 S.I.	¢	Multiple Node	G Bi Runoi	uilder uilder ut Table Only	e Only
Current Schedule	HSLA_Nb~sched_3	Ro	lling Sched	lule	Calil	bration	MillConfiguration				Configure	Your
Project Managem	Info Initial Data Pass Data S	peed/Time	Shape/Cro	own Tem	perature D	ata Rolling	Parameters Microstructure Runout Table	Charts	Summary Re	suits		
Maalas Calheatian	Mechanical Properties Production	on Results										
Current Project	Single	Multiple N	Multiple Node Decute									
Content Project	Jinge	Units Head Mid			Tal Multiple Node		e Protopio re	Head Mid Tal				
HSLA Nh	Final Machanical Properties	UTIRS	nead	(m)		-	Einal Mechanical Properties	UTIKS	riedu	100	1.01	
sched 3	Farria Grain Siza	um 27		29	27		Farita Grain Size (Average)	um.	26	27	37	_
	Fraction Familia	2	399	0.0	00.0		Fraction Famile (Averana)	2	90.9	91.5	921	User
	Fraction Pearlie	*	10.4	Cakul	ulates Ferrite, Pearlite,		Fraction Pearlie (Average)	2	92	85	79	Data E
Project	Fraction Bainte	2	0.4 M		fartensite and Bainite		Fraction Bainte (Average)	2	0.0	0.0	0.0	
Management	Fraction Materiate	2	0.0		ranciorm	aton	Eraction Mattensite (Average)	2	0.0	0.0	0.0	
	Total Yield Strength	MPa	506.1	501.7	511.1		Total Vield Strength	MPa	514.5	510.9	510.7	
8	Total Tensile Strength	MPa	574.1	570.7	571.2		Total Tensile Strength	MPa	576.3	572.3	571.0	
	Total Elongation (2 inch)	2	26.5	26.6	26.6		Total Elongation (2 inch)	2	26.4	26.5	26.6	
	Precipitation Strength Summary		and the state				Precipitation Strength Summary	1	-			
	Yield Strength Component	MPa	148.8	151.4	153.2		Yield Strength Component	MPa	153.5	153.5	154.5	
	Yield Strength Maximum	MPa	161.2	161.2	161.2		Yield Strength Maximum	MPa	161.7	161.7	161.7	
	Tensile Strength Component	MPa	148.8	151.4	153.2		Tensile Strength Component	MPa	153.5	153.5	154.5	
	Tensile Strength Maximum	MPa	161.2	161.2	161.2		Tensile Strength Maximum	MPa	161.7	161.7	161.7	
	Aging Characteristics		Peak	Peak	Peak		Aging Characteristics	1	Peak	Peak	Peak	
	Transformation Summary						Transformation Summary				-	
	Ferrite Start Temperature	°C	741.2	749.2	744.3		Ferrite Start Temperature (Average)	°C	733.4	732.4	731.8	
	Pearlite Start Temperature	°C	692.8	676.2	643.1		Pearlite Start Temperature (Average)	°C	678.5	661.2	647.2	
	Bainite Start Temperature	°C	0.0	0.0	0.0		Bainite Start Temperature (Average)	°C	0.0	0.0	0.0	
	Martensite Start Temperature	°C	0.0	0.0	0.0		Martensite Start Temperature (Average)	*C	0.0	0.0	0.0	
	Temperature Summary						Temperature Summary					
	Average Initial Temperature	°C	1231.4	1231.4	1231.4		Average Initial Temperature	*C	1231.4	1231.4	1231.4	
	Average Finishing Temperature	°C	929.7	926.8	926.9		Average Finishing Temperature	°C	915.4	921.2	923.3	
	Average Coiling Temperature	°C	590.1	598.7	569.1		Average Colling Temperature	*C	590.1	589.0	570.7	
	Average Final Temperature	°C	296.2	296.2	296.2		Average Final Temperature	°C	296.3	296.3	296.3	
	Time Summary						Time Summary					
		harme	15.2				Time to Reach Final Temperature	hours	15.0			

CIRCULAR NODE ARRANGEMENT ON THE STRIP

- FE program FLUENT is used for meshing the strip.
- Circular shapes are hard in terms of creating ideal node distribution among.
- Deformation process should also not be forgotten

CIRCUAR NODE ARRANGEMENT WITH USING BARREL DIFORMATION

 $d - d' = r + kr^3$

Where d is the original pozition on a square and d' is the new pozition fitted on a circle. k is the constant to be determined. Comparison of tow different values of k is shown below.

- CIRCUAR NODE ARRANGEMENT WITH USING BARREL DIFORMATION
 - More examples:

DATA FROM THE STORE STEEL COMPANY

• A chance to compare the future results with industry

AD	JU	STMEN	TS	given b	y »			НО	т					
PS SE STAI		STAND	DIA	GROOVE		GAP		Hb Wb		DIA	RED	MOTOR	_LOOP m_	N.B
			roll	shape	prior	active	diff.	SI (SQ,DI,XR)		eff.	1203	nom cal	PULL %	!!
no	no	no	mm	no	mm	mm	mm	mm	mm	mm	%	rpm	nom cal	
1	1	1-0	800.0	BX 50		50.00		132.0	200.4	767.5	21.53	154		
2	1	1-0	800.0	TBX 50		10.00		92.00	215.1	794.4	26.39	154		
3	2	1-0	800.0	TBX 15/B		50.00		154.0	109.6	729.2	14.01	154		
4	2	1-0	800.0	TBX 9946		10.00		92.00	160.7	756.0	12.57	154		
5	3	1-0	800.0	TBX 7/B		20.00		112.0	110.5	791.5	20.21	154		
6	3	2-0	650.0	FL 1		72.00		72.00	127.1	690.7	21.57	1344		
7	4	2-0	650.0	EBX 38		30.00		106.0	79.14	612.0	10.22	1344		
8	4	2-0	650.0	FL 1		55.00		55.00	118.0	689.3	20.92	1344		
9	5	2-0	650.0	FL 1		45.00		45.00	123.5	675.8	14.44	1344		
10	5	2-0	650.0	FL 1		40.00		40.00	126.1	665.8	9.17	1344		
11		2-0		BY - PASSING										
12		2-0		BY - PASSING										
13	6	1-1	460.0	FL 1		35.00		35.00	127.9	473.9	11.19	1253		
14	6	2-1	460.0	FL 1		30.00		30.00	129.6	476.4	13.05	1132		
15	7	3-1	460.0	EBX 22		68.00		112.0	32.50	423.0	6.41	1044		
16	7	4-1	460.0	FL 1		27.00		27.00	114.2	479.0	14.93	942		-N
17	7	6-1	460.0	FL 1		24.00		24.00	115.4	472.6	10.24	851	\$	-N
18	8	7-1	460.0	EBX 22		59.00		103.0	25.67	421.2	4.81	453		-N
19	8	8-1	460.0	FL 1		22.00		22.00	104.6	475.8	12.63	763		-N
20	9	9-1	460.0	EBX 22		56.00		100.0	22.60	418.0	1.92	393		-N
21	9	10-1	460.0	FFL 1		20.00		20.00	101.2	472.7	10.33	699		-N

COMPUTATIONAL SIMULATION

GOVERNING HEAT TRANSFER EQUATION

$$\Delta T = \frac{\sigma_{fm}}{\rho c_p} \ln \frac{1}{1-r} - 60\alpha \sqrt{\frac{r}{h_{entry}R}} \left(T_{strip} - T_{roll}\right) \left[\left(1-r\right) \pi \rho c_p N \right]^{-1}$$

GOVERNING EQUATION OF EQUILIBRIUM OF FORCES

$$\frac{d(\sigma_x h)}{dx} + p\frac{dh}{dx} \mp 2\mu p = 0$$

$$\frac{dp}{dx} \pm 2\mu \frac{p}{h} = \frac{2k}{h} \frac{dh}{dx} + \frac{d(2k)}{dx}$$

COMPUTATIONAL SIMULATION

LOCAL RADIAL BASIS FUNCTION COLLOCATION METHOD

• 5 node based system with 4 neighbors each

• Approximation:
$$\varphi(x) = \sum_{i=1}^{5} c_i \psi_i(r)$$
, where $\vec{r} = (x, y)$, φ is an arbitrary function

- C_i are the constants to be determined
- $\psi(r)$ is the trial function defined as: $\psi(r) = \sqrt{(x x_i)^2 (y y_i)^2 + c^2}$ for c > 0
- $\psi(r)$ becomes a symmetric 5x5 matrix and needs to be non-singular in order to calculate the necessary coefficients depending on the boundary conditions

CONCLUSIONS

- Flat rolling process
- Plasticity of material during rolling and compression
- Roll deformation
- Roll separating force, roll pressure, shear stress, friction
- Friction factor and coefficient of friction
- Schey's model, sim's model, Orowan model and refinements to Orowan model
- Temperature gain and loss during rolling
- Static, dynamic and metadynamic recrystallization
- Roll torque and power calculations
- Influence of physical quantities on rolling
- Temper, accumulative roll bonding, flexible rolling
- Comparison of some calculations
- Base of computational simulation to be done

REFERENCES

- [1] Boratto, F., Barbosa, R., Yue, S. and Jonas, J.J., (1988), "Effect of Chemical Composition on the Critical Temperatures of Microalloyed Steels", Proc. THRMEC'88, ed., Tamura, I., Tokyo.
- [2] Hitchcock, J.H., (1935), "Roll Neck Bearings", ASME Research Publication.
- [3] Hodgson, P.D., McFarlane, D. and Gibbs, R.K., (1993), "The Mathematical Modeling of Hot Rolling: Accuracy vs. Utility" 1st Int. Conf. Modeling of Metal Rolling Processes, London, 2-15.
- [4] John G. Lenard, (2007), "Primer on Flat Rolling" Elsevier, Amsterdam.
- [5] Lenard, L.G. and Barbulovic-Nad, L., (2002), "The Coefficient of Friction During Hot Rolling of Low Carbon Steels", ASME, J. Trib., 124, 840-845.
- [6] Orowan, E., (1943), "The Calculation of Roll Pressure in Hot and Cold Flat Rolling", Proc. I. Mech. E., 150, 140-167.
- [7] Roberts, W. L., (1978), "Cold Rolling of Steel", Marcel Dekker Inc., New York.
- [8] Roberts W.L., (1983), "Hot Rolling of Steel", Marcel Dekker Inc., New York.

- [9] Rowe, G.W., (1977), "Principles of Industrial Metalworking Process", Edward Arnold Publishers, London.
- [10] Roychoudhury, R. And Lenard, J.G., (1984), "A Mathematical Model for Cold Rolling Experimental Substantiation", Proc. 1st Int. Conf. Techn. Plast., Tokyo, 1138-1143.

REFERENCES

- [11] Schey, J. A., (2000), "Introduction to Manufacturing Process, 3rd edition", Mcgraw-Hill, New York.
- [12] Sellars, C.M., (1990), "Modeling Microtructural Development During Hot Rolling", Mat. Sci. Techn., 6, 1072-1081.
- [13] Seredynski, T., (1973), "Prediction of Plate Cooling During Rolling Mill Operation", J. Iron and Steel Inst., 211, 197-203.
- [14] Sims, R. B., (1954), "The Calculation of The Roll Force And Torque in Hot Rolling Mills", Proc. I. Mech. E., 168, 191-200.
- [15] Stone, M.D., (1935), "The Rolling of Thin Strip Part I", Iron and Steel Engineer Year Book, 115-128.