MATHEMATICAL AND PHYSICAL MODELING OF THE FLAT ROLLING PROCESS

by
Umut Hanoglu
Supervised by Prof. Božidar Šarler

OUTLINE

, INTRODUCTION

- THEORY OF PLASTICITY

ROLLING MILL
ROLLING FORCES
TRIBOLOGY

- MATHEMATICAL MODELING OF ROLLING
. TEMPERATURE EFFECTS ON ROLLING RECRYSTALLIZATION
ROLL TORQUE
ROLL POWER
- INFLUENCE OF PHYSICAL QUANTITIES
- OTHER TYPES OF ROLLING - TEMPER, ACUMULATIVE, FLEXIBLE

RESULTS AND FUTURE COMPARISON
. COMPUTATIONAL SIMULATION
CONCLUSIONS

INTRODUCTION

THE FLAT ROLLING PROCESS

Reduce thickness to a pre-determined final thickness

Hot, Warm and Cold rolling

Work and Back-up rolls

Finishing and Roughening mills

Roll separating forces and roll torques

INTRODUCTION

THE HOT ROLLING PROCESS

Reheating Furnaces

- Heated up to $1200-1250 \mathrm{C}$ for steel, $500-550 \mathrm{C}$ for aluminum
- Removing cast dendrite structures
- Dissolving most of alloying elements
- Decreases hard precipitates

Figure is from John G. Lenard, (2007)

INTRODUCTION

PHYSICAL QUANTITIES OF ROLLING

Roll separating force $\left(P_{r}\right)$ in N / mm.
Roll pressure p in Pa .
Coefficient of friction μ
Width of the metal to be rolled w in mm .
Radius of the work roll R and deformed radius of the work roll R^{\prime} in mm .
Contact length L in mm.
Entry thickness $h_{\text {entry }}$, exit thickness $h_{\text {exit }}$ and the difference Δh in mm. Shear stress τ in Pa .
The angle between the vertical lines is ϕ
The torque per width M in N .
r is the reduction in \%.

THEORY OF PLASTICITY

MATERIAL CHARACTERISTICS OF STEEL

A metallic alloy with variable carbon content
Relatively high resistance to deformation
High strength and ductility and good behavior at high temperatures
Ductility as much as 40%
Strength as much as 1250 MPa
Transformation-induces plasticity (TRIP)
Martensitic and magnese-boron steels
Advance high strength steels (AHSS)
Annealing after cold rolling
Entry temperature and strain rate have crucial effect
More than 50% reduction can be achieved

THEORY OF PLASTICITY

- HOMOGENEOUS AND NON-HOMOGENEOUS COMPRESSION

Experimentally studies
In homogeneous compression planes remain as planes
Easier to model the homogeneous compression
Schey determination - when average thickness $h_{\text {ave }}=\frac{\left(h_{\text {entry }}-h_{\text {exit }}\right)}{2}$ divided by the length
(L) is bigger than a unity, non-homogeneous.

(b)

THEORY OF PLASTICITY

- IDEAL PLASTIC DEFORMATION CRITERIA

Planes strain plastic flow

Width should also be considered as unchanged

All the energy is absorbed by the material and turned into plastic deformation

No energy lost in the elasticity

Also no elastic recovery is considered

Becomes handy in 2D analysis

THEORY OF PLASTICITY

LIMITATIONS OF FLAT ROLLING

Minimum rollable thickness by Stone (1953)

$$
h_{\min }=\frac{3.58 D \mu \sigma_{f n}}{E}
$$

where D is the roll diameter in $\mathrm{mm} E$ is the elastic modulus in $\mathrm{Pa}, \sigma_{f m}$ is the average flow strength in Pa and μ is the coefficient of friction.
Claimed that in reality this does not exits.

Edge cracking

Alligatoring

Figures are from John G. Lenard, (2007)

ROLLING MILL

- HITCHCOOK'S RADIUS

Elasticity of the roll is considered
Hitchcock's equation (1935): $\quad R^{\prime}=R\left[1+\frac{16\left(1-v^{2}\right)}{\pi E \Delta h} P_{r}\right]$
where R^{\prime} is the flattened but still circular roll radius in mm, R is the original roll radius in mm, v is the Poisson's ratio, E is the Young's modulus of the roll in $\mathrm{Pa}, \Delta h$ is the thickness difference in mm and P_{r} is the roll separating force in N / mm.

In experiments the squeezed roll is more flattened than circular

ROLLING MILL

ROLL BENDING

Deflection of the roll across its central axis
Maximum deflection occurs at the center
Maximum deflection occurs at the center
Rowe calculated the maximum deflection in mm (1977) as; $\quad \Delta=\frac{P L^{3}}{E I}+0.2 \frac{P L}{A G}$
P is the roll force in N, L is the length of the roll in mm, E is the elastic modulus in Pa ,
I is the moment of inertia, G is the shear modulus in Pa and A is the cross sectional area in mm^{2}

Rowe (1977) calculated the maximum deflection as; $\Delta=\frac{P \bar{L}^{2}(5 L+24 c)}{6 \pi E D^{4}}+\frac{P \bar{L}}{2 \pi G D^{2}}$
\bar{L} is the half of the bearing length in $\mathrm{mm}, \quad D$ is the diameter of the roll in mm and c is the length of the roll in mm ,

ROLLING FORCES

ROLL PRESSURE AND ROLL SEPERATING FORCE

Roll pressure is the main physical source of the process
Roll separating force is the main goal in calculations in N / mm
They are related in all mathematical models
Roll pressure varies over the surface
Proportional
Increased with reduction
Roll separating force is used in calculating other quantities
Friction, entry thickness and strain hardening coefficient increase both of them
Cold rolling requires more than hot rolling Needs to be determined before installation

The roll pressure distribution.

Figure is from John G. Lenard, (2007)

ROLLING FORCES

- SHEAR STRESSES

Created due to the roll pressure
As a result of relative motion between roll and the strip
Acting tangential to the surface
Depends on coefficient of friction and roll pressure
Calculated as: $\tau=\mu p$
Direction is always opposite to the relative motion
Its sign changes in calculations due to previous reason At neutral point it vanishes

Figure is from John G. Lenard, (2007)

ROLLING FORCES

, NEUTRAL POINT

Backward region, strip is slower
neutral point, same speed as roll's surface
forward region, strip is faster
Conservation of mass
No relative motion occurs at this point
$\tau=0$
Not in the middle
Needs to be determined in some calculations

Neutral or no-slip region

TRIBOLOGY

COEFFICIENT OF FRICTION

Reason for the process to start and to move forward

$$
\mu_{\min }=\tan \phi_{b i t e}
$$

Increases the required forces to drive
It varies over the surface
Oxidation on hot rolling changes it
Adhesion and apparent contact area
Lubricants are used to control the friction
Asperity of harder surface
or trapped wear particle

Wave of material
Plastically deformed layer
Adhesion Adhesive bonding
Deformed asperity Body motion

TRIBOLOGY

LUBRICANT

Oil- water emulsions are the most common lubricant The viscosity: $\quad \tau=\eta \dot{\gamma} \quad \mu=\frac{\eta}{\rho}$ density.

Viscosity - Pressure: $\quad \eta=\eta_{0} \exp (\gamma p) \quad \eta=\eta_{0}(1+C p)^{n}$
η_{0} is the viscosity under atmospheric pressure and γ is the pressure-viscosity coefficient and p is the pressure. C and n are constants.

Figures are from John G. Lenard, (2007)

TRIBOLOGY

FRICTION FACTOR

$$
\tau=m k \quad 0 \leq m \leq 1
$$

1-D equation could be written as;

$$
\frac{d p}{d x}=\frac{2 k}{h_{\text {exit }} R+x^{2}}(2 x-m R)
$$

The friction factor could be determined in terms of load and speed;

$$
m=\bar{a}\left(x^{2}-x_{n p}^{2}\right) p+\bar{b} \tan ^{-1}\left(\frac{\Delta v}{q}\right)
$$

Figure is from John G. Lenard, (2007)

The relative velocity is given;

$$
\Delta v=v_{r} \frac{x_{n p}{ }^{2}-x^{2}}{h_{e x i t} R+x^{2}}
$$

\bar{a}, \bar{b} are constants to be determined, q is a constant taken as 0.1

MATHEMATICAL MODELING OF ROLLING

SCHEY'S MODEL

Schey's model, roll separating force per unit with;

$$
P_{r}=1.15 Q_{p} \sigma_{f m} L
$$

Average flow strength; $\sigma_{f m}($ in Pa$)$ is obtained by;

$$
\sigma_{f m}=\frac{1}{\varepsilon_{\max }} \int_{0}^{\varepsilon_{\max }} \sigma(\varepsilon) d \varepsilon
$$

Q_{p} is the pressure intensification factor which is roll pressure divided by average flow strength $p / \sigma_{f m}, \varepsilon_{\text {max }}$ is the maximum strain and L is the contact length of rolling in m .
Q_{p} can be obtained by the graph defined by Schey

Figure is from John G. Lenard, (2007)

MATHEMATICAL MODELING OF ROLLING

- SIM'S MODEL

Roll separating force in $\mathrm{N} / \mathrm{mm}: \quad P_{r}=2 k L Q_{p}$
Assumed that the angles in the roll gap are very small ($\sin \phi=\tan \phi=\phi$). Interfacial shear stress is negligible and there is a sticking friction between the roll and the strip ($\tau=k$).

Pressure intensification factor:

$$
Q_{p}=\left[\frac{\pi}{2} \sqrt{\frac{1-r}{r}} \tan ^{-1} \sqrt{\frac{r}{1-r}}-\frac{\pi}{4}-\sqrt{\frac{1-r}{r} \frac{R^{\prime}}{h_{\text {exit }}}} \ln \frac{h_{n p}}{h_{\text {exit }}}+\frac{1}{2} \sqrt{\frac{1-r}{r} \frac{R^{\prime}}{h_{\text {exit }}}} \ln \frac{1}{1-r}\right]
$$

$h_{n p}$ is the thickness at the neutral point. r is the reduction. Units inside each fraction should be consistent. Used in many calculations because of its simplicity.

MATHEMATICAL MODELING OF ROLLING

OROWAN'S MODEL

1 - Dimensional equilibrium based model;

$$
\frac{d\left(\sigma_{x} h\right)}{d x}+p \frac{d h}{d x} \mp 2 \mu p=0
$$

σ_{x} is the stress in the direction of rolling and \mp is determined relative to the neutral point, p is the roll pressure.
Shear stress is given as $\tau=\mu p$ and using Huber - Mises criterion which is: $\sigma_{x}+p=2 k$
The formulation becomes:

$$
\frac{d p}{d x} \pm 2 \mu \frac{p}{h}=\frac{2 k}{h} \frac{d h}{d x}+\frac{d(2 k)}{d x}
$$

k is the yield strength under pure shear.

MATHEMATICAL MODELING OF ROLLING

REFINEMENTS TO OROWAN MODEL

Published by Roychoudhury and Lenard (1984)

$$
\begin{gathered}
\frac{d}{d x}\left[h\left(p-2 k \pm \tau \frac{d y}{d x}\right)\right]=2\left(p \frac{d y}{d x} \pm \tau\right) \\
y=f(x)=a x+b
\end{gathered}
$$

Michell's 2D elastic treatment (1990)

Figure is from John G. Lenard, (2007)

$$
\begin{aligned}
& P_{r}=p\left[\int_{x_{\text {enty }}}^{x_{n}}\left(1+\mu \frac{d y}{d x}\right) d x+\int_{x_{n}}^{x_{\text {exit }}}\left(1+\mu \frac{d y}{d x}\right) d x+\int_{x_{\text {entry }}}^{x_{n}}\left(\mu-\frac{d y}{d x}\right) d x+\int_{x_{n}}^{x_{\text {exit }}}\left(\mu+\frac{d y}{d x}\right) d x\right] \\
& \frac{M}{2}=p \int_{x_{\text {entry }}}^{x_{n}}\left[x-y \frac{d y}{d x}+\mu\left(y+x y \frac{d y}{d x}\right)\right] d x-p \int_{x_{n}}^{x_{\text {exit }}}\left[x-y \frac{d y}{d x}-\mu\left(y+x \frac{d y}{d x}\right)\right] d x
\end{aligned}
$$

$x_{n}, x_{\text {entry }}$ and $x_{\text {exit }}$ are the positions on x axis at the entry, neutral and exit points.

TEMPERATURE EFFECTS ON ROLLING

TEMPERATURE GAIN DUE TO PLASTIC DEFORMATION

The rise of temperature due to plastic deformation is:

$$
\Delta T_{\text {gain }}=\frac{P_{r} L / R^{\prime}}{\rho c_{p} h_{\text {ave }}}
$$

P_{r} is in $\mathrm{N} / \mathrm{m}, L$ and R^{\prime} are in m, ρ is the density of the strip in $\mathrm{kg} / \mathrm{m}^{3}$ and c_{p} is the specific heat of strip in $\mathrm{J} / \mathrm{kgC}$.

Temperature rise by Roberts (1983) is: $\quad \Delta T_{g a i n}=\frac{\sigma_{f m}}{\rho c_{p}} \ln \frac{1}{1-r}$

TEMPERATURE EFFECTS ON ROLLING

TEMPERATURE LOSS DUE TO HEAT DISSIPATION TO THE AMBIENT AND THE ROLL

Temperature loss during hot rolling by Seredynski (1973) is:

$$
\Delta T_{\text {loss }}=60 \alpha \sqrt{\frac{r}{h_{\text {entry }} R}}\left(T_{\text {strip }}-T_{\text {roll }}\right)\left[(1-r) \pi \rho c_{p} N\right]^{-1}
$$

α is the heat transfer coefficient of roll strip interface in $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}, N$ is the revolutions per minute. $T_{\text {strip }}$ and $T_{\text {roll }}$ are the strip and roll temperatures in Kelvin. ρ and c_{p} are of the roll.
Rise of roll's surface temperature estimated by Roberts (1983) is:

$$
\frac{T_{\text {roll }}-T_{0}}{T_{\text {strip }}-T_{0}}=\alpha \sqrt{\frac{t}{k c_{p} \rho}}
$$

$T_{\text {roll }}$ is the roll's surface temperature, T_{0} is the roll's temperature below its surface. k is the thermal conductivity of the roll in W / mK. t is the contact time in seconds.

RECRYSTALLIZATION

STATIC RECRYSTALLIZATION

Recrystallization controlled rolling to achieve finer grains
Critical strain necessary for static recrystallization to occur
Larger the grain size, slower the rate of recrystallization
The temperature (in ${ }^{\circ} \mathrm{C}$) above recrystallization occurs is;

Figure is from keytometals.com

RECRYSTALLIZATION

, STATIC RECRYSTALLIZATION

Time for 50% recrystallization is:

$$
t_{0.5 X}=B \varepsilon^{p} D_{\gamma}^{q} Z^{r} \dot{\varepsilon}^{s} \exp \left(\frac{Q_{R X}}{R T}\right)
$$

ε is the strain, D_{γ} is the austenite grain size prior to deformation in $\mu \mathrm{m}, Z$ is the
Zener - Hollomon parameter defined as ;

$$
Z=\dot{\varepsilon} \exp (Q / R T)
$$

$Q_{R X}$ is the activation energy for recrystallizaton in $\mathrm{J} / \mathrm{mole}, R$ is the gas constant and T is the absolute temperature. B, p, q are given by Sellars (1990).

Figure is from John G. Lenard, (2007)

RECRYSTALLIZATION

STATIC RECRYSTALLIZATION

Recrystallized grain size:

$$
D_{r}=C_{1}+C_{2} \varepsilon^{m} \dot{\varepsilon}^{n} D_{\gamma}^{l} \exp \frac{-Q_{d}}{R T}
$$

C values, m, n, l are constants defined by Sellars. Q_{d} is the apparent activation energy.

Time for $\mathrm{X} \%$ recrystallization in seconds is:

$$
t=\left[\frac{\ln (1-X)}{A}\right]^{1 / k} t_{x}
$$

t_{x} is the time for a given volume to recrystallize.

RECRYSTALLIZATION

DYNAMIC RECRYSTALLIZATION

Recrystallization during plastic deformation
Critical strain at which dynamic recrystallization starts, Zener-Hollomon parameter;

$$
\varepsilon_{c}=A Z^{p} D_{\gamma}^{q}
$$

A, p, q are material constants, D_{γ} is the austenite grain size.

Metadynamic recrystallization, starts during deformation and continues after deformation ends.

RECRYSTALLIZATION

METADYNAMIC RECRYSTALLIZATION

Time for 50% metadynamic recrystallization is:

$$
t_{0.5}=A_{1} Z^{s} \exp \left(\frac{Q}{R T}\right)
$$

A_{1} and s are the material constants defined by Hodgson. Q is the activation energy in $\mathrm{J} / \mathrm{mole}$.

The metadynamic grain size by Hodgson;

$$
D_{M D}=A Z^{u}
$$

Grain size during metadynamic recrystallization (in $\mu \mathrm{m}$)is:

$$
D(t)=D_{D R X}+\left(D_{M D}-D_{D R X}\right) X_{M D}
$$

$X_{M D}$ is the volume fracture after metadynamic recrystallization. $D_{D R X}$ is the grain size after dynamic recrystallization in $\mu \mathrm{m}$.

ROLL TORQUE

CALCULATION

Torque to drive the roll can be calculated in terms of roll separating force $\left(P_{r}\right)$:

$$
M=\frac{P_{r} L}{2}
$$

The torque M is per unit width so the unit is N .

It is assumed that P_{r} acts at the middle of the contact and the contact length is linear

Linear length approximation may give bad results

ROLL POWER

CALCULATION

The power to drive the mill in Watts:

$$
P=P_{r} w L \frac{v_{r}}{R^{\prime}}
$$

v_{r} is the roll's surface speed in m / s. w is the width of the strip being rolled. R^{\prime} is the flattened but still circular radius in mm .

Overall power requirement by Rowe for four-high mill;

$$
P_{\text {total }}=\frac{1}{\eta_{m} \eta_{t}}\left(2 P+4 P_{n}\right)
$$

η_{m}, η_{t} are the efficiencies of the driving motor and the transmission. P_{n} is the power loss on bearings due to friction in Watts.

INFLUENCE OF PHYSICAL QUANTITIES

- THE SENSITIVITY OF ROLL SEPERATING FORCE TO COEFFICIENT OF FRICTION AND REDUCTION

Predicted with using Schey's and refined 1D model

Figure is from John G. Lenard, (2007)

INFLUENCE OF PHYSICAL QUANTITIES

- THE SENSITIVITY OF ROLL SEPERATING FORCE AND ROLL TORQUE TO STRAIN HARDENING COEFFICIENT

Figures are from John G. Lenard, (2007)

INFLUENCE OF PHYSICAL QUANTITIES

- DEPENDENCE OF ROLL SEPERATING FORCE AND ROLL TORQUE ON THE ENTRY THICKNESS

Figures are from John G. Lenard, (2007)

INFLUENCE OF PHYSICAL QUANTITIES

- ROLL PRESSURE DISTRIBUTION

Figure is from John G. Lenard, (2007)

INFLUENCE OF PHYSICAL QUANTITIES

THE CRITICAL STRAIN

Figure is from John G. Lenard, (2007)

TEMPER ROLLING

THE TEMPER ROLLING PROCESS

To suppress the yield point extension Create Lüder's lines.
Low reduction of thickness $0.5-5 \%$.
Production of required metallurgical properties, surface finish and flatness. Correction of surface flaws and shape defects. Nearly equal elastic and plastic deformation

The metals will enter plastic deformation when elastic stress level is satisfied. Yield strength variation calculated by Roberts (1988)

Figure is from John G. Lenard, (2007)

ACCUMULATIVE ROLL BONDING

. INTRODUCTION

It is a process of 50% reduction of a slab during rolling and cutting it into half and then stacking those two pieces on top of each other and repeating the same process over again. It is a type of cold welding process.

Surface expansion is needed for surfaces to be adhered

High speed brushing before rolling has significant effects while normal brush has no

Tzou et al. (2002) states that; reduction, friction factor, interface, tension and bond length are the important parameters to define a strong bond.

Zhang and Bay identified the threshold surface expansion.

ACCUMULATIVE ROLL BONDING

INTRODUCTION

Warm temperatures gives the best results

Ultra fine grains

Tensile strength increases

Elongation decreases

Usually 5-8 passes

Edge cracking may occur

ACCUMULATIVE ROLL BONDING

- MECHANICAL ATTRIBUTES

Hardness increases with the number of passes. Up to 100% increase can be achieved with two layer strip.

- YIELD AND TENSILE STRENGHT

Figures are from John G. Lenard, (2007)

ACCUMULATIVE ROLL BONDING

- THE PHENOMENA AFFECTING THE BONDS

Material properties
Interfacial pressure
Duration of contact
Temperature
Oxygen or air decrease adhesion
Same surface roughness can be achieved manually by brushing

- EDGE CRACKING

Up to 16 layers were rolled successfully
Edge cracking is the major limitation due to complex stress distribution at the edges
Ultra low carbon steels have nearly ideal plastic behavior at 500 C.

ACCUMULATIVE ROLL BONDING

RESULTS AND DISCUSSION

The roll force increase with the reduction

The roll torque starts to decrease when the moment arm begins to drop.

Figures are from John G. Lenard, (2007)

ACCUMULATIVE ROLL BONDING

- SHEAR STRENGHT OF THE BOND

Shear strength decrease with rolling speed due to shorter contact time.
Highest contact time is achieved with high reduction and low roll speeds

- SHEAR STRENGHT - ROLL PRESSURE

Corresponding reductions $40-68 \%$
Adhesive forces do not increase beyond one point.

Figures are from John G. Lenard, (2007)

ACCUMULATIVE ROLL BONDING

- EFFECT OF ENTRY TEMPERATURE

No more increase in shear strength beyond 280 C.

- EFFECT OF TEMPERATURE ON COLD BONDING

Annealing temperatures are shown.
Two hours of annealing and then cooling it down Up to 30% strength of the warm bonding

Figures are from John G. Lenard, (2007)

ACCUMULATIVE ROLL BONDING

- TAILORED BLANKS

Two different materials welded together with unequal thickness
Used widely in automotive industry
Different strength and formability on each side.

- ECAP PROCESS AND ROLLING

No significant difference on grain size between one pass and three pass 50% reduction of ECAP.

FLEXIBLE ROLLING

, INTRODUCTION

Automotive industry is the main reason for development of lightweight metals for different applications
One advanced method is tailor - welded blanks for combining two sheets.
Chan et al. (2003) concluded that higher thickness ratios resulted lower formability.
Kampus and Balic experimented Tailor - welded blank with laser and decided that it is not successful due to high power, fracture on the weld.
Ahmetoglu et al. (1995) tested the tailor welded blanks and found out that failure occurs at the flat bottom parallel to the weld line and new design guidelines needed Kopp et al. (2002) described a new technique to produce Tailor welded blanks - Flexible Rolling

FLEXIBLE ROLLING

. MATERIAL AND THE PROCEDURE

Grain sizes are decreased, strength is increased and ductility is decreased.
Hirt et al. (2005) stated that 50% thickness changes are now possible using Strip Profile Rolling

Roll gap is changed during the pass depending on the desired final product.
Data acquisition systems are being used for data collection
Process is done without lubrication
Fast response of the system and result determination.

FLEXIBLE ROLLING

. ROLL SEPERATING FORCE AND ROLL GAP

Metals reaction to cold working can be seen in this two - stage rolling

Figures are from John G. Lenard, (2007)

RESULTS AND FUTURE COMPARISON

, COMPARISON OF 3 MATHEMATICAL MODEL'S RESULTS

- The ratio of measured and calculated roll separation forces are shown versus different roll rotation speeds.
- In the test low carbon steel is used for cold rolling.
- Different reduction ratios are used between 14% and 54%.

Figure is from John G. Lenard, (2007)

RESULTS AND FUTURE COMPARISON

- HSMM
- Inputs of the programe

All physical data for rolling mill configuration
Material compound
Entry temperature
Single node or multiple node

Outputs of the programe
Material structure after rolling such as grain size and yield strength.
Calculated for head, mid and tail sections seperately
Change in width (3D)
Exit temperatures or temperature loss due to radation and to the roll seperately

RESULTS AND FUTURE COMPARISON

. CIRCULAR NODE ARRANGEMENT ON THE STRIP

FE program FLUENT is used for meshing the strip.
Circular shapes are hard in terms of creating ideal node distribution among.
Deformation process should also not be forgotten

RESULTS AND FUTURE COMPARISON

CIRCUAR NODE ARRANGEMENT WITH USING BARREL DIFORMATION

$$
d-d^{\prime}=r+k r^{3}
$$

Where d is the original pozition on a square and d^{\prime} is the new pozition fitted on a circle. k is the constant to be determined. Comparison of tow different values of k is shown below.

RESULTS AND FUTURE COMPARISON

- CIRCUAR NODE ARRANGEMENT WITH USING BARREL DIFORMATION More examples:

RESULTS AND FUTURE COMPARISON

DATA FROM THE STORE STEEL COMPANY

A chance to compare the future results with industry

COMPUTATIONAL SIMULATION

GOVERNING HEAT TRANSFER EQUATION

$$
\Delta T=\frac{\sigma_{f m}}{\rho c_{p}} \ln \frac{1}{1-r}-60 \alpha \sqrt{\frac{r}{h_{\text {entry }} R}}\left(T_{\text {strip }}-T_{\text {roll }}\right)\left[(1-r) \pi \rho c_{p} N\right]^{-1}
$$

GOVERNING EQUATION OF EQUILIBRIUM OF FORCES

$$
\begin{aligned}
& \frac{d\left(\sigma_{x} h\right)}{d x}+p \frac{d h}{d x} \mp 2 \mu p=0 \\
& \frac{d p}{d x} \pm 2 \mu \frac{p}{h}=\frac{2 k}{h} \frac{d h}{d x}+\frac{d(2 k)}{d x}
\end{aligned}
$$

COMPUTATIONAL SIMULATION

LOCAL RADIAL BASIS FUNCTION COLLOCATION METHOD

5 node based system with 4 neighbors each
Approximation: $\varphi(x)=\sum_{i=1}^{5} c_{i} \psi_{i}(r)$, where $\vec{r}=(x, y), \varphi$ is an arbitrary function c_{i} are the constants to be determined
$\psi(r)$ is the trial function defined as: $\quad \psi(r)=\sqrt{\left(x-x_{i}\right)^{2}\left(y-y_{i}\right)^{2}+c^{2}} \quad$ for $c>0$
$\psi(r)$ becomes a symmetric 5×5 matrix and needs to be non-singular in order to calculate the necessary coefficients depending on the boundary conditions

CONCLUSIONS

- Flat rolling process
- Plasticity of material during rolling and compression
- Roll deformation
- Roll separating force, roll pressure, shear stress, friction
- Friction factor and coefficient of friction
- Schey's model, sim's model, Orowan model and refinements to Orowan model
- Temperature gain and loss during rolling
- Static, dynamic and metadynamic recrystallization
- Roll torque and power calculations
, Influence of physical quantities on rolling
* Temper, accumulative roll bonding, flexible rolling
- Comparison of some calculations
* Base of computational simulation to be done

REFERENCES

[1] Boratto, F., Barbosa, R., Yue, S. and Jonas, J.J., (1988), "Effect of Chemical Composition on the Critical Temperatures of Microalloyed Steels", Proc. THRMEC'88, ed., Tamura, I., Tokyo.
[2] Hitchcock, J.H., (1935), "Roll Neck Bearings", ASME Research Publication.
[3] Hodgson, P.D., McFarlane, D. and Gibbs, R.K., (1993), "The Mathematical Modeling of Hot Rolling: Accuracy vs. Utility" 1st Int. Conf. Modeling of Metal Rolling Processes, London, 2-15.
[4] John G. Lenard, (2007), "Primer on Flat Rolling" Elsevier, Amsterdam.
[5] Lenard, L.G. and Barbulovic-Nad, L., (2002), "The Coefficient of Friction During Hot Rolling of Low Carbon Steels", ASME, J. Trib., 124, 840-845.
[6] Orowan, E., (1943), "The Calculation of Roll Pressure in Hot and Cold Flat Rolling", Proc. I. Mech. E., 150, 140-167.
[7] Roberts, W. L., (1978), "Cold Rolling of Steel", Marcel Dekker Inc., New York.
[8] Roberts W.L., (1983), "Hot Rolling of Steel", Marcel Dekker Inc., New York.
[9] Rowe, G.W., (1977), "Principles of Industrial Metalworking Process", Edward Arnold Publishers, London.
[10] Roychoudhury, R. And Lenard, J.G., (1984), "A Mathematical Model for Cold Rolling Experimental Substantiation", Proc. 1st Int. Conf. Techn. Plast., Tokyo, 1138-1143.

REFERENCES

[11] Schey, J. A., (2000), "Introduction to Manufacturing Process, $3^{\text {rd }}$ edition", Mcgraw-Hill, New York.
[12] Sellars, C.M., (1990), "Modeling Microtructural Development During Hot Rolling", Mat. Sci. Techn., 6, 1072-1081.
[13] Seredynski, T., (1973), "Prediction of Plate Cooling During Rolling Mill Operation", J. Iron and Steel Inst., 211, 197-203.
[14] Sims, R. B., (1954), "The Calculation of The Roll Force And Torque in Hot Rolling Mills", Proc. I. Mech. E., 168, 191-200.
[15] Stone, M.D., (1935), "The Rolling of Thin Strip - Part I", Iron and Steel Engineer Year Book, 115-128.

