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m streamlines break up,

m fluid elements move in a random, irregular and
torous fashion.

Turbulence modeling:

m mathematical model that approximates the physical behavior of
turbulent flow.

m much simpler than the full time dependent Navier-Stokes equations,
m complex enough to capture the essence of the relevant physics.
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Fundamental
problem of
Tj = —pUlU! turbulence modeling.
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molecular gradient

e R~ rbulent stress
Agebrac models diffusion process w
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4 ... molecular viscosity
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Prandtl (1945): eddy viscosity depends upon the kinetic energy of the
turbulent fluctuations, k.
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Eddy viscosity Trace of Reynolds stress tensor

pr = constant - pk'/2| i = —pulu] = 2pK
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Spalart and Allmaras (1992) - model equations for the eddy viscosity.

Eddy viscosity

pr = pr(v, )
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m Transport equation for turbulence kinetic energy, k.
m Transport equation for dissipation of turbulence kinetic energy, e.

Launder and Sharma (1974) - Standard k — ¢ model:

Eddy viscosity Turbulence length scale

ur o pk? /e o k32 /e
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m Turbulence modeling - one of the greatest interests of science.

m Spalart-Allmaras model - fast, quite accurate and stable, excellent
for first computation.

m k — e model - quite accurate, unreliable at large pressure gradients.

Conclusions
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