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Introduction

Laminar flow

streamlines are smooth and regular,

Turbulent flow

streamlines break up,

fluid elements move in a random, irregular and
torous fashion.

Turbulence modeling:

mathematical model that approximates the physical behavior of
turbulent flow.

much simpler than the full time dependent Navier-Stokes equations,

complex enough to capture the essence of the relevant physics.
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Introduction

Navier-Stokes
equation
Flow model

Time average

n-Equation
models
Algebraic models

Turbulence energy
equation models

Simulations
Airfoil

Square

Conclusions

Bibliography

Outline

1 Introduction

2 Navier-Stokes equation
Flow model
Time average

3 n-Equation models

4 Simulations



Turbulence
modeling and

its
applications

Matej
Andrejašič

Introduction

Navier-Stokes
equation
Flow model

Time average

n-Equation
models
Algebraic models

Turbulence energy
equation models

Simulations
Airfoil

Square

Conclusions

Bibliography

Flow model

Infinitesimally small moving fluid
element of fixed mass.

Newton’s second law

d(m v)
dt = F

Navier-Stokes equation

ρ∂ui
∂t +ρuj

∂ui
∂xj

=

− ∂p
∂xi

+

∂tij
∂xj
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Flow model

Navier-Stokes equation

ρ∂ui
∂t + ρuj

∂ui
∂xj

= − ∂p
∂xi

+
∂tij
∂xj

Unsteady, compressible,
threedimensional viscous
flow.

Viscous stress tensor

tij = 2µsij

Strain-rate tensor

sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)

Mass conservation equation

∂ui
∂xi

= 0
Incompressible flow.
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Introduction

Navier-Stokes
equation
Flow model

Time average

n-Equation
models
Algebraic models

Turbulence energy
equation models

Simulations
Airfoil

Square

Conclusions

Bibliography

Statistical approach

Reynolds 1895

Instantaneous velocity

ui(x, t) = Ui(x, t) + u′i (x, t)

Reynolds time average

Ui(x, t) = 1
T

∫ t+T
t ui(x, t)dt

Time averaged equations of motion

∂Ui
∂xi

= 0

ρ ∂Ui
∂t + ρUj

∂Ui
∂xj

= − ∂P
∂xi

+ ∂
∂xj

(
2µSij − ρu′j u

′
i

)
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Statistical approach

Time averaged equations of motion

∂Ui
∂xi

= 0

ρ ∂Ui
∂t + ρUj

∂Ui
∂xj

= − ∂P
∂xi

+ ∂
∂xj

(
2µSij − ρu′j u

′
i

)

Reynolds-stress tensor

τij = −ρu′j u
′
i

Fundamental
problem of
turbulence modeling.
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Algebraic models - zero equation models

Equation for conservation of mass
Navier-Stokes equation

⇒ Zero additional equations

Boussinesq eddy-viscosity approximation (1877)

molecular gradient
diffusion process ≈ turbulent stress

tij = µ
(

∂ui
∂xj

+
∂uj
∂xi

)
≈ τij = µT

(
∂Ui
∂xj

+
∂Uj
∂xi

)
µ ... molecular viscosity
µT ... eddy viscosity.
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Introduction

Navier-Stokes
equation
Flow model

Time average

n-Equation
models
Algebraic models

Turbulence energy
equation models

Simulations
Airfoil

Square

Conclusions

Bibliography

Algebraic models - zero equation models

Equation for conservation of mass
Navier-Stokes equation

⇒ Zero additional equations

Boussinesq eddy-viscosity approximation (1877)

molecular gradient
diffusion process ≈ turbulent stress

tij = µ
(

∂ui
∂xj

+
∂uj
∂xi

)
≈ τij = µT

(
∂Ui
∂xj

+
∂Uj
∂xi

)
µ ... molecular viscosity
µT ... eddy viscosity.



Turbulence
modeling and

its
applications

Matej
Andrejašič
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Algebraic models - zero equation models

Reynolds stress tensor

τij = µT

(
∂Ui
∂xj

+
∂Uj
∂xi

) Boussinesq eddy-viscosity
approximation.

Eddy viscosity

µT = ρl2mix

∣∣Sij
∣∣

Prandtl’s (1925) mixing
length hypothesis.

lmix ... mixing length
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Turbulence energy equation models

conservation of mass and momentum
n additional differential transport equations

Boussinesq eddy viscosity approximation: τij = µT

(
∂Ui
∂xj

+
∂Uj
∂xi

)
Prandtl (1945): eddy viscosity depends upon the kinetic energy of the
turbulent fluctuations, k .

Turbulence kinetic energy

k = 1
2 u′i u

′
i

Eddy viscosity

µT = constant · ρk1/2l

Trace of Reynolds stress tensor

τii = −ρu′i u
′
i = 2ρk
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Turbulence kinetic energy equation

Turbulence kinetic energy equation

ρ∂k
∂t + ρUj

∂k
∂xj

= τij
∂Ui
∂xj
− ρε+ ∂

∂xj

[
(µ+ µT/σk ) ∂k

∂xj

]

Turbulence kinetic energy dissipation per unit mass

ε = ν
∂u′i
∂xk

∂u′i
∂xk

Reynolds stress tensor

τij = 2µT Sij − 2
3ρkδij
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One equation models

Turbulence kinetic energy dissipation

ε ∝ k3/2/l
Prandtl

Eddy viscosity

µT = ρk1/2l

l - the only unspecified part
of the one equation model

Spalart and Allmaras (1992) - model equations for the eddy viscosity.

Eddy viscosity

µT = µT (ν, ν̃)
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Two equation models

Transport equation for turbulence kinetic energy, k .

Transport equation for dissipation of turbulence kinetic energy, ε.

Launder and Sharma (1974) - Standard k − ε model:

Eddy viscosity

µT ∝ ρk2/ε

Turbulence length scale

l ∝ k3/2/ε
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Simulations

OpenFOAM - CFD
simpleFoam - steady, incompressible, viscous,
threedimensional flow
2D
Re = 2.0 · 106
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Airfoil - pressure, velocity magnitude and
streamlines

Spalart-Allmaras model k − ε model

Re=2.0·106, α = 10◦
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Airfoil - k and ε

k − ε model

Turbulence kinetic
energy

Dissipation of
turbulence kinetic
energy

Re=2.0·106, α = 10◦
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Airfoil - eddy viscosity νT

Spalart-Allmaras model k − ε model

Re=2.0·106, α = 10◦



Turbulence
modeling and

its
applications

Matej
Andrejašič
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Square - pressure, velocity magnitude and
streamlines

Spalart-Allmaras k − ε model
Re=2.0·106, α = 0◦
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Square - k and ε

k − ε model
Re=2.0·106, α = 0◦

Turbulence kinetic
energy

Dissipation of
turbulence kinetic
energy
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Square - eddy viscosity νT

Spalart-Allmaras k − ε model

Re=2.0·106, α = 10◦
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Conclusions

Turbulence modeling - one of the greatest interests of science.
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