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Goals

Overview of the literature on modelling of solidification systems

Physical modelling of solidification systems on the macroscopic
scale

Physical modelling of solidification systems on the microscopic
scale

Development of the multiscale and multiphysics equations that will
be used in a Ph. D. project



Physical phenomena

Crystal growth: gas-solid
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Physical phenomena
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Physical phenomena
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The grain structure as observed in a directionally solidified Al-7wt%Si casting (left) and
solidification process is illustrated for a 2D casting (right). The outer equiaxed, columnar and
(inner) equiaxed zones are indicated.



Physical phenomena
Equiaxed grains growing in a uniform temperature field

Dendritic
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Equiaxed grain types frequently encountered in solidification: (a) globulitic grains in Al-1wt%Cu
(grain size 100um), (b) dendritic grains in an Al-7wt%Si alloy (grain size 2mm), (c) gray cast iron,
and (d) nodular cast iron (typical graphite nodule size 50um)



Physical phenomena
Columnar grains

* Dendrites whose preffered direction is inclined with respect to G
must grow faster in order to maintain their relative tip positions

e Tips of the inclined dendrites lie slightly behind those of well-
aligned dendrites

e Growth competition among columnar dendrites results in a natural

selection of grains with a smal angle ¢
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Velocities of (a) eutectic isotherm and eutectic front, and (b) liquidus isotherm and dendrite tips.
Because dendrites are constrained to grow along well-defined directions, their velocity, and thus
their undercooling, depend on their angle of inclination with respect to the thermal gradient.



Modeling principles

e Deterministic and stohastic

e Macro level
> Mixture theory
> Volume averaging
- Ensemble averaging
o Micro level
- Monte Carlo methods
> Cellular automata method (Point automata)



Physical system

Cartesian coordinate system
Continuum mechanics
Two-phase, binary alloy system
Newtonian fluid

Binary eutectic phase diagram:
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Physical system

Double diffusive convection: convection depends on temperature
and concentration

Stationary solid phase
Moving solid phase

Slurry flow regime

> Volume fraction of the solid phase g, smaller or equal than a predefined packing
fraction Qg

Porous flow regime

> Volume fraction of the solid phase g, greater than a predefined packing fraction

Js



Physical system

N o

Liquid

Thermal & solutal
natural convection

> mushy zone flow \)

Solid

Example of industrial solidification system: DC casting of aluminium alloys



Physical system

Creation of clusters: embryos and nuclei

Homogeneous nucleation: clusters are assumed to appear
spontaneously in a melt free of any impurities

Heterogeneus nucleation: the clusters form preferentially
on foreign particles in the melt, or at interfaces (melt-container)
Nucleation model:
( t N
N,J(t) if T<T,, and [Ndt = C
0

nucl ] 705(1()

N =< N,I(t) if T<T,,andN=0

nucl

0 else

AT



Physical system

* Microscopic conservation equations:

Mass: %pk+D[kavk): 0

Momentum: %(,okvk)+El[Q,okvkvk):—[|p+Dﬁk b,

0
Energy: a(pkhk) + L [qpkhkvk) =-Ulg,
. 0
Species: —(pC)+0dpCVv,)=-00,

ot



Physical system

Microscopic interphase balances:

Mass balance:
(o, —p)V Ih=pV, - pV M

Momentum balance:

T +T7 ==8,(2y,&n) =S, (Oanve )

Energy balance (Stefan condition):

* oT. ) oT. )
Lv =] k—s|-| kK=
oL, [aj (aj

Solute balance:

e oC,. |
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Physical system

e Microscopic interphase balances:




Derivation of governing equations by volume averaging and

mixture theory
Mixture continuum model

e The development of conservation equations from classical mixture
theory is based on the following principles:

° mixture components may be viewed as isolated subsystems, if interactions with
other mixture components are properly treated

o all properties of the mixture are mathematical consequences of the component
properties

> the mean collective mixture behavior is governed by equations similar to those
governing the individual properties

e The partial density of phase k is

Py = 9Ok

e Mixture density and mass averaged velocity:

1 _
pzzpk VZ—Z,Oka
k P X



Derivation of governing equations by volume averaging and

mixture theory
Mixture continuum model

e Mass balance:

%,
ot

Ofpv)=0

e The continuum equation governing the conservation of momentum
can be obtained by summing over each phase

0 _

a[;pkvk

L] [EZ 9y Ty
K

+010) Zpkvkvkj =
Kk

;gk pkj-i_;(l[_)kBk)-'- F

e |n a Newtonian fluid, the relation between the shear stress and the

velocity gradient is linear, the constant of proportionality being the
coefficient of viscosity:

T=ulv



Derivation of governing equations by volume averaging and

mixture theory
Mixture continuum model

The drag interaction term can be modeled by Darcy's law:

= A,
K

e Final momentum equation is:

0 .
a(pv) +00pvv) = —Dp+,u[D2v—%v+pg

Energy balance:

%(ph) +00phv) =00kOT)

Solute balance:

%(pC)+D[Q,0CV) =0 pDOC)



Derivation of governing equations by volume averaging and

mixture theory
Volume averaging definitions

e Consider the volume element which is located in the mushy zone

e The volume element is assumed to be sufficiently large to
accurately represent the local structure at the mesoscopic length
scale, yet small enough that important variations in the
temperature, enthalpy and volume fraction of the solid are resolved
for the problem of interest

* We refer to this volume as a 'Representative Volume Element’' or
RVE
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Derivation of governing equations by volume averaging and
mixture theory

Volume averaging definitions

e The macroscopic conservation equations for each phase are

obtained by averaging the microscopic equations over the volume,
V
R

e The volume average of any quantity in phase k is defined as

) =Vij¢/dv

R Vg

e The averaging process is assumed to satisfy the following
properties:

LAl s op\ _ oY)
wra=)rle (2%
(@)9)=w)(e)

oo (1%




Derivation of governing equations by volume averaging and

mixture theory
Volume averaging definitions

* To be able to average equations over each of the interdispersed
phases the phase function Xk(x,t) is introduced, being equal
to one in phase k and zero otherwise,

1 wherex isin phade at tim
O elsewhere

X, (x.1) ={

e The quantity in phase k is expressed as ¢/, = X, ¢/

 The phase function Xk(x,t) is a generalised function and the
properties of averaging of derivatives do not apply for it

e The volume average of the phase function is equal to the phase
volume fraction

<Xk>:vijxkd V_k: 2.9

R Vg k



Derivation of governing equations by volume averaging and

mixture theory
Volume averaging definitions

» The volume average of quantity & in phase k over the volume Vj is

1
<¢k> =<Xk¢/> =V_R\7[ X pav

e The intrinsic volume average, i.e. the average value of the quantitiy
inside phase k is

W) =) =g [ Xy =0,

e The average of the product is

@) =(Xuo)=w)a) +(@a)



Derivation of governing equations by volume averaging and

mixture theory
Volume averaging definitions

The average of the time derivative is

(5] )=(2 )=o) ook fom

e where w, is the velocity of the phase interface.

The average of the gradient is

(0g,)=0( jwkn dA= g,0(p )" - Vij
R A

The average of the divergence is

{,.n, dA

<(D mp)k> :<XkD EIIJ> =0 qupk>k +<L|Jk>k Mg, - Vi

?'—o



Derivation of governing equations by volume averaging and

mixture theory
Volume averaged model

e Hypotheses:

[e]

the densities of both phases are assumed to be equal and constant, except for
bouyancy — Boussinesq approximation, 0, =0, = P

laminar flow and constant viscosity [,
solute diffusion in the liquid and solid at the macroscopic scale is neglected

local thermodynamic equilibrium is assumed, with perfect solute diffusion in both
phases (lever rule)

the mushy zone is an isotropic porous medium whose permeability K is defined
by Carman-Kozeny relation

constant thermal conductivity

constant heat capacity

saturated medium (g, +g, =1)

thermal equilibrium between phases ( <TS>S = <TZ>'€ =T)
fixed solid phase ( <VS>s =0)



Derivation of governing equations by volume averaging and

mixture theory
Volume averaged model

e The averaged mass balance for phase k is

6 1
at gk +D[(]gk Vk ) ;(rk-l_q)k)

e The averaged momentum balance for phase k is

gt(gk<vk )+D[ng (Vi) (Vi) ):_%Dpk+%m[(]9k<n>k)

e Phase change and grain nucleation are usually neglected



Derivation of governing equations by volume averaging and

mixture theory
Volume averaged model

e The averaged solute mass balance for species i in phase k is

Hada)|rodaa) )= 2o e +ae)

e The averaged heat balance for phase k is
0 1
5el9(n))+ 0o (h) (v ) =2 Dl gk (O

1/~ r ®
+;(Qk +Q[ +QP)

e The interphase transfer of mass and solute and nucleation require
aditional modeling

* This information has been lost during the volume averaging process



Derivation of governing equations by volume averaging and
mixture theory

Volume averaged model

* The nucleation and phase change terms (I\/If =0 andM, = () are
neglected

e The liquid phase is modeled as a Newtonian fluid and the tangential

stress term is thus [J [(]g( <T€>€) = [(],Ungg <V€>‘
 The interfacial momentum balance (MjI =-M?) is applied and the
phase change term is neglected (M; = O)

e The solid phase momentum (-g.0p+M? +g_gp° =0) can be applied
and we obtain

%(pgg <Vg>€) +0 Engg (v,)' <vg>£) =-Op+0 [ngm(gg <v£>€)) + By



Derivation of governing equations by volume averaging and

mixture theory
Volume averaged model

 In the liquid momentum balance the interfacial drag force is
modeled according to the Darcy model:

2
M =—gi<’% <V€>£

* The momentum balance in the liquid phase in the porous region is
thus

%(pgf (v.)')+Opg,(v.) (v,)') 5

f_gzzluz

< (v,) +g,/9

-9,0p+9,4,0%(v,)
e The Kozeny—Carman equation is used to model the permeability of
the columnar structure

= 9 9

(1- gf)2 Tk, 1°




Derivation of governing equations by volume averaging and

mixture theory
Volume averaged model

* |n order to get the solution, we have to solve a set of equations

Odv,) =0,

0 0 _ 0 gz,u ¢ ~
E(pngg}()m[@pg[(vg} (v.)')==9,0p+g,u%(v,) —= v 9.9

p%mipcpmf EQv»*)—DEQkDT) =0,

9(C)
t

* Density variation with temperature and composition:
p= p(l_ﬂr (T _To) _/Bc (<Ce>[ _Co))
» Enthalpies:

P +0(C,) dv,) =0

(h) =c,T (h) =c,T+L (hy=c,T+g,L

* Microsegregation model (lever rule):

4

(€)=g,(C) +g.(C.)"=(g, +k,(1-g)))(C)  T=T,+m(C,)



Derivation of governing equations by volume averaging and

mixture theory
Volume averaged model

e The initial and boundary conditions:

ox

%T(x=W,t):%(T—TM)
%T(X=0t)=§yT(y=0t)=—T(y=H,t):o Z—:=0
%(C)(x=0t):0 o é
(C)(x=w,t)=(C)(y=H,t)=(C)(y=0t)=C, %: 4
(v,) (pt=0)=0 v, =0
T(p,t=0)=T,

(C)p.t=0)=C




Derivation of governing equations by volume averaging and

mixture theory
Comparison of momentum equations

e Mixture continuum momentum equation:

0 .
a(pv) +0pvv)=-0p+ 0% —%v + pg

* Volume averaged momentum equation:

%(pgg<v£>g)+m [(]pg£<v£>£<vg>f) —

—-g,Up+ g“UgD2<VE>€ —%{VQE +0,00



Modeling of microstructure formation

Interdendritic
liquid

envelope

(a) (b)

A 2D schematic of an equiaxed dendrite surrounded by a cruciform (a), square (b) and spherical
envelope (c)



Modeling of microstructure formation

* Lever rule (equilibrium solidification model): complete mixing of
solute in liquid and solid is assumed

=t Ll orer k=2
1-k, T, T

e Scheil model: complete mixing of solute in liquid and no mixing of
solute in solid is assumed

1

~T Ykl
fszl— Tn =T ; I.sT<T,
Tm_Tz




Phase change kinetics

Solution of temperature, concentration and velocity field on macro
level by a meshless method

The phase change can be achived by undercooling a liquid below its
melting temperature

Equilibrium melting temperature:
T =T,+m((C) -C,)-T«
The interface growth velocity:
V, (pt) =4 (T, =T (p.t))+V, (v); p=T,,
Grain growth as a function of velocity, assuming no back diffusion in
the solid (Wang and Beckermann, 1996a.):
v, (v) = 4J*D€m€|£k0 -1)C, P C = T-To. - C -(C)

m

" ) C; (1_k0)




Phase change kinetics

* For computational efficiency, the inverse of the analytical solution
has been curve fitted

e Diffusion-dominated growth:

0O b
Pe :at—j ; a= 0.4567;b= 1.1€
1-Q

* Convection-dominated growth:

— Q i ] _ l _ S
Pe=al 10| ¢ Pe=fv) ~(v)IR/D,
a=0.4567+ 0.173P&° p= 1.195 0.145Pt




Phase change kinetics

e Thermodynamic anisotropy:

r= F[l— ) COS(S(H_ Ores ))}

e Kinetic anisotropy:

V=V, (p,t)[1—5k 005(5(9‘% ))J



Coupling of micro and macro equations

Set T, Cy, v and solid fraction f, from the initial conditions

h 4

Calculation of the new temperature, concentration and

velocity field in macroscopic nodes

4
Transfer of temperatures, concenctrations and velocities

from macroscopic nodes to microscopic nodes

h 4

Calculation of f, on micro scale

v
Transfer of solid fraction f, from microscopic

nodes to the macroscopic nodes

A

SetT,=T71.Cyh=C,vy=vand f,=f




Computational model

* The transport equations for each phase are averaged separately

and then summed up by taking into account the interphase
balances

Macro scale equations:

o [l o> M, ofv,n)=N
09g,<g; ot
v="f v, +f v, v :Z(Ps—/%)gdz
_ 9y
p_gfp(+gsps s
o - f,
g = f K=K,—-—
“ Lk “ (1_ fﬂ)z
fs + f[ =1; gs+g£ =1 b:pref[l_lal'(T_Tref)_ﬂC(C/_Cref)]g
h=cT+f,.L
Oy =0

ov. p 2 ( H
—+—(Ov)v=-f, Op+ v-R| f, =V
P 1;/( ) , Op+ 40 ‘K

-(1-R)Ofpffv,v,)+f,b

t
j Nyd(t) if T<T,, and [N®dt=0
0

N={N,(t) if T<T,, andN=0

nucl

0 else

p%ﬂov Mh=A0°T

a—C+vDDC€ =0
ot



Computational model

* The transport equations for each phase are averaged separately

and then summed up by taking into account the interphase
balances

Micro scale equations:

T, =T,+m(C,-C,)-Tk
Vy (1) =4 (T, =T (1)) +V, (v): p =T,

_40'D,m, (k, - 1)
r

V, (v < Pe

_T-T,
m[

_CZ —<C€>

- Cl(1-k)

r :F[l—ét cos(s(e—edd))}

V=V, (p,t)[l—5k cofS(6- b ))}

C

Q




Computational model

e The initial and boundary conditions:

v(x=W,t)=v(y=H,t)=v(y=0t)=0 geg, oy e
0 dn
&vy(xzo,t):o
+/
9 r(x=w,)=9(T-
aXT(x W, t) A(T To) y +
0 0 d dr
Ir(x=0t)=ZT(y=0)=2T(y=Ht)=0 =0
T(=00)= 2 T(y=00 =2 T(y=H =0 G0
& +
9 c(x=0t)=0 2 E
ox oy \5;
C{x=W.1) =C(y=H.) =C{y=0)=C, Ca B
v(p,t=0)=0 v, =0
T(p,t=0)=T, +
C(p,t=0)=C, v 4 +
LiquidL Slurry | Porous
me
c=c, L_¢ v=0



Computational model

e Comparison between the models (governing equations):
1 Cc
R:{ 9. > 0
09g.,=g;
V:g/f‘vl-'-gsvs V:gé‘vl

Mass balance:
Owv=0 OWw=0

¢  Momentum balance:

0 0
E(pg/V) +00{pg,w) =-g,0p+g,u,0% E(pg/V) +00{pg,w) =
2 2
—R(%VJ—(PR)D 09,9,V v, ) +9,09, ~g,0p+g.u v -3 v+ g9
e Energy balance:
p%tovﬂ]]h:/IDZT p%tovm]h:/IDZT

Species balance:

a_C+Vu]:|C€:O a—C+VD]:|C/=O
ot ot '



Computational model

e Comparison between the models:

C=C,

dT
_:0
dn

v=_0

our] Arjpumig

X 4

aur| Lrjpurmig

X 4




Conclusions

Introduction to physical phenomena in solidification

Overview of physical modelling of solidification systems on the
macroscopic and microscopic scale

Description of point automata method
Developed coupling of microscopic and macroscopic equations

Future steps:

Solving the solidification system with movement of the solid phase
by LRBFCM

> Temperatures,

> Concentrations,

o Velocities,

> Pressure,

o @Grain structure, size and concentration

Comparison with measurements (Fautrelle, Grenoble)
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