Non-Singular Method of Fundamental Solutions and its Application to Two Dimensional Elasticity Problems

Qingguo Liu

Mentor: Prof. Dr. Božidar Šarler
Scope

• Motivation
• Introduction
 – Previous Applications of MFS
• Governing Equations of Elasticity
• Solution Procedure
 – MFS and NMFS
• Numerical Examples
• Conclusions
Motivation

What we want to know: displacement of object subject to external forces

Before deformation

After deformation
Motivation

The problem will be solved by MFS-type solution procedure.

Initial microstructure

Final microstructure
Introduction

- Trefftz-type technique
- Approximating the solution of the problem by a linear combination of fundamental solutions
- Singularities, so source points have to be located outside the domain
- Boundary conditions
- Determining the unknown coefficients and the coordinates of the source points
Introduction

- Method widely used in linear elasticity.
 - Kupradze and Aleksidze, 1964. First used in solid mechanics
 - Smyrlis, 2006. Expand the result of Kupradze and Aleksidze
 - Maharejin, 1985. Anisotropic media
 - Redekop and Thompson, 1983. Axisymmetric problems
Introduction

- Traditional MFS
- Problems with the fictitious boundary with source points
- The source points can be placed on the real boundary directly
 - Chen K. H. et al. 2006
 - Šarler, 2008, 2009
 - Chen and Wang, 2010
- A modified method: Liu, 2010
 - Used for potential problems
 - Integration of the fundamental solutions
 - Area-distributed sources cover the source points
 - Determining of the diagonal elements: Šarler, 2008, 2009
Governing Equations of Elasticity

- The state of stress at a point can be described by stress components formed on an element with sides δx and δy
- Symmetry:
 $\sigma_{xy} = \sigma_{yx}$
- The first suffix indicates the indication of the normal to the plane on which the stress acts. The second suffix indicates the indication in which the stress acts.
Governing Equations of Elasticity

The equations of equilibrium for a two-dimensional system subjected to external forces and body forces b_x and b_y are given as

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + b_x = 0$$

$$\frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + b_y = 0$$

where

$$b_x = ma_x \quad b_y = ma_y$$

m is quality and a_x and a_y are accelerations along directions of x-axis and y-axis, respectively.

When there is no body force ($b_x = 0$ and $b_y = 0$):

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} = 0$$

$$\frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} = 0$$
We introduce linear elasticity by Hooke's law.

\[\sigma_{xx} = \lambda (\epsilon_{xx} + \epsilon_{yy}) + 2\mu \epsilon_{xx} \quad \sigma_{xy} = 2\mu \epsilon_{xy} \]
\[\sigma_{yy} = \lambda (\epsilon_{xx} + \epsilon_{yy}) + 2\mu \epsilon_{yy} \quad \sigma_{yx} = 2\mu \epsilon_{yx} \]

where \(\lambda = 2\mu\nu / (1 - 2\nu) \), \(\nu \) is Poisson's ratio, \(\mu = E / 2(1 - \nu) \) is the shear modulus of elasticity and \(E \) is a constant known as the modulus of elasticity or Young's modulus.

The definition of strain is

\[\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \quad i, j = x, y \]
Governing Equations of Elasticity

Navier's equations without body force for isotropic elasticity are

\[
\frac{2\mu\nu}{1-2\nu} \frac{\partial^2 u_x(p)}{\partial p_x^2} + \mu \frac{\partial^2 u_x(p)}{\partial p_y^2} + \mu \frac{\partial^2 u_y(p)}{\partial p_x \partial p_y} = 0
\]

\[
\frac{2\mu\nu}{1-2\nu} \frac{\partial^2 u_y(p)}{\partial p_y^2} + \mu \frac{\partial^2 u_y(p)}{\partial p_x^2} + \mu \frac{\partial^2 u_x(p)}{\partial p_x \partial p_y} = 0
\]

\[p \in \Omega\]

where \(p = p_x i_x + p_y i_y \) and \(p_x, p_y \) are 2D Cartesian coordinates with base vectors \(i_x, i_y \)
Governing Equations of Elasticity

The boundary conditions are

\[u_i(p) = \bar{u}_i(p); \quad p \in \Gamma^D \text{ (Displacement B.C.)} \]
\[t_i(p) = \bar{t}_i(p); \quad p \in \Gamma^T \text{ (Traction B.C.)} \]

\[i = x, y \]
Governing Equations of Elasticity

The definition of tractions is

\[t_i = \sigma_{ii} n_i + \sigma_{ij} n_j \quad i, j = x, y \text{ and } j \neq i \]
Solution Procedure: MFS

The Kelvin's fundamental solution of elastostatics is

\[
U_{ij}(p, s) = \frac{1}{8\pi \mu(1 - \nu)} \left\{ (3 - 4\nu) \log\left(\frac{r}{\nu\mu}\right) \delta_{ij} + \frac{(p_i - s_i)(p_j - s_j)}{r^2} \right\}, \quad i, j = x, y
\]

where \(U_{ij}(p, s) \) represents the displacement in the \(i \) direction at point \(p \) due to a unit point force acting in the \(j \) direction at \(s \), \(r = \sqrt{(p_x - s_x)^2 + (p_y - s_y)^2} \) is the distance between the point \(p \) and \(s \).

\[
U_{xx}(p, s) = \frac{1}{8\pi \mu(1 - \nu)} \left\{ (3 - 4\nu) \log\left(\frac{r}{\nu\mu}\right) + \frac{(p_x - s_x)^2}{r^2} \right\}
\]

\[
U_{xy}(p, s) = U_{yx}(p, s) = \frac{1}{8\pi \mu(1 - \nu)} \frac{(p_x - s_x)(p_y - s_y)}{r^2}
\]

\[
U_{yy}(p, s) = \frac{1}{8\pi \mu(1 - \nu)} \left\{ (3 - 4\nu) \log\left(\frac{r}{\nu\mu}\right) + \frac{(p_y - s_y)^2}{r^2} \right\}
\]

\[p, s \in \Omega \]
Solution Procedure: MFS

By using the definition of traction, we obtain

\[
T_{xx}(p,s) = \left(\frac{2\mu(1-\nu)}{1-2\nu} \frac{\partial U_{xx}(p,s)}{\partial p_x} + \frac{2\mu\nu}{1-2\nu} \frac{\partial U_{yx}(p,s)}{\partial p_y} \right) n_x + \left(\mu \frac{\partial U_{xx}(p,s)}{\partial p_y} + \frac{\partial U_{yx}(p,s)}{\partial p_x} \right) n_y
\]

\[
T_{xy}(p,s) = \left(\frac{2\mu(1-\nu)}{1-2\nu} \frac{\partial U_{xy}(p,s)}{\partial p_x} + \frac{2\mu
u}{1-2\nu} \frac{\partial U_{yy}(p,s)}{\partial p_y} \right) n_x + \left(\mu \frac{\partial U_{xy}(p,s)}{\partial p_y} + \frac{\partial U_{yy}(p,s)}{\partial p_x} \right) n_y
\]

\[
T_{yx}(p,s) = \left(\mu \frac{\partial U_{yx}(p,s)}{\partial p_x} + \frac{\partial U_{xy}(p,s)}{\partial p_y} \right) n_x + \left(\frac{2\mu(1-\nu)}{1-2\nu} \frac{\partial U_{yx}(p,s)}{\partial p_y} + \frac{2\mu\nu}{1-2\nu} \frac{\partial U_{xx}(p,s)}{\partial p_x} \right) n_y
\]

\[
T_{yy}(p,s) = \left(\mu \frac{\partial U_{yy}(p,s)}{\partial p_x} + \frac{\partial U_{xy}(p,s)}{\partial p_y} \right) n_x + \left(\frac{2\mu(1-\nu)}{1-2\nu} \frac{\partial U_{yy}(p,s)}{\partial p_y} + \frac{2\mu\nu}{1-2\nu} \frac{\partial U_{xx}(p,s)}{\partial p_x} \right) n_y
\]
Solution Procedure: MFS

In MFS, the displacement field is represented by N fundamental solutions in source points s_n, $n=1,2, \ldots, N$. The displacements and the tractions are approximated by a linear combination of fundamental solutions as follows:

$$u_x(p) = \sum_{n=1}^{N} U_{xx}(p,s_n) \alpha_n + \sum_{n=1}^{N} U_{xy}(p,s_n) \beta_n$$

$$u_y(p) = \sum_{n=1}^{N} U_{yx}(p,s_n) \alpha_n + \sum_{n=1}^{N} U_{yy}(p,s_n) \beta_n$$

$$t_x(p) = \sum_{n=1}^{N} T_{xx}(p,s_n) \alpha_n + \sum_{n=1}^{N} T_{xy}(p,s_n) \beta_n$$

$$t_y(p) = \sum_{n=1}^{N} T_{yx}(p,s_n) \alpha_n + \sum_{n=1}^{N} T_{yy}(p,s_n) \beta_n$$
Solution Procedure: MFS

Let us place N points $p_n, n=1,2,\ldots,N.$ on the boundary

$$\bar{u}_x(p) = \sum_{n=1}^{N} U_{xx}(p, s_n) \alpha_n + \sum_{n=1}^{N} U_{xy}(p, s_n) \beta_n$$

$$\bar{u}_y(p) = \sum_{n=1}^{N} U_{yx}(p, s_n) \alpha_n + \sum_{n=1}^{N} U_{yy}(p, s_n) \beta_n$$

$$\bar{t}_x(p) = \sum_{n=1}^{N} T_{xx}(p, s_n) \alpha_n + \sum_{n=1}^{N} T_{xy}(p, s_n) \beta_n$$

$$\bar{t}_y(p) = \sum_{n=1}^{N} T_{yx}(p, s_n) \alpha_n + \sum_{n=1}^{N} T_{yy}(p, s_n) \beta_n$$

We introduce boundary condition indicators

$$\chi^D(p) = \begin{cases} 1, & p \in \Gamma^D \\ 0, & p \in \Gamma^T \end{cases} \quad \chi^T(p) = \begin{cases} 1, & p \in \Gamma^T \\ 0, & p \in \Gamma^D \end{cases}$$
Solution Procedure: MFS

The coefficients are calculated from a system of algebraic equations

\[
[\Phi \ \Psi] \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = b
\]

\[
\sum_{k=1}^{N} (\phi_{kn} \alpha_n + \psi_{kn} \beta_n) = b_k \quad k = 1, 2, \ldots N
\]

\[
\phi_{kn} = \chi^D(p_k)U_{ix}(p_k, s_n) + \chi^T(p_k)T_{ix}(p_k, s_n)
\]

\[
\psi_{kn} = \chi^D(p_k)U_{iy}(p_k, s_n) + \chi^T(p_k)T_{iy}(p_k, s_n)
\]

\[
b_k = \chi^D(p_k)\bar{u}_i(p_k) + \chi^T(p_k)\bar{t}_i(p_k)
\]

\[
[\alpha] = [\Phi \ \Psi]^{-1} b
\]

\[
\begin{bmatrix} U_{xx} & U_{xy} \\ U_{yx} & U_{yy} \end{bmatrix} \begin{bmatrix} \alpha_n \\ \beta_n \end{bmatrix} = \begin{bmatrix} u_x \\ u_y \end{bmatrix}
\]
Solution Procedure: NMFS

In the non-singular method of fundamental solutions, we place N distributed sources s_n at points p_n, $n=1,2,\ldots,N$, on the boundary.
Solution Procedure: NMFS

The following two formulas satisfy the governing equation

\[u_x(p) = \sum_{n=1}^{N} \int_{A(p_n)} U_{xx}(p, s_n) dA(s_n) \alpha_n + \sum_{n=1}^{N} \int_{A(p_n)} U_{xy}(p, s_n) dA(s_n) \beta_n \]

\[u_y(p) = \sum_{n=1}^{N} \int_{A(p_n)} U_{yx}(p, s_n) dA(s_n) \alpha_n + \sum_{n=1}^{N} \int_{A(p_n)} U_{yy}(p, s_n) dA(s_n) \beta_n \]

We are using integration over point sources for smoothing out the singularity.
Solution Procedure: NMFS

When p_n is outside of $A(p_n)$, we consider $r \approx a$ since $R << r$. So

$$
\int_{A(p_n)} U_{ij}(p, s_n) dA(s_n) = \frac{R^2}{8\mu(1-\nu)} \left\{ (3 - 4\nu)\log\left(\frac{1}{a}\right)\delta_{ij} + \frac{(p_i - p_{ni})(p_j - p_{nj})}{a^2} \right\} \quad i, j = x, y
$$

When p is inside of $A(p_n)$,

$$
\int_{A(p_n)} \log\left(\frac{1}{r}\right) dA(s_n) = -\int_0^{2\pi} \int_0^R \log(r) \cdot r dr d\theta = -2\pi \frac{1}{2} \left(\log(r) \cdot r \bigg|_0^R - \int_0^R r dr \right) = \pi \log\left(\frac{1}{R}\right) + \frac{\pi R^2}{2}
$$

$$
\int_{A(p)} \frac{(p_x - s_{nx})^2}{r^2} dA(s_n) = \int_0^{2\pi} \int_0^R r^2 \cos^2(\theta) \cdot r dr d\theta = \frac{R^2}{2} \left(\frac{\sin(\theta)\cos(\theta) + \theta}{2} \right) \bigg|_0^{2\pi} = \frac{\pi R^2}{2}
$$

$$
\int_{A(p)} \frac{(p_x - s_{nx})(p_y - s_{ny})}{r^2} dA(s_n) = \int_0^{2\pi} \int_0^R r^2 \cos(\theta) \sin(\theta) \cdot r dr d\theta = \frac{R^2}{2} \left(\frac{\cos^2(\theta)}{2} \right) \bigg|_0^{2\pi} = 0
$$

$$
\int_{A(p)} \frac{(p_y - s_{ny})^2}{r^2} dA(s_n) = \int_0^{2\pi} \int_0^R r^2 \sin^2(\theta) \cdot r dr d\theta = \frac{R^2}{2} \left(\frac{-\sin(\theta)\cos(\theta) + \theta}{2} \right) \bigg|_0^{2\pi} = \frac{\pi R^2}{2}
$$
Solution Procedure: NMFS

\[\tilde{U}_{xx}(\mathbf{p}, \mathbf{p}_n) = \int_{A(\mathbf{p}_n)} U_{xx}(\mathbf{p}, \mathbf{s}_n) dA(\mathbf{s}_n) \]

\[= \begin{cases} \displaystyle \frac{R^2}{8 \mu (1-\nu)} \left\{ (3-4\nu) \log \left(\frac{1}{a} \right) + \frac{(p_x - p_{nx})^2}{a^2} \right\}, & \text{if } a > R \\ \displaystyle \frac{R^2 (3-4\nu)}{8 \mu (1-\nu)} \log \left(\frac{1}{R} \right) + \frac{(3-4\nu) \left(R^2 - a^2 \right)}{16 \mu (1-\nu)} + \frac{R^2 - a^2}{16 \mu (1-\nu)} + \frac{(p_x - p_{nx})^2}{8 \mu (1-\nu)}, & \text{if } a \leq R \end{cases} \]

\[\tilde{U}_{xy}(\mathbf{p}, \mathbf{p}_n) = \tilde{U}_{yx}(\mathbf{p}, \mathbf{p}_n) = \int_{A(\mathbf{p}_n)} U_{xy}(\mathbf{p}, \mathbf{s}_n) dA(\mathbf{s}_n) \]

\[= \begin{cases} \displaystyle \frac{R^2}{8 \mu (1-\nu)} \frac{(p_x - p_{nx})(p_y - p_{ny})}{a^2}, & \text{if } a > R \\ 0, & \text{if } a \leq R \end{cases} \]

\[\tilde{U}_{yy}(\mathbf{p}, \mathbf{p}_n) = \int_{A(\mathbf{p}_n)} U_{yy}(\mathbf{p}, \mathbf{s}_n) dA(\mathbf{s}_n) \]

\[= \begin{cases} \displaystyle \frac{R^2}{8 \mu (1-\nu)} \left\{ (3-4\nu) \log \left(\frac{1}{a} \right) + \frac{(p_y - p_{ny})^2}{a^2} \right\}, & \text{if } a > R \\ \displaystyle \frac{R^2 (3-4\nu)}{8 \mu (1-\nu)} \log \left(\frac{1}{R} \right) + \frac{(3-4\nu) \left(R^2 - a^2 \right)}{16 \mu (1-\nu)} + \frac{R^2 - a^2}{16 \mu (1-\nu)} + \frac{(p_y - p_{ny})^2}{8 \mu (1-\nu)}, & \text{if } a \leq R \end{cases} \]
Solution Procedure: NMFS

The displacements are approximated by a linear combination of $\tilde{U}_{ij}(p, p_n)$ as follows:

$$u_x(p) = \sum_{n=1}^{N} \tilde{U}_{xx}(p, p_n) \alpha_n + \sum_{n=1}^{N} \tilde{U}_{xy}(p, p_n) \beta_n$$

$$u_y(p) = \sum_{n=1}^{N} \tilde{U}_{yx}(p, p_n) \alpha_n + \sum_{n=1}^{N} \tilde{U}_{yy}(p, p_n) \beta_n$$
Solution Procedure: NMFS

\[t_x(p) = \sum_{n=1}^{N} \alpha_n \left\{ \left[\frac{2\mu(1-\nu)}{1-2\nu} \frac{\partial\tilde{U}_{xx}(p,p_n)}{\partial p_x} + \frac{2\mu\nu}{1-2\nu} \frac{\partial\tilde{U}_{yy}(p,p_n)}{\partial p_y} \right] n_x + \left[\frac{\partial\tilde{U}_{xx}(p,p_n)}{\partial p_y} + \frac{\partial\tilde{U}_{yy}(p,p_n)}{\partial p_x} \right] n_y \right\} \]

\[+ \sum_{n=1}^{N} \beta_n \left\{ \left[\frac{2\mu(1-\nu)}{1-2\nu} \frac{\partial\tilde{U}_{xy}(p,p_n)}{\partial p_x} + \frac{2\mu\nu}{1-2\nu} \frac{\partial\tilde{U}_{xy}(p,p_n)}{\partial p_y} \right] n_x + \left[\frac{\partial\tilde{U}_{xy}(p,p_n)}{\partial p_y} + \frac{\partial\tilde{U}_{xy}(p,p_n)}{\partial p_x} \right] n_y \right\} \]

\[t_y(p) = \sum_{n=1}^{N} \alpha_n \left\{ \left[\frac{\partial\tilde{U}_{yx}(p,p_n)}{\partial p_x} + \frac{\partial\tilde{U}_{xy}(p,p_n)}{\partial p_y} \right] n_x + \left[\frac{2\mu(1-\nu)}{1-2\nu} \frac{\partial\tilde{U}_{yx}(p,p_n)}{\partial p_y} + \frac{2\mu\nu}{1-2\nu} \frac{\partial\tilde{U}_{xx}(p,p_n)}{\partial p_x} \right] n_y \right\} \]

\[+ \sum_{n=1}^{N} \beta_n \left\{ \left[\frac{\partial\tilde{U}_{yy}(p,p_n)}{\partial p_x} + \frac{\partial\tilde{U}_{xy}(p,p_n)}{\partial p_y} \right] n_x + \left[\frac{2\mu(1-\nu)}{1-2\nu} \frac{\partial\tilde{U}_{yy}(p,p_n)}{\partial p_y} + \frac{2\mu\nu}{1-2\nu} \frac{\partial\tilde{U}_{xy}(p,p_n)}{\partial p_x} \right] n_y \right\} \]
Solution Procedure: NMFS

The coefficients are calculated from a system of N algebraic equations

$$\begin{bmatrix} \Phi & \Psi \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = b$$

$$\sum_{k=1}^{N} (\phi_{kn} \alpha_n + \psi_{kn} \beta_n) = b_k \quad k = 1, 2, \cdots N$$

$$\phi_{kn} = \chi^D(p_k) \tilde{U}_{ix}(p_k, p_n) + \chi^T(p_k) \tilde{T}_{ix}(p_k, p_n)$$

$$\psi_{kn} = \chi^D(p_k) \tilde{U}_{iy}(p_k, p_n) + \chi^T(p_k) \tilde{T}_{iy}(p_k, p_n)$$

$$b_k = \chi^D(p_k) \tilde{u}_i(p_k) + \chi^T(p_k) \tilde{t}_i(p_k)$$
Solution Procedure: NMFS

The method proposed by Šarler 2009 is applied to determine the diagonal coefficients of matrix $[\Phi, \Psi]$. We first assume a constant solution, e.g. $\bar{u}_i(p) = c$ everywhere. Then we can solve for the corresponding α_n^c and β_n^c, and use

$$\frac{\partial \bar{u}_i(p)}{\partial p_i} = \frac{\partial \bar{u}_i(p)}{\partial p_j} = 0, \quad i, j = x, y$$

then

$$\frac{\partial \bar{u}_x(p)}{\partial p_x} = \sum_{n=1}^{N} \frac{\partial \tilde{U}_{xx}(p, p_n)}{\partial p_x} \alpha_n^c + \sum_{n=1}^{N} \frac{\partial \tilde{U}_{xy}(p, p_n)}{\partial p_x} \beta_n^c = 0$$

$$\frac{\partial \bar{u}_x(p)}{\partial p_y} = \sum_{n=1}^{N} \frac{\partial \tilde{U}_{xx}(p, p_n)}{\partial p_y} \alpha_n^c + \sum_{n=1}^{N} \frac{\partial \tilde{U}_{xy}(p, p_n)}{\partial p_y} \beta_n^c = 0$$

$$\frac{\partial \bar{u}_y(p)}{\partial p_x} = \sum_{n=1}^{N} \frac{\partial \tilde{U}_{yx}(p, p_n)}{\partial p_x} \alpha_n^c + \sum_{n=1}^{N} \frac{\partial \tilde{U}_{yy}(p, p_n)}{\partial p_x} \beta_n^c = 0$$

$$\frac{\partial \bar{u}_y(p)}{\partial p_y} = \sum_{n=1}^{N} \frac{\partial \tilde{U}_{yx}(p, p_n)}{\partial p_y} \alpha_n^c + \sum_{n=1}^{N} \frac{\partial \tilde{U}_{yy}(p, p_n)}{\partial p_y} \beta_n^c = 0$$
Solution Procedure: NMFS

We assume

\[
\sum_{n=1}^{N} \frac{\partial \tilde{U}_{ij}(p, p_n)}{\partial p_i} \alpha_n^c = 0
\]

\[
\sum_{n=1}^{N} \frac{\partial \tilde{U}_{ij}(p, p_n)}{\partial p_i} \beta_n^c = 0 \quad i, j = x, y
\]

So when \(p = p_m, m=1,2,\ldots,N \)

\[
\frac{\partial \tilde{U}_{ix}(p, p_m)}{\partial p_i} = -\frac{1}{\alpha_i^c} \sum_{n=1 \atop n \neq m}^{N} \frac{\partial \tilde{U}_{ix}(p, p_n)}{\partial p_i}, \quad i, j = x, y
\]

\[
\frac{\partial \tilde{U}_{iy}(p, p_m)}{\partial p_i} = -\frac{1}{\beta_i^c} \sum_{n=1 \atop n \neq m}^{N} \frac{\partial \tilde{U}_{iy}(p, p_n)}{\partial p_i}, \quad i, j = x, y
\]

Now we have calculated all elements of the matrix and \(\alpha_n \) and \(\beta_n \).

\[
\begin{bmatrix}
\tilde{U}_{xx} & \tilde{U}_{xy} \\
\tilde{U}_{yx} & \tilde{U}_{yy}
\end{bmatrix}
\begin{bmatrix}
\alpha_n \\
\beta_n
\end{bmatrix} =
\begin{bmatrix}
u_x \\
u_y
\end{bmatrix}
\]
Example 1

\(\nu = 0.25, \quad E = 1 \text{ N/m}^2 \)

Boundary conditions:

\[\bar{u}_x = p_x, \quad \bar{u}_y = -\frac{1}{4} p_y \]

Analytical solution:

\[u_x = p_x \]

\[u_y = -\frac{1}{4} p_y \]
Example 1

\[R' = 5d \]

\[R = \frac{d}{3} \]
Example 1

The number of boundary nodes used is 100. A number $M=19$ of field points are selected inside the domain along the line $y=0.5$ with $0.5 \leq x \leq 0.95$. The solutions for $R = d / N (N = 2, 3, \ldots, 11)$ at these field points are computed with NMFS and compared with the analytical solutions. The relative errors of the numerical solutions are defined as:

$$Err = \left[\frac{1}{M} \sum_{k=1}^{M} \left(\frac{(u_i - u_i^a) / u_i^a}{u_i^a} \right)^2 \right]^{1/2}$$

The solutions for the distance $R' = N \cdot d (N = 2, 3, \ldots, 11)$ of the fictitious boundary from the true boundary are also computed with MFS and compared with the analytical solutions.
Example 1

With \(R' = 5d \), \(R = d/3 \)
Example 1

The number of boundary nodes used is from 100 to 2000. $R = d/3$ $R’ = 5d$. We also use the 19 points we used just now to compute. The solutions are compared with the analytical solutions. We know the more nodes we get, the relative errors will be smaller with the NMFS. In this case errors will be very small with the MFS.
Example 1

The matrix becomes ill conditioned in MFS when the number of points is growing
Example 2

\[\nu = 0.35678 \quad E = 97362.21 \times 10^6 \text{N/m}^2 \]
Example 2

Boundary condition:
\[y = 0 : \ddot{u}_x = 0 \quad \ddot{u}_y = 0.05 \]
\[y = 1 : \ddot{u}_x = 0 \quad \ddot{u}_y = -0.05 \]
\[x = 0 \text{ or } 1 : \ddot{t}_x = 0 \quad \ddot{t}_y = 0 \]

\[R' = 5d \]

\[R = d / 3 \]
Example 2

We put MFS and NMFS solutions together and use red color to express the NMFS results, blue color to denote the MFS results. And a number of $M=19$ field points are selected inside the domain along the line $0.05 \leq x = y \leq 0.095$ we can see that the NMFS results and the MFS results almost coincide and both on the boundary and in the square. So both methods can be used.
Example 3: shear deformation

\[\nu = 0.35678 \quad E = 97362.21 \times 10^6 \text{N/m}^2 \]

Material properties used are for steel.
Example 3: shear deformation

Boundary condition:

\[y = 0: \bar{u}_x = 0 \quad \bar{u}_y = 0.05 \]
\[y = 1: \bar{u}_x = 0 \quad \bar{u}_y = -0.05 \]
\[x = 0 \text{ or } 1: \bar{t}_x = 0 \quad \bar{t}_y = 0 \]

\[R' = 5d \]
\[R = d / 3 \]
Example 3: shear deformation

We put MFS and NMFS solutions together and use red color to express the NMFS results, blue color to denote the MFS results. And a number of $M=19$ field points are selected in side the domain along the line $x=0.5$ with $0.05 \leq y \leq 0.095$. We can see that the NMFS results and MFS results are almost the same. So both methods can be used.
Conclusions

• Solving boundary-value problems with the nodes on the boundary only
• First time used for elasticity problems
• Based on: modified MFS
• Integrated first
• Determining the diagonal elements: Šarler, 2008, 2009
Future Work
References

potential, Helmholtz and diffusion problems, in: Boundary Integral
Methods: Numerical and Mathematical Aspects, Computational
Engineering, vol. 1, WIT Press/Computational Mechanics Publications,

zagadnieniach mechaniki [Applications of the Boundary Collocation
Method in Applied Mechanics], Wydaw. Politechniki Poznańskiej, Poznán,
2001 (in Polish).
References

References

References

Thank you!